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1 Problem 1

Problem Find the eigenvalues and normalized eigenfunctions of the RSL problem

Yy’ + Ay =0 (1)
y(0)-y'(0)=0
y(m) -y (r) =0

solution
The characteristic equation for y”” + Ay = 0 is given by r? + 1 = 0. Hence the roots are

r = VA

There are 3 cases to consider.
case A = 0 This implies that r = 0 is a double root. The solution becomes

Yy =c+cx
,_
y ==

The first boundary conditions y (0) — y’ (0) = 0 gives ¢; — ¢z = 0 or ¢; = c;. The above solution
now becomes

y=c(1+x)

Yy =c
The second boundary conditions y (r) — y’ () = 0 gives ¢; (1 + 7) — ¢; = 0 or & = 0. Which is
not possible. Therefore A = 0 is not an eigenvalue.

case 1 < 0 Let 1 = —w? for some real w. Hence the roots now are r = +Vw? = +w. Therefore

the solution is

y =cre”" +cpe” "

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric
functions as

y = ¢1 cosh wx + ¢, sinh wx

y’ = cj sinh wx + c2w cosh wx

The first boundary conditions y (0) —y’ (0) = 0 gives 0 = ¢; — cw or ¢; = cpw. Therefore the above
solution becomes

Yy = ¢ cosh wx + ¢, sinh wx (2)

= ¢, (w cosh wx + sinh wx)

Hence
y’ = ¢; (w? sinh wx + w cosh wx)

The second boundary conditions y () — y’ () = 0 gives

0 = ¢ (@ cosh wr + sinh wr) — ¢; (0* sinh w7 +  cosh wr)
=y (a) cosh w7 + sinh wr — w? sinh wzr — w cosh a)ﬂ)
=y (sinh or — »? sinh a)ﬂ)
=y (1 - a)z) sinh w
Non-trivial solution implies either (1 — w®) = 0 or sinhwsx = 0. But sinh wz = 0 only when its
argument is zero. But w # 0 in this case. The other option is that (1 — @?) = 0. This implies w? = 1
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or, since A = —w?, that 1 = —1. Hence A = —1 is an eigenvalue. Therefore the solution from (2)
above becomes

Y (x) = ¢y coshx + ¢, sinh x

= ¢, (cosh x + sinh x)
But e* = cosh x + sinh x, hence the solution can be written as
y = cpe”
The eigenfunction in this case is therefore
D (x)=¢€"

To obtain the normalized eigenfunction, let ®_; (x) = k_;®_; (x). The normalization factor k_; is
. 2
found by setting L;r (r (x)D_g (x)) dx = 1. But the weight r (x) = 1 in this problem from looking

at the Sturm Liouville form given. Therefore solving

J <i>§1 (x)dx =1
0

J (k_ie*)?dx = 1
0

K2, J e?¥dx =1

0

2x\ T
K2, (%) =1
k? :
?1 (e -1) =1

Therefore

Hence the normalized eigenfunction is
A 2
D_;(x) = (L) e*
1

case A > 1 Since A is positive, then the roots are r = +V—1 = +iVA. This gives the solution

ivaix

Yy =ce + cze_iﬁx

Since the exponents are complex, the above solution can be written in terms of the circular
trigonometric functions as

Y = c1 COS (‘/Ix) + ¢y sin Vx
y = —¢; VA sin (\/Zx) + ¢V cos Vax

The first boundary conditions y (0) — 3y’ (0) = 0 gives 0 = ¢; — c;VA or ¢; = ¢ VA. The above
solution becomes

y= cz\/zcos (\/Zx) + ¢y sin \/Ix (3)
=0 (\/I cos (\/Ix) + sin \/Zx)

Therefore

Y =c (—)L sin («/Ix) + V2 cos «/Zx)
Applying second boundary condition y () — ' () = 0 to the above gives
0 = ¢ (VAcos (Vi) + sin (V) ) = co (~Asin (Vi) + Vicos (Var))
= ¢, (VAcos (V) + sin (Vix) + Asin (VAx) - VAcos (Vir) )
= ¢ (sin (Vi) + Asin (V) )
=c(1+A)sin (\/I;r)



For non-trivial solution, either 1+ A = 0 or sin (\/Iﬂ) =0.But1+ A =0implies A = —1. But it is

assumed that A is positive. The other possibility is that sin (\/zn) = 0 which implies

Vr=nr n=123,--
Or
Ap = n? 1,23,

The corresponding solution from (3) becomes
Yn (x) = ¢, (ncos (nx) + sin (nx))
Therefore the eigenfunctions are

®,, (x) = ncos (nx) + sin (nx)

. 2
To obtain the normalized eigenfunctions, as was done above, L;[ (r (x) D, (x)) dx = 1is solved

for k, giving
j (kp®, (x))*dx =1
0
k2 J (ncos (nx) + sin (nx))* dx = 1
0

k2 J‘ (n? cos® (nx) + sin® (nx) + 2n cos (nx) sin (nx)) dx = 1
0

.

JT JT 1
n? J cos® (nx) dx + J sin? (nx) dx + 2n J cos (nx) sin (nx) dx = =2 4)

0 0 0 n

But J: cos? (nx)dx = 7 and f: sin? (nx) dx = 7 and for the last integral above

3 T 1
J cos (nx) sin (nx) dx = J > sin (2nx) dx
0 0

_1 (—cos(an))’r

2 2n 0

= ;—i (cos (2nx))y

= ;—; (cos(2nx) — 1)

But cos (2n7) = 1becausen = 1, 2,3, - - - . Therefore the above simplifies to L;r cos (nx) sin (nx) dx =
0. Using these results in (4) gives

2 27 TN\ _
k(g +3) =1
Or
2
V(1 + n?)

The normalized eigenfunctions are therefore

V2

d, (x) = ———— (ncos (nx) + sin (nx)) n=1,23,---

V7 (1 + n?)

In summary

A = —1 is eigenvalue with corresponding normalized eigenfunction _; (x) = ( \/%) e*
e

Ap = n*forn = 1,2, -- with corresponding normalized eigenfunctions d, (x) = \/ﬁ (n cos (nx) + sin (nx)).
T n

The normalized eigenfunctions fiLl, Cf>1, <i>2, <i>3 are plotted next to each others below



First eigenfunction (eigenvalue = -1)
second eigenfunction (eigenvalue = 1)

NI

0 h

third eigenfunction (eigenvalue = 4) Fourth eigenfunction (eigenvalue = 9)

0.0 - : g X 0.0 - - S ' x
4 4 A ) 4 7T
-0.5F -0.5F

NI

The normalized eigenfunctions d_;, &y, &y, ds are plotted on the same plot below as well for
illustration.

Normalized eigenfunction

n=-1
1.5¢
1.0
n=2
0.5
r‘r " o x
bus 4 -
-0.5¢ n=1
n=3

Some observations: The first eigenfunction d_, (x) has no root in [0, ], the second eigenfunc-
tion ®; has one root in [0, 7] and the third eigefunction has two roots in [0, 7] and so on. This
is what is to be expected. The n'"* ordered eigenfunction will have (n — 1) number of roots (or x
axis crossings) inside the domain.

2 Problem 2

Problem Expand f (x) = 1 in a series of eigenfunctions of problem 1
solution
Let

F 0= b )+ 3 b () )

The goal is to determine b_1, by, b, - - - . This is done by applying orthogonality. Multiplying both
sides of (1) by r (x) d_; (x) and integrating over the domain gives

L r(x) f (x)d_; (x)dx = j b_ir (x) Ciﬁl (x)dx + i b, J r(x) d_q (x) ®, (x) dx

0 n=1 0

But r (x) = 1 and due to orthogonality of eigenfunctions, all terms in the sum are zero. The above
simplifies to

Lﬂ f(x)D_y (x)dx =b_, Jw (ifil (x)dx

0

But f(x) =1and L;[ CTJ%I (x) dx = 1 since normalized eigenfunctions. Hence the above becomes

b_l = J (i)_l (x) dx

0



From problem one, ®_; (x) = ( \/ﬂl) e*, therefore the above becomes

27 _

2 Vs
b_y = L e dx
e?r — 1 Jo

V2

— x]g'

Ve
_ V2(e™ - 1)

etr — 1

Going back to equation (1), but now the equation is multiplied by r (x) ®,, (x) for m > 0 and
integrated using r (x) = 1 and f (x) = 1 giving

J‘ﬂ d,, (x)dx = J‘ﬂ b1 ®_; (x) Dy (x) dx + i b, J‘” d, (x) D,y (x) dx
0 0 =1 0

Due to orthogonality of eigenfunctions, the above simplifies to
T . T R
J‘ D, (x)dx = by, J @fn (x)dx
0 0

But J: @2 (x)dx = 1, therefore the above becomes

b, = J d, (x)dx
0

From problem one, using &, (x) = \/% (n cos (nx) + sin (nx)) the above becomes
JT n

b, = ———— | (ncos(nx) + sin(nx))dx
N (1 + n?) ‘[
\/5 b4 T
= — ncos (nx)dx + J sin (nx) dx)
V7 (1+n?) (‘[o 0
3 V2 sin(nx)]” [cos(nx)|”
(n [ n ] 0 )

- 7 (1 + n?) n

But sin (n7) = 0 since n is integer and cos (nr) = (—1)". The above becomes
2 1

L (__ [_1’1 — 1])

Ve (l+n2)\ 1
2

_ L ((_1)n+1 " 1)

n/m (1 + n?)

Forn =1,3,5,--- the above simplifies to

0

b, =

2V2
n/r (1 + n?)

And for n = 2,4,6, - - - gives b, = 0. Therefore the expansion (1) becomes

\/_(e s 22 .
= S —
fx)= ,—1 Py (x )+n ”Z]Sn P (x)

:\/i(e”—l)( V2 )ex+ c 22 V2
n=1,3,5

(n cos (nx) + sin (nx))

\/ezﬂ -1 \/ezn -1 5, I’l\/ﬂ' (1 + nz) \/ﬂ' (1 n nz)
Z(e —1) 0 ) |
-1 e i 1+ ) (n cos (nx) + sin (nx))

The above can also be written as

2(6—_1) LA 1 ) ) | )
* 2 G D) (L @) (T Deos@r - D) +sin((@n - 1)

To verify the above result, it is plotted for increasing number of n and compared to f (x) = 1 to
see how well it converges.
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Some observations: As more terms are added, the series approximation approaches f (x) = 1
more. The convergence is more rapid in the internal of the domain than near the edges. Near the

edges at x = 0 and x = 1, more terms are needed to get better approximation. More oscillation is

seen near the edges. This is due to Gibbs phenomenon. Converges is of the order of O (#) and

the converges is to the mean of f (x).

3 Problem 3

Problem Consider the regular SL problem

y'+Ay=0 (1)
y(0)=0
2y(1) -y’ (1) =0

Show that the problem has exactly one negative eigenvalue and compute numerically.

solution

The characteristic equation is r2 + A = 0. Therefore the roots are r = +V—A. There are 3 cases
to consider. This problem is asking only for the negative eigenvalues. Therefore only the case
A < 0is considered.

Let A = —w? for some real constant. The roots are r = +Vw? = +w. The solution becomes

Y =c1e“" +cpe”F

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric
functions
y = ¢1 cosh wx + ¢, sinh wx

The first boundary conditions y (0) = 0 gives 0 = c;. The solution becomes

Y = ¢y sinh wx (2)

y’ = ¢ cosh wx
Applying the second boundary conditions 2y (1) — y’ () = 0 gives

0 = 2¢y sinh w — cyw cosh w

= ¢3 (2sinh w — w cosh w)
Non trivial solution requires that

2sinhw — wcoshw =0

2tanhw = w



The above equation needs to be solved numerically to find its real roots w. One root is w = 0, but
this implies A = 0. To find if there are other real roots, the function 2 tanh «w and w were plotted
and where they intersect is located. Root finding was then used to obtain the exact numerical
value of the roots. The plot below shows that near v = +2 there is an intersection. There are
no other roots since the line f (w) = o will keep increasing/decreasing and will not intersect
f (w) = 2tanh w any more after these two roots.

f(w)
3 w
2+ P 2 tanh(w)
1L
1 1 1 I 1 1 1 w
-3 -2 -1 [ 1 2 3
L
————— _2 -
3l

Numerical root finding was used to find the roots near points of intersections. It shows that
the exact value of @ = +£1.91501. Since A = —w?, therefore

A= -3.66726

Is the only negative eigenvalue.

4 Problem 4

Problem Solve the inhomogeneous B.V.P.

-y’ =py+1 (1)
¥~y (=0
y(m)—y (1) =0

for y = 0, p = 1 by methods of section 11.3

5 Part (a)

Y —py =1
y" +py =-1

Using chapter 11.3 method, first the eigenfunctions for the corresponding homogenous ODE
y” + py = 0 are found for the same boundary conditions. In problem one, it was found that 1 = -1

is eigenvalue with corresponding normalized eigenfunction ®_; (x) = ( \/%) eX and A, = n?for
oz

V2
m(1+n2)
Since A = 0 is not an eigenvalue of the corresponding homogeneous B.V.P., then there is a solution

which is by eigenfunction expansion is given by

n = 1,2, - with corresponding normalized eigenfunctions o, (x) = (n cos (nx) + sin (nx)).

g = b () + D) by () 1)
n=1

Substituting this back into the original ODE gives

b1 @, (x) + Z b, (x)) +p (b_1<i>_1 (x) + Z bud, (x)| = c.1D_q (x) + Z cn®y (x)
= n=1 n=1

n=1

7



Where -1 = ¢_;&_; (x) + p I cn®,, (x) is the eigenfunction expansion of —1. Since y = 0, and
O (x) = =1, P, (x), the above simplifies to

—Aboyd (x) - Z bnAn®n (x) = c_1d, (x) + Z cn®n (x)
n=1 n=1

Therefore, equating coefficients gives

What is left is to find c_1, ¢,,. These are found by applying orthogonality since

—1=c 101 (x) + > cndy (x)
n=1

This was done in problem 2. The difference is the minus sign. Therefore the result from problem
2 is used but c_1, ¢, from problem 2 are now multiplied by —1 giving

S C1Gia))

2
Ch = ———— n=13,5,---

n/m (1 + n?)

Now that c_y, ¢, are found, using equation (2) b_, b, are can now be found

\/E(e”—l)
Ve _ V2(e" -1)

S

b_l =

b, = = n=13,5,---

Hence the solution (1) becomes

y=b_ b 1(x)+ib o, (x)

\/_(e R s 22 R
= CD —,
10 n= 1;5 n3+/m (1 + n?) ()
\/_(e - 1)

= ( ) eX + i 2v2 V2 (ncos (nx) + sin (nx))
-1

Ve2r — 1 n=1,3.5,- n3yJm (1 + n2) [z (1 + n2)
2 -1 > 1
= (e——l) + — ; ) m (n cos (nx) + sin (nx)) (2A)
The above can also be also be written as
207 -1) 4 1 ,
x——— — 2n—1)cos((2n—-1)x) +sin((2n—1)x
y (x) 7[:1 Gn 17 (14 (n- ))(( )cos (( ) x) (( ) x))
(2A)
To verify the above solution, it was plotted against the solution of y” = —1 found using the

direct method to see if they match. The solution using the direct method is found as follows: The
homogenous solution is y; = ¢1 + czx. Let y,, = kx?, Yy, = 2kx,y, = 2k. Substituting these back

into y” = —1gives2k = —lork = —%. Hence y, = —"72 and the solution becomes

Y=YntYp
=cC Co2X
1 2 2

Boundary conditions are now applied to determine cy, ¢;. From above, y’ (x) = ¢; — x. Applying
y(0) — y’ (0) = 0 gives

O:C1—C2

Cr = (1
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Therefore the solution becomes

v =ar (v -5

Yy (x)=c1—x

Applying second BC y () — y’ (m) = 0 gives

2
s
0=Cl(1+ﬂ)—?—cl+ﬂ'

2

JT
0:C1(1+7T—1)—?+7T
2
oo
1 =
JT
JT
=Z-1
2

Therefore, the solution, using direct method is

2

T X

= ——1)1+ -=

y() = (Z-1) @+x-3

T T X2

==+ —x-1-x-—

2 2 2

Or

y) = - +x(Z-1)-1+Z% 3)

What the above says, is that if (2A) solution is correct, it will converge to solution (3) as more
terms are added. In other words

2 T &)

X T T 2(e" -1 4 1

__+x(__1)_1+—z—¥ex+— > ———— (ncos(nx) + sin (nx))
2 2 2 e — 1 T35 n*(1+n?)

To verify this, the solution from both the direct and the series method were plotted next to each
other. Using only n = 10 in the sum shows that the plots are identical.

Solution using direct method Solution using eigenfunction expansion method, n=10
y(x) y(x)
0.5/ 0_5/
; P N SRS I g

_o5E 4 2 4 _05E 4 2 4
-1.0F -1.0f
-1.5F -1.5F
-2.0f -2.0f
-25F -2.5¢

Then the difference between these two solution was plotted. A maximum of n = 50 is used in
the sum. The plot shows the difference is almost zero in the internal region and near the edges
of the domain the difference of order 1077. This is expected due to Gibbs phenomenon. Adding

more terms made the difference smaller. The converges is of order O (#)

2 (Exp[Pi] -1) 4 .
S BRIl s Sum[ (nCos[nx] +Sin[nx]), {n, 1, max, 2}]

1
mySol [max_, x_] := m

Exp[2Pi] -1
. -x2 Pi Pi
direct[x ] iz — +x|— -1| -1+ —;
- 2 2 2



Showing difference in direct and 11.3 method
difference

4.x10°8}

2.x 106

-2.x107%}

—4.x1076]

6 Part (b)
Now the same process as in part (a) is repeated for p = 1
-y —py =1
y’ +py =-1

Using 11.3 method, first the eigenfunctions for the corresponding homogenous ODE y”’ + uy = 0
are found for the same boundary conditions. In problem one, it was found that A = —1 is eigen-

value with corresponding normalized eigenfunction &_; (x) = ( V2 ) e and A, = n® forn =

Ve?7T—1

1,2,--- with corresponding normalized eigenfunctions &, (x) = \/% (n cos (nx) + sin (nx)).
T n

Therefore A = 1 is an eigenvalue that corresponds to y = 1. In this case, a solution will exist (and

will not be unique) only if the forcing function —1 is orthogonal to ®; (x). This is verified as
follows. Since r (x) = 1, and n = 1, then

(n cos (nx) + sin (nx)) dx

g A S L CI
L CDré) i de = jo V(1 +n2)
=— Jw i (cos (x) + sin (x)) dx

0 \m(1+1)
_ e[ ~
= L cos (x) + sin (x) dx

= \_/_% ((sinx)g — (cos x)7)

-1
= = 0-C1-)

-2
R

Which is not zero. This means there is no solution.
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