### 3.317 $$\int \frac{1}{x (1+x^4)} \, dx$$

Optimal. Leaf size=13 $\log (x)-\frac{1}{4} \log \left (x^4+1\right )$

[Out]

Log[x] - Log[1 + x^4]/4

________________________________________________________________________________________

Rubi [A]  time = 0.0049037, antiderivative size = 13, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 11, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.364, Rules used = {266, 36, 29, 31} $\log (x)-\frac{1}{4} \log \left (x^4+1\right )$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(x*(1 + x^4)),x]

[Out]

Log[x] - Log[1 + x^4]/4

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{x \left (1+x^4\right )} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{x (1+x)} \, dx,x,x^4\right )\\ &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{x} \, dx,x,x^4\right )-\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{1+x} \, dx,x,x^4\right )\\ &=\log (x)-\frac{1}{4} \log \left (1+x^4\right )\\ \end{align*}

Mathematica [A]  time = 0.0030564, size = 13, normalized size = 1. $\log (x)-\frac{1}{4} \log \left (x^4+1\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(x*(1 + x^4)),x]

[Out]

Log[x] - Log[1 + x^4]/4

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 12, normalized size = 0.9 \begin{align*} \ln \left ( x \right ) -{\frac{\ln \left ({x}^{4}+1 \right ) }{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(x^4+1),x)

[Out]

ln(x)-1/4*ln(x^4+1)

________________________________________________________________________________________

Maxima [A]  time = 0.929044, size = 20, normalized size = 1.54 \begin{align*} -\frac{1}{4} \, \log \left (x^{4} + 1\right ) + \frac{1}{4} \, \log \left (x^{4}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x^4+1),x, algorithm="maxima")

[Out]

-1/4*log(x^4 + 1) + 1/4*log(x^4)

________________________________________________________________________________________

Fricas [A]  time = 2.02057, size = 38, normalized size = 2.92 \begin{align*} -\frac{1}{4} \, \log \left (x^{4} + 1\right ) + \log \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x^4+1),x, algorithm="fricas")

[Out]

-1/4*log(x^4 + 1) + log(x)

________________________________________________________________________________________

Sympy [A]  time = 0.09011, size = 10, normalized size = 0.77 \begin{align*} \log{\left (x \right )} - \frac{\log{\left (x^{4} + 1 \right )}}{4} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x**4+1),x)

[Out]

log(x) - log(x**4 + 1)/4

________________________________________________________________________________________

Giac [A]  time = 1.04758, size = 20, normalized size = 1.54 \begin{align*} -\frac{1}{4} \, \log \left (x^{4} + 1\right ) + \frac{1}{4} \, \log \left (x^{4}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x^4+1),x, algorithm="giac")

[Out]

-1/4*log(x^4 + 1) + 1/4*log(x^4)