Quizz 4

Math 332
Introduction to Partial Differential Equations

Spring 2018

University Of Wisconsin, Milwaukee

Nasser M. Abbasi

## Contents

1 Problem 1 ..... 1
2 Problem 2 ..... 3
3 Problem 3 ..... 4
4 Part (a) ..... 4
5 Part (b) ..... 5
6 Problem 4 ..... 6
7 Appendix for problem 4 ..... 8

## 1 Problem 1

Problem Solve the PDE

$$
\begin{equation*}
u_{t}=u_{x x}+x t \quad 0 \leq x \leq 1, t \geq 0 \tag{1}
\end{equation*}
$$

With boundary conditions

$$
\begin{aligned}
& u(0, t)=0 \\
& u(1, t)=0
\end{aligned}
$$

And initial condition

$$
u(x, 0)=\sin (\pi x)
$$

Solution
The corresponding homogeneous PDE $u_{t}=u_{x x}$ with the same homogeneous boundary conditions was solved before. It was found to have eigenfunctions

$$
\Phi_{n}(x)=\sin \left(\sqrt{\lambda_{n}} x\right)
$$

With corresponding eigenvalues

$$
\lambda_{n}=n^{2} \pi^{2} \quad n=1,2,3, \cdots
$$

Using eigenfunction expansion, it is now assumed that the solution to the given inhomogeneous PDE is given by

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \Phi_{n}(x)
$$

Substituting the above into the original PDE (1), and since term by term differentiation is justified (eigenfunctions are continuous) results in

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n}^{\prime}(t) \Phi_{n}(x)=\sum_{n=1}^{\infty} b_{n}(t) \Phi_{n}^{\prime \prime}(x)+\sum_{n=1}^{\infty} \gamma_{n}(t) \Phi_{n}(x) \tag{1~A}
\end{equation*}
$$

Where $\sum_{n=1}^{\infty} \gamma_{n}(t) \Phi_{n}(x)$ is the expansion of the forcing function $x t$ using same eigenfunctions

$$
\begin{equation*}
x t=\sum_{n=1}^{\infty} \gamma_{n}(t) \Phi_{n}(x) \tag{1B}
\end{equation*}
$$

But $\Phi_{n}^{\prime \prime}(x)=-\lambda_{n} \Phi_{n}(x)$ since the eigenfunctions satisfy the eigenvalue ODE $X^{\prime \prime}=-\lambda_{n} X$. Therefore (1A) simplifies to

$$
\begin{align*}
& \sum_{n=1}^{\infty} b_{n}^{\prime}(t) \Phi_{n}(x)=\sum_{n=1}^{\infty}-\lambda_{n} b_{n}(t) \Phi_{n}(x)+\sum_{n=1}^{\infty} \gamma_{n}(t) \Phi_{n}(x) \\
& b_{n}^{\prime}(t)+\lambda_{n} b_{n}(t)=\gamma_{n}(t) \tag{2}
\end{align*}
$$

$\gamma_{n}(t)$ is now found by applying orthogonality to (1B), and using the weight $r(x)=1$ gives

$$
t \int_{0}^{1} x \Phi_{n}(x) d x=\gamma_{n}(t) \int_{0}^{1} \Phi_{n}^{2}(x) d x
$$

Using $\Phi_{n}(x)=\sin \left(\sqrt{\lambda_{n}} x\right)=\sin (n \pi x)$ and $\int_{0}^{1} \sin ^{2}(n \pi x) d x=\frac{1}{2}$, the above simplifies to

$$
\begin{align*}
t \int_{0}^{1} x \sin (n \pi x) d x & =\gamma_{n}(t) \frac{1}{2} \\
\gamma_{n}(t) & =2 t \int_{0}^{1} x \sin (n \pi x) d x \tag{3}
\end{align*}
$$

The integral on the right side above is found using $\int x \sin (a x) d x=\frac{\sin a x}{a^{2}}-\frac{x \cos a x}{a}$, therefore

$$
\begin{aligned}
\int_{0}^{1} x \sin (n \pi x) d x & =\left(\frac{\sin n \pi x}{n^{2} \pi^{2}}-\frac{x \cos n \pi x}{n \pi}\right)_{0}^{1} \\
& =\left(\frac{\sin n \pi}{n^{2} \pi^{2}}-\frac{\cos n \pi}{n \pi}\right) \\
& =-\frac{\cos n \pi}{n \pi} \\
& =\frac{-(-1)^{n}}{n \pi} \\
& =\frac{(-1)^{n+1}}{n \pi}
\end{aligned}
$$

Hence equation (3) now can be written as

$$
\gamma_{n}(t)=\frac{2(-1)^{n+1}}{n \pi} t
$$

Substituting the above in (2) gives the first order ODE to solve for $b_{n}(t)$

$$
b_{n}^{\prime}(t)+(n \pi)^{2} b_{n}(t)=\frac{2(-1)^{n+1}}{n \pi} t
$$

The integrating factor is $I=e^{n^{2} \pi^{2} t}$. Hence the above becomes, after multiplying both sides by $I$

$$
\frac{d}{d t}\left(e^{n^{2} \pi^{2} t} b_{n}(t)\right)=\frac{2(-1)^{n+1}}{n \pi} t e^{n^{2} \pi^{2} t}
$$

Integrating both sides gives

$$
\begin{equation*}
e^{n^{2} \pi^{2} t} b_{n}(t)=\frac{2(-1)^{n+1}}{n \pi} \int_{0}^{t} s e^{n^{2} \pi^{2} s} d s+b_{n}(0) \tag{4}
\end{equation*}
$$

Where $b_{n}(0)$ is the constant of integration. Dividing both sides by $e^{n^{2} \pi^{2} t}$ gives

$$
b_{n}(t)=\frac{2(-1)^{n+1}}{n \pi} \int_{0}^{t} s e^{n^{2} \pi^{2}(s-t)} d s+b_{n}(0) e^{-n^{2} \pi^{2} t}
$$

But $\int_{0}^{t} s e^{n^{2} \pi^{2}(s-t)} d s=\frac{n^{2} \pi^{2} t-1+e^{-n^{2} \pi^{2} t}}{n^{4} \pi^{4}}$ by integration by parts. The above now becomes

$$
b_{n}(t)=2(-1)^{n+1}\left(\frac{n^{2} \pi^{2} t-1+e^{-n^{2} \pi^{2} t}}{n^{5} \pi^{5}}\right)+b_{n}(0) e^{-n^{2} \pi^{2} t}
$$

Now that $b_{n}(t)$ is found, the final solution is

$$
\begin{align*}
u(x, t) & =\sum_{n=1}^{\infty} b_{n}(t) \Phi_{n}(x) \\
& =\sum_{n=1}^{\infty}\left(2(-1)^{n+1}\left(\frac{n^{2} \pi^{2} t-1+e^{-n^{2} \pi^{2} t}}{n^{5} \pi^{5}}\right)+b_{n}(0) e^{-n^{2} \pi^{2} t}\right) \sin (n \pi x) \tag{5}
\end{align*}
$$

$b_{n}(0)$ is determined from the given initial conditions $u(x, 0)=\sin \pi x$. The above becomes at $t=0$

$$
\begin{aligned}
\sin \pi x & =\sum_{n=1}^{\infty}\left(2(-1)^{n+1}\left(\frac{-1+1}{n^{5} \pi^{5}}\right)+b_{n}(0)\right) \sin (n \pi x) \\
& =\sum_{n=1}^{\infty} b_{n}(0) \sin (n \pi x)
\end{aligned}
$$

Therefore when $n=1$ (since LHS is $\sin \pi x$ ) the above gives

$$
b_{1}(0)=1
$$

And $b_{n}(0)=0$ for all other $n$. Equation (5) now simplifies to
$u(x, t)=\overbrace{\left(2\left(\frac{\pi^{2} t-1+e^{-\pi^{2} t}}{\pi^{5}}\right)+e^{-\pi^{2} t}\right) \sin (\pi x)}^{n=1 \text { term }}+\frac{1}{\pi^{5}} \sum_{n=2}^{\infty} \frac{2}{n^{5}}(-1)^{n+1}\left(n^{2} \pi^{2} t+e^{-n^{2} \pi^{2} t}-1\right) \sin (n \pi x)$
To verify the above solution, it was plotted against numerical solution for different instances of time and also animated. It gave an exact match. A small number of terms was needed in the summation since convergence was fast and is of order $O\left(\frac{1}{n^{3}}\right)$. The following is a plot of the above solution for different instances of times using 5 terms.


## 2 Problem 2

Problem Show that

$$
(\lambda-\mu) \int_{0}^{1} x J_{o}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x) d x=\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})
$$

Hint: Use the same method that proves orthogonality of eigenfunctions in 11.4
Solution
In the above, $\lambda$ and $\mu$ are the eigenvalues, with the corresponding eigenfunctions

$$
\begin{align*}
& \Phi_{\lambda}(x)=J_{o}(\sqrt{\lambda} x)  \tag{1}\\
& \Phi_{\mu}(x)=J_{o}(\sqrt{\mu} x) \tag{2}
\end{align*}
$$

These come from the Sturm Liouville equation

$$
\begin{equation*}
-\left(x y^{\prime}\right)^{\prime}=\lambda x y \tag{3}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=x \\
& q(x)=0 \\
& r(x)=x
\end{aligned}
$$

In operator form

$$
\begin{equation*}
L\left[\Phi_{\lambda}\right]=-\left(\Phi_{\lambda}^{\prime}\right)^{\prime}=\lambda x \Phi_{\lambda} \tag{4}
\end{equation*}
$$

Similarly for any other eigenvalue such as $\mu$. Multiplying both sides of (4) by $\Phi_{\mu}(x)$ and integrating gives

$$
\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} d x=\int_{0}^{1} \overbrace{-\left(\Phi_{\lambda}^{\prime}\right)^{\prime}}^{d v} \overbrace{\Phi_{\mu}}^{u} d x
$$

Integrating by part the right side results in

$$
\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} d x=\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}\right]_{0}^{1}-\int_{0}^{1}-\Phi_{\lambda}^{\prime} \Phi_{\mu}^{\prime} d x
$$

Integrating by parts again the second integral above, where now $d v=-\Phi_{\lambda}^{\prime}, u=\Phi_{\mu}^{\prime}$ gives

$$
\begin{aligned}
\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}\right]_{0}^{1}-\left(\left[-\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}-\int_{0}^{1}-\Phi_{\lambda} \Phi_{\mu}^{\prime \prime} d x\right) \\
& =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}\right]_{0}^{1}-\left[-\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}+\int_{0}^{1}-\Phi_{\lambda} \Phi_{\mu}^{\prime \prime} d x \\
& =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}+\int_{0}^{1} \Phi_{\lambda}\left(-\Phi_{\mu}^{\prime}\right)^{\prime} d x
\end{aligned}
$$

$\operatorname{But}\left(-\Phi_{\mu}^{\prime}\right)^{\prime}=L\left[\Phi_{\mu}\right]$. Hence the above can be written as

$$
\begin{aligned}
\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}+\int_{0}^{1} L\left[\Phi_{\mu}\right] \Phi_{\lambda} d x \\
\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} d x-\int_{0}^{1} L\left[\Phi_{\mu}\right] \Phi_{\lambda} d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1} \\
\int_{0}^{1}\left(L\left[\Phi_{\lambda}\right] \Phi_{\mu}-L\left[\Phi_{\mu}\right] \Phi_{\lambda}\right) d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}
\end{aligned}
$$

But $L\left[\Phi_{\lambda}\right]=\lambda x \Phi_{\lambda}$ and $L\left[\Phi_{\mu}\right]=\mu x \Phi_{\mu}$, therefore the above can be written as

$$
\begin{align*}
\int_{0}^{1}\left(\lambda x \Phi_{\lambda} \Phi_{\mu}-\mu x \Phi_{\mu} \Phi_{\lambda}\right) d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1} \\
\int_{0}^{1}(\lambda-\mu)\left(x \Phi_{\lambda} \Phi_{\mu}\right) d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1} \\
(\lambda-\mu) \int_{0}^{1} x \Phi_{\lambda} \Phi_{\mu} d x & =\left[-\Phi_{\lambda}^{\prime} \Phi_{\mu}+\Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1} \tag{5}
\end{align*}
$$

Since $\Phi_{\lambda}(x)=J_{o}(\sqrt{\lambda} x), \Phi_{\lambda}^{\prime}(x)=\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda} x)$ and $\Phi_{\mu}(x)=J_{o}(\sqrt{\mu} x), \Phi_{\mu}^{\prime}(x)=\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu} x)$, then the above simplifies to

$$
(\lambda-\mu) \int_{0}^{1} x J_{o}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x) d x=\left[-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x)+J_{o}(\sqrt{\lambda} x) \sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu} x)\right]_{0}^{1}
$$

What is left is to evaluate the boundary terms $\Delta=\left[-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x)+J_{o}(\sqrt{\lambda} x) \sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu} x)\right]_{0}^{1}$. This gives

$$
\Delta=\left[-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})+J_{o}(\sqrt{\lambda}) \sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu})\right]-\left[-\sqrt{\lambda} J_{o}^{\prime}(0) J_{o}(0)+J_{o}(0) \sqrt{\mu} J_{o}^{\prime}(0)\right]
$$

But $J_{o}^{\prime}(0)=0$ (since $J_{o}^{\prime}(x)=-J_{1}(x)$ and $\left.J_{1}(0)=0\right)$. Therefore the boundary terms reduces to

$$
\Delta=J_{o}(\sqrt{\lambda}) \sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})
$$

Substituting this back in (5) gives the desired result

$$
(\lambda-\mu) \int_{0}^{1} x J_{o}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x) d x=\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})
$$

## 3 Problem 3

Problem By letting $\mu \rightarrow \lambda$ in the formula of problem 2, derive a formula for $\int_{0}^{1} x J_{0}^{2}(\sqrt{\lambda} x) d x$. Then show that the normalized eigenfunctions of the eigenvalue problem in section 11.4 is

$$
\hat{\Phi}_{n}(x)=\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\left|J_{0}^{\prime}\left(j_{n}\right)\right|}
$$

where $0<j_{1}<j_{2}<j_{3}<\cdots$ denote the positive zeros of $J_{0}$
Solution

## 4 Part (a)

From problem 3, the formula obtained is

$$
(\lambda-\mu) \int_{0}^{1} x J_{o}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x) d x=\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})
$$

Moving $(\lambda-\mu)$ to the right side gives

$$
\int_{0}^{1} x J_{o}(\sqrt{\lambda} x) J_{o}(\sqrt{\mu} x) d x=\frac{\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})}{(\lambda-\mu)}
$$

Taking the limit $\lim \mu \rightarrow \lambda$ then the integral on the left becomes $\int_{0}^{1} x \Phi_{\lambda}^{2} d x$ resulting in

$$
\begin{equation*}
\int_{0}^{1} x J_{o}^{2}(\sqrt{\lambda} x) d x=\lim _{\mu \rightarrow \lambda} \frac{\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})}{(\lambda-\mu)} \tag{1}
\end{equation*}
$$

When $\mu \rightarrow \lambda$ the right side becomes indeterminate form $\frac{0}{0}$. Therefore L'hospital rule is used, which says that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Comparing the above to (1) shows that $\mu$ is now like $x$ and $\lambda$ is like $a$. Therefore $f^{\prime}(x)$ is like

$$
\begin{aligned}
f^{\prime}(x) & \equiv \frac{d}{d \mu}\left(\sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu})\right) \\
& \equiv \frac{d}{d \mu} \sqrt{\mu} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\frac{d}{d \mu} \sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\mu}) \\
& \equiv \frac{1}{2} \frac{1}{\sqrt{\mu}} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})+\sqrt{\mu} \frac{1}{2 \sqrt{\mu}} J_{o}^{\prime \prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\frac{1}{2 \sqrt{\mu}} \sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}^{\prime}(\sqrt{\mu})
\end{aligned}
$$

And $g^{\prime}(x)$ is like $\frac{d}{d \mu}(\lambda-\mu)=-1$. Using the above result back in (1) gives

$$
\begin{aligned}
\int_{0}^{1} x J_{o}^{2}(\sqrt{\lambda}) d x & \equiv \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& =\lim _{\mu \rightarrow \lambda}\left(-\frac{1}{2} \frac{1}{\sqrt{\mu}} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\sqrt{\mu} \frac{1}{2 \sqrt{\mu}} J_{o}^{\prime \prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})+\frac{1}{2 \sqrt{\mu}} \sqrt{\lambda} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}^{\prime}(\sqrt{\mu})\right) \\
& =\lim _{\mu \rightarrow \lambda}\left(-\frac{1}{2} \frac{1}{\sqrt{\mu}} J_{o}^{\prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})-\frac{1}{2} J_{o}^{\prime \prime}(\sqrt{\mu}) J_{o}(\sqrt{\lambda})+\frac{1}{2} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}^{\prime}(\sqrt{\mu})\right)
\end{aligned}
$$

Now the limit is taken, since there is no indeterminate form. The above becomes

$$
\begin{align*}
\int_{0}^{1} x J_{o}^{2}(\sqrt{\lambda} x) d x & =-\frac{1}{2} \frac{1}{\sqrt{\lambda}} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})-\frac{1}{2} J_{o}^{\prime \prime}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})+\frac{1}{2} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}^{\prime}(\sqrt{\lambda}) \\
& =\frac{1}{2}\left(\left[J_{o}^{\prime}(\sqrt{\lambda})\right]^{2}-\frac{1}{\sqrt{\lambda}} J_{o}^{\prime}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})-J_{o}^{\prime \prime}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})\right) \tag{2}
\end{align*}
$$

To simplify the above, the following relations were obtained from dlmf.NIST.gov to simplify the above

$$
\begin{aligned}
& J_{n}^{\prime}(x)=J_{n-1}(x)-\frac{(n+1)}{x} J_{n}(x) \\
& J_{n}^{\prime}(x)=-J_{n+1}(x)+\frac{n}{x} J_{n}(x)
\end{aligned}
$$

Using these, then $J_{o}^{\prime}(\sqrt{\lambda})=-J_{1}(\sqrt{\lambda})$ and $J_{0}^{\prime \prime}(\sqrt{\lambda})=-J_{0}(\sqrt{\lambda})+\frac{1}{\sqrt{\lambda}} J_{1}(\sqrt{\lambda})$. Equation (2) now simplifies to

$$
\begin{aligned}
\int_{0}^{1} x J_{o}^{2}(\sqrt{\lambda} x) d x & =\frac{1}{2}\left(\left[J_{o}^{\prime}(\sqrt{\lambda})\right]^{2}-\frac{1}{\sqrt{\lambda}}\left(-J_{1}(\sqrt{\lambda})\right) J_{o}(\sqrt{\lambda})-\left(-J_{0}(\sqrt{\lambda})+\frac{1}{\sqrt{\lambda}} J_{1}(\sqrt{\lambda})\right) J_{o}(\sqrt{\lambda})\right) \\
& =\frac{1}{2}\left(\left[J_{o}^{\prime}(\sqrt{\lambda})\right]^{2}+\frac{1}{\sqrt{\lambda}} J_{1}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})+J_{0}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})-\frac{1}{\sqrt{\lambda}} J_{J^{2}}(\sqrt{\lambda}) J_{o}(\sqrt{\lambda})\right)
\end{aligned}
$$

The second term cancels with the last term above giving the final result

$$
\begin{equation*}
\int_{0}^{1} x J_{o}^{2}(\sqrt{\lambda} x) d x=\frac{1}{2}\left(\left[J_{o}^{\prime}(\sqrt{\lambda})\right]^{2}+J_{0}^{2}(\sqrt{\lambda})\right) \tag{3}
\end{equation*}
$$

## 5 Part (b)

$\sqrt{\lambda_{n}}$ are the positive zeros of $J_{0}\left(\sqrt{\lambda_{n}}\right)=0$. Below, $\sqrt{\lambda_{n}}$ is replaced by $j_{n}$ where now $j_{n}$ are the zeros of $J_{0}\left(j_{n}\right)$. One way to find the normalized eigenfunction $\hat{J}_{0}\left(j_{n} x\right)$ is by dividing $J_{0}\left(j_{n} x\right)$ by its norm. In other words,

$$
\begin{equation*}
\hat{J}_{0}\left(j_{n} x\right)=\frac{J_{0}\left(j_{n} x\right)}{\left\|J_{0}\left(j_{n} x\right)\right\|} \tag{1A}
\end{equation*}
$$

But

$$
\left\|J_{0}\left(j_{n} x\right)\right\|=\sqrt{\int_{0}^{1} r(x) J_{0}^{2}\left(j_{n} x\right) d x}
$$

Which is by the definition of the norm of a function with the corresponding weight $r(x)$. But from part(a) $\left\|J_{0}\left(j_{n} x\right)\right\|=\int_{0}^{1} r(x) J_{0}^{2}\left(j_{n} x\right) d x$ was found to be $\frac{1}{2}\left(\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}+J_{0}^{2}\left(j_{n}\right)\right)$. Therefore (1A) becomes

$$
\begin{aligned}
\hat{J}_{0}\left(j_{n} x\right) & =\frac{J_{0}\left(j_{n} x\right)}{\sqrt{\frac{1}{2}\left(\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}+J_{0}^{2}\left(j_{n}\right)\right)}} \\
& =\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\sqrt{\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}+J_{0}^{2}\left(j_{n}\right)}}
\end{aligned}
$$

But since $j_{n}$ are the zeros of $J_{0}\left(j_{n}\right)$, then all the $J_{0}\left(j_{n}\right)$ terms above vanish giving

$$
\begin{align*}
\hat{J}_{0}\left(j_{n} x\right) & =\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\sqrt{\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}}} \\
& =\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\left|J_{o}^{\prime}\left(j_{n}\right)\right|} \tag{1}
\end{align*}
$$

Another way to find the normalized eigenfunctions $\hat{J}_{0}\left(j_{n} x\right)$ is as was done in the text book, which is to first determine $k_{n}$ as follows. Let $\hat{J}_{0}\left(j_{n} x\right)=k_{n} J_{0}\left(j_{n} x\right)$, then the following equation is solved for $k_{n}$

$$
\begin{equation*}
\int_{0}^{1} r(x)\left[\hat{J}_{0}\left(j_{n} x\right)\right]^{2} d x=1 \tag{2}
\end{equation*}
$$

But the weight $r(x)=x$, equation (2) becomes

$$
k_{n}^{2} \int_{0}^{1} x J_{0}^{2}\left(j_{n} x\right) d x=1
$$

But from part(a), $\int_{0}^{1} x J_{0}^{2}\left(j_{n} x\right) d x=\frac{1}{2}\left(\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}+J_{0}^{2}\left(j_{n}\right)\right)$. Hence the above becomes

$$
\begin{aligned}
k_{n}^{2} & =\frac{1}{\frac{1}{2}\left(\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}+J_{0}^{2}\left(j_{n}\right)\right)} \\
k_{n} & =\frac{\sqrt{2}}{\sqrt{\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}+J_{0}^{2}\left(j_{n}\right)}}
\end{aligned}
$$

As above, since all $J_{0}\left(j_{n}\right)=0$ then

$$
k_{n}=\frac{\sqrt{2}}{\sqrt{\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}}}
$$

And the normalized eigenfunction become

$$
\begin{aligned}
\hat{J}_{0}\left(j_{n} x\right) & =k_{n} J_{0}\left(j_{n} x\right) \\
& =\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\sqrt{\left[J_{o}^{\prime}\left(j_{n}\right)\right]^{2}}} \\
& =\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\left|J_{o}^{\prime}\left(j_{n}\right)\right|}
\end{aligned}
$$

Which is the same result as (1).

## 6 Problem 4

Problem Solve the inhomogeneous differential equation

$$
-\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=y+x^{3} \quad-1<x<1
$$

With boundary conditions $y(x), y^{\prime}(x)$ bounded as $x \rightarrow-1^{+}$and $x \rightarrow 1^{-}$.

## Solution

This problem is solved using 11.3 method (Eigenfunction expansion). The ODE is written as

$$
\begin{equation*}
-\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=\mu y+x^{3} \tag{1}
\end{equation*}
$$

Where $\mu=1$ in this case. The corresponding homogeneous eigenvalue ODE to solve is then

$$
\begin{gather*}
-\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=\lambda y  \tag{2}\\
6
\end{gather*}
$$

Comparing to Sturm-Liouville form $-\left(p y^{\prime}\right)^{\prime}+q y=r \lambda y$, then $p(x)=\left(1-x^{2}\right), q=0, r=1$. Since $p(x)$ must be positive over all points in the domain, and since in this problem $p(-1)=0$ and $p(1)=0$, then both $x=-1,+1$ are singular points. They can be shown to be regular singular points.

Equation (2), where $\lambda$ is now is an eigenvalue, is the Legendre equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0
$$

Comparing to the standard Legendre equation form in chapter 5

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 \tag{3}
\end{equation*}
$$

There are two cases to consider. $n$ is integer and $n$ is not an integer. Case $n$ is not an integer. It is know that now the solution to (3) is

$$
y(x)=c_{1} \bar{P}_{n}(x)+c_{2} \bar{Q}_{n}(x)
$$

Where $\bar{P}_{n}(x)$ is called the Legendre function of order $n$ and $\bar{Q}_{n}(x)$ is called the Legendre function of the second kind of order $n$. These solutions are valid for $|x|<1$ since series expansion was about point $x=0$. But both of these functions are unbounded at the end points ( $\bar{Q}_{n}(x)$ blows up at $x= \pm 1$ and $\bar{P}_{n}(x)$ blows up at $\left.x=-1\right)$ leading to trivial solution.

This means $n$ must be an integer. When $n$ is an integer, then $\lambda_{n}=n(n+1)$. It is known (from chapter 5), that in this case the solution to (3) becomes a terminating power series (a polynomial), which is called the Legendre polynomial $P_{n}(x)$.These polynomials are there bounded everywhere, including at the end points $x= \pm 1$, and therefore these solutions satisfy the boundary conditions. Hence the Legendre $P_{n}(x)$ are the eigenfunctions to (3). This table summaries the result found

| $n$ | eigenvalue | eigenfunctions |
| :--- | :--- | :--- |
| 0 | $\lambda_{0}=0$ | $P_{0}(x)=1$ |
| 1 | $\lambda_{1}=2$ | $P_{1}(x)=x$ |
| 2 | $\lambda_{2}=6$ | $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$ |
| 3 | $\lambda_{3}=12$ | $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$ |
| $\vdots$ | $\vdots$ | $\vdots$ |
| $n$ | $\lambda_{n}=n(n+1)$ | $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{2}}\left(x^{2}-1\right)^{n}$ |

What the above says, is that the solution to

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0
$$

Is $P_{n}(x)$ with the corresponding eigenvalue $\lambda_{n}=n(n+1)$ as given by the above table. Now that the eigenfunctions of the corresponding homogeneous eigenvalue ODE are found, they are used to solve the given inhomogeneous ODE

$$
\begin{equation*}
-\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=\mu y+x^{3} \tag{4}
\end{equation*}
$$

Using eigenfunction expansion method. Since $\mu=1$ and since there is no eigenvalue which is also 1 , then a solution exists. Let the solution be

$$
y(x)=\sum_{n=0}^{\infty} c_{n} P_{n}(x)
$$

Substituting this solution into (4), and noting that $L[y]=-\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=\lambda_{n} y$ gives

$$
\lambda_{n} \sum_{n=0}^{\infty} c_{n} P_{n}(x)=\mu \sum_{n=0}^{\infty} c_{n} P_{n}(x)+x^{3}
$$

Expanding $x^{3}$ using the same eigenfunctions (this can be done, since $x^{3}$ is continuous function and the eigenfunctions are complete), then the above becomes

$$
\begin{aligned}
\lambda_{n} \sum_{n=0}^{\infty} c_{n} P_{n}(x) & =\mu \sum_{n=0}^{\infty} c_{n} P_{n}(x)+\sum_{n=0}^{\infty} d_{n} P_{n}(x) \\
\lambda_{n} c_{n} & =\mu c_{n}+d_{n} \\
c_{n} & =\frac{d_{n}}{\lambda_{n}-\mu}
\end{aligned}
$$

What is left is to determine $d_{n}$ from

$$
x^{3}=\sum_{n=0}^{\infty} d_{n} P_{n}(x)
$$

The above can be solved for $d_{n}$ using orthogonality, or by direct expansion (otherwise called undetermined coefficients method). Since the force $x^{3}$ is already a polynomial in $x$ and of a small order, then direct expansion is simpler. The above then becomes

$$
x^{3}=d_{0} P_{0}(x)+d_{1} P_{1}(x)+d_{2} P_{2}(x)+d_{3} P_{3}(x)
$$

There is no need to expand for more than $n=3$, since the LHS polynomial is of order 3. Substituting the known $P_{n}(x)$ expressions into the above equation gives

$$
\begin{aligned}
x^{3} & =d_{0}+d_{1} x+d_{2} \frac{1}{2}\left(3 x^{2}-1\right)+d_{3} \frac{1}{2}\left(5 x^{3}-3 x\right) \\
& =d_{0}+d_{1} x+d_{2}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)+d_{3}\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right)
\end{aligned}
$$

Collecting terms of equal powers in $x$ results in

$$
x^{3}=x^{0}\left(d_{0}-\frac{1}{2} d_{2}\right)+x\left(d_{1}-\frac{3}{2} d_{3}\right)+x^{2}\left(\frac{3}{2} d_{2}\right)+x^{3}\left(\frac{5}{2} d_{3}\right)
$$

Or

$$
\begin{aligned}
d_{0}-\frac{1}{2} d_{2} & =0 \\
d_{1}-\frac{3}{2} d_{3} & =0 \\
\frac{3}{2} d_{2} & =0 \\
\frac{5}{2} d_{3} & =1
\end{aligned}
$$

From third equation, $d_{2}=0$. From first equation $d_{0}=0$, and substituting last equation in the second equation give $d_{1}=\frac{3}{2}$. Therefore

$$
\begin{aligned}
d_{1} & =\frac{3}{5} \\
d_{3} & =\frac{2}{5}
\end{aligned}
$$

And all other $d_{n}$ are zero. Now the $c_{n}$ are found using $c_{n}=\frac{d_{n}}{\lambda_{n}-\mu}$. For $n=1$

$$
c_{1}=\frac{d_{1}}{\lambda_{1}-\mu}=\frac{\frac{3}{5}}{2-1}=\frac{3}{5}
$$

And for $n=3$

$$
c_{3}=\frac{d_{3}}{\lambda_{3}-\mu}=\frac{\frac{2}{5}}{12-1}=\frac{2}{55}
$$

And all other $c_{n}$ are zero. Hence the final solution from $y(x)=\sum_{n=0}^{\infty} c_{n} P_{n}(x)$ reduces to only two terms in the sum

$$
\begin{aligned}
y(x) & =c_{1} P_{1}(x)+c_{3} P_{3}(x) \\
& =\frac{3}{5} x+\frac{2}{55}\left(\frac{1}{2}\left(5 x^{3}-3 x\right)\right)
\end{aligned}
$$

Giving the final solution as

$$
y(x)=\frac{1}{11} x\left(x^{2}+6\right)
$$

This is a plot of the solution

Solution to Problem 4 using eigenfunction expansion


## 7 Appendix for problem 4

Initially I did not know we had to use eigenfunction expansion, so solved it directly as follows. Let the solution to

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+y=x^{3}
$$

Be

$$
y(x)=y_{h}(x)+y_{p}(x)
$$

Where $y_{h}(x)$ is the homogeneous solution to $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+y=0$ and $y_{p}(x)$ is a particular solution. Now, since $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+y=0$ is a Legendre ODE but with a non-integer order, then its solution is not a terminating polynomials, but instead is given by

$$
y_{h}(x)=c_{1} \bar{P}_{n}(x)+c_{2} \bar{Q}_{n}(x)
$$

Where $\bar{P}_{n}(x)$ is called the Legendre function of order $n$ and $\bar{Q}_{n}(x)$ is called the Legendre function of the second kind of order $n$, and $y_{p}(x)$ is a particular solution. The particular solution can be found, using method of undetermined coefficients to be $y_{p}(x)=\frac{1}{11} x^{3}+\frac{6}{11} x$. Hence the general solution becomes

$$
y(x)=c_{1} \bar{P}_{n}(x)+c_{2} \bar{Q}_{n}(x)+\frac{1}{11} x\left(x^{2}+6\right)
$$

Now since the solution must be bounded as $x \rightarrow \pm 1$, then we must set $c_{1}=0$ and $c_{2}=0$, because both $\bar{P}_{n}(x)$ and $\bar{Q}_{n}(x)$ are unbounded at the end points ( $\bar{Q}_{n}(x)$ blows up at $x= \pm 1$ and $\bar{P}_{n}(x)$ blows up at only $x=-1$ ), therefore the final solution contains only the particular solution

$$
y(x)=\frac{1}{11} x\left(x^{2}+6\right)
$$

Which is the same solution found using eigenfunction expansion. At first I thought I made an error somewhere, since I did not think all of the homogenous solution basis could vanish leaving only a particular solution.

