Homework 3, Math 322

1. Find the eigenvalues and normalized eigenfunctions of the regular Sturm-Liouville problem

$$y'' + \lambda y = 0$$
, $y(0) - y'(0) = 0$, $y(\pi) - y'(\pi) = 0$.

Solution: Let $\lambda = -\omega^2$ with $\omega > 0$, and $y(x) = c_1 e^{\omega x} + c_2 e^{-\omega x}$. Then the boundary conditions give

$$(c_1 + c_2) - \omega(c_1 - c_2) = 0, \quad (c_1 e^{\omega \pi} + c_2 e^{-\omega \pi}) - (c_1 \omega e^{\omega \pi} - c_2 \omega e^{-\omega \pi}) = 0.$$

In order to get a nontrivial solution c_1, c_2 we need

$$\begin{vmatrix} 1-\omega & 1+\omega\\ (1-\omega)e^{\omega\pi} & (1+\omega)e^{-\omega\pi} \end{vmatrix} = (1-\omega^2)(e^{-\omega\pi} - e^{\omega\pi}) = 0.$$

The only solution $\omega > 0$ is $\omega = 1$. Then $c_2 = 0$. Therefore, $\lambda = -1$ is an eigenvalue and $\phi_0(x) = k_0 e^x$ is a corresponding eigenfunction.

If $\lambda = 0$ then $y(x) = c_1 + c_2 x$. The boundary conditions give

$$c_1 - c_2 = 0, \quad c_1 + c_2 \pi - c_2 = 0$$

It follows that $c_1 = c_2 = 0$, so $\lambda = 0$ is not an eigenvalue. Let $\lambda = \omega^2$, $\omega > 0$, and $y(x) = c_1 \cos \omega x + c_2 \sin \omega x$. The boundary conditions give

 $c_1 - \omega c_2 = 0$, $(c_1 \cos \omega \pi + c_2 \sin \omega \pi) - (-c_1 \omega \sin \omega \pi + c_2 \omega \cos \omega \pi) = 0$.

In order to get a nontrivial solution we need

$$\begin{vmatrix} 1 & -\omega \\ \cos \omega \pi + \omega \sin \omega \pi & \sin \omega \pi - \omega \cos \omega \pi \end{vmatrix} = (1 + \omega^2) \sin \omega \pi.$$

The solutions $\omega > 0$ are $\omega = n = 1, 2, \ldots$ Then $c_1 = nc_2$. Therefore, we found the eigenvalues $\lambda_n = n^2$ with corresponding eigenfunctions $\phi_n(x) = k_n(n \cos nx + \sin nx)$. We calculate

$$1 = k_0^2 \int_0^{\pi} (e^x)^2 \, dx = k_0^2 \frac{1}{2} (e^{2\pi} - 1),$$

$$1 = k_n^2 \int_0^{\pi} (n \cos nx + \sin nx)^2 \, dx = k_n^2 (1 + n^2) \frac{\pi}{2},$$

and find the normalized eigenfunctions

$$\hat{\phi}_0(x) = \frac{\sqrt{2}}{\sqrt{e^{2\pi} - 1}} e^x,$$
$$\hat{\phi}_n(x) = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{1 + n^2}} (n \cos nx + \sin nx), \quad n = 1, 2, \dots$$

2. Expand the function f(x) = 1 in a series of eigenfunctions of problem 1. Solution: For general f(x) the expansion is

$$f(x) = \sum_{\substack{n=0\\1}}^{\infty} c_n \hat{\phi}_n(x),$$

where

$$c_n = \int_0^\pi f(t)\hat{\phi}_n t\, dt.$$

If f(x) = 1 then

$$c_0 = k_0 \int_0^{\pi} e^t dt = k_0 (e^{\pi} - 1),$$

$$c_n = k_n \int_0^{\pi} (n \cos nt + \sin nt) dt = k_n \frac{1 + (-1)^{n+1}}{n}.$$

Therefore,

$$1 = \frac{2}{e^{\pi} + 1} e^{x} + \frac{4}{\pi} \sum_{n \ge 1 \text{ odd}} \frac{1}{n(1+n^{2})} (n\cos nx + \sin nx).$$

3. Consider the regular Sturm-Liouville problem

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $2y(1) - y'(1) = 0$.

Show that this problem has exactly one negative eigenvalue and compute it numerically.

Solution: We set $\lambda = -\omega^2$ with $\omega > 0$. The condition y(0) = 0 gives $y(x) = c \sinh \omega x$. The boundary condition at x = 1 shows that λ is an eigenvalue if and only if

 $2\sinh\omega = \omega\cosh\omega$

or

$$\tanh \omega = \frac{1}{2}\omega$$

The function $\tanh \omega$ is concave for $\omega > 0$ so it is clear from the picture that there is exactly one positive solution $\omega = 1.9150...$ The negative eigenvalue is $\lambda = -3.66725...$

4. Solve the inhomogeneous boundary value problem

$$-y'' = \mu y + 1, \quad y(0) - y'(0) = 0, \ y(\pi) - y'(\pi) = 0$$

for $\mu = 0$ and $\mu = 1$ by the method of Section 11.3. Solution: If μ is not an eigenvalue, then the solution is

$$y(x) = \sum_{n=0}^{\infty} \frac{c_n}{\lambda_n - \mu} \hat{\phi}_n(x).$$

Therefore, if $\mu = 0$ the solution is

$$y(x) = -\frac{2}{e^{\pi} + 1} e^x + \frac{4}{\pi} \sum_{n \ge 1 \text{ odd}} \frac{1}{n^3(1+n^2)} (n\cos nx + \sin nx).$$

 $\mu = 1$ agrees with the eigenvalue λ_1 . There exists a solution only if $c_1 = 0$. But in our example, $c_1 \neq 0$ so there is no solution.