Quizz 3

Math 332
 Introduction to Partial Differential Equations

Spring 2018

University Of Wisconsin, Milwaukee

Nasser M. Abbasi

Contents

1 Problem 1 1
2 Problem 2 5
3 Problem 3 8
4 Problem 4 9
5 Part (a) 9
6 Part (b) 13

1 Problem 1

Problem Find the eigenvalues and normalized eigenfunctions of the RSL problem

$$
\begin{array}{r}
y^{\prime \prime}+\lambda y=0 \tag{1}\\
y(0)-y^{\prime}(0)=0 \\
y(\pi)-y^{\prime}(\pi)=0
\end{array}
$$

solution
The characteristic equation for $y^{\prime \prime}+\lambda y=0$ is given by $r^{2}+\lambda=0$. Hence the roots are

$$
r= \pm \sqrt{-\lambda}
$$

There are 3 cases to consider.
case $\lambda=0$ This implies that $r=0$ is a double root. The solution becomes

$$
\begin{aligned}
y & =c_{1}+c_{2} x \\
y^{\prime} & =c_{2}
\end{aligned}
$$

The first boundary conditions $y(0)-y^{\prime}(0)=0$ gives $c_{1}-c_{2}=0$ or $c_{1}=c_{2}$. The above solution now becomes

$$
\begin{aligned}
y & =c_{1}(1+x) \\
y^{\prime} & =c_{1}
\end{aligned}
$$

The second boundary conditions $y(\pi)-y^{\prime}(\pi)=0$ gives $c_{1}(1+\pi)-c_{1}=0$ or $\pi=0$. Which is not possible. Therefore $\lambda=0$ is not an eigenvalue.
$\underline{\text { case } \lambda<0}$ Let $\lambda=-\omega^{2}$ for some real ω. Hence the roots now are $r= \pm \sqrt{\omega^{2}}= \pm \omega$. Therefore the solution is

$$
y=c_{1} e^{\omega x}+c_{2} e^{-\omega x}
$$

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions as

$$
\begin{aligned}
y & =c_{1} \cosh \omega x+c_{2} \sinh \omega x \\
y^{\prime} & =c_{1} \omega \sinh \omega x+c_{2} \omega \cosh \omega x
\end{aligned}
$$

The first boundary conditions $y(0)-y^{\prime}(0)=0$ gives $0=c_{1}-c_{2} \omega$ or $c_{1}=c_{2} \omega$. Therefore the above solution becomes

$$
\begin{align*}
y & =c_{2} \omega \cosh \omega x+c_{2} \sinh \omega x \tag{2}\\
& =c_{2}(\omega \cosh \omega x+\sinh \omega x)
\end{align*}
$$

Hence

$$
y^{\prime}=c_{2}\left(\omega^{2} \sinh \omega x+\omega \cosh \omega x\right)
$$

The second boundary conditions $y(\pi)-y^{\prime}(\pi)=0$ gives

$$
\begin{aligned}
0 & =c_{2}(\omega \cosh \omega \pi+\sinh \omega \pi)-c_{2}\left(\omega^{2} \sinh \omega \pi+\omega \cosh \omega \pi\right) \\
& =c_{2}\left(\omega \cosh \omega \pi+\sinh \omega \pi-\omega^{2} \sinh \omega \pi-\omega \cosh \omega \pi\right) \\
& =c_{2}\left(\sinh \omega \pi-\omega^{2} \sinh \omega \pi\right) \\
& =c_{2}\left(1-\omega^{2}\right) \sinh \omega \pi
\end{aligned}
$$

Non-trivial solution implies either $\left(1-\omega^{2}\right)=0$ or $\sinh \omega \pi=0$. But $\sinh \omega \pi=0$ only when its argument is zero. But $\omega \neq 0$ in this case. The other option is that $\left(1-\omega^{2}\right)=0$. This implies $\omega^{2}=1$ or, since $\lambda=-\omega^{2}$, that $\lambda=-1$. Hence $\lambda=-1$ is an eigenvalue. Therefore the solution from (2) above becomes

$$
\begin{aligned}
y(x) & =c_{2} \cosh x+c_{2} \sinh x \\
& =c_{2}(\cosh x+\sinh x)
\end{aligned}
$$

But $e^{x}=\cosh x+\sinh x$, hence the solution can be written as

$$
y=c_{2} e^{x}
$$

The eigenfunction in this case is therefore

$$
\Phi_{-1}(x)=e^{x}
$$

To obtain the normalized eigenfunction, let $\hat{\Phi}_{-1}(x)=k_{-1} \Phi_{-1}(x)$. The normalization factor k_{-1} is found by setting $\int_{0}^{\pi}\left(r(x) \hat{\Phi}_{-1}(x)\right)^{2} d x=1$. But the weight $r(x)=1$ in this problem from looking at the Sturm Liouville form given. Therefore solving

$$
\begin{aligned}
\int_{0}^{\pi} \hat{\Phi}_{-1}^{2}(x) d x & =1 \\
\int_{0}^{\pi}\left(k_{-1} e^{x}\right)^{2} d x & =1 \\
k_{-1}^{2} \int_{0}^{\pi} e^{2 x} d x & =1 \\
k_{-1}^{2}\left(\frac{e^{2 x}}{2}\right)_{0}^{\pi} & =1 \\
\frac{k_{-1}^{2}}{2}\left(e^{2 \pi}-1\right) & =1
\end{aligned}
$$

Therefore

$$
k_{-1}=\frac{\sqrt{2}}{\sqrt{e^{2 \pi}-1}}
$$

Hence the normalized eigenfunction is

$$
\hat{\Phi}_{-1}(x)=\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi}-1}}\right) e^{x}
$$

case $\lambda>1$ Since λ is positive, then the roots are $r= \pm \sqrt{-\lambda}= \pm i \sqrt{\lambda}$. This gives the solution

$$
y=c_{1} e^{i \sqrt{\lambda} x}+c_{2} e^{-i \sqrt{\lambda} x}
$$

Since the exponents are complex, the above solution can be written in terms of the circular trigonometric functions as

$$
\begin{aligned}
y & =c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin \sqrt{\lambda} x \\
y^{\prime} & =-c_{1} \sqrt{\lambda} \sin (\sqrt{\lambda} x)+c_{2} \sqrt{\lambda} \cos \sqrt{\lambda} x
\end{aligned}
$$

The first boundary conditions $y(0)-y^{\prime}(0)=0$ gives $0=c_{1}-c_{2} \sqrt{\lambda}$ or $c_{1}=c_{2} \sqrt{\lambda}$. The above solution becomes

$$
\begin{align*}
y & =c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} x)+c_{2} \sin \sqrt{\lambda} x \tag{3}\\
& =c_{2}(\sqrt{\lambda} \cos (\sqrt{\lambda} x)+\sin \sqrt{\lambda} x)
\end{align*}
$$

Therefore

$$
y^{\prime}=c_{2}(-\lambda \sin (\sqrt{\lambda} x)+\sqrt{\lambda} \cos \sqrt{\lambda} x)
$$

Applying second boundary condition $y(\pi)-y^{\prime}(\pi)=0$ to the above gives

$$
\begin{aligned}
0 & =c_{2}(\sqrt{\lambda} \cos (\sqrt{\lambda} \pi)+\sin (\sqrt{\lambda} \pi))-c_{2}(-\lambda \sin (\sqrt{\lambda} \pi)+\sqrt{\lambda} \cos (\sqrt{\lambda} \pi)) \\
& =c_{2}(\sqrt{\lambda} \cos (\sqrt{\lambda} \pi)+\sin (\sqrt{\lambda} \pi)+\lambda \sin (\sqrt{\lambda} \pi)-\sqrt{\lambda} \cos (\sqrt{\lambda} \pi)) \\
& =c_{2}(\sin (\sqrt{\lambda} \pi)+\lambda \sin (\sqrt{\lambda} \pi)) \\
& =c(1+\lambda) \sin (\sqrt{\lambda} \pi)
\end{aligned}
$$

For non-trivial solution, either $1+\lambda=0$ or $\sin (\sqrt{\lambda} \pi)=0$. But $1+\lambda=0$ implies $\lambda=-1$. But it is assumed that λ is positive. The other possibility is that $\sin (\sqrt{\lambda} \pi)=0$ which implies

$$
\sqrt{\lambda} \pi=n \pi \quad n=1,2,3, \cdots
$$

Or

$$
\lambda_{n}=n^{2} \quad 1,2,3, \cdots
$$

The corresponding solution from (3) becomes

$$
y_{n}(x)=c_{n}(n \cos (n x)+\sin (n x))
$$

Therefore the eigenfunctions are

$$
\Phi_{n}(x)=n \cos (n x)+\sin (n x)
$$

To obtain the normalized eigenfunctions, as was done above, $\int_{0}^{\pi}\left(r(x) \hat{\Phi}_{n}(x)\right)^{2} d x=1$ is solved for k_{n} giving

$$
\begin{array}{r}
\int_{0}^{\pi}\left(k_{n} \Phi_{n}(x)\right)^{2} d x=1 \\
k_{n}^{2} \int_{0}^{\pi}(n \cos (n x)+\sin (n x))^{2} d x=1 \\
k_{n}^{2} \int_{0}^{\pi}\left(n^{2} \cos ^{2}(n x)+\sin ^{2}(n x)+2 n \cos (n x) \sin (n x)\right) d x=1 \\
\int_{0}^{\pi} \cos ^{2}(n x) d x+\int_{0}^{\pi} \sin ^{2}(n x) d x+2 n \int_{0}^{\pi} \cos (n x) \sin (n x) d x \tag{4}
\end{array}
$$

But $\int_{0}^{\pi} \cos ^{2}(n x) d x=\frac{\pi}{2}$ and $\int_{0}^{\pi} \sin ^{2}(n x) d x=\frac{\pi}{2}$ and for the last integral above

$$
\begin{aligned}
\int_{0}^{\pi} \cos (n x) \sin (n x) d x & =\int_{0}^{\pi} \frac{1}{2} \sin (2 n x) d x \\
& =\frac{1}{2}\left(\frac{-\cos (2 n x)}{2 n}\right)_{0}^{\pi} \\
& =\frac{-1}{4 n}(\cos (2 n x))_{0}^{\pi} \\
& =\frac{-1}{4 n}(\cos (2 n \pi)-1)
\end{aligned}
$$

But $\cos (2 n \pi)=1$ because $n=1,2,3, \cdots$. Therefore the above simplifies to $\int_{0}^{\pi} \cos (n x) \sin (n x) d x=$ 0 . Using these results in (4) gives

$$
k_{n}^{2}\left(n^{2} \frac{\pi}{2}+\frac{\pi}{2}\right)=1
$$

Or

$$
k_{n}=\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}
$$

The normalized eigenfunctions are therefore

$$
\hat{\Phi}_{n}(x)=\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x)) \quad n=1,2,3, \cdots
$$

In summary
$\lambda=-1$ is eigenvalue with corresponding normalized eigenfunction $\hat{\Phi}_{-1}(x)=\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi}-1}}\right) e^{x}$
$\lambda_{n}=n^{2}$ for $n=1,2, \cdots$ with corresponding normalized eigenfunctions $\hat{\Phi}_{n}(x)=\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x))$.
The normalized eigenfunctions $\hat{\Phi}_{-1}, \hat{\Phi}_{1}, \hat{\Phi}_{2}, \hat{\Phi}_{3}$ are plotted next to each others below

The normalized eigenfunctions $\hat{\Phi}_{-1}, \hat{\Phi}_{1}, \hat{\Phi}_{2}, \hat{\Phi}_{3}$ are plotted on the same plot below as well for illustration.

Some observations: The first eigenfunction $\hat{\Phi}_{-1}(x)$ has no root in $[0, \pi]$, the second eigenfunction $\hat{\Phi}_{1}$ has one root in $[0, \pi]$ and the third eigefunction has two roots in $[0, \pi]$ and so on. This is what is to be expected. The $n^{t h}$ ordered eigenfunction will have $(n-1)$ number of roots (or x axis crossings) inside the domain.

2 Problem 2

Problem Expand $f(x)=1$ in a series of eigenfunctions of problem 1
solution
Let

$$
\begin{equation*}
f(x)=b_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} b_{n} \hat{\Phi}_{n}(x) \tag{1}
\end{equation*}
$$

The goal is to determine $b_{-1}, b_{1}, b_{2}, \cdots$. This is done by applying orthogonality. Multiplying both sides of (1) by $r(x) \hat{\Phi}_{-1}(x)$ and integrating over the domain gives

$$
\int_{0}^{\pi} r(x) f(x) \hat{\Phi}_{-1}(x) d x=\int_{0}^{\pi} b_{-1} r(x) \hat{\Phi}_{-1}^{2}(x) d x+\sum_{n=1}^{\infty} b_{n} \int_{0}^{\pi} r(x) \hat{\Phi}_{-1}(x) \hat{\Phi}_{n}(x) d x
$$

But $r(x)=1$ and due to orthogonality of eigenfunctions, all terms in the sum are zero. The above simplifies to

$$
\int_{0}^{\pi} f(x) \hat{\Phi}_{-1}(x) d x=b_{-1} \int_{0}^{\pi} \hat{\Phi}_{-1}^{2}(x) d x
$$

But $f(x)=1$ and $\int_{0}^{\pi} \hat{\Phi}_{-1}^{2}(x) d x=1$ since normalized eigenfunctions. Hence the above becomes

$$
b_{-1}=\int_{0}^{\pi} \hat{\Phi}_{-1}(x) d x
$$

From problem one, $\hat{\Phi}_{-1}(x)=\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi}-1}}\right) e^{x}$, therefore the above becomes

$$
\begin{aligned}
b_{-1} & =\frac{\sqrt{2}}{\sqrt{e^{2 \pi}-1}} \int_{0}^{\pi} e^{x} d x \\
& =\frac{\sqrt{2}}{\sqrt{e^{2 \pi-1}}}\left[e^{x}\right]_{0}^{\pi} \\
& =\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi}-1}}
\end{aligned}
$$

Going back to equation (1), but now the equation is multiplied by $r(x) \hat{\Phi}_{m}(x)$ for $m>0$ and integrated using $r(x)=1$ and $f(x)=1$ giving

$$
\int_{0}^{\pi} \hat{\Phi}_{m}(x) d x=\int_{0}^{\pi} b_{-1} \hat{\Phi}_{-1}(x) \hat{\Phi}_{m}(x) d x+\sum_{n=1}^{\infty} b_{n} \int_{0}^{\pi} \hat{\Phi}_{n}(x) \hat{\Phi}_{m}(x) d x
$$

Due to orthogonality of eigenfunctions, the above simplifies to

$$
\int_{0}^{\pi} \hat{\Phi}_{m}(x) d x=b_{m} \int_{0}^{\pi} \hat{\Phi}_{m}^{2}(x) d x
$$

But $\int_{0}^{\pi} \hat{\Phi}_{m}^{2}(x) d x=1$, therefore the above becomes

$$
b_{n}=\int_{0}^{\pi} \hat{\Phi}_{n}(x) d x
$$

From problem one, using $\hat{\Phi}_{n}(x)=\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x))$ the above becomes

$$
\begin{aligned}
b_{n} & =\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}} \int_{0}^{\pi}(n \cos (n x)+\sin (n x)) d x \\
& =\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}\left(\int_{0}^{\pi} n \cos (n x) d x+\int_{0}^{\pi} \sin (n x) d x\right) \\
& =\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}\left(n\left[\frac{\sin (n x)}{n}\right]_{0}^{\pi}-\left[\frac{\cos (n x)}{n}\right]_{0}^{\pi}\right) \\
& =\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}\left(\sin (n \pi)-\frac{1}{n}[\cos (n \pi)-1]\right)
\end{aligned}
$$

But $\sin (n \pi)=0$ since n is integer and $\cos (n \pi)=(-1)^{n}$. The above becomes

$$
\begin{aligned}
b_{n} & =\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}\left(-\frac{1}{n}\left[-1^{n}-1\right]\right) \\
& =\frac{\sqrt{2}}{n \sqrt{\pi\left(1+n^{2}\right)}}\left((-1)^{n+1}+1\right)
\end{aligned}
$$

For $n=1,3,5, \cdots$ the above simplifies to

$$
b_{n}=\frac{2 \sqrt{2}}{n \sqrt{\pi\left(1+n^{2}\right)}}
$$

And for $n=2,4,6, \cdots$ gives $b_{n}=0$. Therefore the expansion (1) becomes

$$
\begin{aligned}
f(x) & =\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi}-1}} \hat{\Phi}_{-1}(x)+\sum_{n=1,3,5, \cdots}^{\infty} \frac{2 \sqrt{2}}{n \sqrt{\pi\left(1+n^{2}\right)}} \hat{\Phi}_{n}(x) \\
1 & =\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi-1}}}\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi-1}}}\right) e^{x}+\sum_{n=1,3,5, \cdots}^{\infty} \frac{2 \sqrt{2}}{n \sqrt{\pi\left(1+n^{2}\right)}} \frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x)) \\
1 & =\frac{2\left(e^{\pi}-1\right)}{e^{2 \pi}-1} e^{x}+\frac{4}{\pi} \sum_{n=1,3,5, \cdots}^{\infty} \frac{1}{n\left(1+n^{2}\right)}(n \cos (n x)+\sin (n x))
\end{aligned}
$$

The above can also be written as

$$
1=\frac{2\left(e^{\pi}-1\right)}{e^{2 \pi}-1} e^{x}+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)\left(1+(2 n-1)^{2}\right)}((2 n-1) \cos ((2 n-1) x)+\sin ((2 n-1) x))
$$

To verify the above result, it is plotted for increasing number of n and compared to $f(x)=1$ to see how well it converges.

Some observations: As more terms are added, the series approximation approaches $f(x)=1$ more. The convergence is more rapid in the internal of the domain than near the edges. Near the edges at $x=0$ and $x=1$, more terms are needed to get better approximation. More oscillation is seen near the edges. This is due to Gibbs phenomenon. Converges is of the order of $O\left(\frac{1}{n^{2}}\right)$ and the converges is to the mean of $f(x)$.

3 Problem 3

Problem Consider the regular SL problem

$$
\begin{array}{r}
y^{\prime \prime}+\lambda y=0 \tag{1}\\
y(0)=0 \\
2 y(1)-y^{\prime}(1)=0
\end{array}
$$

Show that the problem has exactly one negative eigenvalue and compute numerically.

solution

The characteristic equation is $r^{2}+\lambda=0$. Therefore the roots are $r= \pm \sqrt{-\lambda}$. There are 3 cases to consider. This problem is asking only for the negative eigenvalues. Therefore only the case $\lambda<0$ is considered.

Let $\lambda=-\omega^{2}$ for some real constant. The roots are $r= \pm \sqrt{\omega^{2}}= \pm \omega$. The solution becomes

$$
y=c_{1} e^{\omega x}+c_{2} e^{-\omega x}
$$

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions

$$
y=c_{1} \cosh \omega x+c_{2} \sinh \omega x
$$

The first boundary conditions $y(0)=0$ gives $0=c_{1}$. The solution becomes

$$
\begin{gather*}
y=c_{2} \sinh \omega x \tag{2}\\
y^{\prime}=c_{2} \omega \cosh \omega x
\end{gather*}
$$

Applying the second boundary conditions $2 y(1)-y^{\prime}(\pi)=0$ gives

$$
\begin{aligned}
0 & =2 c_{2} \sinh \omega-c_{2} \omega \cosh \omega \\
& =c_{2}(2 \sinh \omega-\omega \cosh \omega)
\end{aligned}
$$

Non trivial solution requires that

$$
\begin{aligned}
2 \sinh \omega-\omega \cosh \omega & =0 \\
2 \tanh \omega & =\omega
\end{aligned}
$$

The above equation needs to be solved numerically to find its real roots ω. One root is $\omega=0$, but this implies $\lambda=0$. To find if there are other real roots, the function $2 \tanh \omega$ and ω were plotted and where they intersect is located. Root finding was then used to obtain the exact numerical value of the roots. The plot below shows that near $\omega= \pm 2$ there is an intersection. There are no other roots since the line $f(\omega)=\omega$ will keep increasing/decreasing and will not intersect $f(\omega)=2 \tanh \omega$ any more after these two roots.

Numerical root finding was used to find the roots near points of intersections. It shows that the exact value of $\omega= \pm 1.91501$. Since $\lambda=-\omega^{2}$, therefore

$$
\lambda=-3.66726
$$

Is the only negative eigenvalue.

4 Problem 4

Problem Solve the inhomogeneous B.V.P.

$$
\begin{align*}
-y^{\prime \prime} & =\mu y+1 \tag{1}\\
y(0)-y^{\prime}(0) & =0 \\
y(\pi)-y^{\prime}(\pi) & =0
\end{align*}
$$

for $\mu=0, \mu=1$ by methods of section 11.3

5 Part (a)

$$
\begin{aligned}
-y^{\prime \prime}-\mu y & =1 \\
y^{\prime \prime}+\mu y & =-1
\end{aligned}
$$

Using chapter 11.3 method, first the eigenfunctions for the corresponding homogenous ODE $y^{\prime \prime}+\mu y=0$ are found for the same boundary conditions. In problem one, it was found that $\lambda=-1$ is eigenvalue with corresponding normalized eigenfunction $\hat{\Phi}_{-1}(x)=\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi-1}}}\right) e^{x}$ and $\lambda_{n}=n^{2}$ for $n=1,2, \cdots$ with corresponding normalized eigenfunctions $\hat{\Phi}_{n}(x)=\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x))$.

Since $\lambda=0$ is not an eigenvalue of the corresponding homogeneous B.V.P., then there is a solution which is by eigenfunction expansion is given by

$$
\begin{equation*}
y=b_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} b_{n} \hat{\Phi}_{n}(x) \tag{1}
\end{equation*}
$$

Substituting this back into the original ODE gives

$$
\left(b_{-1} \hat{\Phi}_{-1}^{\prime \prime}(x)+\sum_{n=1}^{\infty} b_{n} \hat{\Phi}_{n}^{\prime \prime}(x)\right)+\mu\left(b_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} b_{n} \hat{\Phi}_{n}(x)\right)=c_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} c_{n} \hat{\Phi}_{n}(x)
$$

Where $-1=c_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} c_{n} \hat{\Phi}_{n}(x)$ is the eigenfunction expansion of -1 . Since $\mu=0$, and $\hat{\Phi}_{n}^{\prime \prime}(x)=-\lambda_{n} \hat{\Phi}_{n}(x)$, the above simplifies to

$$
-\lambda_{-1} b_{-1} \hat{\Phi}_{-1}(x)-\sum_{n=1}^{\infty} b_{n} \lambda_{n} \hat{\Phi}_{n}(x)=c_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} c_{n} \hat{\Phi}_{n}(x)
$$

Therefore, equating coefficients gives

$$
\begin{aligned}
-\lambda_{-1} b_{-1} & =c_{-1} \\
-b_{n} \lambda_{n} & =c_{n}
\end{aligned}
$$

Or

$$
\begin{align*}
b_{-1} & =-\frac{c_{-1}}{\lambda_{-1}} \tag{2}\\
b_{n} & =-\frac{c_{n}}{\lambda_{n}}
\end{align*}
$$

What is left is to find c_{-1}, c_{n}. These are found by applying orthogonality since

$$
-1=c_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} c_{n} \hat{\Phi}_{n}(x)
$$

This was done in problem 2. The difference is the minus sign. Therefore the result from problem 2 is used but c_{-1}, c_{n} from problem 2 are now multiplied by -1 giving

$$
\begin{aligned}
c_{-1} & =-\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi}-1}} \\
c_{n} & =-\frac{2 \sqrt{2}}{n \sqrt{\pi\left(1+n^{2}\right)}} \quad n=1,3,5, \cdots
\end{aligned}
$$

Now that c_{-1}, c_{n} are found, using equation (2) b_{-1}, b_{n} are can now be found

$$
\begin{aligned}
& b_{-1}=\frac{\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi}-1}}}{(-1)}=-\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi}-1}} \\
& b_{n}=\frac{\frac{2 \sqrt{2}}{n \sqrt{\pi\left(1+n^{2}\right)}}}{n^{2}}=\frac{2 \sqrt{2}}{n^{3} \sqrt{\pi\left(1+n^{2}\right)}} \quad n=1,3,5, \cdots
\end{aligned}
$$

Hence the solution (1) becomes

$$
\begin{align*}
y & =b_{-1} \hat{\Phi}_{-1}(x)+\sum_{n=1}^{\infty} b_{n} \hat{\Phi}_{n}(x) \\
& =-\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi-1}}} \hat{\Phi}_{-1}(x)+\sum_{n=1,3,5, \cdots}^{\infty} \frac{2 \sqrt{2}}{n^{3} \sqrt{\pi\left(1+n^{2}\right)}} \hat{\Phi}_{n}(x) \\
& =-\frac{\sqrt{2}\left(e^{\pi}-1\right)}{\sqrt{e^{2 \pi-1}}}\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi-1}}}\right) e^{x}+\sum_{n=1,3,5, \cdots}^{\infty} \frac{2 \sqrt{2}}{n^{3} \sqrt{\pi\left(1+n^{2}\right)}} \frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x)) \\
& =-\frac{2\left(e^{\pi}-1\right)}{e^{2 \pi}-1} e^{x}+\frac{4}{\pi} \sum_{n=1,3,5, \cdots}^{\infty} \frac{1}{n^{3}\left(1+n^{2}\right)}(n \cos (n x)+\sin (n x)) \tag{2~A}
\end{align*}
$$

The above can also be also be written as
$y(x)=-\frac{2\left(e^{\pi}-1\right)}{e^{2 \pi}-1} e^{x}+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}\left(1+(2 n-1)^{2}\right)}((2 n-1) \cos ((2 n-1) x)+\sin ((2 n-1) x))$
To verify the above solution, it was plotted against the solution of $y^{\prime \prime}=-1$ found using the direct method to see if they match. The solution using the direct method is found as follows: The homogenous solution is $y_{h}=c_{1}+c_{2} x$. Let $y_{p}=k x^{2}, y_{p}^{\prime}=2 k x, y_{p}^{\prime \prime}=2 k$. Substituting these back into $y^{\prime \prime}=-1$ gives $2 k=-1$ or $k=-\frac{1}{2}$. Hence $y_{p}=-\frac{x^{2}}{2}$ and the solution becomes

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1}+c_{2} x-\frac{x^{2}}{2}
\end{aligned}
$$

Boundary conditions are now applied to determine c_{1}, c_{2}. From above, $y^{\prime}(x)=c_{2}-x$. Applying $y(0)-y^{\prime}(0)=0$ gives

$$
\begin{aligned}
0 & =c_{1}-c_{2} \\
c_{2} & =c_{1}
\end{aligned}
$$

Therefore the solution becomes

$$
\begin{aligned}
y(x) & =c_{1}(1+x)-\frac{x^{2}}{2} \\
y^{\prime}(x) & =c_{1}-x
\end{aligned}
$$

Applying second BC $y(\pi)-y^{\prime}(\pi)=0$ gives

$$
\begin{aligned}
0 & =c_{1}(1+\pi)-\frac{\pi^{2}}{2}-c_{1}+\pi \\
0 & =c_{1}(1+\pi-1)-\frac{\pi^{2}}{2}+\pi \\
c_{1} & =\frac{\frac{\pi^{2}}{2}-\pi}{\pi} \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

Therefore, the solution, using direct method is

$$
\begin{aligned}
y(x) & =\left(\frac{\pi}{2}-1\right)(1+x)-\frac{x^{2}}{2} \\
& =\frac{\pi}{2}+\frac{\pi}{2} x-1-x-\frac{x^{2}}{2}
\end{aligned}
$$

Or

$$
\begin{equation*}
y(x)=-\frac{x^{2}}{2}+x\left(\frac{\pi}{2}-1\right)-1+\frac{\pi}{2} \tag{3}
\end{equation*}
$$

What the above says, is that if (2A) solution is correct, it will converge to solution (3) as more terms are added. In other words

$$
-\frac{x^{2}}{2}+x\left(\frac{\pi}{2}-1\right)-1+\frac{\pi}{2} \approx-\frac{2\left(e^{\pi}-1\right)}{e^{2 \pi}-1} e^{x}+\frac{4}{\pi} \sum_{n=1,3,5, \ldots}^{\infty} \frac{1}{n^{3}\left(1+n^{2}\right)}(n \cos (n x)+\sin (n x))
$$

To verify this, the solution from both the direct and the series method were plotted next to each other. Using only $n=10$ in the sum shows that the plots are identical.

Then the difference between these two solution was plotted. A maximum of $n=50$ is used in the sum. The plot shows the difference is almost zero in the internal region and near the edges of the domain the difference of order 10^{-7}. This is expected due to Gibbs phenomenon. Adding more terms made the difference smaller. The converges is of order $O\left(\frac{1}{n^{2}}\right)$.

$$
\begin{aligned}
& \operatorname{mySol}\left[\max _{-}, x_{-}\right]:=-\frac{2(\operatorname{Exp}[P i]-1)}{\operatorname{Exp}[2 \operatorname{Pi}]-1} \operatorname{Exp}[x]+\frac{4}{\operatorname{Pi}} \operatorname{Sum}\left[\frac{1}{n^{\wedge} 3\left(1+n^{\wedge} 2\right)}(n \operatorname{Cos}[n x]+\operatorname{Sin}[n x]),\{n, 1, \max , 2\}\right] \\
& \operatorname{direct}\left[x_{-}\right]:=\frac{-x^{2}}{2}+x\left(\frac{\operatorname{Pi}}{2}-1\right)-1+\frac{\operatorname{Pi}}{2}
\end{aligned}
$$

6 Part (b)

Now the same process as in part (a) is repeated for $\mu=1$

$$
\begin{aligned}
-y^{\prime \prime}-\mu y & =1 \\
y^{\prime \prime}+\mu y & =-1
\end{aligned}
$$

Using 11.3 method, first the eigenfunctions for the corresponding homogenous ODE $y^{\prime \prime}+\mu y=0$ are found for the same boundary conditions. In problem one, it was found that $\lambda=-1$ is eigenvalue with corresponding normalized eigenfunction $\hat{\Phi}_{-1}(x)=\left(\frac{\sqrt{2}}{\sqrt{e^{2 \pi}-1}}\right) e^{x}$ and $\lambda_{n}=n^{2}$ for $n=$ $1,2, \cdots$ with corresponding normalized eigenfunctions $\hat{\Phi}_{n}(x)=\frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x))$. Therefore $\lambda=1$ is an eigenvalue that corresponds to $\mu=1$. In this case, a solution will exist (and will not be unique) only if the forcing function -1 is orthogonal to $\hat{\Phi}_{1}(x)$. This is verified as follows. Since $r(x)=1$, and $n=1$, then

$$
\begin{aligned}
\int_{0}^{\pi}(-1) r(x) \hat{\Phi}_{1}(x) d x & =-\int_{0}^{\pi} \frac{\sqrt{2}}{\sqrt{\pi\left(1+n^{2}\right)}}(n \cos (n x)+\sin (n x)) d x \\
& =-\int_{0}^{\pi} \frac{\sqrt{2}}{\sqrt{\pi(1+1)}}(\cos (x)+\sin (x)) d x \\
& =\frac{-\sqrt{2}}{\sqrt{2 \pi}} \int_{0}^{\pi} \cos (x)+\sin (x) d x \\
& =\frac{-1}{\sqrt{\pi}}\left((\sin x)_{0}^{\pi}-(\cos x)_{0}^{\pi}\right) \\
& =\frac{-1}{\sqrt{\pi}}(0-(-1-1)) \\
& =\frac{-2}{\sqrt{\pi}}
\end{aligned}
$$

Which is not zero. This means there is no solution.

