Quizz 4

Math 332 Introduction to Partial Differential Equations

Spring 2018

University Of Wisconsin, Milwaukee

Nasser M. Abbasi

May 2018 Compiled on September 17, 2018 at 8:32pm

Contents

1	Problem 1	1
2	Problem 2	4
3	Problem 3	5
4	Part (a)	5
5	Part (b)	7
6	Problem 4	8
7	Appendix for problem 4	11

1 Problem 1

Problem Solve the PDE

$$u_t = u_{xx} + xt \qquad 0 \le x \le 1, t \ge 0 \tag{1}$$

With boundary conditions

u(0,t) = 0u(1,t) = 0

And initial condition

$$u\left(x,0\right)=\sin\left(\pi x\right)$$

Solution

The corresponding homogeneous PDE $u_t = u_{xx}$ with the same homogeneous boundary conditions was solved before. It was found to have eigenfunctions

$$\Phi_n\left(x\right) = \sin\left(\sqrt{\lambda_n}x\right)$$

With corresponding eigenvalues

$$\lambda_n = n^2 \pi^2 \qquad n = 1, 2, 3, \cdots$$

Using eigenfunction expansion, it is now assumed that the solution to the given inhomogeneous PDE is given by

$$u(x,t) = \sum_{n=1}^{\infty} b_n(t) \Phi_n(x)$$

Substituting the above into the original PDE (1), and since term by term differentiation is justified (eigenfunctions are continuous) results in

$$\sum_{n=1}^{\infty} b'_n(t) \Phi_n(x) = \sum_{n=1}^{\infty} b_n(t) \Phi''_n(x) + \sum_{n=1}^{\infty} \gamma_n(t) \Phi_n(x)$$
(1A)

Where $\sum_{n=1}^{\infty} \gamma_n(t) \Phi_n(x)$ is the expansion of the forcing function *xt* using same eigenfunctions

$$xt = \sum_{n=1}^{\infty} \gamma_n(t) \Phi_n(x)$$
(1B)

But $\Phi_n''(x) = -\lambda_n \Phi_n(x)$ since the eigenfunctions satisfy the eigenvalue ODE $X'' = -\lambda_n X$. Therefore (1A) simplifies to

$$\sum_{n=1}^{\infty} b'_n(t) \Phi_n(x) = \sum_{n=1}^{\infty} -\lambda_n b_n(t) \Phi_n(x) + \sum_{n=1}^{\infty} \gamma_n(t) \Phi_n(x)$$
$$b'_n(t) + \lambda_n b_n(t) = \gamma_n(t)$$
(2)

(3)

 $\gamma_n(t)$ is now found by applying orthogonality to (1B), and using the weight r(x) = 1 gives

$$t\int_{0}^{1} x\Phi_{n}(x) dx = \gamma_{n}(t)\int_{0}^{1} \Phi_{n}^{2}(x) dx$$

Using $\Phi_n(x) = \sin\left(\sqrt{\lambda_n}x\right) = \sin\left(n\pi x\right)$ and $\int_0^1 \sin^2\left(n\pi x\right) dx = \frac{1}{2}$, the above simplifies to $t \int_0^1 x \sin\left(n\pi x\right) dx = \gamma_n(t) \frac{1}{2}$ $\gamma_n(t) = 2t \int_0^1 x \sin\left(n\pi x\right) dx$

The integral on the right side above is found using $\int x \sin(ax) dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a}$, therefore

$$\int_0^1 x \sin(n\pi x) \, dx = \left(\frac{\sin n\pi x}{n^2 \pi^2} - \frac{x \cos n\pi x}{n\pi}\right)_0^1$$
$$= \left(\frac{\sin n\pi}{n^2 \pi^2} - \frac{\cos n\pi}{n\pi}\right)$$
$$= -\frac{\cos n\pi}{n\pi}$$
$$= \frac{-(-1)^n}{n\pi}$$
$$= \frac{(-1)^{n+1}}{n\pi}$$

Hence equation (3) now can be written as

$$\gamma_n\left(t\right) = \frac{2\left(-1\right)^{n+1}}{n\pi}t$$

Substituting the above in (2) gives the first order ODE to solve for $b_n(t)$

$$b'_{n}(t) + (n\pi)^{2} b_{n}(t) = \frac{2(-1)^{n+1}}{n\pi}t$$

The integrating factor is $I = e^{n^2 \pi^2 t}$. Hence the above becomes, after multiplying both sides by *I*

$$\frac{d}{dt}\left(e^{n^{2}\pi^{2}t}b_{n}(t)\right) = \frac{2(-1)^{n+1}}{n\pi}te^{n^{2}\pi^{2}t}$$

Integrating both sides gives

$$e^{n^2 \pi^2 t} b_n(t) = \frac{2(-1)^{n+1}}{n\pi} \int_0^t s e^{n^2 \pi^2 s} ds + b_n(0)$$
(4)

Where $b_n(0)$ is the constant of integration. Dividing both sides by $e^{n^2\pi^2 t}$ gives

$$b_n(t) = \frac{2(-1)^{n+1}}{n\pi} \int_0^t s e^{n^2 \pi^2 (s-t)} ds + b_n(0) e^{-n^2 \pi^2 t}$$

But $\int_0^t se^{n^2\pi^2(s-t)} ds = \frac{n^2\pi^2t - 1 + e^{-n^2\pi^2t}}{n^4\pi^4}$ by integration by parts. The above now becomes

$$b_n(t) = 2(-1)^{n+1} \left(\frac{n^2 \pi^2 t - 1 + e^{-n^2 \pi^2 t}}{n^5 \pi^5} \right) + b_n(0) e^{-n^2 \pi^2 t}$$

Now that $b_n(t)$ is found, the final solution is

$$u(x,t) = \sum_{n=1}^{\infty} b_n(t) \Phi_n(x)$$

= $\sum_{n=1}^{\infty} \left(2 (-1)^{n+1} \left(\frac{n^2 \pi^2 t - 1 + e^{-n^2 \pi^2 t}}{n^5 \pi^5} \right) + b_n(0) e^{-n^2 \pi^2 t} \right) \sin(n\pi x)$ (5)

 $b_n(0)$ is determined from the given initial conditions $u(x, 0) = \sin \pi x$. The above becomes at t = 0

$$\sin \pi x = \sum_{n=1}^{\infty} \left(2 \left(-1 \right)^{n+1} \left(\frac{-1+1}{n^5 \pi^5} \right) + b_n \left(0 \right) \right) \sin \left(n \pi x \right)$$
$$= \sum_{n=1}^{\infty} b_n \left(0 \right) \sin \left(n \pi x \right)$$

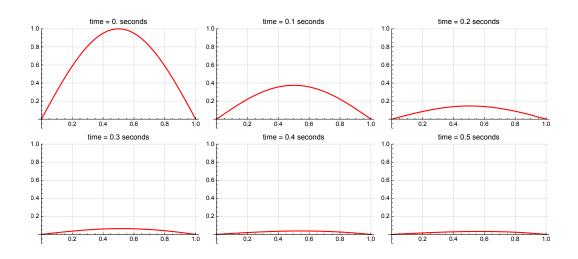
Therefore when n = 1 (since LHS is $\sin \pi x$) the above gives

 $b_1(0)=1$

And $b_n(0) = 0$ for all other *n*. Equation (5) now simplifies to

$$u(x,t) = \underbrace{\left(2\left(\frac{\pi^2 t - 1 + e^{-\pi^2 t}}{\pi^5}\right) + e^{-\pi^2 t}\right) \sin(\pi x)}_{n=1 \text{ term}} + \frac{1}{\pi^5} \sum_{n=2}^{\infty} \frac{2}{n^5} (-1)^{n+1} \left(n^2 \pi^2 t + e^{-n^2 \pi^2 t} - 1\right) \sin(n\pi x)$$

To verify the above solution, it was plotted against numerical solution for different instances of time and also animated. It gave an exact match. A small number of terms was needed in the summation since convergence was fast and is of order $O\left(\frac{1}{n^3}\right)$. The following is a plot of the above solution for different instances of times using 5 terms.



2 Problem 2

Problem Show that

$$(\lambda - \mu) \int_0^1 x J_o\left(\sqrt{\lambda}x\right) J_o\left(\sqrt{\mu}x\right) dx = \sqrt{\mu} J_o'\left(\sqrt{\mu}\right) J_o\left(\sqrt{\lambda}\right) - \sqrt{\lambda} J_o'\left(\sqrt{\lambda}\right) J_o\left(\sqrt{\mu}\right)$$

Hint: Use the same method that proves orthogonality of eigenfunctions in 11.4

Solution

In the above, λ and μ are the eigenvalues, with the corresponding eigenfunctions

$$\Phi_{\lambda}\left(x\right) = J_{o}\left(\sqrt{\lambda}x\right) \tag{1}$$

$$\Phi_{\mu}\left(x\right) = J_{o}\left(\sqrt{\mu}x\right) \tag{2}$$

These come from the Sturm Liouville equation

$$-(xy')' = \lambda xy \tag{3}$$

Where

p(x) = xq(x) = 0r(x) = x

In operator form

$$L\left[\Phi_{\lambda}\right] = -\left(\Phi_{\lambda}'\right)' = \lambda x \Phi_{\lambda} \tag{4}$$

Similarly for any other eigenvalue such as μ . Multiplying both sides of (4) by $\Phi_{\mu}(x)$ and integrating gives

$$\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} dx = \int_{0}^{1} \underbrace{-\left(\Phi_{\lambda}'\right)'}_{u} \Phi_{\mu} dx$$

Integrating by part the right side results in

$$\int_0^1 L\left[\Phi_\lambda\right] \Phi_\mu dx = \left[-\Phi'_\lambda \Phi_\mu\right]_0^1 - \int_0^1 -\Phi'_\lambda \Phi'_\mu dx$$

Integrating by parts again the second integral above, where now $dv = -\Phi'_{\lambda}$, $u = \Phi'_{\mu}$ gives

$$\int_{0}^{1} L[\Phi_{\lambda}] \Phi_{\mu} dx = \left[-\Phi_{\lambda}' \Phi_{\mu} \right]_{0}^{1} - \left(\left[-\Phi_{\lambda} \Phi_{\mu}' \right]_{0}^{1} - \int_{0}^{1} -\Phi_{\lambda} \Phi_{\mu}'' dx \right)$$
$$= \left[-\Phi_{\lambda}' \Phi_{\mu} \right]_{0}^{1} - \left[-\Phi_{\lambda} \Phi_{\mu}' \right]_{0}^{1} + \int_{0}^{1} -\Phi_{\lambda} \Phi_{\mu}'' dx$$
$$= \left[-\Phi_{\lambda}' \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}' \right]_{0}^{1} + \int_{0}^{1} \Phi_{\lambda} \left(-\Phi_{\mu}' \right)' dx$$

But $\left(-\Phi'_{\mu}\right)' = L\left[\Phi_{\mu}\right]$. Hence the above can be written as

$$\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} dx = \left[-\Phi_{\lambda}^{\prime} \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1} + \int_{0}^{1} L\left[\Phi_{\mu}\right] \Phi_{\lambda} dx$$
$$\int_{0}^{1} L\left[\Phi_{\lambda}\right] \Phi_{\mu} dx - \int_{0}^{1} L\left[\Phi_{\mu}\right] \Phi_{\lambda} dx = \left[-\Phi_{\lambda}^{\prime} \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}$$
$$\int_{0}^{1} \left(L\left[\Phi_{\lambda}\right] \Phi_{\mu} - L\left[\Phi_{\mu}\right] \Phi_{\lambda}\right) dx = \left[-\Phi_{\lambda}^{\prime} \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}^{\prime}\right]_{0}^{1}$$

But $L[\Phi_{\lambda}] = \lambda x \Phi_{\lambda}$ and $L[\Phi_{\mu}] = \mu x \Phi_{\mu}$, therefore the above can be written as

$$\int_{0}^{1} \left(\lambda x \Phi_{\lambda} \Phi_{\mu} - \mu x \Phi_{\mu} \Phi_{\lambda}\right) dx = \left[-\Phi_{\lambda}' \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}'\right]_{0}^{1}$$
$$\int_{0}^{1} \left(\lambda - \mu\right) \left(x \Phi_{\lambda} \Phi_{\mu}\right) dx = \left[-\Phi_{\lambda}' \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}'\right]_{0}^{1}$$
$$\left(\lambda - \mu\right) \int_{0}^{1} x \Phi_{\lambda} \Phi_{\mu} dx = \left[-\Phi_{\lambda}' \Phi_{\mu} + \Phi_{\lambda} \Phi_{\mu}'\right]_{0}^{1}$$
(5)

Since $\Phi_{\lambda}(x) = J_o\left(\sqrt{\lambda}x\right)$, $\Phi'_{\lambda}(x) = \sqrt{\lambda}J'_o\left(\sqrt{\lambda}x\right)$ and $\Phi_{\mu}(x) = J_o\left(\sqrt{\mu}x\right)$, $\Phi'_{\mu}(x) = \sqrt{\mu}J'_o\left(\sqrt{\mu}x\right)$, then the above simplifies to

$$(\lambda - \mu) \int_{0}^{1} x J_{o} \left(\sqrt{\lambda}x\right) J_{o} \left(\sqrt{\mu}x\right) dx = \left[-\sqrt{\lambda}J_{o}'\left(\sqrt{\lambda}x\right) J_{o} \left(\sqrt{\mu}x\right) + J_{o} \left(\sqrt{\lambda}x\right) \sqrt{\mu}J_{o}'\left(\sqrt{\mu}x\right)\right]_{0}^{1}$$

What is left is to evaluate the boundary terms $\Delta = \left[-\sqrt{\lambda} J'_o \left(\sqrt{\lambda} x \right) J_o \left(\sqrt{\mu} x \right) + J_o \left(\sqrt{\lambda} x \right) \sqrt{\mu} J'_o \left(\sqrt{\mu} x \right) \right]_0^1$. This gives

$$\Delta = \left[-\sqrt{\lambda} J_o'\left(\sqrt{\lambda}\right) J_o\left(\sqrt{\mu}\right) + J_o\left(\sqrt{\lambda}\right) \sqrt{\mu} J_o'\left(\sqrt{\mu}\right) \right] - \left[-\sqrt{\lambda} J_o'(0) J_o(0) + J_o(0) \sqrt{\mu} J_o'(0) \right]$$

But $J'_{o}(0) = 0$ (since $J'_{o}(x) = -J_{1}(x)$ and $J_{1}(0) = 0$). Therefore the boundary terms reduces to

$$\Delta = J_o\left(\sqrt{\lambda}\right)\sqrt{\mu}J'_o\left(\sqrt{\mu}\right) - \sqrt{\lambda}J'_o\left(\sqrt{\lambda}\right)J_o\left(\sqrt{\mu}\right)$$

Substituting this back in (5) gives the desired result

$$(\lambda - \mu) \int_{0}^{1} x J_{o} \left(\sqrt{\lambda} x \right) J_{o} \left(\sqrt{\mu} x \right) dx = \sqrt{\mu} J_{o}' \left(\sqrt{\mu} \right) J_{o} \left(\sqrt{\lambda} \right) - \sqrt{\lambda} J_{o}' \left(\sqrt{\lambda} \right) J_{o} \left(\sqrt{\mu} \right)$$

3 Problem 3

<u>Problem</u> By letting $\mu \to \lambda$ in the formula of problem 2, derive a formula for $\int_0^1 x J_0^2 \left(\sqrt{\lambda}x\right) dx$. Then show that the normalized eigenfunctions of the eigenvalue problem in section 11.4 is

$$\hat{\Phi}_n\left(x\right) = \frac{\sqrt{2}J_0\left(j_n x\right)}{\left|J_0'\left(j_n\right)\right|}$$

where $0 < j_1 < j_2 < j_3 < \cdots$ denote the positive zeros of J_0 Solution

4 **Part (a)**

From problem 3, the formula obtained is

$$(\lambda - \mu) \int_{0}^{1} x J_{o} \left(\sqrt{\lambda} x \right) J_{o} \left(\sqrt{\mu} x \right) dx = \sqrt{\mu} J_{o}' \left(\sqrt{\mu} \right) J_{o} \left(\sqrt{\lambda} \right) - \sqrt{\lambda} J_{o}' \left(\sqrt{\lambda} \right) J_{o} \left(\sqrt{\mu} \right)$$

Moving $(\lambda - \mu)$ to the right side gives

$$\int_{0}^{1} x J_{o}\left(\sqrt{\lambda}x\right) J_{o}\left(\sqrt{\mu}x\right) dx = \frac{\sqrt{\mu}J_{o}'\left(\sqrt{\mu}\right) J_{o}\left(\sqrt{\lambda}\right) - \sqrt{\lambda}J_{o}'\left(\sqrt{\lambda}\right) J_{o}\left(\sqrt{\mu}\right)}{(\lambda - \mu)}$$

Taking the limit $\lim \mu \to \lambda$ then the integral on the left becomes $\int_0^1 x \Phi_\lambda^2 dx$ resulting in

$$\int_{0}^{1} x J_{o}^{2} \left(\sqrt{\lambda} x \right) dx = \lim_{\mu \to \lambda} \frac{\sqrt{\mu} J_{o}' \left(\sqrt{\mu} \right) J_{o} \left(\sqrt{\lambda} \right) - \sqrt{\lambda} J_{o}' \left(\sqrt{\lambda} \right) J_{o} \left(\sqrt{\mu} \right)}{(\lambda - \mu)} \tag{1}$$

When $\mu \to \lambda$ the right side becomes indeterminate form $\frac{0}{0}$. Therefore L'hospital rule is used, which says that

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Comparing the above to (1) shows that μ is now like *x* and λ is like *a*. Therefore f'(x) is like

$$f'(x) \equiv \frac{d}{d\mu} \left(\sqrt{\mu} J'_o(\sqrt{\mu}) J_o(\sqrt{\lambda}) - \sqrt{\lambda} J'_o(\sqrt{\lambda}) J_o(\sqrt{\mu}) \right)$$
$$\equiv \frac{d}{d\mu} \sqrt{\mu} J'_o(\sqrt{\mu}) J_o(\sqrt{\lambda}) - \frac{d}{d\mu} \sqrt{\lambda} J'_o(\sqrt{\lambda}) J_o(\sqrt{\mu})$$
$$\equiv \frac{1}{2} \frac{1}{\sqrt{\mu}} J'_o(\sqrt{\mu}) J_o(\sqrt{\lambda}) + \sqrt{\mu} \frac{1}{2\sqrt{\mu}} J''_o(\sqrt{\mu}) J_o(\sqrt{\lambda}) - \frac{1}{2\sqrt{\mu}} \sqrt{\lambda} J'_o(\sqrt{\lambda}) J'_o(\sqrt{\mu})$$

And g'(x) is like $\frac{d}{d\mu}(\lambda - \mu) = -1$. Using the above result back in (1) gives

$$\begin{split} \int_{0}^{1} x J_{o}^{2} \left(\sqrt{\lambda}\right) dx &\equiv \lim_{x \to a} \frac{f'(x)}{g'(x)} \\ &= \lim_{\mu \to \lambda} \left(-\frac{1}{2} \frac{1}{\sqrt{\mu}} J_{o}'(\sqrt{\mu}) J_{o}\left(\sqrt{\lambda}\right) - \sqrt{\mu} \frac{1}{2\sqrt{\mu}} J_{o}''(\sqrt{\mu}) J_{o}\left(\sqrt{\lambda}\right) + \frac{1}{2\sqrt{\mu}} \sqrt{\lambda} J_{o}'\left(\sqrt{\lambda}\right) J_{o}'(\sqrt{\mu}) \right) \\ &= \lim_{\mu \to \lambda} \left(-\frac{1}{2} \frac{1}{\sqrt{\mu}} J_{o}'(\sqrt{\mu}) J_{o}\left(\sqrt{\lambda}\right) - \frac{1}{2} J_{o}''(\sqrt{\mu}) J_{o}\left(\sqrt{\lambda}\right) + \frac{1}{2} J_{o}'(\sqrt{\lambda}) J_{o}'(\sqrt{\mu}) \right) \end{split}$$

Now the limit is taken, since there is no indeterminate form. The above becomes

$$\int_{0}^{1} x J_{o}^{2} \left(\sqrt{\lambda}x\right) dx = -\frac{1}{2} \frac{1}{\sqrt{\lambda}} J_{o}' \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) - \frac{1}{2} J_{o}'' \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) + \frac{1}{2} J_{o}' \left(\sqrt{\lambda}\right) J_{o}' \left(\sqrt{\lambda}\right) = \frac{1}{2} \left(\left[J_{o}' \left(\sqrt{\lambda}\right) \right]^{2} - \frac{1}{\sqrt{\lambda}} J_{o}' \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) - J_{o}'' \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) \right)$$
(2)

To simplify the above, the following relations were obtained from dlmf.NIST.gov to simplify the above

$$J'_{n}(x) = J_{n-1}(x) - \frac{(n+1)}{x} J_{n}(x)$$
$$J'_{n}(x) = -J_{n+1}(x) + \frac{n}{x} J_{n}(x)$$

Using these, then $J'_o\left(\sqrt{\lambda}\right) = -J_1\left(\sqrt{\lambda}\right)$ and $J''_0\left(\sqrt{\lambda}\right) = -J_0\left(\sqrt{\lambda}\right) + \frac{1}{\sqrt{\lambda}}J_1\left(\sqrt{\lambda}\right)$. Equation (2) now simplifies to

$$\int_{0}^{1} x J_{o}^{2} \left(\sqrt{\lambda}x\right) dx = \frac{1}{2} \left(\left[J_{o}' \left(\sqrt{\lambda}\right) \right]^{2} - \frac{1}{\sqrt{\lambda}} \left(-J_{1} \left(\sqrt{\lambda}\right) \right) J_{o} \left(\sqrt{\lambda}\right) - \left(-J_{0} \left(\sqrt{\lambda}\right) + \frac{1}{\sqrt{\lambda}} J_{1} \left(\sqrt{\lambda}\right) \right) J_{o} \left(\sqrt{\lambda}\right) \right) \\ = \frac{1}{2} \left(\left[J_{o}' \left(\sqrt{\lambda}\right) \right]^{2} + \frac{1}{\sqrt{\lambda}} J_{1} \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) + J_{0} \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) - \frac{1}{\sqrt{\lambda}} J_{1} \left(\sqrt{\lambda}\right) J_{o} \left(\sqrt{\lambda}\right) \right) \right)$$

The second term cancels with the last term above giving the final result

$$\int_{0}^{1} x J_{o}^{2} \left(\sqrt{\lambda} x \right) dx = \frac{1}{2} \left(\left[J_{o}' \left(\sqrt{\lambda} \right) \right]^{2} + J_{0}^{2} \left(\sqrt{\lambda} \right) \right)$$
(3)

5 **Part (b)**

 $\sqrt{\lambda_n}$ are the positive zeros of $J_0\left(\sqrt{\lambda_n}\right) = 0$. Below, $\sqrt{\lambda_n}$ is replaced by j_n where now j_n are the zeros of $J_0(j_n)$. One way to find the normalized eigenfunction $\hat{J}_0(j_nx)$ is by dividing $J_0(j_nx)$ by its norm. In other words,

$$\hat{J}_0(j_n x) = \frac{J_0(j_n x)}{\|J_0(j_n x)\|}$$
(1A)

But

$$|J_0(j_n x)|| = \sqrt{\int_0^1 r(x) J_0^2(j_n x) dx}$$

Which is by the definition of the norm of a function with the corresponding weight r(x). But from part(a) $||J_0(j_n x)|| = \int_0^1 r(x) J_0^2(j_n x) dx$ was found to be $\frac{1}{2} \left(\left[J'_o(j_n) \right]^2 + J_0^2(j_n) \right)$. Therefore (1A) becomes

$$\begin{aligned} \hat{J}_{0}(j_{n}x) &= \frac{J_{0}(j_{n}x)}{\sqrt{\frac{1}{2}\left(\left[J'_{o}(j_{n})\right]^{2} + J_{0}^{2}(j_{n})\right)}} \\ &= \frac{\sqrt{2}J_{0}(j_{n}x)}{\sqrt{\left[J'_{o}(j_{n})\right]^{2} + J_{0}^{2}(j_{n})}} \end{aligned}$$

But since j_n are the zeros of $J_0(j_n)$, then all the $J_0(j_n)$ terms above vanish giving

$$\hat{J}_{0}(j_{n}x) = \frac{\sqrt{2}J_{0}(j_{n}x)}{\sqrt{[J_{o}'(j_{n})]^{2}}} \\
= \frac{\sqrt{2}J_{0}(j_{n}x)}{|J_{o}'(j_{n})|}$$
(1)

Another way to find the normalized eigenfunctions $\hat{J}_0(j_n x)$ is as was done in the text book, which is to first determine k_n as follows. Let $\hat{J}_0(j_n x) = k_n J_0(j_n x)$, then the following equation is solved for k_n

$$\int_{0}^{1} r(x) \left[\hat{J}_{0}(j_{n}x) \right]^{2} dx = 1$$
(2)

But the weight r(x) = x, equation (2) becomes

$$k_n^2 \int_0^1 x J_0^2(j_n x) \, dx = 1$$

But from part(a), $\int_0^1 x J_0^2(j_n x) dx = \frac{1}{2} \left(\left[J_o'(j_n) \right]^2 + J_0^2(j_n) \right)$. Hence the above becomes

$$k_n^2 = \frac{1}{\frac{1}{2} \left(\left[J'_o(j_n) \right]^2 + J_0^2(j_n) \right)}$$
$$k_n = \frac{\sqrt{2}}{\sqrt{\left[J'_o(j_n) \right]^2 + J_0^2(j_n)}}$$

As above, since all $J_0(j_n) = 0$ then

$$k_n = \frac{\sqrt{2}}{\sqrt{\left[J'_o(j_n)\right]^2}}$$

And the normalized eigenfunction become

$$\begin{aligned} \hat{J}_{0}(j_{n}x) &= k_{n}J_{0}(j_{n}x) \\ &= \frac{\sqrt{2}J_{0}(j_{n}x)}{\sqrt{[J_{o}'(j_{n})]^{2}}} \\ &= \frac{\sqrt{2}J_{0}(j_{n}x)}{|J_{o}'(j_{n})|} \end{aligned}$$

Which is the same result as (1).

6 Problem 4

Problem Solve the inhomogeneous differential equation

$$-(((1-x^{2}) y')' = y + x^{3} \qquad -1 < x < 1$$

With boundary conditions y(x), y'(x) bounded as $x \to -1^+$ and $x \to 1^-$.

Solution

This problem is solved using 11.3 method (Eigenfunction expansion). The ODE is written as

$$-(((1-x^{2})y')' = \mu y + x^{3}$$
(1)

Where $\mu = 1$ in this case. The corresponding homogeneous eigenvalue ODE to solve is then

$$-\left(\left(1-x^2\right)y'\right)' = \lambda y \tag{2}$$

Comparing to Sturm-Liouville form $-(py')' + qy = r\lambda y$, then $p(x) = (1 - x^2)$, q = 0, r = 1. Since p(x) must be positive over all points in the domain, and since in this problem p(-1) = 0 and p(1) = 0, then both x = -1, +1 are singular points. They can be shown to be regular singular points.

Equation (2), where λ is now is an eigenvalue, is the Legendre equation

$$(1-x^2) y^{\prime\prime} - 2xy^{\prime} + \lambda y = 0$$

Comparing to the standard Legendre equation form in chapter 5

$$(1 - x2) y'' - 2xy' + n(n+1)y = 0$$
(3)

There are two cases to consider. *n* is integer and *n* is not an integer.

Case *n* is not an integer. It is know that now the solution to (3) is

$$y(x) = c_1 \bar{P}_n(x) + c_2 \bar{Q}_n(x)$$

Where $\bar{P}_n(x)$ is called the Legendre function of order n and $\bar{Q}_n(x)$ is called the Legendre function of the second kind of order n. These solutions are valid for |x| < 1 since series expansion was about point x = 0. But <u>both</u> of these functions are <u>unbounded</u> at the end points ($\bar{Q}_n(x)$ blows up at $x = \pm 1$ and $\bar{P}_n(x)$ blows up at x = -1) leading to trivial solution.

This means *n* must be an integer. When *n* is an integer, then $\lambda_n = n(n + 1)$. It is known (from chapter 5), that in this case the solution to (3) becomes a terminating power series (a polynomial), which is called the Legendre polynomial $P_n(x)$. These polynomials are there bounded everywhere, including at the end points $x = \pm 1$, and therefore these solutions satisfy the boundary conditions. Hence the Legendre $P_n(x)$ are the eigenfunctions to (3). This table summaries the result found

n	eigenvalue	eigenfunctions
0	$\lambda_0 = 0$	$P_0(x) = 1$
1	$\lambda_1 = 2$	$P_1(x) = x$
2	$\lambda_2 = 6$	$P_2(x) = \frac{1}{2} (3x^2 - 1)$
3	$\lambda_3 = 12$	$P_3(x) = \frac{1}{2} \left(5x^3 - 3x \right)$
:	•	:
n	$\lambda_n = n\left(n+1\right)$	$P_{n}(x) = \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{2}} \left(x^{2} - 1\right)^{n}$

What the above says, is that the solution to

$$(1 - x^{2}) P_{n}^{\prime \prime}(x) - 2x P_{n}^{\prime}(x) + \lambda_{n} P_{n}(x) = 0$$

Is $P_n(x)$ with the corresponding eigenvalue $\lambda_n = n(n+1)$ as given by the above table. Now that the eigenfunctions of the corresponding homogeneous eigenvalue ODE are found, they are used to solve the given inhomogeneous ODE

$$-(((1-x^{2}) y')' = \mu y + x^{3}$$
(4)

Using eigenfunction expansion method. Since $\mu = 1$ and since there is no eigenvalue which is also 1, then a solution exists. Let the solution be

$$y\left(x\right) = \sum_{n=0}^{\infty} c_n P_n\left(x\right)$$

Substituting this solution into (4), and noting that $L[y] = -((1-x^2)y')' = \lambda_n y$ gives

$$\lambda_{n}\sum_{n=0}^{\infty}c_{n}P_{n}\left(x\right)=\mu\sum_{n=0}^{\infty}c_{n}P_{n}\left(x\right)+x^{3}$$

Expanding x^3 using the same eigenfunctions (this can be done, since x^3 is continuous function and the eigenfunctions are complete), then the above becomes

$$\lambda_n \sum_{n=0}^{\infty} c_n P_n(x) = \mu \sum_{n=0}^{\infty} c_n P_n(x) + \sum_{n=0}^{\infty} d_n P_n(x)$$
$$\lambda_n c_n = \mu c_n + d_n$$
$$c_n = \frac{d_n}{\lambda_n - \mu}$$

What is left is to determine d_n from

$$x^{3} = \sum_{n=0}^{\infty} d_{n} P_{n}\left(x\right)$$

The above can be solved for d_n using orthogonality, or by direct expansion (otherwise called undetermined coefficients method). Since the force x^3 is already a polynomial in x and of a small order, then direct expansion is simpler. The above then becomes

$$x^{3} = d_{0}P_{0}(x) + d_{1}P_{1}(x) + d_{2}P_{2}(x) + d_{3}P_{3}(x)$$

There is no need to expand for more than n = 3, since the LHS polynomial is of order 3. Substituting the known $P_n(x)$ expressions into the above equation gives

$$x^{3} = d_{0} + d_{1}x + d_{2}\frac{1}{2}(3x^{2} - 1) + d_{3}\frac{1}{2}(5x^{3} - 3x)$$
$$= d_{0} + d_{1}x + d_{2}\left(\frac{3}{2}x^{2} - \frac{1}{2}\right) + d_{3}\left(\frac{5}{2}x^{3} - \frac{3}{2}x\right)$$

Collecting terms of equal powers in x results in

$$x^{3} = x^{0} \left(d_{0} - \frac{1}{2} d_{2} \right) + x \left(d_{1} - \frac{3}{2} d_{3} \right) + x^{2} \left(\frac{3}{2} d_{2} \right) + x^{3} \left(\frac{5}{2} d_{3} \right)$$

Or

$$d_0 - \frac{1}{2}d_2 = 0$$
$$d_1 - \frac{3}{2}d_3 = 0$$
$$\frac{3}{2}d_2 = 0$$
$$\frac{5}{2}d_3 = 1$$

From third equation, $d_2 = 0$. From first equation $d_0 = 0$, and substituting last equation in the second equation give $d_1 = \frac{3}{2}$. Therefore

$$d_1 = \frac{3}{5}$$
$$d_3 = \frac{2}{5}$$

And all other d_n are zero. Now the c_n are found using $c_n = \frac{d_n}{\lambda_n - \mu}$. For n = 1

$$c_1 = \frac{d_1}{\lambda_1 - \mu} = \frac{\frac{3}{5}}{2 - 1} = \frac{3}{5}$$

And for n = 3

$$c_3 = \frac{d_3}{\lambda_3 - \mu} = \frac{\frac{2}{5}}{12 - 1} = \frac{2}{55}$$

And all other c_n are zero. Hence the final solution from $y(x) = \sum_{n=0}^{\infty} c_n P_n(x)$ reduces to only two terms in the sum

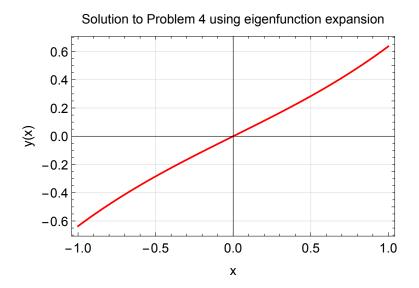
$$y(x) = c_1 P_1(x) + c_3 P_3(x)$$

= $\frac{3}{5}x + \frac{2}{55} \left(\frac{1}{2} (5x^3 - 3x)\right)$

Giving the final solution as

$$y(x) = \frac{1}{11}x(x^2 + 6)$$

This is a plot of the solution



7 Appendix for problem 4

Initially I did not know we had to use eigenfunction expansion, so solved it directly as follows. Let the solution to

$$(1-x^2) y'' - 2xy' + y = x^3$$

Be

$$y(x) = y_h(x) + y_p(x)$$

Where $y_h(x)$ is the homogeneous solution to $(1 - x^2) y'' - 2xy' + y = 0$ and $y_p(x)$ is a particular solution. Now, since $(1 - x^2) y'' - 2xy' + y = 0$ is a Legendre ODE but with a non-integer order, then its solution is not a terminating polynomials, but instead is given by

$$y_h(x) = c_1 \bar{P}_n(x) + c_2 \bar{Q}_n(x)$$

Where $\bar{P}_n(x)$ is called the Legendre function of order n and $\bar{Q}_n(x)$ is called the Legendre function of the second kind of order n, and $y_p(x)$ is a particular solution. The particular solution can be found, using method of undetermined coefficients to be $y_p(x) = \frac{1}{11}x^3 + \frac{6}{11}x$. Hence the general solution becomes

$$y(x) = c_1 \bar{P}_n(x) + c_2 \bar{Q}_n(x) + \frac{1}{11} x (x^2 + 6)$$

Now since the solution must be bounded as $x \to \pm 1$, then we must set $c_1 = 0$ and $c_2 = 0$, because both $\bar{P}_n(x)$ and $\bar{Q}_n(x)$ are <u>unbounded</u> at the end points ($\bar{Q}_n(x)$ blows up at $x = \pm 1$ and $\bar{P}_n(x)$ blows up at only x = -1), therefore the final solution contains only the particular solution

$$y\left(x\right) = \frac{1}{11}x\left(x^2 + 6\right)$$

Which is the same solution found using eigenfunction expansion. At first I thought I made an error somewhere, since I did not think all of the homogenous solution basis could vanish leaving only a particular solution.