Homework 4, Math 322

1. Solve the the partial differential equation

$$
u_{t}=u_{x x}+x t, \quad 0 \leq x \leq 1, t \geq 0
$$

with boundary conditions

$$
u(0, t)=u(1, t)=0
$$

and initial condition

$$
u(x, 0)=\sin \pi x
$$

Solution: The eigenvalue problem $-y^{\prime \prime}=\lambda y, y(0)=y(1)=0$ has eigenvalues $\lambda_{n}=n^{2} \pi^{2}$ and normalized eigenfunctions $\hat{\phi}_{n}(x)=\sqrt{2} \sin (n x), n=$ $1,2, \ldots$ Therefore, we are looking for a solution in the form

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \hat{\phi}_{n}(x) .
$$

We know from the textbook, Section 11.3, that $b_{n}(t)$ is determined by

$$
b_{n}^{\prime}(t)+\lambda_{n} b_{n}(t)=\gamma_{n}(t), \quad b_{n}(0)=B_{n}
$$

where

$$
\gamma_{n}(t)=\int_{0}^{1} x t \hat{\phi}_{n}(x) d x
$$

and the sequence B_{n} is determined by

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \hat{\phi}_{m}(x) .
$$

Therefore, in our problem, $B_{1}=\frac{1}{\sqrt{2}}$ and $B_{n}=0$ for $n \geq 2$. Moreover,

$$
\gamma_{n}(t)=t \sqrt{2} \int_{0}^{1} x \sin (n \pi x) d x=t \sqrt{2}(-1)^{n+1} \frac{1}{n \pi} .
$$

Solving the differential equation for $b_{n}(t)$ we find

$$
b_{1}(t)=\frac{\sqrt{2}}{\pi^{5}}\left(\pi^{2} t-1+e^{-\pi^{2} t}\left(\frac{1}{2} \pi^{5}+1\right)\right) .
$$

and, for $n \geq 2$,

$$
b_{n}(t)=\frac{\sqrt{2}(-1)^{n+1}}{\pi^{5} n^{5}}\left(\pi^{2} n^{2} t-1+e^{-n^{2} \pi^{2} t}\right) .
$$

The solution is

$$
\begin{aligned}
u(x, t)= & \frac{2}{\pi^{5}}\left(\pi^{2} t-1+e^{-\pi^{2} t}\left(\frac{1}{2} \pi^{5}+1\right)\right) \sin \pi x \\
& +\sum_{n=2}^{\infty} \frac{2(-1)^{n+1}}{\pi^{5} n^{5}}\left(\pi^{2} n^{2} t-1+e^{-n^{2} \pi^{2} t}\right) \sin (n \pi x) \\
= & e^{-\pi^{2} t} \sin \pi x+\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{\pi^{5} n^{5}}\left(\pi^{2} n^{2} t-1+e^{-n^{2} \pi^{2} t}\right) \sin (n \pi x)
\end{aligned}
$$

2. Show that

$$
(\lambda-\mu) \int_{0}^{1} x J_{0}(\sqrt{\lambda} x) J_{0}(\sqrt{\mu} x) d x=\sqrt{\mu} J_{0}^{\prime}(\sqrt{\mu}) J_{0}(\sqrt{\lambda})-\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda}) J_{0}(\sqrt{\mu})
$$

for $\lambda, \mu>0$.
Solution: Let $y=J_{0}(\sqrt{\lambda} x)$ and $z=J_{0}(\sqrt{\mu} x)$. Then

$$
-\left(x y^{\prime}\right)^{\prime}=\lambda x y, \quad-\left(x z^{\prime}\right)^{\prime}=\mu x z
$$

We multiply the first equation by z, the second by y, subtract and integrate, to find

$$
\int_{0}^{1}\left(\left(x z^{\prime}\right)^{\prime} y-\left(x y^{\prime}\right)^{\prime} z\right) d x=(\lambda-\mu) \int_{0}^{1} x y z d x
$$

Integration by parts gives

$$
x z^{\prime} y-\left.x y^{\prime} z\right|_{0} ^{1}=(\lambda-\mu) \int_{0}^{1} x y z d x
$$

which is the desired identity.
3. By letting $\mu \rightarrow \lambda$ in the formula of Problem 2, derive a formula for $\int_{0}^{1} x J_{0}(\sqrt{\lambda} x)^{2} d x$. Then show that the normalized eigenfunctions of the eigenvalue problem in Section 11.4 are

$$
\hat{\phi}_{n}(x)=\frac{\sqrt{2} J_{0}\left(j_{n} x\right)}{\left|J_{0}^{\prime}\left(j_{n}\right)\right|}
$$

where $0<j_{1}<j_{2}<j_{3}<\ldots$ denote the positive zeros of J_{0}.
Solution: We divide the identity from problem 2 by $\lambda-\mu$, and let $\mu \rightarrow \lambda$. Using L'Hospital's rule we find

$$
\begin{aligned}
& \int_{0}^{1} x J_{0}(\sqrt{\lambda} x)^{2} d x=\lim _{\mu \rightarrow \lambda} \frac{\sqrt{\mu} J_{0}^{\prime}(\sqrt{\mu}) J_{0}(\sqrt{\lambda})-\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda}) J_{0}(\sqrt{\mu})}{\lambda-\mu} \\
= & -\lim _{\mu \rightarrow \lambda} \frac{1}{2} \mu^{-1 / 2} J_{0}^{\prime}(\sqrt{\mu}) J_{0}(\sqrt{\lambda})+\frac{1}{2} J_{0}^{\prime \prime}(\sqrt{\mu}) J_{0}(\sqrt{\lambda})-\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda}) \frac{1}{2} \mu^{-1 / 2} J_{0}^{\prime}(\sqrt{\mu}) \\
= & -\frac{1}{2} \lambda^{-1 / 2} J_{0}^{\prime}(\sqrt{\lambda}) J_{0}(\sqrt{\lambda})-\frac{1}{2} J_{0}^{\prime \prime}(\sqrt{\lambda}) J_{0}(\sqrt{\lambda})+\frac{1}{2} J_{0}^{\prime}(\sqrt{\lambda})^{2} .
\end{aligned}
$$

Now we use

$$
\sqrt{\lambda} J_{0}^{\prime \prime}(\sqrt{\lambda})+J_{0}^{\prime}(\sqrt{\lambda})+\sqrt{\lambda} J_{0}(\sqrt{\lambda})=0
$$

Then we obtain

$$
\int_{0}^{1} x J_{0}(\sqrt{\lambda} x)^{2} d x=\frac{1}{2} J_{0}(\sqrt{\lambda})^{2}+\frac{1}{2} J_{0}^{\prime}(\sqrt{\lambda})^{2}
$$

If $\lambda=j_{n}^{2}$ then this formula simplifies to

$$
\int_{0}^{1} x J_{0}\left(j_{n} x\right)^{2} d x=\frac{1}{2} J_{0}^{\prime}\left(j_{n}\right)^{2}
$$

The normalized eigenfunctions are

$$
\frac{J_{0}\left(j_{n} r\right)}{\left(\int_{0}^{1} x J_{0}\left(j_{n} x\right)^{2} d x\right)^{1 / 2}}=\frac{\sqrt{2} J_{0}\left(j_{n} r\right)}{\left|J_{0}^{\prime}\left(j_{n}\right)\right|}
$$

4. Solve the inhomogeneous differential equation

$$
-\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=y+x^{3}, \quad-1<x<1
$$

with boundary condition

$$
y(x), y^{\prime}(x) \text { bounded as } x \rightarrow-1^{+} \text {and } x \rightarrow 1^{-}
$$

Solution We use the method from Section 11.3. It is stated for regular Sturm-Liouville problems but it works equally well for our singular SturmLiouville problem. We look for the solution in the form

$$
y=\sum_{n=0}^{\infty} b_{n} P_{n}(x)
$$

The b_{n} satisfy

$$
b_{n}=\frac{c_{n}}{\lambda_{n}-\mu}
$$

The sequence c_{n} is determined by

$$
x^{3}=\sum_{n=0}^{\infty} c_{n} P_{n}(x)
$$

Since $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$ and $P_{1}(x)=x$, we find

$$
c_{3}=\frac{2}{5}, \quad c_{1}=\frac{3}{5}
$$

and all other $c_{n}=0$. The eigenvalues are $\lambda_{n}=n(n+1)$ and $\mu=1$. Therefore,

$$
y=\frac{c_{1}}{2-1} P_{1}(x)+\frac{c_{3}}{12-1} P_{3}(x)=\frac{3}{5} x+\frac{2}{5} \frac{1}{11}\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right)=\frac{6}{11} x+\frac{1}{11} x^{3}
$$

