Homework 1, Math 322

1. Solve the boundary value problem

$$
y^{\prime \prime}-y=x, \quad y(0)=0, y(1)=1 .
$$

Solution: The general solution is

$$
y=c_{1} \cosh x+c_{2} \sinh x-x .
$$

The boundary condition give $c_{1}=0, c_{2} \sinh 1=2$. The solution of the BVP is

$$
y=\frac{2}{\sinh 1} \sinh x-x .
$$

2. Find the Fourier sine series for the function $f(x)=x(1-x), 0 \leq x \leq 1$. Use the result to evaluate the infinite series

$$
\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}} \pm \ldots
$$

Solution: The Fourier coefficients are

$$
\begin{aligned}
c_{n} & =2 \int_{0}^{1} x(1-x) \sin n \pi x d x \\
& =-\left.\frac{2}{n \pi} x(1-x) \cos n \pi x\right|_{x=0} ^{x=1}+\frac{2}{n \pi} \int_{0}^{1}(1-2 x) \cos n \pi x d x \\
& =\frac{2}{n \pi} \int_{0}^{1}(1-2 x) \cos n \pi x d x \\
& =\left.\frac{2}{n^{2} \pi^{2}}(1-2 x) \sin n \pi x d x\right|_{x=0} ^{x=1}+\frac{2}{n^{2} \pi^{2}} \int_{0}^{1}(-2) \sin n \pi x d x \\
& =-\frac{4}{n^{2} \pi^{2}} \int_{0}^{1} \sin n \pi x d x \\
& = \begin{cases}\frac{8}{n^{3} \pi^{3}} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

By the convergence theorem, we have, for all $0 \leq x \leq 1$,

$$
x(1-x)=\frac{8}{\pi^{3}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{3}} \sin (2 k-1) \pi x .
$$

If we choose $x=\frac{1}{2}$, we get

$$
\frac{1}{4}=\frac{8}{\pi^{3}} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)^{3}}
$$

so

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)^{3}}=\frac{\pi^{3}}{32}
$$

3. Find the solution to the heat equation $u_{t}=u_{x x}$ with initial condition $u(x, 0)=f(x)$ with $f(x)$ as in problem 2 , and boundary conditions $u(0, t)=$ $u(1, t)=0$. Approximate $u\left(\frac{1}{2}, 1\right)$ to 10 decimal places.
Solution: The solution is

$$
u(x, t)=\frac{8}{\pi^{3}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{3}} e^{-(2 k-1)^{2} \pi^{2} t} \sin ((2 k-1) \pi x)
$$

Then

$$
u\left(\frac{1}{2}, 1\right)=\frac{8}{\pi^{3}} \sum_{k=1}^{\infty} e^{-(2 k-1)^{3} \pi^{2}} \frac{(-1)^{k+1}}{(2 k-1)^{3}}
$$

This is an alternating series $s=\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ with $a_{k} \geq 0, a_{k} \geq a_{k+1}$, $a_{k} \rightarrow 0$. Then $\left|s-\sum_{k=1}^{K}(-1)^{k+1} a_{k}\right| \leq a_{K+1}$. Therefore,

$$
\left|u\left(\frac{1}{2}, 1\right)-\frac{8}{\pi^{3}} \sum_{k=1}^{K} e^{-(2 k-1)^{3} \pi^{2}} \frac{(-1)^{k+1}}{(2 k-1)^{3}}\right|<\frac{8}{\pi^{3}} e^{-(2 K+1)^{3} \pi^{2}} \frac{1}{(2 K+1)^{3}}
$$

When we choose $K=1$, the error is less than 10^{-40}. Therefore, we obtain

$$
u\left(\frac{1}{2}, 1\right) \approx \frac{8}{\pi^{3}} e^{-\pi^{2}}=0.00001334521692 \ldots
$$

with an error less than 10^{-40}.
4. Solve the partial differential equation $u_{t}+u=u_{x x}$ with initial condition $u(x, 0)=f(x)$ and boundary conditions $u(0, t)=u(L, t)=0$ using Fourier series.
Solution: Using the method of separation of variables $u(x, t)=X(x) T(t)$ we find

$$
\frac{T^{\prime}(t)}{T(t)}+1=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda
$$

Therefore, we obtain

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=X(L)=0
$$

and

$$
T^{\prime}+(\lambda+1) T(t)=0
$$

This gives

$$
u_{n}(x, t)=e^{-\left(n^{2} \pi^{2} / L^{2}+1\right) t} \sin (n \pi x / L)
$$

The solution is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\left(n^{2} \pi^{2} / L^{2}+1\right) t} \sin (n \pi x / L)
$$

where

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin (n \pi x / L) d x
$$

