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1 Problem 1

Problem Find the eigenvalues and normalized eigenfunctions of the RSL problem

y ′′ + λy = 0 (1)
y (0) − y ′ (0) = 0

y (π ) − y ′ (π ) = 0

solution
The characteristic equation for y ′′ + λy = 0 is given by r 2 + λ = 0. Hence the roots are

r = ±
√
−λ

There are 3 cases to consider.
case λ = 0This implies that r = 0 is a double root. The solution becomes

y = c1 + c2x

y ′ = c2

The first boundary conditions y (0) − y ′ (0) = 0 gives c1 − c2 = 0 or c1 = c2.The above solution
now becomes

y = c1 (1 + x)

y ′ = c1

The second boundary conditions y (π ) − y ′ (π ) = 0 gives c1 (1 + π ) − c1 = 0 or π = 0. Which is
not possible. Therefore λ = 0 is not an eigenvalue.

case λ < 0 Let λ = −ω2 for some real ω. Hence the roots now are r = ±
√
ω2 = ±ω. Therefore

the solution is
y = c1e

ωx + c2e
−ωx

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric
functions as

y = c1 coshωx + c2 sinhωx

y ′ = c1ω sinhωx + c2ω coshωx

The first boundary conditions y (0)−y ′ (0) = 0 gives 0 = c1−c2ω or c1 = c2ω. Therefore the above
solution becomes

y = c2ω coshωx + c2 sinhωx (2)
= c2 (ω coshωx + sinhωx)

Hence
y ′ = c2

(
ω2 sinhωx + ω coshωx

)
The second boundary conditions y (π ) − y ′ (π ) = 0 gives

0 = c2 (ω coshωπ + sinhωπ ) − c2
(
ω2 sinhωπ + ω coshωπ

)
= c2

(
ω coshωπ + sinhωπ − ω2 sinhωπ − ω coshωπ

)
= c2

(
sinhωπ − ω2 sinhωπ

)
= c2

(
1 − ω2) sinhωπ

Non-trivial solution implies either
(
1 − ω2) = 0 or sinhωπ = 0. But sinhωπ = 0 only when its

argument is zero. Butω , 0 in this case. The other option is that
(
1 − ω2) = 0. This impliesω2 = 1
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or, since λ = −ω2, that λ = −1. Hence λ = −1 is an eigenvalue. Therefore the solution from (2)
above becomes

y (x) = c2 coshx + c2 sinhx

= c2 (coshx + sinhx)

But ex = coshx + sinhx , hence the solution can be written as

y = c2e
x

The eigenfunction in this case is therefore

Φ−1 (x) = ex

To obtain the normalized eigenfunction, let Φ̂−1 (x) = k−1Φ−1 (x). The normalization factor k−1 is

found by setting
∫π
0

(
r (x) Φ̂−1 (x)

) 2
dx = 1. But the weight r (x) = 1 in this problem from looking

at the Sturm Liouville form given. Therefore solving∫ π

0
Φ̂2
−1 (x)dx = 1∫ π

0
(k−1e

x )
2 dx = 1

k2−1

∫ π

0
e2xdx = 1

k2−1

(
e2x

2

) π
0
= 1

k2
−1

2

(
e2π − 1

)
= 1

Therefore

k−1 =

√
2

√
e2π − 1

Hence the normalized eigenfunction is

Φ̂−1 (x) =

( √
2

√
e2π − 1

)
ex

case λ > 1 Since λ is positive, then the roots are r = ±
√
−λ = ±i

√
λ. This gives the solution

y = c1e
i
√
λx + c2e

−i
√
λx

Since the exponents are complex, the above solution can be written in terms of the circular
trigonometric functions as

y = c1 cos
(√

λx
)
+ c2 sin

√
λx

y ′ = −c1
√
λ sin

(√
λx

)
+ c2

√
λ cos

√
λx

The first boundary conditions y (0) − y ′ (0) = 0 gives 0 = c1 − c2
√
λ or c1 = c2

√
λ. The above

solution becomes

y = c2
√
λ cos

(√
λx

)
+ c2 sin

√
λx (3)

= c2
(√

λ cos
(√

λx
)
+ sin

√
λx

)
Therefore

y ′ = c2
(
−λ sin

(√
λx

)
+
√
λ cos

√
λx

)
Applying second boundary condition y (π ) − y ′ (π ) = 0 to the above gives

0 = c2
(√

λ cos
(√

λπ
)
+ sin

(√
λπ

) )
− c2

(
−λ sin

(√
λπ

)
+
√
λ cos

(√
λπ

) )
= c2

(√
λ cos

(√
λπ

)
+ sin

(√
λπ

)
+ λ sin

(√
λπ

)
−
√
λ cos

(√
λπ

) )
= c2

(
sin

(√
λπ

)
+ λ sin

(√
λπ

) )
= c (1 + λ) sin

(√
λπ

)
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For non-trivial solution, either 1 + λ = 0 or sin
(√

λπ
)
= 0. But 1 + λ = 0 implies λ = −1. But it is

assumed that λ is positive. The other possibility is that sin
(√

λπ
)
= 0 which implies

√
λπ = nπ n = 1, 2, 3, · · ·

Or
λn = n

2 1, 2, 3, · · ·

The corresponding solution from (3) becomes

yn (x) = cn (n cos (nx) + sin (nx))

Therefore the eigenfunctions are

Φn (x) = n cos (nx) + sin (nx)

To obtain the normalized eigenfunctions, as was done above,
∫π
0

(
r (x) Φ̂n (x)

) 2
dx = 1 is solved

for kn giving ∫ π

0
(knΦn (x))

2 dx = 1

k2n

∫ π

0
(n cos (nx) + sin (nx))2 dx = 1

k2n

∫ π

0

(
n2 cos2 (nx) + sin2 (nx) + 2n cos (nx) sin (nx)

)
dx = 1

n2
∫ π

0
cos2 (nx)dx +

∫ π

0
sin2 (nx)dx + 2n

∫ π

0
cos (nx) sin (nx)dx =

1

k2n
(4)

But
∫π
0
cos2 (nx)dx = π

2 and
∫π
0
sin2 (nx)dx = π

2 and for the last integral above∫ π

0
cos (nx) sin (nx)dx =

∫ π

0

1
2
sin (2nx)dx

=
1
2

(
− cos (2nx)

2n

) π
0

=
−1
4n

(cos (2nx))π0

=
−1
4n

(cos (2nπ ) − 1)

But cos (2nπ ) = 1 becausen = 1, 2, 3, · · · .Therefore the above simplifies to
∫π
0
cos (nx) sin (nx)dx =

0. Using these results in (4) gives
k2n

(
n2

π

2
+
π

2

)
= 1

Or

kn =

√
2√

π (1 + n2)

The normalized eigenfunctions are therefore

Φ̂n (x) =

√
2√

π (1 + n2)
(n cos (nx) + sin (nx)) n = 1, 2, 3, · · ·

In summary

λ = −1 is eigenvalue with corresponding normalized eigenfunction Φ̂−1 (x) =
( √

2
√
e2π−1

)
ex

λn = n
2 forn = 1, 2, · · · with corresponding normalized eigenfunctions Φ̂n (x) =

√
2√

π (1+n2)
(n cos (nx) + sin (nx)).

The normalized eigenfunctions Φ̂−1, Φ̂1, Φ̂2, Φ̂3 are plotted next to each others below
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The normalized eigenfunctions Φ̂−1, Φ̂1, Φ̂2, Φ̂3 are plotted on the same plot below as well for
illustration.
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Some observations:The first eigenfunction Φ̂−1 (x) has no root in [0, π ], the second eigenfunc-
tion Φ̂1 has one root in [0, π ] and the third eigefunction has two roots in [0, π ] and so on. This
is what is to be expected. The nth ordered eigenfunction will have (n − 1) number of roots (or x
axis crossings) inside the domain.

2 Problem 2

Problem Expand f (x) = 1 in a series of eigenfunctions of problem 1
solution
Let

f (x) = b−1Φ̂−1 (x) +
∞∑
n=1

bnΦ̂n (x) (1)

The goal is to determine b−1,b1,b2, · · · . This is done by applying orthogonality. Multiplying both
sides of (1) by r (x) Φ̂−1 (x) and integrating over the domain gives∫ π

0
r (x) f (x) Φ̂−1 (x)dx =

∫ π

0
b−1r (x) Φ̂

2
−1 (x)dx +

∞∑
n=1

bn

∫ π

0
r (x) Φ̂−1 (x) Φ̂n (x)dx

But r (x) = 1 and due to orthogonality of eigenfunctions, all terms in the sum are zero. The above
simplifies to ∫ π

0
f (x) Φ̂−1 (x)dx = b−1

∫ π

0
Φ̂2
−1 (x)dx

But f (x) = 1 and
∫π
0
Φ̂2
−1 (x)dx = 1 since normalized eigenfunctions. Hence the above becomes

b−1 =

∫ π

0
Φ̂−1 (x)dx
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From problem one, Φ̂−1 (x) =
( √

2
√
e2π−1

)
ex , therefore the above becomes

b−1 =

√
2

√
e2π − 1

∫ π

0
exdx

=

√
2

√
e2π − 1

[ex ]π0

=

√
2 (eπ − 1)
√
e2π − 1

Going back to equation (1), but now the equation is multiplied by r (x) Φ̂m (x) form > 0 and
integrated using r (x) = 1 and f (x) = 1 giving∫ π

0
Φ̂m (x)dx =

∫ π

0
b−1Φ̂−1 (x) Φ̂m (x)dx +

∞∑
n=1

bn

∫ π

0
Φ̂n (x) Φ̂m (x)dx

Due to orthogonality of eigenfunctions, the above simplifies to∫ π

0
Φ̂m (x)dx = bm

∫ π

0
Φ̂2
m (x)dx

But
∫π
0
Φ̂2
m (x)dx = 1, therefore the above becomes

bn =

∫ π

0
Φ̂n (x)dx

From problem one, using Φ̂n (x) =
√
2√

π (1+n2)
(n cos (nx) + sin (nx)) the above becomes

bn =

√
2√

π (1 + n2)

∫ π

0
(n cos (nx) + sin (nx))dx

=

√
2√

π (1 + n2)

(∫ π

0
n cos (nx)dx +

∫ π

0
sin (nx)dx

)
=

√
2√

π (1 + n2)

(
n

[
sin (nx)

n

] π
0
−

[
cos (nx)

n

] π
0

)
=

√
2√

π (1 + n2)

(
sin (nπ ) −

1
n
[cos (nπ ) − 1]

)
But sin (nπ ) = 0 since n is integer and cos (nπ ) = (−1)n . The above becomes

bn =

√
2√

π (1 + n2)

(
−
1
n
[−1n − 1]

)
=

√
2

n
√
π (1 + n2)

(
(−1)n+1 + 1

)
For n = 1, 3, 5, · · · the above simplifies to

bn =
2
√
2

n
√
π (1 + n2)

And for n = 2, 4, 6, · · · gives bn = 0. Therefore the expansion (1) becomes

f (x) =

√
2 (eπ − 1)
√
e2π − 1

Φ̂−1 (x) +
∞∑

n=1,3,5, · · ·

2
√
2

n
√
π (1 + n2)

Φ̂n (x)

1 =

√
2 (eπ − 1)
√
e2π − 1

( √
2

√
e2π − 1

)
ex +

∞∑
n=1,3,5, · · ·

2
√
2

n
√
π (1 + n2)

√
2√

π (1 + n2)
(n cos (nx) + sin (nx))

1 =
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1,3,5, · · ·

1
n (1 + n2)

(n cos (nx) + sin (nx))

The above can also be written as

1 =
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1

1

(2n − 1)
(
1 + (2n − 1)2

) ((2n − 1) cos ((2n − 1)x) + sin ((2n − 1)x))

To verify the above result, it is plotted for increasing number of n and compared to f (x) = 1 to
see how well it converges.
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Some observations: As more terms are added, the series approximation approaches f (x) = 1
more. The convergence is more rapid in the internal of the domain than near the edges. Near the
edges at x = 0 and x = 1 , more terms are needed to get better approximation. More oscillation is
seen near the edges. This is due to Gibbs phenomenon. Converges is of the order of O

(
1
n2

)
and

the converges is to the mean of f (x).

3 Problem 3

Problem Consider the regular SL problem

y ′′ + λy = 0 (1)
y (0) = 0

2y (1) − y ′ (1) = 0

Show that the problem has exactly one negative eigenvalue and compute numerically.
solution
The characteristic equation is r 2 + λ = 0. Therefore the roots are r = ±

√
−λ. There are 3 cases

to consider. This problem is asking only for the negative eigenvalues. Therefore only the case
λ < 0 is considered.

Let λ = −ω2 for some real constant. The roots are r = ±
√
ω2 = ±ω. The solution becomes

y = c1e
ωx + c2e

−ωx

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric
functions

y = c1 coshωx + c2 sinhωx

The first boundary conditions y (0) = 0 gives 0 = c1. The solution becomes

y = c2 sinhωx (2)
y ′ = c2ω coshωx

Applying the second boundary conditions 2y (1) − y ′ (π ) = 0 gives

0 = 2c2 sinhω − c2ω coshω

= c2 (2 sinhω − ω coshω)

Non trivial solution requires that

2 sinhω − ω coshω = 0

2 tanhω = ω
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The above equation needs to be solved numerically to find its real roots ω. One root is ω = 0, but
this implies λ = 0. To find if there are other real roots, the function 2 tanhω and ω were plotted
and where they intersect is located. Root finding was then used to obtain the exact numerical
value of the roots. The plot below shows that near ω = ±2 there is an intersection. There are
no other roots since the line f (ω) = ω will keep increasing/decreasing and will not intersect
f (ω) = 2 tanhω any more after these two roots.

2 tanh(w)

w

-3 -2 -1 1 2 3
w

-3

-2

-1

1

2

3

f(w)

Numerical root finding was used to find the roots near points of intersections. It shows that
the exact value of ω = ±1.91501. Since λ = −ω2, therefore

λ = −3.66726

Is the only negative eigenvalue.

4 Problem 4

Problem Solve the inhomogeneous B.V.P.

−y ′′ = µy + 1 (1)
y (0) − y ′ (0) = 0

y (π ) − y ′ (π ) = 0

for µ = 0, µ = 1 by methods of section 11.3

5 Part (a)

−y ′′ − µy = 1

y ′′ + µy = −1

Using chapter 11.3 method, first the eigenfunctions for the corresponding homogenous ODE
y ′′+µy = 0 are found for the same boundary conditions. In problem one, it was found that λ = −1

is eigenvaluewith corresponding normalized eigenfunction Φ̂−1 (x) =
( √

2
√
e2π−1

)
ex and λn = n2 for

n = 1, 2, · · · with corresponding normalized eigenfunctions Φ̂n (x) =
√
2√

π (1+n2)
(n cos (nx) + sin (nx)).

Since λ = 0 is not an eigenvalue of the corresponding homogeneous B.V.P., then there is a solution
which is by eigenfunction expansion is given by

y = b−1Φ̂−1 (x) +
∞∑
n=1

bnΦ̂n (x) (1)

Substituting this back into the original ODE gives(
b−1Φ̂

′′
−1 (x) +

∞∑
n=1

bnΦ̂
′′
n (x)

)
+ µ

(
b−1Φ̂−1 (x) +

∞∑
n=1

bnΦ̂n (x)

)
= c−1Φ̂−1 (x) +

∞∑
n=1

cnΦ̂n (x)

7



Where −1 = c−1Φ̂−1 (x) +
∑∞

n=1 cnΦ̂n (x) is the eigenfunction expansion of −1. Since µ = 0, and
Φ̂′′
n (x) = −λnΦ̂n (x), the above simplifies to

−λ−1b−1Φ̂−1 (x) −
∞∑
n=1

bnλnΦ̂n (x) = c−1Φ̂−1 (x) +
∞∑
n=1

cnΦ̂n (x)

Therefore, equating coefficients gives

−λ−1b−1 = c−1

−bnλn = cn

Or

b−1 = −
c−1
λ−1

(2)

bn = −
cn
λn

What is left is to find c−1, cn . These are found by applying orthogonality since

−1 = c−1Φ̂−1 (x) +
∞∑
n=1

cnΦ̂n (x)

This was done in problem 2. The difference is the minus sign. Therefore the result from problem
2 is used but c−1, cn from problem 2 are now multiplied by −1 giving

c−1 = −

√
2 (eπ − 1)
√
e2π − 1

cn = −
2
√
2

n
√
π (1 + n2)

n = 1, 3, 5, · · ·

Now that c−1, cn are found, using equation (2) b−1,bn are can now be found

b−1 =

√
2(eπ−1)
√
e2π−1

(−1)
= −

√
2 (eπ − 1)
√
e2π − 1

bn =

2
√
2

n
√
π (1+n2)

n2
=

2
√
2

n3
√
π (1 + n2)

n = 1, 3, 5, · · ·

Hence the solution (1) becomes

y = b−1Φ̂−1 (x) +
∞∑
n=1

bnΦ̂n (x)

= −

√
2 (eπ − 1)
√
e2π − 1

Φ̂−1 (x) +
∞∑

n=1,3,5, · · ·

2
√
2

n3
√
π (1 + n2)

Φ̂n (x)

= −

√
2 (eπ − 1)
√
e2π − 1

( √
2

√
e2π − 1

)
ex +

∞∑
n=1,3,5, · · ·

2
√
2

n3
√
π (1 + n2)

√
2√

π (1 + n2)
(n cos (nx) + sin (nx))

= −
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1,3,5, · · ·

1
n3 (1 + n2)

(n cos (nx) + sin (nx)) (2A)

The above can also be also be written as

y (x) = −
2 (eπ − 1)
e2π − 1

ex+
4
π

∞∑
n=1

1

(2n − 1)3
(
1 + (2n − 1)2

) ((2n − 1) cos ((2n − 1)x) + sin ((2n − 1)x))

(2A)
To verify the above solution, it was plotted against the solution of y ′′ = −1 found using the
direct method to see if they match. The solution using the direct method is found as follows: The
homogenous solution is yh = c1 + c2x . Let yp = kx2,y ′

p = 2kx,y ′′
p = 2k . Substituting these back

into y ′′ = −1 gives 2k = −1 or k = − 1
2 . Hence yp = −x 2

2 and the solution becomes

y = yh + yp

= c1 + c2x −
x2

2

Boundary conditions are now applied to determine c1, c2. From above, y ′ (x) = c2 − x . Applying
y (0) − y ′ (0) = 0 gives

0 = c1 − c2

c2 = c1
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Therefore the solution becomes

y (x) = c1 (1 + x) −
x2

2
y ′ (x) = c1 − x

Applying second BC y (π ) − y ′ (π ) = 0 gives

0 = c1 (1 + π ) −
π 2

2
− c1 + π

0 = c1 (1 + π − 1) −
π 2

2
+ π

c1 =
π 2

2 − π

π

=
π

2
− 1

Therefore, the solution, using direct method is

y (x) =
(π
2
− 1

)
(1 + x) −

x2

2

=
π

2
+
π

2
x − 1 − x −

x2

2

Or

y (x) = −x 2

2 + x
( π
2 − 1

)
− 1 + π

2 (3)

What the above says, is that if (2A) solution is correct, it will converge to solution (3) as more
terms are added. In other words

−
x2

2
+ x

(π
2
− 1

)
− 1 +

π

2
≈ −

2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1,3,5, · · ·

1
n3 (1 + n2)

(n cos (nx) + sin (nx))

To verify this, the solution from both the direct and the series method were plotted next to each
other. Using only n = 10 in the sum shows that the plots are identical.
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Solution using eigenfunction expansion method, n=10

Then the difference between these two solution was plotted. A maximum of n = 50 is used in
the sum. The plot shows the difference is almost zero in the internal region and near the edges
of the domain the difference of order 10−7.This is expected due to Gibbs phenomenon. Adding
more terms made the difference smaller. The converges is of order O

(
1
n2

)
.

mySol[max_, x_] := -
2 (Exp[Pi] - 1)

Exp[2 Pi] - 1
Exp[x] +

4

Pi
Sum

1

n^3 (1 + n^2)
(n Cos[n x] + Sin[n x]), {n, 1, max, 2}

direct[x_] :=
-x2

2
+ x

Pi

2
- 1 - 1 +

Pi

2
;
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Showing difference in direct and 11.3 method

6 Part (b)

Now the same process as in part (a) is repeated for µ = 1

−y ′′ − µy = 1

y ′′ + µy = −1

Using 11.3 method, first the eigenfunctions for the corresponding homogenous ODE y ′′ + µy = 0
are found for the same boundary conditions. In problem one, it was found that λ = −1 is eigen-
value with corresponding normalized eigenfunction Φ̂−1 (x) =

( √
2

√
e2π−1

)
ex and λn = n2 for n =

1, 2, · · · with corresponding normalized eigenfunctions Φ̂n (x) =
√
2√

π (1+n2)
(n cos (nx) + sin (nx)).

Therefore λ = 1 is an eigenvalue that corresponds to µ = 1. In this case, a solution will exist (and
will not be unique) only if the forcing function −1 is orthogonal to Φ̂1 (x). This is verified as
follows. Since r (x) = 1, and n = 1, then∫ π

0
(−1) r (x) Φ̂1 (x)dx = −

∫ π

0

√
2√

π (1 + n2)
(n cos (nx) + sin (nx))dx

= −

∫ π

0

√
2√

π (1 + 1)
(cos (x) + sin (x))dx

=
−
√
2

√
2π

∫ π

0
cos (x) + sin (x)dx

=
−1
√
π

(
(sinx)π0 − (cosx)π0

)
=

−1
√
π
(0 − (−1 − 1))

=
−2
√
π

Which is not zero. This means there is no solution.
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