### 3.7 $$\int \sec ^2(x) \, dx$$

Optimal. Leaf size=2 $\tan (x)$

[Out]

Tan[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0055703, antiderivative size = 2, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 4, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.5, Rules used = {3767, 8} $\tan (x)$

Antiderivative was successfully veriﬁed.

[In]

Int[Sec[x]^2,x]

[Out]

Tan[x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \sec ^2(x) \, dx &=-\operatorname{Subst}(\int 1 \, dx,x,-\tan (x))\\ &=\tan (x)\\ \end{align*}

Mathematica [A]  time = 0.0016016, size = 2, normalized size = 1. $\tan (x)$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sec[x]^2,x]

[Out]

Tan[x]

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 3, normalized size = 1.5 \begin{align*} \tan \left ( x \right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(sec(x)^2,x)

[Out]

tan(x)

________________________________________________________________________________________

Maxima [A]  time = 0.926789, size = 3, normalized size = 1.5 \begin{align*} \tan \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)^2,x, algorithm="maxima")

[Out]

tan(x)

________________________________________________________________________________________

Fricas [B]  time = 1.90967, size = 20, normalized size = 10. \begin{align*} \frac{\sin \left (x\right )}{\cos \left (x\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)^2,x, algorithm="fricas")

[Out]

sin(x)/cos(x)

________________________________________________________________________________________

Sympy [B]  time = 0.058736, size = 5, normalized size = 2.5 \begin{align*} \frac{\sin{\left (x \right )}}{\cos{\left (x \right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)**2,x)

[Out]

sin(x)/cos(x)

________________________________________________________________________________________

Giac [A]  time = 1.06331, size = 3, normalized size = 1.5 \begin{align*} \tan \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)^2,x, algorithm="giac")

[Out]

tan(x)