Quizz 3

Math 332 Introduction to Partial Differential Equations

Spring 2018

University Of Wisconsin, Milwaukee

Nasser M. Abbasi

 $April\ 2018 \qquad \qquad \text{Compiled on September 17, 2018 at 8:32pm}$

Contents

1	Problem 1	1
2	Problem 2	4
3	Problem 3	6
4	Problem 4	7
5	Part (a)	7
6	Part (b)	9

1 Problem 1

Problem Find the eigenvalues and normalized eigenfunctions of the RSL problem

$$y'' + \lambda y = 0$$

$$y(0) - y'(0) = 0$$

$$y(\pi) - y'(\pi) = 0$$
(1)

solution

The characteristic equation for $y'' + \lambda y = 0$ is given by $r^2 + \lambda = 0$. Hence the roots are

$$r = \pm \sqrt{-\lambda}$$

There are 3 cases to consider.

case $\lambda = 0$ This implies that r = 0 is a double root. The solution becomes

$$y = c_1 + c_2 x$$
$$y' = c_2$$

The first boundary conditions y(0) - y'(0) = 0 gives $c_1 - c_2 = 0$ or $c_1 = c_2$. The above solution now becomes

$$y = c_1 (1 + x)$$
$$y' = c_1$$

The second boundary conditions $y(\pi) - y'(\pi) = 0$ gives $c_1(1 + \pi) - c_1 = 0$ or $\pi = 0$. Which is not possible. Therefore $\lambda = 0$ is not an eigenvalue.

<u>case $\lambda < 0$ </u> Let $\lambda = -\omega^2$ for some real ω . Hence the roots now are $r = \pm \sqrt{\omega^2} = \pm \omega$. Therefore the solution is

$$y = c_1 e^{\omega x} + c_2 e^{-\omega x}$$

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions as

$$y = c_1 \cosh \omega x + c_2 \sinh \omega x$$

$$y' = c_1 \omega \sinh \omega x + c_2 \omega \cosh \omega x$$

The first boundary conditions y(0) - y'(0) = 0 gives $0 = c_1 - c_2 \omega$ or $c_1 = c_2 \omega$. Therefore the above solution becomes

$$y = c_2 \omega \cosh \omega x + c_2 \sinh \omega x$$

$$= c_2 (\omega \cosh \omega x + \sinh \omega x)$$
(2)

Hence

$$y' = c_2 \left(\omega^2 \sinh \omega x + \omega \cosh \omega x \right)$$

The second boundary conditions $y(\pi) - y'(\pi) = 0$ gives

$$0 = c_2 (\omega \cosh \omega \pi + \sinh \omega \pi) - c_2 (\omega^2 \sinh \omega \pi + \omega \cosh \omega \pi)$$

$$= c_2 (\omega \cosh \omega \pi + \sinh \omega \pi - \omega^2 \sinh \omega \pi - \omega \cosh \omega \pi)$$

$$= c_2 (\sinh \omega \pi - \omega^2 \sinh \omega \pi)$$

$$= c_2 (1 - \omega^2) \sinh \omega \pi$$

Non-trivial solution implies either $(1 - \omega^2) = 0$ or $\sinh \omega \pi = 0$. But $\sinh \omega \pi = 0$ only when its argument is zero. But $\omega \neq 0$ in this case. The other option is that $(1 - \omega^2) = 0$. This implies $\omega^2 = 1$

or, since $\lambda = -\omega^2$, that $\lambda = -1$. Hence $\lambda = -1$ is an eigenvalue. Therefore the solution from (2) above becomes

$$y(x) = c_2 \cosh x + c_2 \sinh x$$
$$= c_2 (\cosh x + \sinh x)$$

But $e^x = \cosh x + \sinh x$, hence the solution can be written as

$$y = c_2 e^x$$

The eigenfunction in this case is therefore

$$\Phi_{-1}(x) = e^x$$

To obtain the normalized eigenfunction, let $\hat{\Phi}_{-1}(x) = k_{-1}\Phi_{-1}(x)$. The normalization factor k_{-1} is found by setting $\int_0^\pi \left(r(x)\hat{\Phi}_{-1}(x)\right)^2 dx = 1$. But the weight r(x) = 1 in this problem from looking at the Sturm Liouville form given. Therefore solving

$$\int_{0}^{\pi} \hat{\Phi}_{-1}^{2}(x) dx = 1$$

$$\int_{0}^{\pi} (k_{-1}e^{x})^{2} dx = 1$$

$$k_{-1}^{2} \int_{0}^{\pi} e^{2x} dx = 1$$

$$k_{-1}^{2} \left(\frac{e^{2x}}{2}\right)_{0}^{\pi} = 1$$

$$\frac{k_{-1}^{2}}{2} \left(e^{2\pi} - 1\right) = 1$$

Therefore

$$k_{-1} = \frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}}$$

Hence the normalized eigenfunction is

$$\hat{\Phi}_{-1}(x) = \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}}\right) e^x$$

case $\lambda > 1$ Since λ is positive, then the roots are $r = \pm \sqrt{-\lambda} = \pm i\sqrt{\lambda}$. This gives the solution

$$y = c_1 e^{i\sqrt{\lambda}x} + c_2 e^{-i\sqrt{\lambda}x}$$

Since the exponents are complex, the above solution can be written in terms of the circular trigonometric functions as

$$y = c_1 \cos \left(\sqrt{\lambda}x\right) + c_2 \sin \sqrt{\lambda}x$$
$$y' = -c_1 \sqrt{\lambda} \sin \left(\sqrt{\lambda}x\right) + c_2 \sqrt{\lambda} \cos \sqrt{\lambda}x$$

The first boundary conditions y(0)-y'(0)=0 gives $0=c_1-c_2\sqrt{\lambda}$ or $c_1=c_2\sqrt{\lambda}$. The above solution becomes

$$y = c_2 \sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\sqrt{\lambda}x$$

$$= c_2 \left(\sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right) + \sin\sqrt{\lambda}x\right)$$
(3)

Therefore

$$y' = c_2 \left(-\lambda \sin \left(\sqrt{\lambda} x \right) + \sqrt{\lambda} \cos \sqrt{\lambda} x \right)$$

Applying second boundary condition $y(\pi) - y'(\pi) = 0$ to the above gives

$$0 = c_2 \left(\sqrt{\lambda} \cos \left(\sqrt{\lambda} \pi \right) + \sin \left(\sqrt{\lambda} \pi \right) \right) - c_2 \left(-\lambda \sin \left(\sqrt{\lambda} \pi \right) + \sqrt{\lambda} \cos \left(\sqrt{\lambda} \pi \right) \right)$$

$$= c_2 \left(\sqrt{\lambda} \cos \left(\sqrt{\lambda} \pi \right) + \sin \left(\sqrt{\lambda} \pi \right) + \lambda \sin \left(\sqrt{\lambda} \pi \right) - \sqrt{\lambda} \cos \left(\sqrt{\lambda} \pi \right) \right)$$

$$= c_2 \left(\sin \left(\sqrt{\lambda} \pi \right) + \lambda \sin \left(\sqrt{\lambda} \pi \right) \right)$$

$$= c_1 \left(1 + \lambda \right) \sin \left(\sqrt{\lambda} \pi \right)$$

For non-trivial solution, either $1 + \lambda = 0$ or $\sin\left(\sqrt{\lambda}\pi\right) = 0$. But $1 + \lambda = 0$ implies $\lambda = -1$. But it is assumed that λ is positive. The other possibility is that $\sin\left(\sqrt{\lambda}\pi\right) = 0$ which implies

$$\sqrt{\lambda}\pi = n\pi$$
 $n = 1, 2, 3, \cdots$

Or

$$\lambda_n = n^2$$
 1, 2, 3, · · ·

The corresponding solution from (3) becomes

$$y_n(x) = c_n(n\cos(nx) + \sin(nx))$$

Therefore the eigenfunctions are

$$\Phi_n(x) = n\cos(nx) + \sin(nx)$$

To obtain the normalized eigenfunctions, as was done above, $\int_0^{\pi} \left(r(x) \hat{\Phi}_n(x) \right)^2 dx = 1$ is solved for k_n giving

$$\int_{0}^{\pi} (k_{n} \Phi_{n}(x))^{2} dx = 1$$

$$k_{n}^{2} \int_{0}^{\pi} (n \cos(nx) + \sin(nx))^{2} dx = 1$$

$$k_{n}^{2} \int_{0}^{\pi} (n^{2} \cos^{2}(nx) + \sin^{2}(nx) + 2n \cos(nx) \sin(nx)) dx = 1$$

$$n^{2} \int_{0}^{\pi} \cos^{2}(nx) dx + \int_{0}^{\pi} \sin^{2}(nx) dx + 2n \int_{0}^{\pi} \cos(nx) \sin(nx) dx = \frac{1}{k_{n}^{2}}$$
(4)

But $\int_0^{\pi} \cos^2(nx) dx = \frac{\pi}{2}$ and $\int_0^{\pi} \sin^2(nx) dx = \frac{\pi}{2}$ and for the last integral above

$$\int_0^{\pi} \cos(nx) \sin(nx) dx = \int_0^{\pi} \frac{1}{2} \sin(2nx) dx$$
$$= \frac{1}{2} \left(\frac{-\cos(2nx)}{2n} \right)_0^{\pi}$$
$$= \frac{-1}{4n} (\cos(2nx))_0^{\pi}$$
$$= \frac{-1}{4n} (\cos(2n\pi) - 1)$$

But $\cos{(2n\pi)} = 1$ because $n = 1, 2, 3, \cdots$. Therefore the above simplifies to $\int_0^{\pi} \cos{(nx)} \sin{(nx)} dx = 0$. Using these results in (4) gives

$$k_n^2 \left(n^2 \frac{\pi}{2} + \frac{\pi}{2} \right) = 1$$

Or

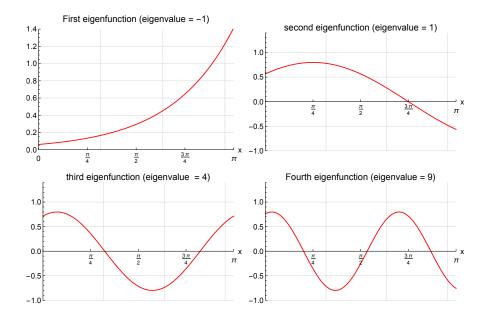
$$k_n = \frac{\sqrt{2}}{\sqrt{\pi \left(1 + n^2\right)}}$$

The normalized eigenfunctions are therefore

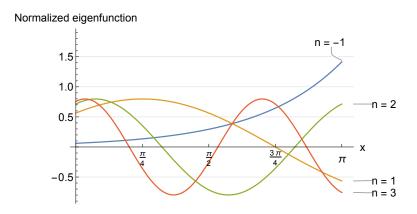
$$\hat{\Phi}_n(x) = \frac{\sqrt{2}}{\sqrt{\pi (1 + n^2)}} \left(n \cos(nx) + \sin(nx) \right) \qquad n = 1, 2, 3, \dots$$

In summary

 $\lambda = -1$ is eigenvalue with corresponding normalized eigenfunction $\hat{\Phi}_{-1}(x) = \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi}-1}}\right)e^x$ $\lambda_n = n^2 \text{ for } n = 1, 2, \cdots \text{ with corresponding normalized eigenfunctions } \hat{\Phi}_n(x) = \frac{\sqrt{2}}{\sqrt{\pi(1+n^2)}} \left(n\cos\left(nx\right) + \sin\left(nx\right)\right).$ The normalized eigenfunctions $\hat{\Phi}_{-1}, \hat{\Phi}_1, \hat{\Phi}_2, \hat{\Phi}_3$ are plotted next to each others below



The normalized eigenfunctions $\hat{\Phi}_{-1}$, $\hat{\Phi}_{1}$, $\hat{\Phi}_{2}$, $\hat{\Phi}_{3}$ are plotted on the same plot below as well for illustration.



<u>Some observations</u>: The first eigenfunction $\hat{\Phi}_{-1}(x)$ has no root in $[0, \pi]$, the second eigenfunction $\hat{\Phi}_1$ has one root in $[0, \pi]$ and the third eigefunction has two roots in $[0, \pi]$ and so on. This is what is to be expected. The n^{th} ordered eigenfunction will have (n-1) number of roots (or x axis crossings) inside the domain.

2 Problem 2

<u>Problem</u> Expand f(x) = 1 in a series of eigenfunctions of problem 1 <u>solution</u>

Let

$$f(x) = b_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty} b_n \hat{\Phi}_n(x)$$
 (1)

The goal is to determine b_{-1}, b_1, b_2, \cdots . This is done by applying orthogonality. Multiplying both sides of (1) by $r(x) \hat{\Phi}_{-1}(x)$ and integrating over the domain gives

$$\int_{0}^{\pi} r(x) f(x) \, \hat{\Phi}_{-1}(x) \, dx = \int_{0}^{\pi} b_{-1} r(x) \, \hat{\Phi}_{-1}^{2}(x) \, dx + \sum_{n=1}^{\infty} b_{n} \int_{0}^{\pi} r(x) \, \hat{\Phi}_{-1}(x) \, \hat{\Phi}_{n}(x) \, dx$$

But r(x) = 1 and due to orthogonality of eigenfunctions, all terms in the sum are zero. The above simplifies to

$$\int_0^{\pi} f(x) \, \hat{\Phi}_{-1}(x) \, dx = b_{-1} \int_0^{\pi} \hat{\Phi}_{-1}^2(x) \, dx$$

But f(x) = 1 and $\int_0^{\pi} \hat{\Phi}_{-1}^2(x) dx = 1$ since normalized eigenfunctions. Hence the above becomes

$$b_{-1} = \int_0^{\pi} \hat{\Phi}_{-1}(x) \, dx$$

From problem one, $\hat{\Phi}_{-1}(x) = \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi}-1}}\right)e^x$, therefore the above becomes

$$b_{-1} = \frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}} \int_0^{\pi} e^x dx$$
$$= \frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}} [e^x]_0^{\pi}$$
$$= \frac{\sqrt{2} (e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}}$$

Going back to equation (1), but now the equation is multiplied by $r(x)\hat{\Phi}_m(x)$ for m>0 and integrated using r(x)=1 and f(x)=1 giving

$$\int_{0}^{\pi} \hat{\Phi}_{m}(x) dx = \int_{0}^{\pi} b_{-1} \hat{\Phi}_{-1}(x) \hat{\Phi}_{m}(x) dx + \sum_{n=1}^{\infty} b_{n} \int_{0}^{\pi} \hat{\Phi}_{n}(x) \hat{\Phi}_{m}(x) dx$$

Due to orthogonality of eigenfunctions, the above simplifies to

$$\int_0^{\pi} \hat{\Phi}_m(x) dx = b_m \int_0^{\pi} \hat{\Phi}_m^2(x) dx$$

But $\int_0^{\pi} \hat{\Phi}_m^2(x) dx = 1$, therefore the above becomes

$$b_n = \int_0^{\pi} \hat{\Phi}_n(x) \, dx$$

From problem one, using $\hat{\Phi}_n(x) = \frac{\sqrt{2}}{\sqrt{\pi(1+n^2)}} (n\cos{(nx)} + \sin{(nx)})$ the above becomes

$$b_{n} = \frac{\sqrt{2}}{\sqrt{\pi (1 + n^{2})}} \int_{0}^{\pi} (n \cos(nx) + \sin(nx)) dx$$

$$= \frac{\sqrt{2}}{\sqrt{\pi (1 + n^{2})}} \left(\int_{0}^{\pi} n \cos(nx) dx + \int_{0}^{\pi} \sin(nx) dx \right)$$

$$= \frac{\sqrt{2}}{\sqrt{\pi (1 + n^{2})}} \left(n \left[\frac{\sin(nx)}{n} \right]_{0}^{\pi} - \left[\frac{\cos(nx)}{n} \right]_{0}^{\pi} \right)$$

$$= \frac{\sqrt{2}}{\sqrt{\pi (1 + n^{2})}} \left(\sin(n\pi) - \frac{1}{n} \left[\cos(n\pi) - 1 \right] \right)$$

But $\sin(n\pi) = 0$ since *n* is integer and $\cos(n\pi) = (-1)^n$. The above becomes

$$b_n = \frac{\sqrt{2}}{\sqrt{\pi (1 + n^2)}} \left(-\frac{1}{n} \left[-1^n - 1 \right] \right)$$
$$= \frac{\sqrt{2}}{n\sqrt{\pi (1 + n^2)}} \left((-1)^{n+1} + 1 \right)$$

For $n = 1, 3, 5, \cdots$ the above simplifies to

$$b_n = \frac{2\sqrt{2}}{n\sqrt{\pi\left(1+n^2\right)}}$$

And for $n = 2, 4, 6, \cdots$ gives $b_n = 0$. Therefore the expansion (1) becomes

$$f(x) = \frac{\sqrt{2}(e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}} \hat{\Phi}_{-1}(x) + \sum_{n=1,3,5,\dots}^{\infty} \frac{2\sqrt{2}}{n\sqrt{\pi(1 + n^2)}} \hat{\Phi}_{n}(x)$$

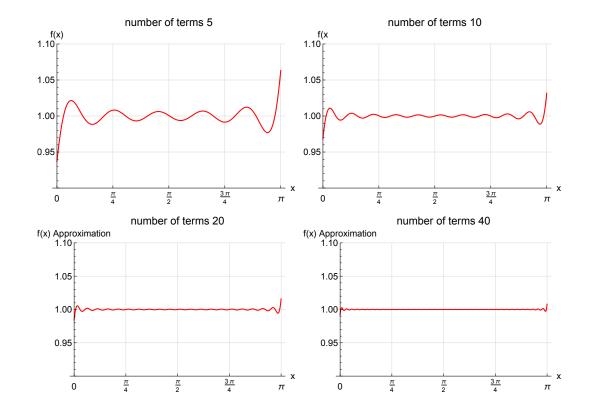
$$1 = \frac{\sqrt{2}(e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}} \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}}\right) e^{x} + \sum_{n=1,3,5,\dots}^{\infty} \frac{2\sqrt{2}}{n\sqrt{\pi(1 + n^2)}} \frac{\sqrt{2}}{\sqrt{\pi(1 + n^2)}} (n\cos(nx) + \sin(nx))$$

$$1 = \frac{2(e^{\pi} - 1)}{e^{2\pi} - 1} e^{x} + \frac{4}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n(1 + n^2)} (n\cos(nx) + \sin(nx))$$

The above can also be written as

$$1 = \frac{2(e^{\pi} - 1)}{e^{2\pi} - 1}e^{x} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)(1 + (2n-1)^{2})} ((2n-1)\cos((2n-1)x) + \sin((2n-1)x))$$

To verify the above result, it is plotted for increasing number of n and compared to f(x) = 1 to see how well it converges.



<u>Some observations</u>: As more terms are added, the series approximation approaches f(x) = 1 more. The convergence is more rapid in the internal of the domain than near the edges. Near the edges at x = 0 and x = 1, more terms are needed to get better approximation. More oscillation is seen near the edges. This is due to Gibbs phenomenon. Converges is of the order of $O\left(\frac{1}{n^2}\right)$ and the converges is to the mean of f(x).

3 Problem 3

Problem Consider the regular SL problem

$$y'' + \lambda y = 0$$
 (1)
 $y(0) = 0$
 $2y(1) - y'(1) = 0$

Show that the problem has exactly one negative eigenvalue and compute numerically.

solution

The characteristic equation is $r^2 + \lambda = 0$. Therefore the roots are $r = \pm \sqrt{-\lambda}$. There are 3 cases to consider. This problem is asking only for the negative eigenvalues. Therefore only the case $\lambda < 0$ is considered.

Let $\lambda = -\omega^2$ for some real constant. The roots are $r = \pm \sqrt{\omega^2} = \pm \omega$. The solution becomes

$$y = c_1 e^{\omega x} + c_2 e^{-\omega x}$$

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions

$$y = c_1 \cosh \omega x + c_2 \sinh \omega x$$

The first boundary conditions y(0) = 0 gives $0 = c_1$. The solution becomes

$$y = c_2 \sinh \omega x$$

$$y' = c_2 \omega \cosh \omega x$$
(2)

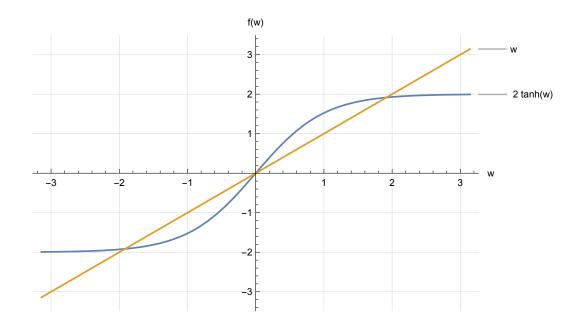
Applying the second boundary conditions $2y(1) - y'(\pi) = 0$ gives

$$0 = 2c_2 \sinh \omega - c_2 \omega \cosh \omega$$
$$= c_2 (2 \sinh \omega - \omega \cosh \omega)$$

Non trivial solution requires that

$$2 \sinh \omega - \omega \cosh \omega = 0$$
$$2 \tanh \omega = \omega$$

The above equation needs to be solved numerically to find its real roots ω . One root is $\omega=0$, but this implies $\lambda=0$. To find if there are other real roots, the function $2 \tanh \omega$ and ω were plotted and where they intersect is located. Root finding was then used to obtain the exact numerical value of the roots. The plot below shows that near $\omega=\pm 2$ there is an intersection. There are no other roots since the line $f(\omega)=\omega$ will keep increasing/decreasing and will not intersect $f(\omega)=2 \tanh \omega$ any more after these two roots.



Numerical root finding was used to find the roots near points of intersections. It shows that the exact value of $\omega = \pm 1.91501$. Since $\lambda = -\omega^2$, therefore

$$\lambda = -3.66726$$

Is the only negative eigenvalue.

4 Problem 4

<u>Problem</u> Solve the inhomogeneous B.V.P.

$$-y'' = \mu y + 1$$

$$y(0) - y'(0) = 0$$

$$y(\pi) - y'(\pi) = 0$$
(1)

for $\mu = 0$, $\mu = 1$ by methods of section 11.3

5 Part (a)

$$-y'' - \mu y = 1$$
$$y'' + \mu y = -1$$

Using chapter 11.3 method, first the eigenfunctions for the corresponding homogenous ODE $y'' + \mu y = 0$ are found for the same boundary conditions. In problem one, it was found that $\lambda = -1$ is eigenvalue with corresponding normalized eigenfunction $\hat{\Phi}_{-1}(x) = \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi}-1}}\right)e^x$ and $\lambda_n = n^2$ for $n = 1, 2, \cdots$ with corresponding normalized eigenfunctions $\hat{\Phi}_n(x) = \frac{\sqrt{2}}{\sqrt{\pi(1+n^2)}}(n\cos(nx) + \sin(nx))$. Since $\lambda = 0$ is not an eigenvalue of the corresponding homogeneous B.V.P., then there is a solution which is by eigenfunction expansion is given by

$$y = b_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty} b_n \hat{\Phi}_n(x)$$
 (1)

Substituting this back into the original ODE gives

$$\left(b_{-1}\hat{\Phi}_{-1}^{\prime\prime}(x) + \sum_{n=1}^{\infty}b_{n}\hat{\Phi}_{n}^{\prime\prime}(x)\right) + \mu\left(b_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty}b_{n}\hat{\Phi}_{n}(x)\right) = c_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty}c_{n}\hat{\Phi}_{n}(x)$$

Where $-1 = c_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty} c_n\hat{\Phi}_n(x)$ is the eigenfunction expansion of -1. Since $\mu = 0$, and $\hat{\Phi}_n''(x) = -\lambda_n\hat{\Phi}_n(x)$, the above simplifies to

$$-\lambda_{-1}b_{-1}\hat{\Phi}_{-1}(x) - \sum_{n=1}^{\infty} b_n \lambda_n \hat{\Phi}_n(x) = c_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty} c_n \hat{\Phi}_n(x)$$

Therefore, equating coefficients gives

$$-\lambda_{-1}b_{-1} = c_{-1}$$
$$-b_n\lambda_n = c_n$$

Or

$$b_{-1} = -\frac{c_{-1}}{\lambda_{-1}}$$

$$b_n = -\frac{c_n}{\lambda_n}$$
(2)

What is left is to find c_{-1} , c_n . These are found by applying orthogonality since

$$-1 = c_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty} c_n \hat{\Phi}_n(x)$$

This was done in problem 2. The difference is the minus sign. Therefore the result from problem 2 is used but c_{-1} , c_n from problem 2 are now multiplied by -1 giving

$$c_{-1} = -\frac{\sqrt{2} (e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}}$$

$$c_n = -\frac{2\sqrt{2}}{n\sqrt{\pi} (1 + n^2)} \qquad n = 1, 3, 5, \dots$$

Now that c_{-1} , c_n are found, using equation (2) b_{-1} , b_n are can now be found

$$b_{-1} = \frac{\frac{\sqrt{2}(e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}}}{(-1)} = -\frac{\sqrt{2}(e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}}$$

$$b_n = \frac{\frac{2\sqrt{2}}{n\sqrt{\pi(1 + n^2)}}}{n^2} = \frac{2\sqrt{2}}{n^3\sqrt{\pi(1 + n^2)}} \qquad n = 1, 3, 5, \dots$$

Hence the solution (1) becomes

$$y = b_{-1}\hat{\Phi}_{-1}(x) + \sum_{n=1}^{\infty} b_n \hat{\Phi}_n(x)$$

$$= -\frac{\sqrt{2}(e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}} \hat{\Phi}_{-1}(x) + \sum_{n=1,3,5,\cdots}^{\infty} \frac{2\sqrt{2}}{n^3 \sqrt{\pi (1 + n^2)}} \hat{\Phi}_n(x)$$

$$= -\frac{\sqrt{2}(e^{\pi} - 1)}{\sqrt{e^{2\pi} - 1}} \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}}\right) e^x + \sum_{n=1,3,5,\cdots}^{\infty} \frac{2\sqrt{2}}{n^3 \sqrt{\pi (1 + n^2)}} \frac{\sqrt{2}}{\sqrt{\pi (1 + n^2)}} (n\cos(nx) + \sin(nx))$$

$$= -\frac{2(e^{\pi} - 1)}{e^{2\pi} - 1} e^x + \frac{4}{\pi} \sum_{n=1,3,5,\cdots}^{\infty} \frac{1}{n^3 (1 + n^2)} (n\cos(nx) + \sin(nx))$$
(2A)

The above can also be also be written as

$$y(x) = -\frac{2(e^{\pi} - 1)}{e^{2\pi} - 1}e^{x} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^{3} (1 + (2n-1)^{2})} ((2n-1)\cos((2n-1)x) + \sin((2n-1)x))$$
(2A)

To verify the above solution, it was plotted against the solution of y''=-1 found using the direct method to see if they match. The solution using the direct method is found as follows: The homogenous solution is $y_h=c_1+c_2x$. Let $y_p=kx^2, y_p'=2kx, y_p''=2k$. Substituting these back into y''=-1 gives 2k=-1 or $k=-\frac{1}{2}$. Hence $y_p=-\frac{x^2}{2}$ and the solution becomes

$$y = y_h + y_p$$
$$= c_1 + c_2 x - \frac{x^2}{2}$$

Boundary conditions are now applied to determine c_1 , c_2 . From above, $y'(x) = c_2 - x$. Applying y(0) - y'(0) = 0 gives

$$0 = c_1 - c_2$$

$$c_2 = c_1$$

Therefore the solution becomes

$$y(x) = c_1 (1 + x) - \frac{x^2}{2}$$

 $y'(x) = c_1 - x$

Applying second BC $y(\pi) - y'(\pi) = 0$ gives

$$0 = c_1 (1 + \pi) - \frac{\pi^2}{2} - c_1 + \pi$$
$$0 = c_1 (1 + \pi - 1) - \frac{\pi^2}{2} + \pi$$
$$c_1 = \frac{\frac{\pi^2}{2} - \pi}{\pi}$$
$$= \frac{\pi}{2} - 1$$

Therefore, the solution, using direct method is

$$y(x) = \left(\frac{\pi}{2} - 1\right)(1+x) - \frac{x^2}{2}$$
$$= \frac{\pi}{2} + \frac{\pi}{2}x - 1 - x - \frac{x^2}{2}$$

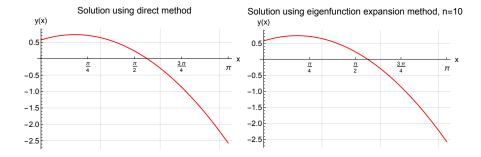
Or

$$y(x) = -\frac{x^2}{2} + x\left(\frac{\pi}{2} - 1\right) - 1 + \frac{\pi}{2}$$
 (3)

What the above says, is that if (2A) solution is correct, it will converge to solution (3) as more terms are added. In other words

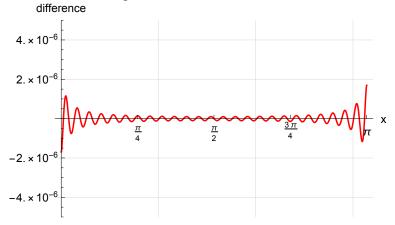
$$-\frac{x^2}{2} + x\left(\frac{\pi}{2} - 1\right) - 1 + \frac{\pi}{2} \approx -\frac{2\left(e^{\pi} - 1\right)}{e^{2\pi} - 1}e^x + \frac{4}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^3\left(1 + n^2\right)} \left(n\cos\left(nx\right) + \sin\left(nx\right)\right)$$

To verify this, the solution from both the direct and the series method were plotted next to each other. Using only n = 10 in the sum shows that the plots are identical.



Then the difference between these two solution was plotted. A maximum of n=50 is used in the sum. The plot shows the difference is almost zero in the internal region and near the edges of the domain the difference of order 10^{-7} . This is expected due to Gibbs phenomenon. Adding more terms made the difference smaller. The converges is of order $O\left(\frac{1}{n^2}\right)$.

Showing difference in direct and 11.3 method



6 Part (b)

Now the same process as in part (a) is repeated for $\mu = 1$

$$-y'' - \mu y = 1$$
$$y'' + \mu y = -1$$

Using 11.3 method, first the eigenfunctions for the corresponding homogenous ODE $y'' + \mu y = 0$ are found for the same boundary conditions. In problem one, it was found that $\lambda = -1$ is eigenvalue with corresponding normalized eigenfunction $\hat{\Phi}_{-1}(x) = \left(\frac{\sqrt{2}}{\sqrt{e^{2\pi}-1}}\right)e^x$ and $\lambda_n = n^2$ for $n = 1, 2, \cdots$ with corresponding normalized eigenfunctions $\hat{\Phi}_n(x) = \frac{\sqrt{2}}{\sqrt{\pi(1+n^2)}}(n\cos(nx) + \sin(nx))$. Therefore $\lambda = 1$ is an eigenvalue that corresponds to $\mu = 1$. In this case, a solution will exist (and will not be unique) only if the forcing function -1 is orthogonal to $\hat{\Phi}_1(x)$. This is verified as follows. Since r(x) = 1, and n = 1, then

$$\int_{0}^{\pi} (-1) r(x) \, \hat{\Phi}_{1}(x) \, dx = -\int_{0}^{\pi} \frac{\sqrt{2}}{\sqrt{\pi (1 + n^{2})}} (n \cos(nx) + \sin(nx)) \, dx$$

$$= -\int_{0}^{\pi} \frac{\sqrt{2}}{\sqrt{\pi (1 + 1)}} (\cos(x) + \sin(x)) \, dx$$

$$= \frac{-\sqrt{2}}{\sqrt{2\pi}} \int_{0}^{\pi} \cos(x) + \sin(x) \, dx$$

$$= \frac{-1}{\sqrt{\pi}} \left((\sin x)_{0}^{\pi} - (\cos x)_{0}^{\pi} \right)$$

$$= \frac{-1}{\sqrt{\pi}} (0 - (-1 - 1))$$

$$= \frac{-2}{\sqrt{\pi}}$$

Which is not zero. This means there is no solution.