Homework 2, Math 322

1. Solve the wave equation $u_{t t}=u_{x x}$ for $-\infty<x<\infty, t \geq 0$ with initial conditions

$$
u(x, 0)=\frac{1}{1+x^{2}}, \quad u_{t}(x, 0)=0 .
$$

Plot the solutions $u(x, t)$ for $t=0, t=1, t=2$.
Solution: The d'Alembert solution is

$$
u(x, t)=\frac{1}{2}(f(x+t)+f(x-t))=\frac{1}{2}\left(\frac{1}{\left(1+(x-t)^{2}\right.}+\frac{1}{1+(x-t)^{2}}\right) .
$$

2. Apply the method of separation of variables to the damped wave equation $u_{t t}+2 u_{t}=u_{x x}, u(0, t)=u(\pi, t)=0, u(x, 0)=f(x), u_{t}(x, 0)=0$. Determine the first term in the solution $u(x, t)=\sum_{n=1}^{\infty} \ldots$
Solution: By separation of variables we obtain the solutions

$$
y_{n}(x, t)=\sin (n x) T_{n}(t) \text {, }
$$

where T_{n} is the solution of

$$
T_{n}^{\prime \prime}+2 T_{n}^{\prime}+n^{2} T_{n}=0, \quad T_{n}(0)=1, T_{n}^{\prime}(0)=0 .
$$

Thus

$$
T_{1}(t)=(1+t) e^{-t}
$$

and, for $n \geq 2$,

$$
T_{n}(t)=e^{-t} \frac{\sin \left(t \sqrt{n^{2}-1}\right)}{\sqrt{n^{2}-1}}+e^{-t} \cos \left(t \sqrt{n^{2}-1}\right) .
$$

By superposition, we obtain the solution

$$
y(x, t)=\sum_{n=1}^{\infty} b_{n} T_{n}(t) \sin (n x)
$$

where b_{n} are the Fourier sine coefficients of $f(x)$. The first term in the solution formula is

$$
\frac{2}{\pi}\left(\int_{0}^{\pi} f(s) \sin s d s\right) e^{-t}(t+1) \sin x .
$$

3. Solve the Dirichlet problem $u_{x x}+u_{y y}=0$ on the square $0 \leq x, y \leq 1$ if $u(0, y)=u(x, 0)=u(x, 1)=0$ and $u(1, y)=y(1-y)$. Find an approximate value for $u\left(\frac{1}{2}, \frac{1}{2}\right)$.
Solution: The Fourier sine series for $y(1-y), 0 \leq y \leq 1$, is

$$
y(1-y)=\frac{8}{\pi^{3}} \sum_{n=1, n \text { odd }}^{\infty} \frac{1}{n^{3}} \sin (n \pi y) .
$$

According to Section 10.8, the solution of the Dirichley problem is

$$
u(x, y)=\frac{8}{\pi^{3}} \sum_{n=1, n \text { odd }}^{\infty} \frac{1}{n^{3}} \frac{\sinh n \pi x}{\sinh n \pi} \sin (n \pi y)
$$

Then

$$
u\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{8}{\pi^{3}} \sum_{n=1, n \text { odd }}^{\infty} \frac{1}{n^{3}} \frac{\sinh n \pi \frac{1}{2}}{\sinh n \pi}(-1)^{(n-1) / 2} .
$$

Taking two terms of the series, we find

$$
u\left(\frac{1}{2}, \frac{1}{2}\right) \approx 0.05132 \ldots
$$

4. Solve the Dirichlet problem

$$
\begin{array}{ll}
u_{x x}+u_{y y}=0 & \text { if } x^{2}+y^{2}<1 \\
u(x, y)=x y^{2} & \text { if } x^{2}+y^{2}=1
\end{array}
$$

Express the solution $u(x, y)$ in terms of x, y.
Solution: We use the terminating Fourier series
$\cos \theta \sin ^{2} \theta=\cos \theta-\cos ^{3} \theta=\cos \theta-\left(\frac{3}{4} \cos \theta+\frac{1}{4} \cos (3 \theta)\right)=\frac{1}{4} \cos \theta-\frac{1}{4} \cos (3 \theta)$.
Then from Section 10.8

$$
v(r, \theta)=u(r \cos \theta, r \sin \theta)=\frac{1}{4} r \cos \theta-\frac{1}{4} r^{3} \cos (3 \theta)
$$

or

$$
v(r, \theta)=\frac{1}{4} r \cos \theta-\frac{1}{4} r^{3}\left(-3 \cos \theta+4 \cos ^{3} \theta\right) .
$$

Then

$$
u(x, y)=\frac{1}{4} x+\frac{3}{4} x\left(x^{2}+y^{2}\right)-x^{3}=\frac{1}{4} x-\frac{1}{4} x^{3}+\frac{3}{4} x y^{2} .
$$

