### 3.243 $$\int \frac{1}{3-5 \sin (x)} \, dx$$

Optimal. Leaf size=43 $\frac{1}{4} \log \left (3 \cos \left (\frac{x}{2}\right )-\sin \left (\frac{x}{2}\right )\right )-\frac{1}{4} \log \left (\cos \left (\frac{x}{2}\right )-3 \sin \left (\frac{x}{2}\right )\right )$

[Out]

-Log[Cos[x/2] - 3*Sin[x/2]]/4 + Log[3*Cos[x/2] - Sin[x/2]]/4

________________________________________________________________________________________

Rubi [A]  time = 0.0187309, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 8, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.375, Rules used = {2660, 616, 31} $\frac{1}{4} \log \left (3 \cos \left (\frac{x}{2}\right )-\sin \left (\frac{x}{2}\right )\right )-\frac{1}{4} \log \left (\cos \left (\frac{x}{2}\right )-3 \sin \left (\frac{x}{2}\right )\right )$

Antiderivative was successfully veriﬁed.

[In]

Int[(3 - 5*Sin[x])^(-1),x]

[Out]

-Log[Cos[x/2] - 3*Sin[x/2]]/4 + Log[3*Cos[x/2] - Sin[x/2]]/4

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
NeQ[a^2 - b^2, 0]

Rule 616

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/Simp
[b/2 - q/2 + c*x, x], x], x] - Dist[c/q, Int[1/Simp[b/2 + q/2 + c*x, x], x], x]] /; FreeQ[{a, b, c}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c] && PerfectSquareQ[b^2 - 4*a*c]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{3-5 \sin (x)} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{3-10 x+3 x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )\\ &=\frac{3}{4} \operatorname{Subst}\left (\int \frac{1}{-9+3 x} \, dx,x,\tan \left (\frac{x}{2}\right )\right )-\frac{3}{4} \operatorname{Subst}\left (\int \frac{1}{-1+3 x} \, dx,x,\tan \left (\frac{x}{2}\right )\right )\\ &=-\frac{1}{4} \log \left (1-3 \tan \left (\frac{x}{2}\right )\right )+\frac{1}{4} \log \left (3-\tan \left (\frac{x}{2}\right )\right )\\ \end{align*}

Mathematica [A]  time = 0.0113205, size = 43, normalized size = 1. $\frac{1}{4} \log \left (3 \cos \left (\frac{x}{2}\right )-\sin \left (\frac{x}{2}\right )\right )-\frac{1}{4} \log \left (\cos \left (\frac{x}{2}\right )-3 \sin \left (\frac{x}{2}\right )\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(3 - 5*Sin[x])^(-1),x]

[Out]

-Log[Cos[x/2] - 3*Sin[x/2]]/4 + Log[3*Cos[x/2] - Sin[x/2]]/4

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 22, normalized size = 0.5 \begin{align*} -{\frac{1}{4}\ln \left ( 3\,\tan \left ( x/2 \right ) -1 \right ) }+{\frac{1}{4}\ln \left ( \tan \left ({\frac{x}{2}} \right ) -3 \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3-5*sin(x)),x)

[Out]

-1/4*ln(3*tan(1/2*x)-1)+1/4*ln(tan(1/2*x)-3)

________________________________________________________________________________________

Maxima [A]  time = 0.927992, size = 41, normalized size = 0.95 \begin{align*} -\frac{1}{4} \, \log \left (\frac{3 \, \sin \left (x\right )}{\cos \left (x\right ) + 1} - 1\right ) + \frac{1}{4} \, \log \left (\frac{\sin \left (x\right )}{\cos \left (x\right ) + 1} - 3\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*sin(x)),x, algorithm="maxima")

[Out]

-1/4*log(3*sin(x)/(cos(x) + 1) - 1) + 1/4*log(sin(x)/(cos(x) + 1) - 3)

________________________________________________________________________________________

Fricas [A]  time = 2.30637, size = 95, normalized size = 2.21 \begin{align*} \frac{1}{8} \, \log \left (4 \, \cos \left (x\right ) - 3 \, \sin \left (x\right ) + 5\right ) - \frac{1}{8} \, \log \left (-4 \, \cos \left (x\right ) - 3 \, \sin \left (x\right ) + 5\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*sin(x)),x, algorithm="fricas")

[Out]

1/8*log(4*cos(x) - 3*sin(x) + 5) - 1/8*log(-4*cos(x) - 3*sin(x) + 5)

________________________________________________________________________________________

Sympy [A]  time = 0.20946, size = 20, normalized size = 0.47 \begin{align*} \frac{\log{\left (\tan{\left (\frac{x}{2} \right )} - 3 \right )}}{4} - \frac{\log{\left (\tan{\left (\frac{x}{2} \right )} - \frac{1}{3} \right )}}{4} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*sin(x)),x)

[Out]

log(tan(x/2) - 3)/4 - log(tan(x/2) - 1/3)/4

________________________________________________________________________________________

Giac [A]  time = 1.0834, size = 31, normalized size = 0.72 \begin{align*} -\frac{1}{4} \, \log \left ({\left | 3 \, \tan \left (\frac{1}{2} \, x\right ) - 1 \right |}\right ) + \frac{1}{4} \, \log \left ({\left | \tan \left (\frac{1}{2} \, x\right ) - 3 \right |}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*sin(x)),x, algorithm="giac")

[Out]

-1/4*log(abs(3*tan(1/2*x) - 1)) + 1/4*log(abs(tan(1/2*x) - 3))