3.207 \(\int \frac{-4+6 x-x^2+3 x^3}{(1+x^2) (2+x^2)} \, dx\)

Optimal. Leaf size=29 \[ \frac{3}{2} \log \left (x^2+1\right )-3 \tan ^{-1}(x)+\sqrt{2} \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right ) \]

[Out]

-3*ArcTan[x] + Sqrt[2]*ArcTan[x/Sqrt[2]] + (3*Log[1 + x^2])/2

________________________________________________________________________________________

Rubi [A]  time = 0.113992, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {6725, 635, 203, 260} \[ \frac{3}{2} \log \left (x^2+1\right )-3 \tan ^{-1}(x)+\sqrt{2} \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(-4 + 6*x - x^2 + 3*x^3)/((1 + x^2)*(2 + x^2)),x]

[Out]

-3*ArcTan[x] + Sqrt[2]*ArcTan[x/Sqrt[2]] + (3*Log[1 + x^2])/2

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{-4+6 x-x^2+3 x^3}{\left (1+x^2\right ) \left (2+x^2\right )} \, dx &=\int \left (\frac{3 (-1+x)}{1+x^2}+\frac{2}{2+x^2}\right ) \, dx\\ &=2 \int \frac{1}{2+x^2} \, dx+3 \int \frac{-1+x}{1+x^2} \, dx\\ &=\sqrt{2} \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )-3 \int \frac{1}{1+x^2} \, dx+3 \int \frac{x}{1+x^2} \, dx\\ &=-3 \tan ^{-1}(x)+\sqrt{2} \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right )+\frac{3}{2} \log \left (1+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.013264, size = 29, normalized size = 1. \[ \frac{3}{2} \log \left (x^2+1\right )-3 \tan ^{-1}(x)+\sqrt{2} \tan ^{-1}\left (\frac{x}{\sqrt{2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(-4 + 6*x - x^2 + 3*x^3)/((1 + x^2)*(2 + x^2)),x]

[Out]

-3*ArcTan[x] + Sqrt[2]*ArcTan[x/Sqrt[2]] + (3*Log[1 + x^2])/2

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 25, normalized size = 0.9 \begin{align*} -3\,\arctan \left ( x \right ) +{\frac{3\,\ln \left ({x}^{2}+1 \right ) }{2}}+\arctan \left ({\frac{x\sqrt{2}}{2}} \right ) \sqrt{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^3-x^2+6*x-4)/(x^2+1)/(x^2+2),x)

[Out]

-3*arctan(x)+3/2*ln(x^2+1)+arctan(1/2*x*2^(1/2))*2^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.40795, size = 32, normalized size = 1.1 \begin{align*} \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2} x\right ) - 3 \, \arctan \left (x\right ) + \frac{3}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^3-x^2+6*x-4)/(x^2+1)/(x^2+2),x, algorithm="maxima")

[Out]

sqrt(2)*arctan(1/2*sqrt(2)*x) - 3*arctan(x) + 3/2*log(x^2 + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.81724, size = 86, normalized size = 2.97 \begin{align*} \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2} x\right ) - 3 \, \arctan \left (x\right ) + \frac{3}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^3-x^2+6*x-4)/(x^2+1)/(x^2+2),x, algorithm="fricas")

[Out]

sqrt(2)*arctan(1/2*sqrt(2)*x) - 3*arctan(x) + 3/2*log(x^2 + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.16258, size = 29, normalized size = 1. \begin{align*} \frac{3 \log{\left (x^{2} + 1 \right )}}{2} - 3 \operatorname{atan}{\left (x \right )} + \sqrt{2} \operatorname{atan}{\left (\frac{\sqrt{2} x}{2} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**3-x**2+6*x-4)/(x**2+1)/(x**2+2),x)

[Out]

3*log(x**2 + 1)/2 - 3*atan(x) + sqrt(2)*atan(sqrt(2)*x/2)

________________________________________________________________________________________

Giac [A]  time = 1.06316, size = 32, normalized size = 1.1 \begin{align*} \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2} x\right ) - 3 \, \arctan \left (x\right ) + \frac{3}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^3-x^2+6*x-4)/(x^2+1)/(x^2+2),x, algorithm="giac")

[Out]

sqrt(2)*arctan(1/2*sqrt(2)*x) - 3*arctan(x) + 3/2*log(x^2 + 1)