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1 Problem 1

Problem Solve the PDE

ut = uxx + xt 0 ≤ x ≤ 1, t ≥ 0 (1)

With boundary conditions

u (0, t) = 0

u (1, t) = 0

And initial condition
u (x, 0) = sin (πx)

Solution
The corresponding homogeneous PDE ut = uxx with the same homogeneous boundary

conditions was solved before. It was found to have eigenfunctions

Φn (x) = sin
(√

λnx
)

With corresponding eigenvalues

λn = n
2π 2 n = 1, 2, 3, · · ·

Using eigenfunction expansion, it is now assumed that the solution to the given inhomogeneous
PDE is given by

u (x, t) =
∞∑
n=1

bn (t)Φn (x)

Substituting the above into the original PDE (1), and since term by term differentiation is justified
(eigenfunctions are continuous) results in

∞∑
n=1

b ′n (t)Φn (x) =
∞∑
n=1

bn (t)Φ
′′
n (x) +

∞∑
n=1

γn (t)Φn (x) (1A)

Where ∑∞
n=1 γn (t)Φn (x) is the expansion of the forcing function xt using same eigenfunctions

xt =
∞∑
n=1

γn (t)Φn (x) (1B)
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But Φ′′
n (x) = −λnΦn (x) since the eigenfunctions satisfy the eigenvalue ODE X ′′ = −λnX . There-

fore (1A) simplifies to
∞∑
n=1

b ′n (t)Φn (x) =
∞∑
n=1

−λnbn (t)Φn (x) +
∞∑
n=1

γn (t)Φn (x)

b ′n (t) + λnbn (t) = γn (t) (2)

γn (t) is now found by applying orthogonality to (1B), and using the weight r (x) = 1 gives

t

∫ 1

0
xΦn (x)dx = γn (t)

∫ 1

0
Φ2
n (x)dx

Using Φn (x) = sin
(√

λnx
)
= sin (nπx) and

∫1
0
sin2 (nπx)dx = 1

2 , the above simplifies to

t

∫ 1

0
x sin (nπx)dx = γn (t)

1
2

γn (t) = 2t
∫ 1

0
x sin (nπx)dx (3)

The integral on the right side above is found using
∫
x sin (ax)dx = sinax

a2 − x cosax
a , therefore∫ 1

0
x sin (nπx)dx =

(
sinnπx
n2π 2 −

x cosnπx
nπ

) 1
0

=

(
sinnπ
n2π 2 −

cosnπ
nπ

)
= −

cosnπ
nπ

=
− (−1)n

nπ

=
(−1)n+1

nπ

Hence equation (3) now can be written as

γn (t) =
2 (−1)n+1

nπ
t

Substituting the above in (2) gives the first order ODE to solve for bn (t)

b ′n (t) + (nπ )
2 bn (t) =

2 (−1)n+1

nπ
t

The integrating factor is I = en
2π 2t . Hence the above becomes, after multiplying both sides by I

d

dt

(
en

2π 2tbn (t)
)
=

2 (−1)n+1

nπ
ten

2π 2t

Integrating both sides gives

en
2π 2tbn (t) =

2 (−1)n+1

nπ

∫ t

0
sen

2π 2sds + bn (0) (4)

Where bn (0) is the constant of integration. Dividing both sides by en2π 2t gives

bn (t) =
2 (−1)n+1

nπ

∫ t

0
sen

2π 2(s−t )ds + bn (0) e
−n2π 2t
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But
∫ t
0
sen

2π 2(s−t )ds = n2π 2t−1+e−n
2π 2t

n4π 4 by integration by parts. The above now becomes

bn (t) = 2 (−1)n+1
(
n2π 2t − 1 + e−n

2π 2t

n5π 5

)
+ bn (0) e

−n2π 2t

Now that bn (t) is found, the final solution is

u (x, t) =
∞∑
n=1

bn (t)Φn (x)

=
∞∑
n=1

(
2 (−1)n+1

(
n2π 2t − 1 + e−n

2π 2t

n5π 5

)
+ bn (0) e

−n2π 2t

)
sin (nπx) (5)

bn (0) is determined from the given initial conditions u (x, 0) = sinπx . The above becomes at
t = 0

sinπx =
∞∑
n=1

(
2 (−1)n+1

(
−1 + 1
n5π 5

)
+ bn (0)

)
sin (nπx)

=
∞∑
n=1

bn (0) sin (nπx)

Therefore when n = 1 (since LHS is sinπx ) the above gives

b1 (0) = 1

And bn (0) = 0 for all other n. Equation (5) now simplifies to

u (x, t) =

n=1 term︷                                              ︸︸                                              ︷(
2

(
π 2t − 1 + e−π

2t

π 5

)
+ e−π

2t

)
sin (πx)+

1
π 5

∞∑
n=2

2
n5

(−1)n+1
(
n2π 2t + e−n

2π 2t − 1
)
sin (nπx)

To verify the above solution, it was plotted against numerical solution for different instances
of time and also animated. It gave an exact match. A small number of terms was needed in the
summation since convergence was fast and is of orderO

(
1
n3

)
. The following is a plot of the above

solution for different instances of times using 5 terms.
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2 Problem 2

Problem Show that

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

Hint: Use the same method that proves orthogonality of eigenfunctions in 11.4
Solution
In the above, λ and µ are the eigenvalues, with the corresponding eigenfunctions

Φλ (x) = Jo
(√

λx
)

(1)

Φµ (x) = Jo
(√

µx
)

(2)

These come from the Sturm Liouville equation

− (xy ′)
′
= λxy (3)

Where

p (x) = x

q (x) = 0

r (x) = x

In operator form
L [Φλ] = −

(
Φ′
λ
) ′
= λxΦλ (4)

Similarly for any other eigenvalue such as µ. Multiplying both sides of (4) byΦµ (x) and integrating
gives ∫ 1

0
L [Φλ]Φµdx =

∫ 1

0

dv︷  ︸︸  ︷
−

(
Φ′
λ
) ′ u︷︸︸︷

Φµ dx

Integrating by part the right side results in∫ 1

0
L [Φλ]Φµdx =

[
−Φ′

λΦµ
] 1
0 −

∫ 1

0
−Φ′

λΦ
′
µdx

Integrating by parts again the second integral above, where now dv = −Φ′
λ,u = Φ′

µ gives∫ 1

0
L [Φλ]Φµdx =

[
−Φ′

λΦµ
] 1
0 −

( [
−ΦλΦ

′
µ

] 1
0
−

∫ 1

0
−ΦλΦ

′′
µdx

)
=

[
−Φ′

λΦµ
] 1
0 −

[
−ΦλΦ

′
µ

] 1
0
+

∫ 1

0
−ΦλΦ

′′
µdx

=
[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0
+

∫ 1

0
Φλ

(
−Φ′

µ

) ′
dx

But
(
−Φ′

µ

) ′
= L

[
Φµ

]
. Hence the above can be written as∫ 1

0
L [Φλ]Φµdx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0
+

∫ 1

0
L

[
Φµ

]
Φλdx∫ 1

0
L [Φλ]Φµdx −

∫ 1

0
L

[
Φµ

]
Φλdx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0∫ 1

0

(
L [Φλ]Φµ − L

[
Φµ

]
Φλ

)
dx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0

4



But L [Φλ] = λxΦλ and L
[
Φµ

]
= µxΦµ , therefore the above can be written as∫ 1

0

(
λxΦλΦµ − µxΦµΦλ

)
dx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0∫ 1

0
(λ − µ)

(
xΦλΦµ

)
dx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0

(λ − µ)

∫ 1

0
xΦλΦµdx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0

(5)

Since Φλ (x) = Jo
(√

λx
)
,Φ′

λ (x) =
√
λJ ′o

(√
λx

)
and Φµ (x) = Jo

(√
µx

)
,Φ′

µ (x) =
√
µJ ′o

(√
µx

)
,

then the above simplifies to

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

[
−
√
λJ ′o

(√
λx

)
Jo

(√
µx

)
+ Jo

(√
λx

)
√
µJ ′o

(√
µx

) ] 1
0

What is left is to evaluate the boundary terms∆ =
[
−
√
λJ ′o

(√
λx

)
Jo

(√
µx

)
+ Jo

(√
λx

)
√
µJ ′o

(√
µx

) ] 1
0
.

This gives

∆ =
[
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)
+ Jo

(√
λ
)
√
µJ ′o

(√
µ
) ]

−

[
−
√
λJ ′o (0) Jo (0) + Jo (0)

√
µJ ′o (0)

]
But J ′o (0) = 0 (since J ′o (x) = −J1 (x) and J1 (0) = 0 ). Therefore the boundary terms reduces to

∆ = Jo
(√

λ
)
√
µJ ′o

(√
µ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

Substituting this back in (5) gives the desired result

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

3 Problem 3

Problem By letting µ → λ in the formula of problem 2, derive a formula for
∫1
0
x J 20

(√
λx

)
dx .

Then show that the normalized eigenfunctions of the eigenvalue problem in section 11.4 is

Φ̂n (x) =

√
2J0 (jnx)��J ′0 (jn)��

where 0 < j1 < j2 < j3 < · · · denote the positive zeros of J0
Solution

4 Part (a)

From problem 3, the formula obtained is

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

Moving (λ − µ) to the right side gives∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

(λ − µ)
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Taking the limit lim µ → λ then the integral on the left becomes
∫1
0
xΦ2

λdx resulting in∫ 1

0
x J 2o

(√
λx

)
dx = lim

µ→λ

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

(λ − µ)
(1)

When µ → λ the right side becomes indeterminate form 0
0 . Therefore L’hospital rule is used,

which says that

lim
x→a

f (x)

д (x)
= lim

x→a

f ′ (x)

д′ (x)

Comparing the above to (1) shows that µ is now like x and λ is like a. Therefore f ′ (x) is like

f ′ (x) ≡
d

dµ

(
√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
) )

≡
d

dµ

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−

d

dµ

√
λJ ′o

(√
λ
)
Jo

(√
µ
)

≡
1
2

1
√
µ
J ′o

(√
µ
)
Jo

(√
λ
)
+
√
µ

1
2
√
µ
J ′′o

(√
µ
)
Jo

(√
λ
)
−

1
2
√
µ

√
λJ ′o

(√
λ
)
J ′o

(√
µ
)

And д′ (x) is like d
dµ (λ − µ) = −1. Using the above result back in (1) gives∫ 1

0
x J 2o

(√
λ
)
dx ≡ lim

x→a

f ′ (x)

д′ (x)

= lim
µ→λ

(
−
1
2

1
√
µ
J ′o

(√
µ
)
Jo

(√
λ
)
−
√
µ

1
2
√
µ
J ′′o

(√
µ
)
Jo

(√
λ
)
+

1
2
√
µ

√
λJ ′o

(√
λ
)
J ′o

(√
µ
) )

= lim
µ→λ

(
−
1
2

1
√
µ
J ′o

(√
µ
)
Jo

(√
λ
)
−
1
2
J ′′o

(√
µ
)
Jo

(√
λ
)
+
1
2
J ′o

(√
λ
)
J ′o

(√
µ
) )

Now the limit is taken, since there is no indeterminate form. The above becomes∫ 1

0
x J 2o

(√
λx

)
dx = −

1
2

1
√
λ
J ′o

(√
λ
)
Jo

(√
λ
)
−
1
2
J ′′o

(√
λ
)
Jo

(√
λ
)
+
1
2
J ′o

(√
λ
)
J ′o

(√
λ
)

=
1
2

( [
J ′o

(√
λ
) ] 2

−
1
√
λ
J ′o

(√
λ
)
Jo

(√
λ
)
− J ′′o

(√
λ
)
Jo

(√
λ
) )

(2)

To simplify the above, the following relations were obtained from dlmf.NIST.gov to simplify the
above

J ′n (x) = Jn−1 (x) −
(n + 1)

x
Jn (x)

J ′n (x) = −Jn+1 (x) +
n

x
Jn (x)

Using these, then J ′o

(√
λ
)
= −J1

(√
λ
)
and J ′′0

(√
λ
)
= −J0

(√
λ
)
+ 1√

λ
J1

(√
λ
)
. Equation (2) now

simplifies to∫ 1

0
x J 2o

(√
λx

)
dx =

1
2

( [
J ′o

(√
λ
) ] 2

−
1
√
λ

(
−J1

(√
λ
) )

Jo
(√

λ
)
−

(
−J0

(√
λ
)
+

1
√
λ
J1

(√
λ
) )

Jo
(√

λ
) )

=
1
2

( [
J ′o

(√
λ
) ] 2
+

1
√
λ
J1

(√
λ
)
Jo

(√
λ
)
+ J0

(√
λ
)
Jo

(√
λ
)
−

1
√
λ
J1

(√
λ
)
Jo

(√
λ
) )

The second term cancels with the last term above giving the final result∫ 1

0
x J 2o

(√
λx

)
dx =

1
2

( [
J ′o

(√
λ
) ] 2
+ J 20

(√
λ
) )

(3)
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5 Part (b)
√
λn are the positive zeros of J0

(√
λn

)
= 0. Below,

√
λn is replaced by jn where now jn are the

zeros of J0 (jn). One way to find the normalized eigenfunction Ĵ0 (jnx) is by dividing J0 (jnx) by
its norm. In other words,

Ĵ0 (jnx) =
J0 (jnx)

‖ J0 (jnx)‖
(1A)

But

‖ J0 (jnx)‖ =

√∫ 1

0
r (x) J 20 (jnx)dx

Which is by the definition of the norm of a function with the corresponding weight r (x). But
from part(a) ‖ J0 (jnx)‖ =

∫1
0
r (x) J 20 (jnx)dx was found to be 1

2

( [
J ′o (jn)

] 2
+ J 20 (jn)

)
. Therefore

(1A) becomes

Ĵ0 (jnx) =
J0 (jnx)√

1
2

(
[J ′o (jn)]

2 + J 20 (jn)
)

=

√
2J0 (jnx)√

[J ′o (jn)]
2 + J 20 (jn)

But since jn are the zeros of J0 (jn), then all the J0 (jn) terms above vanish giving

Ĵ0 (jnx) =

√
2J0 (jnx)√
[J ′o (jn)]

2

=

√
2J0 (jnx)
| J ′o (jn)|

(1)

Another way to find the normalized eigenfunctions Ĵ0 (jnx) is as was done in the text book, which
is to first determine kn as follows. Let Ĵ0 (jnx) = kn J0 (jnx), then the following equation is solved
for kn ∫ 1

0
r (x)

[
Ĵ0 (jnx)

] 2
dx = 1 (2)

But the weight r (x) = x, equation (2) becomes

k2n

∫ 1

0
x J 20 (jnx)dx = 1

But from part(a),
∫1
0
x J 20 (jnx)dx =

1
2

( [
J ′o (jn)

] 2
+ J 20 (jn)

)
. Hence the above becomes

k2n =
1

1
2

(
[J ′o (jn)]

2 + J 20 (jn)
)

kn =

√
2√

[J ′o (jn)]
2 + J 20 (jn)

As above, since all J0 (jn) = 0 then

kn =

√
2√

[J ′o (jn)]
2
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And the normalized eigenfunction become

Ĵ0 (jnx) = kn J0 (jnx)

=

√
2J0 (jnx)√
[J ′o (jn)]

2

=

√
2J0 (jnx)
| J ′o (jn)|

Which is the same result as (1).

6 Problem 4

Problem Solve the inhomogeneous differential equation

−
( (
1 − x2

)
y ′

) ′
= y + x3 − 1 < x < 1

With boundary conditions y (x) ,y ′ (x) bounded as x → −1+ and x → 1−.
Solution
This problem is solved using 11.3 method (Eigenfunction expansion). The ODE is written as

−
( (
1 − x2

)
y ′

) ′
= µy + x3 (1)

Where µ = 1 in this case. The corresponding homogeneous eigenvalue ODE to solve is then

−
( (
1 − x2

)
y ′

) ′
= λy (2)

Comparing to Sturm-Liouville form − (py ′)′ +qy = rλy, then p (x) =
(
1 − x2

)
,q = 0, r = 1. Since

p (x) must be positive over all points in the domain, and since in this problem p (−1) = 0 and
p (1) = 0, then both x = −1,+1 are singular points. They can be shown to be regular singular
points.

Equation (2), where λ is now is an eigenvalue, is the Legendre equation(
1 − x2

)
y ′′ − 2xy ′ + λy = 0

Comparing to the standard Legendre equation form in chapter 5(
1 − x2

)
y ′′ − 2xy ′ + n (n + 1)y = 0 (3)

There are two cases to consider. n is integer and n is not an integer.
Case n is not an integer. It is know that now the solution to (3) is

y (x) = c1P̄n (x) + c2Q̄n (x)

Where P̄n (x) is called the Legendre function of order n and Q̄n (x) is called the Legendre function
of the second kind of order n. These solutions are valid for |x | < 1 since series expansion was
about point x = 0. But both of these functions are unbounded at the end points (Q̄n (x) blows up
at x = ±1 and P̄n (x) blows up at x = −1) leading to trivial solution.

This means n must be an integer. When n is an integer, then λn = n (n + 1). It is known (from
chapter 5), that in this case the solution to (3) becomes a terminating power series (a polynomial),
which is called the Legendre polynomial Pn (x) .These polynomials are there bounded everywhere,
including at the end points x = ±1, and therefore these solutions satisfy the boundary conditions.
Hence the Legendre Pn (x) are the eigenfunctions to (3). This table summaries the result found

8



n eigenvalue eigenfunctions
0 λ0 = 0 P0 (x) = 1
1 λ1 = 2 P1 (x) = x

2 λ2 = 6 P2 (x) =
1
2

(
3x2 − 1

)
3 λ3 = 12 P3 (x) =

1
2

(
5x3 − 3x

)
...
...

...

n λn = n (n + 1) Pn (x) =
1

2nn!
dn
dx 2

(
x2 − 1

) n
What the above says, is that the solution to(

1 − x2
)
P ′′
n (x) − 2xP ′

n (x) + λnPn (x) = 0

Is Pn (x) with the corresponding eigenvalue λn = n (n + 1) as given by the above table. Now that
the eigenfunctions of the corresponding homogeneous eigenvalue ODE are found, they are used
to solve the given inhomogeneous ODE

−
( (
1 − x2

)
y ′

) ′
= µy + x3 (4)

Using eigenfunction expansion method. Since µ = 1 and since there is no eigenvalue which is
also 1, then a solution exists. Let the solution be

y (x) =
∞∑
n=0

cnPn (x)

Substituting this solution into (4), and noting that L [y] = −
( (
1 − x2

)
y ′

) ′
= λny gives

λn
∞∑
n=0

cnPn (x) = µ
∞∑
n=0

cnPn (x) + x
3

Expanding x3 using the same eigenfunctions (this can be done, since x3 is continuous function
and the eigenfunctions are complete), then the above becomes

λn
∞∑
n=0

cnPn (x) = µ
∞∑
n=0

cnPn (x) +
∞∑
n=0

dnPn (x)

λncn = µcn + dn

cn =
dn

λn − µ

What is left is to determine dn from

x3 =
∞∑
n=0

dnPn (x)

The above can be solved for dn using orthogonality, or by direct expansion (otherwise called
undetermined coefficients method). Since the force x3 is already a polynomial in x and of a small
order, then direct expansion is simpler. The above then becomes

x3 = d0P0 (x) + d1P1 (x) + d2P2 (x) + d3P3 (x)

There is no need to expand for more than n = 3, since the LHS polynomial is of order 3. Substi-
tuting the known Pn (x) expressions into the above equation gives

x3 = d0 + d1x + d2
1
2

(
3x2 − 1

)
+ d3

1
2

(
5x3 − 3x

)
= d0 + d1x + d2

(
3
2
x2 −

1
2

)
+ d3

(
5
2
x3 −

3
2
x

)
9



Collecting terms of equal powers in x results in

x3 = x0
(
d0 −

1
2
d2

)
+ x

(
d1 −

3
2
d3

)
+ x2

(
3
2
d2

)
+ x3

(
5
2
d3

)
Or

d0 −
1
2
d2 = 0

d1 −
3
2
d3 = 0

3
2
d2 = 0

5
2
d3 = 1

From third equation, d2 = 0. From first equation d0 = 0, and substituting last equation in the
second equation give d1 = 3

2 . Therefore

d1 =
3
5

d3 =
2
5

And all other dn are zero. Now the cn are found using cn = dn
λn−µ
. For n = 1

c1 =
d1

λ1 − µ
=

3
5

2 − 1
=

3
5

And for n = 3

c3 =
d3

λ3 − µ
=

2
5

12 − 1
=

2
55

And all other cn are zero. Hence the final solution from y (x) =
∑∞

n=0 cnPn (x) reduces to only two
terms in the sum

y (x) = c1P1 (x) + c3P3 (x)

=
3
5
x +

2
55

(
1
2

(
5x3 − 3x

) )
Giving the final solution as

y (x) = 1
11x

(
x2 + 6

)
This is a plot of the solution
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Solution to Problem 4 using eigenfunction expansion

7 Appendix for problem 4

Initially I did not know we had to use eigenfunction expansion, so solved it directly as follows.
Let the solution to (

1 − x2
)
y ′′ − 2xy ′ + y = x3

Be
y (x) = yh (x) + yp (x)

Where yh (x) is the homogeneous solution to
(
1 − x2

)
y ′′ − 2xy ′ +y = 0 and yp (x) is a particular

solution. Now, since
(
1 − x2

)
y ′′ − 2xy ′ + y = 0 is a Legendre ODE but with a non-integer order,

then its solution is not a terminating polynomials, but instead is given by

yh (x) = c1P̄n (x) + c2Q̄n (x)

Where P̄n (x) is called the Legendre function of order n and Q̄n (x) is called the Legendre function
of the second kind of order n, and yp (x) is a particular solution. The particular solution can be
found, using method of undetermined coefficients to be yp (x) = 1

11x
3 + 6

11x . Hence the general
solution becomes

y (x) = c1P̄n (x) + c2Q̄n (x) +
1
11

x
(
x2 + 6

)
Now since the solution must be bounded as x → ±1, then we must set c1 = 0 and c2 = 0, because
both P̄n (x) and Q̄n (x) are unbounded at the end points (Q̄n (x) blows up at x = ±1 and P̄n (x)
blows up at only x = −1), therefore the final solution contains only the particular solution

y (x) =
1
11

x
(
x2 + 6

)
Which is the same solution found using eigenfunction expansion. At first I thought I made an
error somewhere, since I did not think all of the homogenous solution basis could vanish leaving
only a particular solution.
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