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Chapter 1: Introduction

Took this course in Spring 2018 to learn more about PDE’s.

1.1 syllabus
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Introduction to Partial Differential Equations, Math 322, Section 1

Prerequisites: jr. st., Math 320; or grad st

Classes: Tuesday and Thursday 2:00–3:15 in EMS E160

Instructor: Hans Volkmer, Office: EMS E451, Phone: 229–5950

Email: volkmer@uwm.edu

Course page: on D2L

Office hours: Tuesday and Thursday 1:00–2:00 and 3:15–4:00 and by appointment

Textbook: Elementary Differential Equations by W. Boyce and R. DiPrima, 10th
edition

Chapter 10 Partial Differential Equations and Fourier Series

Chapter 11 Boundary Value Problems and Sturm-Liouville Theory

Grading policy: Midterm exam on Chapter 10, Tuesday, 2:00–3:15, March 13,
2018.

Final exam on Chapters 10 and 11, Thursday, 10:00–12:00. May 17, 2018.

There will 4 take-home quizzes assigned on February 8, February 27, April 10,
April 26. You have a week to do these quizzes.

The midterm exam will be worth 120 points, the final exam 180 points and
each quiz 40 points with a total of 460 points. 390 points will certainly be
enough for an A, 360 will be an A- etc.

The midterm and final exam will be closed book and open notes. You can use
calculators on the exams.

Makeup policy: makeups are possible.

If you feel you are a student with a disability please feel free to contact me early in
the semester for any help or accommodations which you may need.

1 Introduction
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Chapter 2: HWs

2.1 my solved problems

2.1.1 Chapter 10.1, Problem 9

Problem Either solve y ′′ + 4y = cosx with y ′ (0) = 0,y ′ (π ) = 0 or show it has no solution.
Solution The homogeneous solution yh can be easily found to be

yh = c1 cos (2x) + c2 sin (2x)

Therefore the basis solutions are

y1 = cos 2x

y2 = sin 2x

And

y ′
1 = −2 sin 2x

y ′
2 = 2 cos 2x

Hence
y ′
h (x) = −2c1 sin 2x + 2c2 cos 2x

To find particular solution, let
yp = A cosx

The original ODE becomes

−A cosx + 4A cosx = cosx

3A cosx = cosx

A =
1
3

Hence the full solution is

y (x) = yh + yp

= −2c1 sin 2x + 2c2 cos 2x +
1
3
cosx

Therefore
y ′ (x) = −4c1 cos 2x − 4c2 sin 2x −

1
3
sinx

First B.C. gives

y ′ (0) = 0 = −4c1
c1 = 0

Therefore the solution now becomes y (x) = 2c2 cos 2x + 1
3 cosx and y ′ (x) = −4c2 sin 2x − 1

3 sinx . The
second B.C. gives

y ′ (π ) = 0 = −4c2 (0)

0 = −4c2 (0)

Hence c2 can be any value.Therefore, there is no unique solution.There are infinite number of solutions.
Final solution is

y (x) = 2c2 cos 2x +
1
3
cosx

Since 2c2 is constant, we can rename it to A and write the above as

y (x) = A cos 2x + 1
3 cosx

To verify that there is no unique solution, we set upW where y1 = cos 2x,y2 = sin 2x , and y1,y2 as
found above. These are the two basis solutions for the homogeneous ODE.

W =

�����y ′
1 (0) y ′

2 (0)

y ′
1 (π ) y ′

2 (π )

����� =
�����0 2

0 2

����� = 0

SinceW = 0, this implies there is no unique solution. Therefore the ODE can has no solution, or it can
have an infinite number of solutions. In this case, as shown above, it has infinite number of solutions.

9



2 HWs

2.1.2 Chapter 10.1, Problem 12

Problem Either solve x2y ′′ + 3xy ′ + y = x2 with y (1) = 0,y (e) = 0 or show it has no solution.
SolutionThe homogeneous solution is first found.This is a Euler ODE. Letyh = xr , theny ′

h = rx
r−1,y ′′

h =

r (r − 1)xr−2 and the homogeneous ODE becomes

r (r − 1)xr + 3rxr + xr = 0

r (r − 1) + 3r + 1 = 0

r 2 − r + 3r + 1 = 0

r 2 + 2r + 1 = 0

(r + 1) (r + 1) = 0

Hence double roots. Therefore the solution is

yh = c1
1
x
+ c2

1
x
lnx

To find particular solution, let yp = c1 + c2x + c3x2. Plugging this in original ODE gives

x2 (2c3) + 3x (c2 + 2c3x) +
(
c1 + c2x + c3x

2) = x2

x2 (2c3) + c1 + x (3c2 + c2) + x
2 (6c3 + c3) = x2

Comparing coefficients gives

c1 = 0

4c2 = 0

9c3 = 1

Hence solution is c2 = 0, c1 = 0, c3 = 1
9 . Therefore yp = 1

9x
2 and the full solution is

y (x) = c1
1
x + c2

1
x lnx + 1

9x
2 (1)

Boundary conditions are now applied to find c1, c2. First BC gives

0 = c1 + c2 ln 1 +
1
9

0 = c1 +
1
9

c1 = −
1
9

Second BC y (e) = 0 gives

0 = c1
1
e
+ c2

1
e
ln e +

1
9
e2

0 = −
1
9e
+ c2

1
e
+
1
9
e2

c2 =
1
9
−
1
9
e3

=
1 − e3

9

Therefore the solution (1) becomes

y (x) = − 1
9x +

x 2

9 +
(
1−e3
9

)
1
x lnx

Therefore solution exist and is unique. This is verified usingW where now y1 =
1
x ,y2 =

1
x lnx . These

are found above as the bases solutions for the homogeneous ODE.

W =

�����y1 (1) y2 (1)

y1 (e) y2 (e)

����� =
�����1 0
1
e

1
e

����� = 1
e
, 0

This confirms that a unique solution exists.
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2.1 my solved problems

2.1.3 Chapter 10.1, Problem 14

Problem Find eigenvalue and eigenfunction of y ′′ + λy = 0 with y (0) = 0,y ′ (π ) = 0.
Solution
Assuming the solution is y = Aerx , then the characteristic equation is

r 2 + λ = 0

r = ±
√
−λ

Case λ < 0
In this case −λ is positive and hence

√
−λ is also positive. Let

√
−λ = µ where µ > 0. Hence the roots

are ±µ. This gives the solution
y = c1 cosh (µx) + c2 sinh (µx)

First BC gives
0 = c1

Hence solution becomes
y (x) = c2 sinh (µx)

Second BC gives

y ′ (x) = µc2 cosh (µx)

0 = µc2 cosh (µπ )

But cosh µπ , 0, hence only other choice is c2 = 0, leading to trivial solution. Therefore λ < 0 is not
eigenvalue.
Case λ = 0, then the homogenous solution is

y (x) = c1 + c2x

First BC gives
0 = c1

Hence solution becomes
y (x) = c2x

Second BC gives

y ′ (x) = c2

0 = c2

Leading to trivial solution. Therefore λ = 0 is not eigenvalue.
Case λ > 0, then the homogenous solution is

y (x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
First BC gives

0 = c1

Hence solution becomes
y (x) = c2 sin

(√
λx

)
Second BC gives

y ′ (x) =
√
λc2 cos

(√
λx

)
0 =

√
λc2 cos

(√
λπ

)
Non-trivial solution requires cos

(√
λπ

)
= 0 or

√
λπ = nπ

2 for n = 1, 3, 5, · · · . Therefore√
λnπ =

nπ

2√
λn =

n

2
n = 1, 3, 5, · · ·

Hence the eigenvalues are

λn =
(n
2

) 2
n = 1, 3, 5, · · ·

And the corresponding eigenfunction is sin
( n
2x

)
for n = 1, 3, 5, · · · . The solution is

y (x) =
∞∑

n=1,3,5, · · ·
cn sin

(n
2
x
)

11



2 HWs

2.1.4 Chapter 10.1, Problem 20

Problem Find eigenvalue and eigenfunction of x2y ′′ − xy ′ + λy = 0 with y (1) = 0,y (L) = 0, L > 1
Solution
This is Euler type ODE. Using standard substitution, ley y = xr . The ODE now becomes

x2r (r − 1)xr−2 − xrxr−1 + λxr = 0

r (r − 1) − r + λ = 0

r 2 − 2r + λ = 0

The above is called the characteristic equations. Its roots give the solution. The roots are

r =
−b ±

√
b2 − 4ac
2a

=
2 ±

√
4 − 4λ
2

= 1 ±
√
1 − λ

case 1 − λ > 0
Let 1 − λ = µ2 for some real µ. Then the roots are 1 ± µ and hence the solution is

y = c1x
r1 + c2x

r2

= c1x
1+µ + c2x

1−µ

= x

(
c1x

µ + c2
1
x µ

)
At first BC y (1) = 0 the above gives

0 = c1 + c2

At second BC y (L) = 0

0 = L

(
c1L

µ + c2
1
Lµ

)
0 = c1L

µ + c2
1
Lµ

0 =
c1L

2µ + c2
Lµ

Hence
c1L

2µ + c2 = 0

But c2 = −c1, therefore

c1L
2µ − c1 = 0

c1
(
L2µ − 1

)
= 0

For arbitrary L > 0 the above can only be satisfied if c1 = 0. This means both c1, c2 are zero. Hence
1 − λ > 0 is not possible.
case 1 − λ = 0
Hence the roots now are r = 1. Double root. We now in the case of double root the solution can be
written as

y = c1x
r1 + c2x

r1 lnx

= c1x + c2x lnx

At first BC y (1) = 0 the above gives
0 = c1

Therefore the solution now becomes y = c2x lnx . At second BC y (L) = 0

0 = c2L lnL

0 = c2 lnL

Since L > 0 then only possibility is that c2 = 0.This means both c1, c2 are zero. Hence 1 − λ = 0 is not
possible.
case 1 − λ < 0
Let 1 − λ = −µ2 for some real µ. Then the roots are 1 ± iµ and hence the solution is

y = c1x
r1 + c2x

r2

= c1x
1+iµ + c2x

1−iµ

= x
(
c1x

iµ + c2x
−iu )

12
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The above can be written as

y = x
(
c1e

ln x iµ + c2e
ln x−iµ

)
= x

(
c1e

iµ ln x + c2e
−iµ ln x

)
Hence c1eiµ ln x + c2e−iµ ln x can be written as C1 cos (µ lnx) + C2 sin (µ lnx). This is done using Euler
relation and the new constants C1,C2 are not the same as c1, c2. The solution becomes

y = x (C1 cos (µ lnx) +C2 sin (µ lnx))

First BC y (1) = 0 the above becomes

0 = C1 cos (µ ln 1) +C2 sin (µ ln 1)

= C1

Therefore the solution is
y = xC2 sin (µ lnx) (1)

For second BC y (L) = 0 the above becomes

0 = LC2 sin (µ lnL)

0 = C2 sin (µ lnL)

Non-trivial solution requiressin (µ lnL) = 0 or µ lnL = nπ for n = 1, 2, 3, · · · . This means

µ =
nπ

lnL
n = 1, 2, 3, · · ·

But 1 − λ = −µ2, or λ = 1 + µ2, therefore

λn = 1 +
( nπ
lnL

) 2
n = 1, 2, 3, · · · (2)

These are the eigenvalues. The corresponding eigenfunctions are from (1)

yn (x) = cnx sin (µn lnx)

= cnx sin
(√

λn − 1 lnx
)

= cnx sin

(√
1 +

( nπ
lnL

) 2
− 1 lnx

)
= cnx sin

(√( nπ
lnL

) 2
lnx

)
= cnx sin

( nπ
lnL

lnx
)

n = 1, 2, 3, · · ·

Hence the solution is
y (x) = x

∞∑
n=1

cn sin
( nπ
lnL

lnx
)

2.1.5 Chapter 10.1, Problem 22

August 7, 2012 21:05 c10 Sheet number 8 Page number 596 cyan black

596 Chapter 10. Partial Differential Equations and Fourier Series

22. Consider a horizontalmetal beamof lengthL subject to a vertical load f (x) per unit length.
The resulting vertical displacement in the beam y(x) satisfies the differential equation

EI
d4y
dx4

= f (x),

where E is Young’s modulus and I is the moment of inertia of the cross section about
an axis through the centroid perpendicular to the xy-plane. Suppose that f (x)/EI is a
constant k. For each of the boundary conditions given below, solve for the displacement
y(x), and plot y versus x in the case that L = 1 and k = −1.
(a) Simply supported at both ends: y(0) = y′′(0) = y(L) = y′′(L) = 0
(b) Clamped at both ends: y(0) = y′(0) = y(L) = y′(L) = 0
(c) Clamped at x = 0, free at x = L: y(0) = y′(0) = y′′(L) = y′′′(L) = 0

23. In this problem we outline a proof that the eigenvalues of the boundary value problem
(18), (19) are real.
(a) Write the solution of Eq. (18) as y = k1 exp(iμx) + k2 exp(−iμx), where λ = μ2, and
impose the boundary conditions (19). Show that nontrivial solutions exist if and only if

exp(iμπ) − exp(−iμπ) = 0. (i)

(b) Let μ = ν + iσ and use Euler’s relation exp(iνπ) = cos(νπ) + i sin(νπ) to determine
the real and imaginary parts of Eq. (i).
(c) By considering the equations found in part (b), show that ν is an integer and that
σ = 0. Consequently,μ is real and so is λ.

10.2 Fourier Series

Later in this chapter youwill find that you can solvemany important problems involv-
ing partial differential equations, provided that you can express a given function as
an infinite sum of sines and/or cosines. In this and the following two sections we
explain in detail how this can be done. These trigonometric series are called Fourier
series2; they are somewhat analogous toTaylor series in that both types of series pro-
vide a means of expressing quite complicated functions in terms of certain familiar
elementary functions.

2Jean Baptiste Joseph Fourier (1768–1830) was twice imprisoned during the French Revolution, later
served as scientific advisor in Napoleon’s army in Egypt, and was prefect of the department of Isère
(Grenoble) from 1801 to 1815. He made the first systematic use, although not a completely rigorous
investigation, of trigonometric series in 1807 and 1811 in his papers on heat conduction. The papers were
not published due to objections from the referees, principally Lagrange. Although it turned out that
Fourier’s claim of generality was somewhat too strong, his results inspired a flood of important research
that has continued to the present day. See Grattan-Guinness or Carslaw (Historical Introduction) for a
detailed history of Fourier series.

This is standard ODE with constant coefficients. Just integrating and substitutions.
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2.1.6 Chapter 10.2, Problem 13 (With interactive animation)

Problem Sketch the graph of f (x) = −x,−L ≤ x < L where f (x + 2L) = f (x) and find the Fourier
series of the function
Solution

x

f(
x)

Sketch of function

This is an odd function. Only bn needs to be evaluated.

bn =
1

T /2

∫T /2

−T /2
f (x) sin

(
n
2π
T

x

)
T is the period of f (x) which is 2L. The above becomes

bn =
1
L

∫ L

−L
−x sin

(
n
π

L
x
)

Since x is odd and sin is odd then the product is even and the above simplifies to

bn =
−2
L

∫ L

0
x sin

(
n
π

L
x
)

(1)

Using integration by parts
∫
udv = uv −

∫
vdu where u = x,dv = sin

(
n π
L x

)
, therefore du = 1 and

v = −
cos

(
n π
L x

)
n π
L

=
−L

nπ
cos

(
n
π

L
x
)

Integral (1) becomes

bn =
−2
L

( [
−L

nπ
x cos

(
n
π

L
x
) ] L

0
−

∫ L

0

−L

nπ
cos

(
n
π

L
x
)
dx

)
=

−2
L

( [
−L2

nπ
cos (nπ ) − 0

]
+
−L

nπ

∫ L

0
cos

(
n
π

L
x
)
dx

)
=

−2
L

(
−L2

nπ
cos (nπ ) +

−L

nπ

1
n π
L

[
sin

(
n
π

L
x
) ] L

0

)
=

−2
L

(
−L2

nπ
cos (nπ ) +

−L2

n2π 2 [sin (nπ ) − 0]

)
=

−2
L

−L2

nπ
cos (nπ )

=
2L
nπ

cos (nπ )

For n = 1, 2, 3, · · · . Looking at few n values gives

bn =
2L
π

(−1) ,
2L
2π
,
2L
3π

(−1) , · · ·

=
2L
nπ

(−1)n

Therefore the Fourier series is

f (x) =
∞∑
n=1

2L
nπ

(−1)n sin
(nπ
L
x
)

=
2L
π

∞∑
n=1

(−1)n

n
sin

(nπ
L
x
)

The following is an animation showing how the Fourier series converges to the function as more terms
are added. This animation runs inside the PDF (need to use standard PDF reader to run the animation.
Might not run inside Chrome or Firefox own browser PDF reader).
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2.1.7 Chapter 10.2, Problem 18 (With interactive animation)

Problem Sketch the graph and find the Fourier series of the function

f (x) =


0 −2 ≤ x ≤ −1

x −1 < x < 1

0 1 ≤ x < 2

And f (x + 4) = f (x)
Solution

-4 -3 -2 -1 0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

x

f(
x)

Sketch of function

f (x) is an odd function. Therefore only bn needs to be evaluated.

bn =
1
L

∫ L

−L
f (x) sin

(nπ
L
x
)

2L is the period of f (x) which is 4. Hence L = 2. The above becomes

bn =
1
2

∫ 2

−2
f (x) sin

(nπ
2
x
)

=
1
2

(∫ −1

−2
f (x) sin

(nπ
2
x
)
+

∫ 1

−1
f (x) sin

(nπ
2
x
)
+

∫ 2

1
f (x) sin

(nπ
2
x
) )

=
1
2

∫ 1

−1
f (x) sin

(nπ
2
x
)

=
1
2

∫ 1

−1
x sin

(nπ
2
x
)

Since x is odd and sin is odd then the product is even and the above simplifies to

bn =

∫ 1

0
x sin

(nπ
2
x
)

(1)

15
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Using integration by parts
∫
udv = uv −

∫
vdu where u = x,dv = sin

( nπ
2 x

)
, therefore du = 1 and

v = −
cos

( nπ
2 x

)
nπ
2

=
−2
nπ

cos
(nπ
2
x
)

Integral (1) becomes

bn =
−2
nπ

[
x cos

(
n
π

2
x
) ] 1

0
−

∫ 1

0

−2
nπ

cos
(
n
π

2
x
)
dx

=
−2
nπ

[
cos

(n
2
π
) ]
+

2
nπ

∫ 1

0
cos

(
n
π

2
x
)
dx

=

(
−2
nπ

cos
(n
2
π
)
+

2
nπ

1
n π

2

[
sin

(
n
π

2
x
) ] 1

0

)
=

(
−2
nπ

cos
(n
2
π
)
+

4
n2π 2 sin

(n
2
π
) )

Therefore

bn =

(
2
nπ

) 2
sin

(n
2
π
)
−

2
nπ

cos
(n
2
π
)

n = 1, 2, 3, · · ·

The Fourier series is

f (x) =
∞∑
n=1

[ (
2
nπ

) 2
sin

(n
2
π
)
−

2
nπ

cos
(n
2
π
) ]

sin
(nπ
2
x
)

The following is an animation showing how the Fourier series converges to the function as more terms
are added. This animation runs inside the PDF (need to use standard PDF reader to run the animation.
Might not run inside Chrome or Firefox own browser PDF reader).

2.1.8 Chapter 10.3, Problem 2

Problem Assume the function is periodically extended outside the original interval. (a) Find the Fourier
series of the extended function. (b) Sketch the graph of the function to which the series converges for
three periods.

f (x) =

{
0 −π ≤ x < 0

x 0 ≤ x < π

Solution
This is plot of the above function for one period, and then for 3 periods

16
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-π 0 π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

f(
x)

Sketch of function over one period

-6π -5π -4π -3π -2π -π 0 π 2π 3π 4π 5π 6π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

f(
x)

Sketch of function over 3 periods

part a

The calculation of the Fourier series will have an,bn and will follow same methods as before. The period
here is 2π .

part b

Since both f (x) and f ′ (x) are piecewise continuous, then the Fourier series will converge to the function
f (x). But at the points where f (x) has jumps (such as at x = ±π ) the Fourier series will converge to
the average value of f (x) at these points.

2.1.9 Chapter 10.3, Problem 4

Problem Assume the function is periodically extended outside the original interval. (a) Find the Fourier
series of the extended function. (b) Sketch the graph of the function to which the series converges for
three periods.

f (x) = 1 − x2 − 1 ≤ x < 1

Solution
This is plot of the above function for one period, and then for 3 periods

17
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0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Sketch of function over one period

-6 π -6 2π -6 3π -6

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Sketch of function over 3 periods

part a

The calculation of the Fourier series will have only an since f (x) is even, and will follow same methods
as before. The period here is 2.

part b

Since both f (x) and f ′ (x) are piecewise continuous, then the Fourier series will converge to the function
f (x) for all x .

2.1.10 Chapter 10.4, Problem 17

Problem (a) Find the Fourier series of the given function (b) Sketch the graph of the function to which
the series converges for three periods.

f (x) = 1 0 ≤ x ≤ π

Use cosine series, with period 2π .
Solution
Extending this as even function gives

fe (x) = 1 − π < x ≤ π

Hence, since period is 2π , then L = π now and

a0 =
1
L

∫ L

−L
fe (x)dx =

1
π

∫ π

−π
dx =

2
π

∫ π

0
dx = 2

And

an =
1
L

∫ L

−L
fe (x) cos

(nπ
L
x
)
dx =

2
π

∫ π

0
cos (nx)dx =

2
nπ

(− sin (nx))π0 = 0

Therefore the cosine extension Fourier series is

f (x) =
a0
2
+

∞∑
n=1

an cos (nx)

=
a0
2

= 1

18
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2.1.11 Chapter 10.4, Problem 18 (With interactive animation)

Problem (a) Find the Fourier series of the given function (b) Sketch the graph of the function to which
the series converges for three periods.

f (x) = 1 0 < x < π

Use sin series, with period 2π .
Solution
Extending this as odd function gives

fo (x) =

{
1 0 < x < π

−1 −π < x ≤ 0

Hence, since period is 2π , then L = π now and, since this is an odd function, only bn terms will show up

bn =
1
L

∫ L

−L
fo (x) sin

(nπ
L
x
)
dx

=
1
π

∫ π

−π
fo (x) sin (nx)dx

But now fo (x) sin
( nπ
L x

)
is even, therefore the above simplifies to

bn =
2
π

∫ π

0
fo (x) sin (nx)dx

=
2
π

∫ π

0
sin (nx)dx

=
−2
π

(
cos (nx)

n

) π
0

=
−2
nπ

(cos (nπ ) − 1)

=
−2
nπ

(−1n − 1)

Therefore the sine extension Fourier series is

f (x) =
∞∑
n=1

bn sin (nx)

=
−2
π

∞∑
n=1

1
n
(−1n − 1) sin (nx)

The following is an animation showing how the Fourier series converges to the function as more terms
are added. This animation runs inside the PDF (need to use standard PDF reader to run the animation.
Might not run inside Chrome or Firefox own browser PDF reader).
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2.1.12 Chapter 10.5, Problem 7

Problem Find solution to ut = 100uxx with 0 < x < 1, t > 0 and boundary conditions u (0, t) = u (1, t) =
0 and initial conditions u (x, 0) = sin (2πx) − sin (5πx)
Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier problem and it
is given as

u (x, t) =
∞∑
n=1

cne
−λnkt sin

(√
λnx

)
Where in this problem k = 100 and λn = (nπ )2 ,n = 1, 2, 3, . . .. The cn terms is the Fourier sine
coefficients of the initial conditions. But the initial conditions is already expressed as sum of sine terms.
Therefore the cn coefficient can be read directly from f (x), giving c2 = 1, c5 = −1. Therefore only two
terms exist in the sum above, leading to the solution

u (x, t) = c2e
−(2π )2(100)t sin (2πx) + c5e −

(5π )2(100)t sin (5πx)

= e−400π
2t sin (2πx) − e−25000π t sin (5πx)

2.1.13 Chapter 10.5, Problem 10 (With interactive animation)

Problem Solve ut = uxx , with 0 < x < L and L = 40cm and boundary conditions u (0, t) = u (L, t) = 00

with initial conditions

u (x, 0) =

{
x 0 ≤ x < 20

40 − x 20 ≤ x ≤ 40

Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier problem and it
is given as

u (x, t) =
∞∑
n=1

cne
−λnkt sin

(√
λnx

)
Where in this problem k = 1 and λn =

( nπ
L

) 2
,n = 1, 2, 3, . . ..and L = 40 cm. To find cn , initial conditions

are used. At t = 0

f (x) =
∞∑
n=1

cn sin
(√

λnx
)

Applying orthogonality result in

cn =
2
L

∫ L

0
f (x) sin

(√
λnx

)
dx

=
2
40

(∫ 20

0
x sin

(√
λnx

)
dx +

∫ 40

20
(40 − x) sin

(√
λnx

)
dx

)
=

2
40

(
3200
n2π 2 sin

(nπ
2

) )
=

160
n2π 2 sin

(nπ
2

)
Hence the solution is

u (x, t) =
160
π 2

∞∑
n=1

1
n2

sin
(nπ
2

)
e−

( nπ
40

) 2t sin (nπ
40

x
)

The following is an animation of the above solution for 510 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).
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2.1.14 Chapter 10.5, Problem 11 (With interactive animation)

Problem
Solve ut = uxx , with 0 < x < L and L = 40cm and boundary conditions u (0, t) = u (L, t) = 00 with
initial conditions

u (x, 0) =


0 0 ≤ x < 10

50 10 ≤ x ≤ 30

0 30 ≤ x ≤ 40

Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier problem and it
is given as

u (x, t) =
∞∑
n=1

cne
−λnkt sin

(√
λnx

)
Where in this problem k = 1 and λn =

( nπ
L

) 2
,n = 1, 2, 3, . . ..and L = 40 cm. To find cn , initial conditions

are used. At t = 0

f (x) =
∞∑
n=1

cn sin
(√

λnx
)

Applying orthogonality result in

cn =
2
L

∫ L

0
f (x) sin

(√
λnx

)
dx

=
2
40

(∫ 10

0
0 sin

(√
λnx

)
dx +

∫ 30

10
50 sin

(√
λnx

)
dx +

∫ 40

30
0 sin

(√
λnx

)
dx

)
=

2
40

∫ 30

10
50 sin

(√
λnx

)
dx

=
200
nπ

sin
nπ

4
sin

nπ

2

Hence the solution is

u (x, t) =
200
π

∞∑
n=1

1
n
sin

(nπ
4

)
sin

(nπ
2

)
e−

( nπ
40

) 2t sin (nπ
40

x
)

The following is an animation of the above solution for 510 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).
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2.1.15 Chapter 10.6, Problem 5

Problem Find steady state solution that satisfies the given boundary conditionsut = α2uxx withu (0, t) =
0,ux (L, t) = 0
solution at steady state

v ′′ (x) = 0

v (0) = 0

v ′ (L) = 0

Solution to the above ODE is v (x) = c1x + c2. At x = 0, this leads to c2 = 0. Therefore the solution now
becomes v (x) = c1x and v ′ (x) = c1. Second boundary condition implies c1 = 0 as well. Therefore

v (x) = 0

is the steady state solution.

2.1.16 Chapter 10.6, Problem 7

Problem Find steady state solution that satisfies the given boundary conditions ut = α2uxx with
ux (0, t) − u (0, t) = 0,u (L, t) = T
solution at steady state

v ′′ (x) = 0

v ′ (0) −v (0) = 0

v (L) = T

Solution to the above ODE is v (x) = c1x + c2. At x = 0, this leads to c1 − c2 = 0. Second boundary
condition implies c1L + c2 = 0. Two equations in 2 unknowns

c1 − c2 = 0

c1L + c2 = T

From first equation, c1 = c2. Second equation becomes c2 (1 + L) = T or c2 = T
1+L . Therefore the steady

state solution

v (x) =
T

1 + L
x +

T

1 + L

=
T

1 + L
(1 + x)

2.1.17 Chapter 10.6, Problem 9 (With interactive animation)

Problem Let L = 20 cm, with initial temperature 250C , an initial conditions u (0, x) = 0,u (L, 0) = 600C .
(a) Find u (x, t). (b) Plot initial temperature distribution, final steady state solution and solution are two
intermediate times on same axes. (c) Plot u vs. t for x = 5, 10, 15. (d) determine how much time has
elapsed before the temperature at x = 5 cm comes and remains with 1% of the steady state value. Use
α2 = 0.86
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solution

ut = α2uxx

u (0, x) = 0

u (L, 0) = 60

Let solution be u (x, t) = w (x, t) +v (x) where v (x) is solution to v ′′ (x) = 0 with boundary conditions
v (0) = 0,v (L) = 60. Hence the solution is

v (x) = c1x + c2

At x = 0, this leads to c2 = 0. Therefore solution is v (x) = c1x . At x = L, 60 = c1L or c1 = 60
L =

60
20 = 3.

Therefore
v (x) = 3x

Hence the complete solution is

u (x, t) =

(
∞∑
n=1

cne
−α 2λnt sin

(√
λnx

) )
+ 3x

Where λn =
( nπ
L

) 2 for n = 1, 2, 3, · · · . cn is now found from initial conditions. At t = 0

25 =

(
∞∑
n=1

cn sin
(√

λnx
) )
+ 3x

25 − 3x =
∞∑
n=1

cn sin
(√

λnx
)

Applying orthogonality gives∫ L

0
(25 − 3x) sin

(√
λnx

)
dx = cn

L

2

cn =
2
L

∫ L

0
(25 − 3x) sin

(√
λnx

)
dx

=
2
20

∫ L

0
(25 − 3x) sin

(√
λnx

)
dx

Integrating gives cn = 50+70(−1)n

nπ . Therefore the solution is

u (x, t) =

(
∞∑
n=1

50 + 70 (−1)n

nπ
e−α

2λnt sin
(√

λnx
) )
+ 3x

The following is an animation of the above solution for 20 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).
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2.1.18 Chapter 10.6, Problem 10

August 7, 2012 21:05 c10 Sheet number 52 Page number 640 cyan black

640 Chapter 10. Partial Differential Equations and Fourier Series

(b) Plot the initial temperature distribution, the final (steady state) temperature distribu-
tion, and the temperature distributions at two representative intermediate times on the
same set of axes.
(c) Plot u versus t for x = 5, 10, and 15.
(d) Determine how much time must elapse before the temperature at x = 5 cm comes
(and remains) within 1% of its steady state value.

10. (a) Let the ends of a copper rod 100 cm long be maintained at 0◦C. Suppose that the
center of the bar is heated to 100◦C by an external heat source and that this situation is
maintained until a steady state results. Find this steady state temperature distribution.
(b) At a time t = 0 [after the steady state of part (a) has been reached], let the heat source
be removed. At the same instant let the end x = 0 be placed in thermal contact with a
reservoir at 20◦C, while the other end remains at 0◦C. Find the temperature as a function
of position and time.
(c) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(d) What limiting value does the temperature at the center of the rod approach after a
long time? How much time must elapse before the center of the rod cools to within 1◦C
of its limiting value?

11. Consider a rod of length 30 for which α2 = 1. Suppose the initial temperature distribution
is given by u(x, 0) = x(60− x)/30 and that the boundary conditions are u(0, t) = 30 and
u(30, t) = 0.
(a) Find the temperature in the rod as a function of position and time.
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Plot u versus t for x = 12. Observe that u initially decreases, then increases for a
while, and finally decreases to approach its steady state value. Explain physically why this
behavior occurs at this point.

12. Consider a uniform rod of length L with an initial temperature given by
u(x, 0) = sin(πx/L), 0 ≤ x ≤ L. Assume that both ends of the bar are insulated.

(a) Find the temperature u(x, t).
(b) What is the steady state temperature as t → ∞?
(c) Let α2 = 1 and L = 40. Plot u versus x for several values of t. Also plot u versus t for
several values of x.
(d) Describe briefly how the temperature in the rod changes as time progresses.

13. Consider abar of length 40 cmwhose initial temperature is givenbyu(x, 0) = x(60− x)/30.
Suppose that α2 = 1/4 cm2/s and that both ends of the bar are insulated.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Determine the steady state temperature in the bar.
(d) Determinehowmuch timemust elapse before the temperature at x = 40 comeswithin
1◦C of its steady state value.

14. Consider a bar 30 cm long that is made of a material for which α2 = 1 and whose ends are
insulated. Suppose that the initial temperature is zero except for the interval 5 < x < 10,
where the initial temperature is 25◦C.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t. Also plot u versus t for several values of x.
(c) Plot u(4, t) and u(11, t) versus t. Observe that the points x = 4 and x = 11 are symmet-
rically located with respect to the initial temperature pulse, yet their temperature plots
are significantly different. Explain physically why this is so.

solution
To do.

2.1.19 Chapter 10.7, Problem 3 (With interactive animation)

Problem Consider elastic string of length L with ends held fixed. Let initial position u (x, 0) = f (x) and
ut (x, 0) = 0. Let L = 10,a = 1. (a) Find u (x, t). (b) Plot u (x, t) vs x for 0 ≤ x ≤ 10 and for several values
of time between t = 0 and t = 20 (c) Plot u (x, t) vs. t for 0 ≤ t ≤ 20 and for several values of x (d)
Construct an animation of the solution for at least one period. (e) Describe the motion of the string. Let
f (x) = 8x (L−x )2

L3
solution Since domain is finite, it is easier to use the series solution for wave equation than D’Alembert
solution. This is given by

u (x, t) =
∞∑
n=1

cn cos
(√

λnat
)
sin

(√
λnx

)
Where λn =

( nπ
L

) 2
,n = 1, 2, 3, · · · and cn =

2
L

∫L
0
f (x) sin

(√
λnx

)
dx . Hence, since a = 1 and L = 10,

the solution becomes

u (x, t) =
∞∑
n=1

cn cos
(nπ
10

t
)
sin

(nπ
10

x
)

cn =
2
10

∫ 10

0

8x (L − x)2

L3
sin

(nπ
10

x
)
dx

=
2
10

∫ 10

0

8x (10 − x)2

103
sin

(nπ
10

x
)
dx

Integrating gives

cn =
32 (2 + (−1)n)

n3π 3

Hence solution is
u (x, t) =

32
π 3

∞∑
n=1

2 + (−1)n

n3
cos

(nπ
10

t
)
sin

(nπ
10

x
)

The following is an animation of the above solution for 50 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

24



2.1 my solved problems

2.1.20 Chapter 10.7, Problem 7 (With interactive animation)

Problem Consider elastic string of length L with ends held fixed. Let initial position u (x, 0) = 0 and
ut (x, 0) = д (x). Let L = 10,a = 1. (a) Find u (x, t). (b) Plot u (x, t) vs x for 0 ≤ x ≤ 10 and for several
values of time between t = 0 and t = 20 (c) Plot u (x, t) vs. t for 0 ≤ t ≤ 20 and for several values of x
(d) Construct an animation of the solution for at least one period. (e) Describe the motion of the string.
Let д (x) = 8x (L−x )2

L3
solution Since domain is finite, it is easier to use the series solution for wave equation than D’Alembert
solution. The eigenvalue ODE is gives solution for λ > 0 as

Xn (x) = cn sin
(√

λnx
)

Where λn =
( nπ
L

) 2
,n = 1, 2, 3, · · · The time solution is Tn (t) = An cos

(√
λnat

)
+ Bn sin

(√
λnat

)
. At

t = 0, this gives 0 = An . Therefore Tn (t) = Bn sin
(√

λnat
)
. Hence the complete solution is

u (x, t) =
∞∑
n=1

cnTn (t)Xn (x)

=
∞∑
n=1

cn sin
(√

λnat
)
sin

(√
λnx

)
To find cn , time derivative of the above is taken giving

∂

∂t
u (x, t) =

∞∑
n=1

cn
√
λn cos

(√
λnat

)
sin

(√
λnx

)
At t = 0 the above becomes

д (x) =
∞∑
n=1

cn
√
λn sin

(√
λnx

)
Applying orthogonality∫ L

0
д (x) sin

(√
λnx

)
dx =

√
λncn

L

2

cn =
2

L
√
λn

∫ L

0
д (x) sin

(√
λnx

)
dx

Hence since д (x) = 8x (L−x )2

L3 , L = 10,a = 1 the above becomes

cn =
2

10
( nπ
10

) ∫ 10

0

8x (10 − x)2

103
sin

(nπ
10

x
)
dx

Integrating the above gives

cn =
320 (2 + (−1)n)

n4π 4
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Therefore the solution is

u (x, t) =
∞∑
n=1

320 (2 + (−1)n)
n4π 4 Tn (t)Xn (x)

=
320
π 4

∞∑
n=1

2 + (−1)n

n4
sin

(√
λnat

)
sin

(√
λnx

)
Where λn =

( nπ
L

) 2
,n = 1, 2, 3, · · ·

The following is an animation of the above solution for 40 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).
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10.7 The Wave Equation: Vibrations of an Elastic String 653

Consider an elastic string of length L whose ends are held fixed. The string is set in motion
from its equilibrium position with an initial velocity ut(x, 0) = g(x). In each of Problems 5
through 8, carry out the following steps. Let L = 10 and a = 1 in parts (b) through (d).
(a) Find the displacement u(x, t) for the given g(x).
(b) Plot u(x, t) versus x for 0 ≤ x ≤ 10 and for several values of t between t = 0 and t = 20.
(c) Plot u(x, t) versus t for 0 ≤ t ≤ 20 and for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

5. g(x) =
{
2x/L, 0 ≤ x ≤ L/2,
2(L − x)/L, L/2 < x ≤ L

6. g(x) =

⎧⎪⎨
⎪⎩
4x/L, 0 ≤ x ≤ L/4,
1, L/4 < x < 3L/4,
4(L − x)/L, 3L/4 ≤ x ≤ L

7. g(x) = 8x(L − x)2/L3

8. g(x) =
{
1, L/2− 1 < x < L/2+ 1 (L > 2),
0, otherwise

9. If an elastic string is free at one end, the boundary condition to be satisfied there is that
ux = 0. Find the displacement u(x, t) in an elastic string of length L, fixed at x = 0 and
free at x = L, set in motion with no initial velocity from the initial position u(x, 0) = f (x),
where f is a given function.
Hint: Show that the fundamental solutions for this problem, satisfying all conditions
except the nonhomogeneous initial condition, are

un(x, t) = sin λnx cos λnat,

where λn = (2n − 1)π/(2L), n = 1, 2, . . . . Compare this problem with Problem 15 of Sec-
tion 10.6; pay particular attention to the extension of the initial data out of the original
interval [0,L].

10. Consider an elastic string of length L. The end x = 0 is held fixed, while the end x = L
is free; thus the boundary conditions are u(0, t) = 0 and ux(L, t) = 0. The string is set in
motion with no initial velocity from the initial position u(x, 0) = f (x), where

f (x) =
{
1, L/2− 1 < x < L/2+ 1 (L > 2),
0, otherwise.

(a) Find the displacement u(x, t).
(b) With L = 10 and a = 1, plot u versus x for 0 ≤ x ≤ 10 and for several values of t. Pay
particular attention to values of t between 3 and 7. Observe how the initial disturbance is
reflected at each end of the string.
(c) With L = 10 and a = 1, plot u versus t for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

11. Suppose that the string in Problem 10 is started instead from the initial position
f (x) = 8x(L − x)2/L3. Follow the instructions in Problem 10 for this new problem.

solution
The eigenvalue ODE is

X (x) = A cos
(√

λx
)
+ B sin

(√
λx

)
Boundary condition at x = 0 gives

0 = A

Therefore the solution becomes X (x) = B sin
(√

λx
)
. And X ′ (x) = B

√
λ cos

(√
λx

)
. Applying boundary

conditions at x = L gives
0 = B

√
λ cos

(√
λL

)
Therefore

√
λL =

{
π

2
,
3π
2
,
5π
2
, · · ·

}
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Hence √
λn =

nπ

2L
n = 1, 3, 5, · · ·√

λn =
(2n − 1)π

2L
n = 1, 2, 3, · · ·

Therefore
Xn (x) = cn sin

(
(2n − 1)π

2L
x

)
And

Tn (t) = An cos
(√

λnat
)
+ Bn sin

(√
λnat

)
T ′
n (t) = −Ana

√
λn sin

(√
λnat

)
+ Bna

√
λn cos

(√
λnat

)
Since initial velocity is zero, the above gives

0 = Bna
√
λn

Which means Bn = 0. Hence
Tn (t) = An cos

(√
λnat

)
Therefore the complete solution becomes

u (x, t) =
∞∑
n=1

cn cos

(
(2n − 1)π

2L
at

)
sin

(
(2n − 1)π

2L
x

)
cn is found from initial position by applying orthogonality.
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10.7 The Wave Equation: Vibrations of an Elastic String 653

Consider an elastic string of length L whose ends are held fixed. The string is set in motion
from its equilibrium position with an initial velocity ut(x, 0) = g(x). In each of Problems 5
through 8, carry out the following steps. Let L = 10 and a = 1 in parts (b) through (d).
(a) Find the displacement u(x, t) for the given g(x).
(b) Plot u(x, t) versus x for 0 ≤ x ≤ 10 and for several values of t between t = 0 and t = 20.
(c) Plot u(x, t) versus t for 0 ≤ t ≤ 20 and for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

5. g(x) =
{
2x/L, 0 ≤ x ≤ L/2,
2(L − x)/L, L/2 < x ≤ L

6. g(x) =

⎧⎪⎨
⎪⎩
4x/L, 0 ≤ x ≤ L/4,
1, L/4 < x < 3L/4,
4(L − x)/L, 3L/4 ≤ x ≤ L

7. g(x) = 8x(L − x)2/L3

8. g(x) =
{
1, L/2− 1 < x < L/2+ 1 (L > 2),
0, otherwise

9. If an elastic string is free at one end, the boundary condition to be satisfied there is that
ux = 0. Find the displacement u(x, t) in an elastic string of length L, fixed at x = 0 and
free at x = L, set in motion with no initial velocity from the initial position u(x, 0) = f (x),
where f is a given function.
Hint: Show that the fundamental solutions for this problem, satisfying all conditions
except the nonhomogeneous initial condition, are

un(x, t) = sin λnx cos λnat,

where λn = (2n − 1)π/(2L), n = 1, 2, . . . . Compare this problem with Problem 15 of Sec-
tion 10.6; pay particular attention to the extension of the initial data out of the original
interval [0,L].

10. Consider an elastic string of length L. The end x = 0 is held fixed, while the end x = L
is free; thus the boundary conditions are u(0, t) = 0 and ux(L, t) = 0. The string is set in
motion with no initial velocity from the initial position u(x, 0) = f (x), where

f (x) =
{
1, L/2− 1 < x < L/2+ 1 (L > 2),
0, otherwise.

(a) Find the displacement u(x, t).
(b) With L = 10 and a = 1, plot u versus x for 0 ≤ x ≤ 10 and for several values of t. Pay
particular attention to values of t between 3 and 7. Observe how the initial disturbance is
reflected at each end of the string.
(c) With L = 10 and a = 1, plot u versus t for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

11. Suppose that the string in Problem 10 is started instead from the initial position
f (x) = 8x(L − x)2/L3. Follow the instructions in Problem 10 for this new problem.

Solution
Straight forward.

2.1.23 Chapter 10.8, Problem 3
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3. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = f (y), 0 < y < b,

u(x, 0) = h(x), u(x, b) = 0, 0 ≤ x ≤ a.

Hint: Consider the possibility of adding the solutions of two problems, one with homo-
geneous boundary conditions except for u(a, y) = f (y), and the other with homogeneous
boundary conditions except for u(x, 0) = h(x).
(b) Find the solution if h(x) = (x/a)2 and f (y) = 1− (y/b).
(c) Let a = 2 and b = 2. Plot the solution in several ways: u versus x, u versus y, u versus
both x and y, and a contour plot.

4. Show how to find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a,
0 < y < b, that satisfies the boundary conditions

u(0, y) = k(y), u(a, y) = f (y), 0 < y < b,

u(x, 0) = h(x), u(x, b) = g(x), 0 ≤ x ≤ a.

Hint: See Problem 3.

5. Find the solution u(r, θ) of Laplace’s equation

urr + (1/r)ur + (1/r2)uθθ = 0
outside the circle r = a, that satisfies the boundary condition

u(a, θ) = f (θ), 0 ≤ θ < 2π,

on the circle. Assume that u(r, θ) is single-valued and bounded for r > a.
6. (a) Find the solution u(r, θ) of Laplace’s equation in the semicircular region r < a,
0 < θ < π, that satisfies the boundary conditions

u(r, 0) = 0, u(r,π) = 0, 0 ≤ r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ π.

Assume that u is single-valued and bounded in the given region.
(b) Find the solution if f (θ) = θ(π − θ).
(c) Let a = 2 and plot the solution in several ways: u versus r, u versus θ, u versus both r
and θ, and a contour plot.

7. Find the solution u(r, θ) of Laplace’s equation in the circular sector 0 < r < a,
0 < θ < α, that satisfies the boundary conditions

u(r, 0) = 0, u(r,α) = 0, 0 ≤ r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ α.

Assume that u is single-valued and bounded in the sector and that 0 < α < 2π.
8. (a) Find the solution u(x, y) of Laplace’s equation in the semi-infinite strip 0 < x < a,

y > 0, that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, y > 0,

u(x, 0) = f (x), 0 ≤ x ≤ a

and the additional condition that u(x, y) → 0 as y → ∞.
(b) Find the solution if f (x) = x(a − x).
(c) Let a = 5. Find the smallest value of y0 for which u(x, y) ≤ 0.1 for all y ≥ y0.
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Solution
To do.

2.1.24 Chapter 11.1, problem 12

Convert to form (py ′)′ + q (x)y = 0
y ′′ − 2xy ′ + λy = 0

Solution
Writing the ODE as p (x)y ′′ +Q (x)y ′ + R (x)y = 0, hence

p (x) = 1

Q (x) = −2x

R (x) = λ

Then the new form is (µ (x)p (x)y ′)′ + µ (x)R (x)y = 0, where

µ (x) =
1

p (x)
e
∫x Q (s )

P (s ) ds

= e
∫x

−2sds

= e−x
2

Therefore the new form is (
e−x

2
y ′

) ′
+ e−x

2
λy = 0

2.1.25 Chapter 11.1, problem 13

Convert to form (py ′)′ + q (x)y = 0

x2y ′′ + xy ′ +
(
x2 −v2) y = 0

Solution
Writing the ODE as p (x)y ′′ +Q (x)y ′ + R (x)y = 0, hence

p (x) = x2

Q (x) = x

R (x) =
(
x2 −v2)

The new form is (µ (x)p (x)y ′)′ + µ (x)R (x)y = 0, where

µ (x) =
1

p (x)
e
∫x Q (s )

P (s ) ds

=
1
x2

e
∫x 1

s ds

=
1
x2

e | ln x |

=
1
x2

x

=
1
x

Therefore the new form is (
1
x
y ′

) ′

+
1
x

(
x2 −v2) y = 0

2.1.26 Chapter 11.1, problem 18

Solution
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part (a)

Let y (x) = s (x)u (x). Then y ′ = s ′u + su ′ and y ′′ = s ′′u + s ′u ′ + s ′u ′ + su ′′ = s ′′u + 2 (s ′u ′) + su ′′.
Therefore the original ODE becomes

s ′′u + 2 (s ′u ′) + su ′′ + 4 (s ′u + su ′) + (4 + 9λ) su = 0

Collecting terms in u gives

su ′′ + u ′ (2s ′ + 4s) + (s ′′ + 4s ′ + (4 + 9λ) s)u = 0

Making u ′ term vanish requires that 2s ′ + 4s or s ′ + 2s = 0. Hence d
dx

(
se2x

)
= 0 or s = e−2x . Hence

s ′ = −2e−2x , s ′′ = 4e−2x . Substituting these into the above gives

e−2xu ′′ +
(
4e−2x + 4

(
−2e−2x

)
+ (4 + 9λ) e−2x

)
u = 0

u ′′ + (4 + 4 (−2) + (4 + 9λ))u = 0

u ′′ + (4 − 8 + 4 + 9λ)u = 0

u ′′ + 9λu = 0

Let 9λ = λ̂ so the above becomes
u ′′ + λ̂u = 0

With boundary conditions u (0) = y(0)
s(0) = 0 and u ′ (L) =

y′(L)
s ′(L) = 0. This was solved before, the eigenfunc-

tions of the above are

Φn (x) = sin

(√
λ̂nx

)
λ̂n =

(nπ
2L

) 2
n = 1, 3, 5, · · ·

But λ̂n = 9λn , therefore the above becomes

Φn (x) = sin
(
3
√
λnx

)
λn =

1
9

(nπ
2L

) 2
n = 1, 2, 3, · · ·

Or
Φn (x) = sin

(nπ
2L

x
)

Now the eigenfunction is normalized ∫ 1

0
(knΦn (x))

2 dx = 1

k2n

∫ 1

0
Φn (x)

2 dx = 1

k2n

∫ 1

0
sin2

(nπ
2L

x
)
dx = 1

k2n
L

2
= 1

kn =

√
2
L

Hence

kn =

√
2
L

And

Φ̂n (x) =

√
2
L
sin

(nπ
2L

x
)

Mapping back to y (x) = s (x)u (s), and since s (x) = e−2x then the eigenfunction in y space is

Φn (x) = e−2x
√

2
L
sin

(nπ
2L

x
)

n = 1, 3, 5, · · ·
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Part b

Now the ODE is solved directly. y ′′ + 4y ′ + (4 + 9λ)y = 0. The characteristic equation is

r 2 + 4r + (4 + 9λ) = 0

Hence roots are

r =
−b ±

√
b2 − 4ac
2a

=
−4 ±

√
16 − 4 (4 + 9λ)

2

=
−4 ±

√
16 − 16 − 36λ

2
= −2 ± 3

√
−λ

We know that λ > 0. So the roots are r = −2 ± i
√
λ and the solution is

y (x) = e−2x
(
A cos

(√
λx

)
+ B sin

(√
λx

) )
Applying boundary conditions y (0) = 0 leads to A = 0. So the solution becomes

y (x) = e−2xB sin
(√

λx
)

Hence
y ′ (x) = −2e−2xB sin

(√
λx

)
+ e−2xB

√
λ cos

(√
λx

)
Applying second B.C. y ′ (L) = 0 the above becomes

0 = −2e−2LB sin
(√

λL
)
+ e−2LB

√
λ cos

(√
λL

)
= B

(
−2 sin

(√
λL

)
+
√
λ cos

(√
λL

) )
Non-trivial solution requires that

−2 sin
(√

λL
)
+
√
λ cos

(√
λL

)
= 0

−2 tan
√
λL +

√
λ = 0

tan
√
λL =

1
2

√
λ

Hence the direct method finds that the eigenvalues λn are the solutions to the above nonlinear equation
and the corresponding eigenfunctions are e−2x sin

(√
λnx

)
.

2.1.27 Chapter 11.1, problem 19

Determine the real eigenvalues and eigenfunctions.

y ′′ + y ′ + λ (y ′ + y) = 0

y ′ (0) = 0

y (1) = 0

Solution
Writing the ODE as

y ′′ + (1 + λ)y ′ + λy = 0

Case λ = 0
y ′′ + y ′ = 0

The characteristic equation is

r 2 + r = 0

r (r + 1) = 0

The roots are r = 0,−1. Hence the solution is y = c1 + c2e
−x . Hence y ′ = −c2e

−x . First BC gives
y ′ (0) = 0 → 0 = −c2. Therefore the solution becomes y = c1. Second BC gives y (1) = 0 → 0 = c1.
Therefore trivial solution and λ = 0 is not eigenvalue.
Case λ < 0 Let λ = −m2 for some realm. The ODE becomes

y ′′ +
(
1 −m2) y ′ −m2y = 0

The characteristic equation is
r 2 +

(
1 −m2) r −m2 = 0
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The roots are

r =
−

(
1 −m2)
2

±
1
2

√
(1 −m2)

2
+ 4m2

=
−

(
1 −m2)
2

±
1
2

√
1 +m4 − 2m2 + 4m2

=
−

(
1 −m2)
2

±
1
2

√
(1 +m2)

2

=
−

(
1 −m2)
2

±
1
2

(
1 +m2)

Hence roots are r1 =
−
(
1−m2)
2 + 1

2

(
1 +m2) = m2 and r2 =

−
(
1−m2)
2 − 1

2

(
1 +m2) = −1. Therefore the

solution is
y = c1e

m2x + c2e
−x

Hence y ′ = m2c1e
m2x − c2e

−x . First BC gives y ′ (0) = 0 → 0 = m2c1 − c2 or c2 = m2c1. Therefore the
solution becomes

y = c1e
m2x +m2c1e

−x

= c1
(
em

2x +m2e−x
)

Second BC gives y (1) = 0 → 0 = c1
(
em

2
+m2e−1

)
therefore c1 = 0 and trivial solution. Hence λ < 0 is

not eigenvalue.
Case λ > 0 The characteristic equation is

r 2 + (1 + λ) r + λ = 0

The roots are

r =
− (1 + λ)

2
±
1
2

√
(1 + λ)2 − 4λ

=
− (1 + λ)

2
±
1
2

√
1 + λ2 + 2λ − 4λ

=
− (1 + λ)

2
±
1
2

√
(1 − λ)2

=
− (1 + λ)

2
±
1
2
(1 − λ)

Hence roots are r1 = −1
2 (1 + λ) + 1

2 (1 − λ) = −λ and r2 =
−1
2 (1 + λ) − 1

2 (1 − λ) = −1. Therefore the
solution is

y = c1e
−λx + c2e

−x

Hence y ′ = −λc1e
λx − c2e

−x . First BC gives y ′ (0) = 0 → 0 = −λc1 − c2 or c2 = −λc1. Therefore the
solution becomes

y = c1e
−λx − λc1e

−x

= c1
(
e−λx − λe−x

)
Second BC gives y (1) = 0 → 0 = c1

(
e−λ − λe−1

)
For non-trivial solution, we need e−λ − λe−1 = 0. The

solution to this is λ = 1.
When λ = 1 the eigenfunction is

y (x) = c1 (e
−x − e−x ) = 0

But eigenfunction can not be zero. Therefore there is eigenvalue when λ > 0. Hence for all cases, there
is no eigenvalue with corresponding nonzero eigenfunction.

2.1.28 Chapter 11.1, problem 20

Determine the real eigenvalues and eigenfunctions.

x2y ′′ − λ (xy ′ − y) = 0

y (1) = 0

y (2) − y ′ (2) = 0

Solution
This is a Euler ODE. x2y ′′ − λxy ′ + λy = 0. Let y = xr , then y ′ = rxr−1,y ′′ = r (r − 1)xr−2. The ODE
becomes

x2r (r − 1)xr−2 − λxrxr−1 + λxr = 0

r (r − 1)xr − λrxr + λxr = 0

r (r − 1) − λr + λ = 0
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Case λ = 0
The characteristic equation becomes

r (r − 1) = 0

The roots are r = 0, r = 1, hence the solution is

y = c1 + c2x

At BC y (1) = 0 → 0 = c1+c2. Hence c1 = −c2 and the solution becomes y = c1−c1x = c1 (1 − x). Hence
y ′ = −c1. Second BC y (2) − y ′ (2) = 0 gives

0 = c1 (1 − 2) + c1
0 = −c1 + c1

0 = 0

Therefore any c1 will work. Giving a solution

y = c1 (1 − x)

Therefore λ = 0 is an eigenvalue with eigenfunction Φ0 (x) = 1 − x .
Case λ < 0 Let λ = −m2. The characteristic equation becomes

r (r − 1) +m2r −m2 = 0

r 2 − r +m2r −m2 = 0

r 2 + r
(
m2 − 1

)
−m2 = 0

The roots are

r =
−

(
m2 − 1

)
2

±
1
2

√
(m2 − 1)2 + 4m2

=
−

(
m2 − 1

)
2

±
1
2

√
m4 − 2m2 + 1 + 4m2

=
−

(
m2 − 1

)
2

±
1
2

√
(1 +m2)

2

= −
1
2

(
m2 − 1

)
±
1
2

(
1 +m2)

Roots are r = − 1
2

(
m2 − 1

)
+ 1

2

(
1 +m2) = 1 or r = − 1

2

(
m2 − 1

)
− 1

2

(
1 +m2) = −m2. Hence solution is

y = c1x + c2x
−m2

At BCy (1) = 0 → 0 = c2. Therefore the solution isy = c1x andy ′ = c1. Second BC givesy (2)−y ′ (2) = 0
or

0 = 2c1 − c1

0 = c1

Hence trivial solution. So λ < 0 is not an eigenvalue.
Case λ > 0
The characteristic equation becomes

r 2 − r − λr + λ = 0

r 2 − r (1 + λ) + λ = 0

The roots are

r =
1 + λ
2

±
1
2

√
(1 + λ)2 − 4λ

=
1 + λ
2

±
1
2

√
1 + λ2 − 2λ

=
1 + λ
2

±
1
2

√
(1 − λ)2

=
1 + λ
2

±
1
2
(1 − λ)

Roots are r = 1
2 (1 + λ) +

1
2 (1 − λ) = 1 or r = 1

2 (1 + λ) −
1
2 (1 − λ) = λ. Hence solution is

y = c1x + c2x
λ

This is similar to the case above for λ < 0. Hence there is no eigenvalue for λ > 0.
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2.1.29 Chapter 11.2, problem 1

Determine the normalized eigenfunction for

y ′′ + λy = 0 (1)
y (0) = 0

y ′ (1) = 0

Solution
The eigenfunction for the above problem can be easily found using chapter 10 methods to be

Φn (x) = sin
(√

λnx
)

n = 1, 3, 5, · · ·

Where
λn =

nπ

2L
=
nπ

2

The normalized Φ̂n (x) = knΦn (x). Where ∫ 1

0
Φ̂2
n (x)dx = 1

Hence solving the above for kn gives ∫ 1

0
(knΦn (x))

2 dx = 1

k2n

∫ 1

0
Φ2
n (x)dx = 1

But
∫1
0
Φ2
n (x)dx =

∫1
0
sin2

(√
λnx

)
dx =

∫1
0
sin2

( nπ
2 x

)
dx = 1

2 . Hence the above becomes

k2n
1
2
= 1

kn =
√
2

Therefore

Φ̂n (x) =
√
2Φn (x)

=
√
2 sin

(nπ
2
x
)

n = 1, 3, 5, · · ·

=

{
√
2 sin

(π
2
x
)
,
√
2 sin

(
3π
2
x

)
,
√
2 sin

(
5π
2
x

)
, · · ·

}
2.1.30 Chapter 11.2, problem 2

Determine the normalized eigenfunction for

y ′′ + λy = 0 (1)
y ′ (0) = 0

y (1) = 0

Solution
The eigenfunction for the above problem can be found using chapter 10 methods to be

Φn (x) = cos
(√

λnx
)

n = 1, 3, 5, · · ·

Where
λn =

nπ

2L
=
nπ

2

The normalized Φ̂n (x) = knΦn (x). Where ∫ 1

0
Φ̂2
n (x)dx = 1

Hence solving the above for kn gives ∫ 1

0
(knΦn (x))

2 dx = 1

k2n

∫ 1

0
Φ2
n (x)dx = 1
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But
∫1
0
Φ2
n (x)dx =

∫1
0
cos2

(√
λnx

)
dx =

∫1
0
cos2

( nπ
2 x

)
dx = 1

2 . Hence the above becomes

k2n
1
2
= 1

kn =
√
2

Therefore

Φ̂n (x) =
√
2Φn (x)

=
√
2 cos

(nπ
2
x
)

n = 1, 3, 5, · · ·

=

{
√
2 cos

(π
2
x
)
,
√
2 cos

(
3π
2
x

)
,
√
2 cos

(
5π
2
x

)
, · · ·

}
2.1.31 Chapter 11.2, problem 3

Determine the normalized eigenfunction for

y ′′ + λy = 0 (1)
y ′ (0) = 0

y ′ (1) = 0

Solution
The eigenfunctions are first found. Let the solution be y = Aerx . This leads to the characteristic equation

r 2 + λ = 0

r = ±
√
−λ

Case λ < 0
In this case −λ is positive and hence

√
−λ is also positive. Let

√
−λ = µ where µ > 0. Hence the roots

are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)

y ′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y ′ (0) = 0 gives

0 = c2µ

c2 = 0

Hence solution becomes
y (x) = c1 cosh (µx)

Second B.C. y ′ (1) = 0 gives
0 = c1µ sinh (µ)

But sinh (µ) can not be zero since µ , 0, hence c1 = 0, Leading to trivial solution. Therefore λ < 0 is not
eigenvalue.
Let λ = 0, The solution is

y (x) = c1 + c2x

First B.C. y ′ (0) = 0 gives
0 = c2

The solution becomes
y (x) = c1

Second B.C. y ′ (1) = 0 gives
0 = 0

Therefore c1 can be any value. Therefore λ = 0 is an eigenvalue and the corresponding eigenfunction is
any constant, say 1.
Case λ > 0, The solution is

y (x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
y ′ (x) = −c1

√
λ sin

(√
λx

)
+ c2

√
λ cos

(√
λx

)
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First B.C. y ′ (0) = 0 gives

0 = c2
√
λ

c2 = 0

The solution becomes
y (x) = c1 cos

(√
λx

)
Second B.C. y ′ (1) = 0 gives

0 = −c1
√
λ sin

(√
λ
)

For non-trivial solution, we want sin
(√

λ
)
= 0 or

√
λ = nπ for n = 1, 2, 3, · · · Therefore

λn = (nπ )2 n = 1, 2, 3, · · ·

And the corresponding eigenfunctions are

Φn (x) = cos
(√

λx
)

n = 1, 2, 3, · · ·

Hence

Φ0 (x) = 1

Φn (x) = cos
(√

λnx
)

n = 1, 2, 3, · · ·

The normalized Φ̂0 (x) = k0Φ0 (x). Where∫ 1

0
r (x) Φ̂2

0 (x)dx = 1

But r (x) = 1. Therefore solving the above for k0 gives∫ 1

0
(k0Φ0 (x))

2 dx = 1

k20

∫ 1

0
dx = 1

k0 = 1

And for n = 1, 2, 3, · · · we obtain ∫ 1

0
Φ̂2
n (x)dx = 1∫ 1

0
(knΦn (x))

2 dx = 1

k2n

∫ 1

0
Φ2
n (x)dx = 1

k2n

∫ 1

0
cos2

(√
nπx

)
dx = 1

But
∫1
0
cos2

(√
nπx

)
= 1

2 . Hence the above becomes

k2n
1
2
= 1

kn =
√
2

Therefore
Φ̂0 (x) = 1

And for n = 1, 2, 3, · · ·

Φ̂n (x) =
√
2Φn (x)

=
√
2 cos (nπx)

=
{√

2 cos (πx) ,
√
2 cos (2πx) ,

√
2 cos (3πx) , · · ·

}
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2.1.32 Chapter 11.2, problem 4

Determine the normalized eigenfunction for

y ′′ + λy = 0 (1)
y ′ (0) = 0

y ′ (1) + y (1) = 0

Solution
The eigenfunctions for the above problem are first found. Let the solution be y = Aerx . This leads to the
characteristic equation

r 2 + λ = 0

r = ±
√
−λ

Case λ < 0
In this case −λ is positive and hence

√
−λ is also positive. Let

√
−λ = µ where µ > 0. Hence the roots

are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)

y ′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y ′ (0) = 0 gives

0 = c2µ

c2 = 0

Hence solution becomes
y (x) = c1 cosh (µx)

Second B.C. y (1) + y ′ (1) = 0 gives

0 = c1 (cosh (µ) + µ sinh (µ))

But sinh (µ) can not be negative since its argument is positive here. And cosh µ is always positive. In
addition cosh (µ) + µ sinh (µ) can not be zero since sinh (µ) can not be zero as µ , 0 and cosh (µ) is not
zero. Therefore c1 = 0, Leading to trivial solution. Therefore λ < 0 is not eigenvalue.
Case λ = 0, The solution is

y (x) = c1 + c2x

First B.C. y ′ (0) = 0 gives
0 = c2

The solution becomes
y (x) = c1

Second B.C. y (1) + y ′ (1) = 0 gives
0 = c1

This gives trivial solution. Therefore λ = 0 is not eigenvalue.
Case λ > 0, The solution is

y (x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
y ′ (x) = −c1

√
λ sin

(√
λx

)
+ c2

√
λ cos

(√
λx

)
First B.C. y ′ (0) = 0 gives

0 = c2
√
λ

c2 = 0

The solution becomes
y (x) = c1 cos

(√
λx

)
Second B.C. y (1) + y ′ (1) = 0 gives

0 = c1 cos
(√

λ
)
− c1

√
λ sin

(√
λ
)

= c1
(
cos

(√
λ
)
−
√
λ sin

(√
λ
) )
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For non-trivial solution the above implies

cos
(√

λ
)
−
√
λ sin

(√
λ
)
= 0 (1)

Therefore the eigenvalues are the solution to the above nonlinear equation. And the corresponding
eigenfunctions are

Φn = cos
(√

λnx
)

n = 1, 2, 3, · · ·

Where λn are the roots of equation (1).
The normalized Φ̂n = knΦn eigenfunctions are now found.∫ 1

0
r (x) Φ̂2

ndx = 1

Since the weight function is r (x) = 1, then ∫ 1

0
Φ̂2
ndx = 1∫ 1

0
k2nΦ

2
ndx = 1

k2n

∫ 1

0
Φ2
ndx = 1

k2n

∫ 1

0
cos2

(√
λnx

)
dx = 1

But
∫1
0
cos2 (ax)dx =

( x
2 +

sin 2ax
4a

) 1
0 =

(
x
2 +

sin
(
2
√
λnx

)
4
√
λn

) 1
0

=

(
1
2 +

sin
(
2
√
λn

)
4
√
λn

)
=

(
2
√
λn+sin

(
2
√
λn

)
4
√
λn

)
. Hence

the above becomes

k2n =
1

2
√
λn+sin

(
2
√
λn

)
4
√
λn

=
4
√
λn

2
√
λn + sin

(
2
√
λn

)
But sin (2a) = 2 sina cosa and the above can be written as

k2n =
4
√
λn

2
√
λn + 2 sin

(√
λn

)
cos

√
λn

But from (1) earlier, we found cos
(√

λ
)
−
√
λ sin

(√
λ
)
= 0 or cos

(√
λ
)
=
√
λ sin

(√
λ
)
. Substituting this

into the above gives

k2n =
4
√
λn

2
√
λn + 2

√
λn sin2

(√
λn

)
And since λn , 0 the above simplifies to

k2n =
2

1 + sin2
(√

λn
)

=
4

4 + sin2
(√

λn
)

Therefore

kn =

√√√ 2

1 + sin2
(√

λn
)

Since there is no closed form solution to λn as it is a root of nonlinear equation
√
λn tan

(√
λnL

)
= 1.

Hence the normalized eigenfunctions are

Φ̂n = knΦn

=

√
2√

1 + sin2
(√

λn
) cos

(√
λnx

)
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2.1.33 Chapter 11.2, problem 5

Determine the normalized eigenfunction for

y ′′ − 2y ′ + (1 + λ)y = 0 (1)
y (0) = 0

y (1) = 0

Solution
Let y (x) = s (x)u (x). Then y ′ = s ′u + su ′ and y ′′ = s ′′u + s ′u ′ + s ′u ′ + su ′′ = s ′′u + 2 (s ′u ′) + su ′′.
Therefore the original ODE becomes

s ′′u + 2 (s ′u ′) + su ′′ − 2 (s ′u + su ′) + (1 + λ) su = 0

Collecting terms in u the above becomes

su ′′ + u ′ (2s ′ − 2s) + u ((1 + λ) s + s ′′ − 2s ′) = 0

To get rid of u ′ we therefore want 2s ′ − 2s = 0 or s ′ − s = 0. Hence the integrating factor is I = e−x

and the solution is obtained from d
dx (se−x ) = 0 or s = ex . Therefore, if s = ex then the original ODE

becomes

exu ′′ + u ((1 + λ) ex + ex − 2ex ) = 0

u ′′ + u ((1 + λ) + 1 − 2) = 0

u ′′ + u ((1 + λ) − 1) = 0

u ′′ + λu = 0

With the boundary conditions u (0) = y(0)
s(0) =

y(0)
e0 = 0 and u (1) = y(1)

s(1) = 0. Hence we need to find the
eigenfunctions for

u ′′ + λu = 0

u (0) = 0

u (1) = 0

But this we did before. It has Φn (x) = sin (nπx) for n = 1, 2, · · · . And the normalized Φ̂n (x) =√
2 sin (nπx). Mapping this normalized eigenfunction back to y (x) using the transformation y (x) =

s (x)u (x) gives the normalized eigenfunction in y space as

Φ̂n (x) = ex
√
2 sin (nπx) n = 1, 2, 3, · · ·

2.1.34 Chapter 11.2, Example 1 redone. page 690

Here, example 1 is solved again, but without using normalization. Showing that one does not need to
normalize the eigenfunctions as the book shows and will get same answer. Solve

y ′′ + 2y = −x (1)

With boundary conditions y (0) = 0,y (1) + y ′ (1) = 0. Using the method of eigenfunction expansion
without normalization.
Solution
The idea behind solving using eigenfunction expansion, is that

− (py ′)
′
+ q (x)y (x) = µr (x)y (x) + f (x) (1A)

Is solved using the eigenfunctions of the corresponding homogeneous eigenvalue ODE

− (py ′)
′
+ q (x)y (x) = λr (x)y (x) (2A)

Where in (1A) µ is just a constant. And in (2A), λ is an eigenvalue. Writing (1) in same form as (1A)
leads to

− (y ′)
′
− 2y = x

− (y ′)
′
= 2y + x (3A)

Therefore µ = 2 and r (x) = 1. The corresponding homogeneous eigenvalue problem is

− (y ′)
′
= λy (x)

Or
y ′′ + λy (x) = 0
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With boundary conditions y (0) = 0,y (1) + y ′ (1) = 0. The solution of the above is used to solve (3A),
which is the original ODE. The solution to the above eigenvalue problem was done before. The result is
that λn is the solution of nonlinear equation

sin
(√

λx
)
+
√
λ cos

(√
λx

)
= 0

Solving this numerically for the first 10 eigenvalues gives

λn = {4.116, 24.139, 63.659, 122.889, 201.851, 300.55, 418.987, 557.162, 715.077, 892.73}

And the eigenfunctions are

Φn (x) = sin
(√

λnx
)

n = 1, 2, 3, · · ·

Notice that the eigenfunction above is not normalized as in the text book. Now assuming that the
solution of the original nonhomogeneous ODE (3A) is given by

y (x) =
∞∑
n=1

bnΦn (x)

Where bn is unknown as of now and substituting the above into (3A) gives

−
d2

dx2

∞∑
n=1

bnΦn (x) = 2
∞∑
n=1

bnΦn (x) +
∞∑
n=1

qnΦn (x)

Where ∑∞
n=1 qnΦn (x) is the eigenfunction expansion of the forcing terms −x . In this expression qn is

still not known. Now assuming that differentiation can be moved inside the summation above (this
needs conditions which assumed valid here). The above equation now becomes

−
∞∑
n=1

bnΦ
′′
n (x) − 2

∞∑
n=1

bnΦn (x) =
∞∑
n=1

qnΦn (x) (1A)

qn is now found. This is done by applying orthogonality as follows. Let x = ∑∞
n=1 qnΦn (x). Multiplying

both sides by Φm (x) and integrating over the domain gives∫ 1

0
xΦm (x)dx =

∞∑
n=1

qn

∫ 1

0
Φn (x)Φm (x)dx∫ 1

0
xΦm (x)dx = qn

∫ 1

0
Φ2
m (x)dx (2)

Since Φn (x) is not normalized, one can not replace the integral by 1 as in the book. But since Φn (x) =

sin
(√

λnx
)
, the integrals can be evaluated as follows. The right side of (2) is

∫ 1

0
sin2

(√
λnx

)
dx =

1
2
−

sin
(
2
√
λn

)
4
√
λn

(3)

And the left side of (2) is found by integration by parts∫ 1

0
xΦm (x)dx =

∫ 1

0
x sin

(√
λnx

)
dx

=
sin

√
λn −

√
λn cos

√
λn

λn
(4)

Using (3) and (4) in (2) qn is solved for giving

sin
√
λn −

√
λn cos

√
λn

λn
= qn

©«
1
2
−

sin
(
2
√
λn

)
4
√
λn

ª®®¬
qn =

sin
√
λn −

√
λn cos

√
λn

λn

(
1
2 −

sin
(
2
√
λn

)
4
√
λn

) (5)

Now that qn is known, bn is found from (1A)

−
∞∑
n=1

bnΦ
′′
n (x) − 2

∞∑
n=1

bnΦn (x) =
∞∑
n=1

qnΦn (x)
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Since Φn (x) = sin
(√

λnx
)
then Φ′

n (x) =
√
λn cos

(√
λnx

)
,Φ′′

n (x) = −λn sin
(√

λnx
)
= −λnΦn (x) and

the above simplifies to
∞∑
n=1

bnλnΦn (x) − 2
∞∑
n=1

bnΦn (x) =
∞∑
n=1

qnΦn (x)

Canceling summations and also Φn (x) since Φn (x) , 0 the above simplifies to

bnλn − 2bn = qn

bn =
qn

λn − 2

Hence the solution to the original ODE is

y (x) =
∞∑
n=1

bnΦn (x)

=
∞∑
n=1

(
qn

λn − 2

)
sin

(√
λnx

)
Using the value found for qn in (5), the above becomes

y (x) =
∞∑
n=1

1
λn (λn − 2)

sin
√
λn −

√
λn cos

√
λn

1
2 −

sin
(
2
√
λn

)
4
√
λn

sin
(√

λnx
)

(6)

The above is the solution, found without normalization. The book solution is

y (x) = 4
∞∑
n=1

1
λn (λn − 2)

1(
1 + cos2

(√
λn

) ) sin
(√

λnx
)

(7)

To show that (6) and (7) are actually the same, they are plotted against each others, using 10 terms in
the sum, which is more than enough. The result shows identical plots.

Find eigenvalues numerically

In[ ]:= ClearAll[y, z, x, λ]

eigenvalues = x /. NSolve[Sin[x] + x Cos[x] ⩵ 0 && 0 < x < 30, x];

z = eigenvalues^2

Out[ ]= {4.11586, 24.1393, 63.6591, 122.889, 201.851, 300.55, 418.987, 557.162, 715.077, 892.73}

This is the solution without normalization

In[ ]:= max = Length@z;

yApproxNoNormalization[x_] := Sumλ = z[[n]];
1

λ (λ - 2)

Sin λ  - λ Cos λ 

1

2
-

Sin2 λ 

4 λ

Sin λ x, {n, 1, max}

In[ ]:= Plot[yApproxNoNormalization[x], {x, 0, 1}, GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red, PlotLabel → "No normalization"]

Out[ ]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No normalization

This is the solution using normalization (book solution)

In[ ]:= yApproxBook[x_] := 4 Sumλ = z[[n]];
Sin λ 

λ (λ - 2) 1 + Cos λ 
2


Sin λ x, {n, 1, max};

Plot[yApproxBook[x], {x, 0, 1}, GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red, PlotLabel → "Using normalization"]

Out[ ]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Using normalization

They also plotted against the solution found using standard methods, which is

y =
sin

(√
2x

)
sin

(√
2
)
+
√
2 cos

(√
2
) −

x

2

And both (6,7) matched exactly the above solution.
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2.1.35 Chapter 11.2 Problem 14

Determine if the given boundary value problem is self-adjoint

y ′′ + y ′ + 2y = 0

y (0) = 0

y (1) = 0

Solution
The ODE can be written as (y ′ + y)′ + 2y = 0. Hence the operator is

L [y] = (y ′ + y)′ + 2y

The ODE is self-adjoint if
〈L [u] ,v〉 = 〈u, L [v]〉

For any two functions u,v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

〈L [u] ,v〉 =

∫ 1

0
L [u]vdx

=

∫ 1

0

[
(u ′ + u)′ + 2u

]
vdx

=

∫ 1

0
(u ′ + u)′v + uvdx

=

∫ 1

0

dv︷   ︸︸   ︷
(u ′ + u)′

u︷︸︸︷
v dx +

∫ 1

0
uvdx (1)

integration by parts of the above gives

〈L [u] ,v〉 = [(u ′ + u)v]10 −

∫ 1

0
(u ′ + u)v ′dx +

∫ 1

0
uvdx

= [(u ′ + u)v]10 −

∫ 1

0
(u ′v ′ + uv ′)dx +

∫ 1

0
uvdx

= [(u ′ + u)v]10 −

(∫ 1

0
u ′v ′dx +

∫ 1

0
uv ′dx

)
+

∫ 1

0
uvdx

Integrating by parts the term
∫1
0
u ′v ′dx = [uv ′]10 −

∫1
0
uv ′′dx the above becomes

〈L [u] ,v〉 = [(u ′ + u)v]10 −

(
[uv ′]

1
0 −

∫ 1

0
uv ′′dx +

∫ 1

0
uv ′dx

)
+

∫ 1

0
uvdx

= [(u ′ + u)v − uv ′]
1
0 −

(
−

∫ 1

0
uv ′′dx +

∫ 1

0
uv ′dx

)
+

∫ 1

0
uvdx

= [(u ′ + u)v − uv ′]
1
0 +

∫ 1

0
uv ′′dx −

∫ 1

0
uv ′dx +

∫ 1

0
uvdx

= [(u ′ + u)v − uv ′]
1
0 +

∫ 1

0
(v ′′ −v ′ +v)udx

The above can never be 〈u, L [v]〉 even if the boundary terms vanish, since
∫1
0
(v ′′ −v ′ +v)udx ,∫1

0
(v ′′ +v ′ +v)udx . There is a different sign in the operator obtained. Hence the ode is not self adjoint.

2.1.36 Chapter 11.2, Problem 15

Determine if the given boundary value problem is self-adjoint(
1 + x2

)
y ′′ + 2xy ′ + y = 0

y ′ (0) = 0

y (1) + 2y ′ (1) = 0

Solution
The ODE can be written as ( (

1 + x2
)
y ′

) ′
+ y = 0

The operator
L [y] =

( (
1 + x2

)
y ′

) ′
+ y
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The ODE is self-adjoint if
〈L [u] ,v〉 = 〈u, L [v]〉

For any two functions u,v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

〈L [u] ,v〉 =

∫ 1

0
L [u]vdx

=

∫ 1

0

[ ( (
1 + x2

)
u ′

) ′
+ u

]
vdx

=

∫ 1

0

( (
1 + x2

)
u ′

) ′
v + uvdx

=

∫ 1

0

( (
1 + x2

)
u ′

) ′
vdx +

∫ 1

0
uvdx (1)

Starting with the first integral in (1) and using integration by parts

∫ 1

0

( (
1 + x2

)
u ′

) ′
vdx =

∫ 1

0

dv︷           ︸︸           ︷( (
1 + x2

)
u ′

) ′ u︷︸︸︷
v dx

By integration by parts, where
∫
udv = |uv | −

∫
vdu, the above becomes∫ 1

0

( (
1 + x2

)
u ′

) ′
vdx =

[ (
1 + x2

)
u ′v

] 1
0 −

∫ 1

0

(
1 + x2

)
u ′v ′dx

=
[ (
1 + x2

)
u ′v

] 1
0 −

∫ 1

0

u︷       ︸︸       ︷(
1 + x2

)
v ′

dv︷︸︸︷
u ′ dx

Doing integration by parts again. But notice the choice of u and dv made above. This is important in
order to get to the form needed. The above becomes∫ 1

0

( (
1 + x2

)
u ′

) ′
vdx =

[ (
1 + x2

)
u ′v

] 1
0 −

( [
u

(
1 + x2

)
v ′

] 1
0 −

∫ 1

0

( (
1 + x2

)
v ′

) ′
udx

)
=

[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 +

∫ 1

0

( (
1 + x2

)
v ′

) ′
udx

Going back to (1) and adding the second integral which is left there gives

〈L [u] ,v〉 =
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 +

∫ 1

0

( (
1 + x2

)
v ′

) ′
udx +

∫ 1

0
uvdx

=
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 +

∫ 1

0

[ ( (
1 + x2

)
v ′

) ′
+v

]
udx

But
∫1
0

[ ( (
1 + x2

)
v ′

) ′
+v

]
udx = 〈u, L [v]〉 , hence the above becomes

〈L [u] ,v〉 =
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 + 〈u, L [v]〉 (2)

We are almost there. If the boundary terms above all go to zero, then it is self-adjoint. If the boundary
terms do not vanish, then the problem is not self adjoint. Evaluating the boundary terms in (2)

∆ =
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0

= [2u ′ (1)v (1) − 2u (1)v ′ (1)] − [u ′ (0)v (0) − u (0)v ′ (0)]

Since u ′ (0) = 0 and v ′ (0) = 0, from the given boundary conditions, then above simplifies to

∆ = 2 (u ′ (1)v (1) − u (1)v ′ (1))

But u (1) = −2u ′ (1) and v (1) = −2v ′ (1), hence the above becomes

∆ = 2 (u ′ (1) (−2v ′ (1)) − (−2u ′ (1))v ′ (1))

= 4 (−u ′ (1)v ′ (1) + u ′ (1)v ′ (1))

= 0

Since the boundary terms ∆ vanish, then from (2)

〈L [u] ,v〉 = 〈u, L [v]〉 (3)

Hence the ODE is self-adjoint.
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2.1.37 Chapter 11.2, Problem 16

Determine if the given boundary value problem is self-adjoint

y ′′ + y = λy

y (0) − y ′ (1) = 0

y ′ (0) − y (1) = 0

Solution
The operator is

L [y] = y ′′ + y

The ODE is self-adjoint if
〈L [u] ,v〉 = 〈u, L [v]〉

For any two functions u,v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

〈L [u] ,v〉 =

∫ 1

0
L [u]vdx

=

∫ 1

0
(u ′′ + u)vdx

=

∫ 1

0
u ′′vdx +

∫ 1

0
uvdx

=

∫ 1

0

dv︷︸︸︷
u ′′

u︷︸︸︷
v dx +

∫ 1

0
uvdx (1)

Integrating by parts

〈L [u] ,v〉 = [u ′v]10 −

∫ 1

0

dv︷︸︸︷
u ′

u︷︸︸︷
v ′ dx +

∫ 1

0
uvdx

Integrating by parts again

〈L [u] ,v〉 = [u ′v]10 −

(
[uv ′]

1
0 −

∫ 1

0
uv ′′dx

)
+

∫ 1

0
uvdx

= [u ′v − uv ′]
1
0 +

∫ 1

0
uv ′′dx +

∫ 1

0
uvdx

= [u ′v − uv ′]
1
0 +

∫ 1

0
(v ′′ +v)udx

= [u ′v − uv ′]
1
0 + 〈u, L [v]〉 (2)

Hence if the boundary terms vanish, then it is self adjoint else it is not. Evaluating the boundary terms
in (2)

∆ = [u ′v − uv ′]
1
0

= [u ′ (1)v (1) − u (1)v ′ (1)] − [u ′ (0)v (0) − u (0)v ′ (0)]

But u ′ (1) = u (0) and v ′ (1) = v (0) and u ′ (0) = u (1) and v ′ (0) = v (1) from the given boundary
conditions. Substituting these into the above gives

∆ = [u (0)v (1) − u (1)v (0)] − [u (1)v (0) − u (0)v (1)]

= 2u (1)v (0)

, 0

Since the boundary terms ∆ do not vanish, then from (2)

〈L [u] ,v〉 , 〈u, L [v]〉

Hence the ODE is not self-adjoint.

2.1.38 Chapter 11.2, Problem 17

Determine if the given boundary value problem is self-adjoint(
1 + x2

)
y ′′ + 2xy ′ + y = λ

(
1 + x2

)
y

y (0) − y ′ (1) = 0

y ′ (0) + 2y (1) = 0
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Solution
The ode can be written as ( (

1 + x2
)
y ′

) ′
+ y = λ

(
1 + x2

)
y

Hence the operator is
L [y] =

( (
1 + x2

)
y ′

) ′
+ y

The ODE is self-adjoint if
〈L [u] ,v〉 = 〈u, L [v]〉

For any two functions u,v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

〈L [u] ,v〉 =

∫ 1

0
L [u]vdx

=

∫ 1

0

( ( (
1 + x2

)
u ′

) ′
+ u

)
vdx

=

∫ 1

0

dv︷           ︸︸           ︷( (
1 + x2

)
u ′

) ′ u︷︸︸︷
v dx +

∫ 1

0
uvdx

Integrating by parts

〈L [u] ,v〉 =
[ (
1 + x2

)
u ′v

] 1
0 −

∫ 1

0

(
1 + x2

)
u ′v ′dx +

∫ 1

0
uvdx

=
[ (
1 + x2

)
u ′v

] 1
0 −

∫ 1

0

u︷       ︸︸       ︷(
1 + x2

)
v ′

dv︷︸︸︷
u ′ dx +

∫ 1

0
uvdx

Integrating by parts

〈L [u] ,v〉 =
[ (
1 + x2

)
u ′v

] 1
0 −

( [
u

(
1 + x2

)
v ′

] 1
0 −

∫ 1

0

( (
1 + x2

)
v ′

) ′
udx

)
+

∫ 1

0
uvdx

=
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 +

∫ 1

0

( (
1 + x2

)
v ′

) ′
udx +

∫ 1

0
uvdx

=
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 +

∫ 1

0

[ ( (
1 + x2

)
v ′

) ′
+v

]
udx

=
[ (
1 + x2

)
u ′v − u

(
1 + x2

)
v ′

] 1
0 + 〈u, L [v]〉

Therefore, if the boundary terms vanish, then the ODE is self adjoint.

∆ = [2u ′ (1)v (1) − 2u (1)v ′ (1)] − [u ′ (0)v (0) − u (0)v ′ (0)]

But u ′ (1) = u (0) and v ′ (1) = v (0) and u ′ (0) = 2u (1) and v ′ (0) = 2v (1), from the given boundary
conditions. Substituting these in the above gives

∆ = [2u (0)v (1) − 2u (1)v (0)] − [2u (1)v (0) − u (0) 2v (1)]

= 2u (0)v (1) − 2u (1)v (0) − 2u (1)v (0) + u (0) 2v (1)

= 4u (0)v (1) − 4u (1)v (0)

= 0

Hence 〈L [u] ,v〉 = 〈u, L [v]〉 , therefore the ODE is self-adjoint.

2.1.39 Chapter 11.2, Problem 18

Determine if the given boundary value problem is self-adjoint

y ′′ + λy = 0

y (0) = 0

y (π ) + y ′ (π ) = 0

Solution
The ode can be written as

y ′′ = −λy

Hence L [y] = y ′′. The ODE is self-adjoint if

〈L [u] ,v〉 = 〈u, L [v]〉
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For any two functions u,v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

〈L [u] ,v〉 =

∫ π

0
L [u]vdx

=

∫ π

0
u ′′vdx

Integrating by parts once

〈L [u] ,v〉 = [u ′v]π0 −

∫ π

0
u ′v ′dx

Integrating by parts again

〈L [u] ,v〉 = [u ′v]π0 −

(
[uv ′]

π
0 −

∫ π

0
uv ′′dx

)
= [u ′v − uv ′]

π
0 +

∫ π

0
uv ′′dx

= [u ′v − uv ′]
π
0 + 〈u, L [v]〉

Now we will check if the boundary terms vanish or not.

∆ = [u ′v − uv ′]
π
0

= [u ′ (π )v (π ) − u (π )v ′ (π )] − [u ′ (0)v (0) − u (0)v ′ (0)]

Since u (0) = 0,v (0) = 0 then the above simplifies to

∆ = u ′ (π )v (π ) − u (π )v ′ (π )

But u ′ (π ) = −u (π ) and v ′ (π ) = −v (π ) the above becomes

∆ = −u (π )v (π ) + u (π )v (π )

= 0

Hence 〈L [u] ,v〉 = 〈u, L [v]〉 and the ODE is self adjoint.

2.1.40 Chapter 11.3, Problem 1

Solve by method of eigenfunction expansion

y ′′ + 2y = −x

y (0) = 0

y (1) = 0

Solution
The corresponding homogeneous eigenvalue ODE is y ′′ + λy = 0 with y (0) = 0,y (1) = 0. This was
solved before.

Φ̂n (x) =
√
2 sin

(√
λnx

)
λn = (nπ )2 n = 1, 2, 3, · · ·

Hence eigenvalues are λn =
{
π 2, 4π 2, 9π 2, · · ·

}
. None of the eigenvalues is 2. Therefore the solution to

the original ODE can be assumed to be

y =
∞∑
n=1

bnΦ̂n (x) (1)

Substituting this into the original ODE gives

∞∑
n=1

bnΦ̂
′′
n (x) + 2

∞∑
n=1

bnΦ̂n (x) = −x

Expanding −x using same basis function as the solution gives

∞∑
n=1

bnΦ̂
′′
n (x) + 2

∞∑
n=1

bnΦ̂n (x) =
∞∑
n=1

qnΦ̂n (x) (2)
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Where qn is found by applying orthogonality on

−x =
∞∑
n=1

qnΦ̂n (x)

−

∫ 1

0
xΦ̂m (x)dx =

∞∑
n=1

qn

∫ 1

0
Φ̂n (x) Φ̂m (x)dx

= qm

∫ 1

0
Φ̂2
m (x)dx

Since normalized,
∫1
0
Φ̂2
m (x)dx = 1 and the above simplifies to

−

∫ 1

0
xΦ̂m (x)dx = qm

But Φ̂m (x) =
√
2 sin (nπx) and the above becomes

−
√
2
∫ 1

0
x sin (nπx)dx = qn

Using
∫
x sin (ax)dx = sinax

a2 − x cosax
a the above gives

−
√
2

(
sin (nπx)

(nπ )2
−
x cos (nπx)

nπ

) 1
0

= qn

−
√
2

(
sin (nπ )

(nπ )2
−
cos (nπ )

nπ

)
= qn

√
2

(
cos (nπ )

nπ

)
= qn

√
2

(
−1n

nπ

)
= qn

Now that qn is found, then bn can be solved for form (2) above giving

∞∑
n=1

bnΦ̂
′′
n (x) + 2

∞∑
n=1

bnΦ̂n (x) =
∞∑
n=1

√
2

(
−1n

4nπ

)
Φ̂n (x) (2A)

But Φ̂′′
n (x) = −λnΦ̂n (x) since the eigenfunction satisfy the ode y ′′ = −λy and the above simplifies to

−
∞∑
n=1

bnλnΦ̂n (x) + 2
∞∑
n=1

bnΦ̂n (x) =
∞∑
n=1

√
2

(
−1n

4nπ

)
Φ̂n (x)

Since Φ̂n (x) , 0 the above simplifies to

−bnλn + 2bn =
√
2

(
−1n

nπ

)
Therefore

bn =

√
2
(
−1n

nπ

)
2 − λn

=

√
2 (−1)n(

2 − (nπ )2
)
nπ

Therefore the solution from (1) is

y =
∞∑
n=1

√
2 (−1)n(

2 − (nπ )2
)
nπ

Φ̂n (x)

But Φ̂n (x) =
√
2Φn (x) =

√
2 sin (nπx) and the above becomes

y = 2
∞∑
n=1

(−1)n(
2 − (nπ )2

)
nπ

sin (nπx)

Or

y = 2
∞∑
n=1

(−1)n+1(
(nπ )2 − 2

)
nπ

sin (nπx)
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2.1.41 Chapter 11.3, Problem 2

Solve by method of eigenfunction expansion

y ′′ + 2y = −x

y (0) = 0

y ′ (1) = 0

Solution
The corresponding homogeneous eigenvalue ODE is y ′′ + λy = 0 with y (0) = 0,y ′ (1) = 0. This was
solved before.

Φn (x) = sin
(√

λnx
)

λn =
(nπ
2

) 2
n = 1, 3, 5, · · ·

Or, to keep the sum continuous, it can be written as

λn =
(
(2n − 1)

π

2

) 2
n = 1, 2, 3, · · ·

The normalized eigenfunctions weight kn is found from solving
∫1
0
k2n sin

2 ( nπ
2 x

)
dx = 1 which results

in kn =
√
2

Hence
Φ̂n (x) =

√
2 sin

(
(2n − 1)

π

2
x
)

n = 1, 2, 3, · · ·

The eigenvalues are λn =
{ ( π

2

) 2
, 9

( π
2

) 2
, 25

( π
2

) 2
, · · ·

}
. None of the eigenvalues is 2. Therefore the

solution to the original ODE can be assumed to be

y =
∞∑
n=1

bnΦ̂n (x) (1)

Substituting this into the original ODE gives
∞∑
n=1

bnΦ̂
′′
n (x) + 2

∞∑
n=1

bnΦ̂n (x) = −x

Expanding −x using same basis function as the solution gives
∞∑
n=1

bnΦ̂
′′
n (x) + 2

∞∑
n=1

bnΦ̂n (x) =
∞∑
n=1

qnΦ̂n (x) (2)

Where qn is found by applying orthogonality on

−x =
∞∑
n=1

qnΦ̂n (x)

−

∫ 1

0
xΦ̂m (x)dx =

∞∑
n=1

qn

∫ 1

0
Φ̂n (x) Φ̂m (x)dx

= qm

∫ 1

0
Φ̂2
m (x)dx

Since normalized,
∫1
0
Φ̂2
m (x)dx = 1 and the above simplifies to

−

∫ 1

0
xΦ̂m (x)dx = qm

But Φ̂m (x) =
√
2 sin

(
(2n − 1) π2 x

)
and the above becomes

−
√
2
∫ 1

0
x sin

(
(2n − 1)

π

2
x
)
dx = qn

Using
∫
x sin (ax)dx = sinax

a2 − x cosax
a the above gives

−
√
2

(
sin

(
(2n − 1) π2 x

)(
(2n − 1) π2

) 2 −
x cos

(
(2n − 1) π2 x

)
(2n − 1) π2

) 1
0

= qn

−
√
2

(
sin

(
(2n − 1) π2 x

)(
(2n − 1) π2

) 2 −
cos

(
(2n − 1) π2 x

)
(2n − 1) π2

) 1
0

= qn

−
√
2

(
sin

(
(2n − 1) π2

)(
(2n − 1) π2

) 2 )
= qn
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Using sin
(
(2n − 1) π2

)
= − cos (nπ ) which for n = 1, 2, 3, · · · can be written as − (−1)n or (−1)n+1. The

above simplifies to

−
√
2

(
(−1)n+1(

(2n − 1) π2
) 2 ) = qn

√
2

(
(−1)n(

(2n − 1) π2
) 2 ) = qn

Now that qn is found, then bn can be solved for form (2) above giving

∞∑
n=1

bnΦ̂
′′
n (x) + 2

∞∑
n=1

bnΦ̂n (x) =
∞∑
n=1

(−1)n
√
2(

(2n − 1) π2
) 2 Φ̂n (x) (2A)

But Φ̂′′
n (x) = −λnΦ̂n (x) since the eigenfunction satisfy the ode y ′′ = −λy and the above simplifies to

−
∞∑
n=1

bnλnΦ̂n (x) + 2
∞∑
n=1

bnΦ̂n (x) =
∞∑
n=1

(−1)n
√
2(

(2n − 1) π2
) 2 Φ̂n (x)

Since Φ̂n (x) , 0 the above simplifies to

−bnλn + 2bn =
(−1)n

√
2(

(2n − 1) π2
) 2

Therefore

bn =

(−1)n
√
2(

(2n−1) π2
) 2

2 − λn

=

(−1)n
√
2(

(2n−1) π2
) 2(

2 −
(
(2n − 1) π2

) 2)
=

(−1)n
√
2(

2 − (2n − 1)2
( π
2

) 2) (
(2n − 1) π2

) 2
Therefore the solution from (1) is

y =
∞∑
n=1

(−1)n
√
2(

2 − (2n − 1)2
( π
2

) 2) (
(2n − 1) π2

) 2 Φ̂n (x)

But Φ̂n (x) =
√
2Φn (x) =

√
2 sin

(
(2n − 1) π2 x

)
and the above becomes

y = 2
∞∑
n=1

(−1)n+1(
(2n − 1)2

( π
2

) 2
− 2

) (
(2n − 1) π2

) 2 sin (
(2n − 1)

π

2
x
)

Since (2n − 1) π2 =
(
n − 1

2

)
π , the above can also be written as (to match back of book solution)

y = 2
∞∑
n=1

(−1)n+1( (
n − 1

2

) 2
π 2 − 2

) ( (
n − 1

2

)
π
) 2 sin ( (

n −
1
2

)
πx

)

2.1.42 Chapter 11.3, Problem 3

Solve by method of eigenfunction expansion

y ′′ + 2y = −x

y ′ (0) = 0

y ′ (1) = 0

Solution
The corresponding homogeneous eigenvalue ODE is y ′′ + λy = 0 with y ′ (0) = 0,y ′ (1) = 0. This was
solved above in Chapter 11.2, problem 3. The eigenvalues are

λn =
{
0, π 2, (2π )2 , (3π )2 , · · ·

}
= (nπ )2 n = 0, 1, 2, · · ·
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The normalized eigenfunctions are
Φ̂0 (x) = 1

And for n = 1, 2, 3, · · ·

Φ̂n (x) =
√
2Φn (x)

=
√
2 cos (nπx)

=
{√

2 cos (πx) ,
√
2 cos (2πx) ,

√
2 cos (3πx) , · · ·

}
Since none of the eigenvalues is 2, the solution to the original ODE can be assumed to be

y =
∞∑
n=0

bnΦ̂n (x) (1)

Substituting this into the original ODE gives

∞∑
n=0

bnΦ̂
′′
n (x) + 2

∞∑
n=0

bnΦ̂n (x) = −x

Expanding −x using same basis function as the solution gives

∞∑
n=0

bnΦ̂
′′
n (x) + 2

∞∑
n=0

bnΦ̂n (x) =
∞∑
n=0

cnΦ̂n (x) (2)

Where cn is found by applying orthogonality on

−x =
∞∑
n=0

cnΦ̂n (x)

−

∫ 1

0
xΦ̂m (x)dx =

∞∑
n=0

cn

∫ 1

0
Φ̂n (x) Φ̂m (x)dx

= cm

∫ 1

0
Φ̂2
m (x)dx

Since normalized then
∫1
0
Φ̂2
m (x)dx = 1 and the above simplifies to

−

∫ 1

0
xΦ̂n (x)dx = cn

For n = 0 the eigenfunction is Φ̂0 (x) = 1 and the above gives c0 = − 1
2

[
x2

] 1
0 = − 1

2 and for n > 0 the
eigenfunction is Φ̂n (x) =

√
2 cos (nπx) and the integrals becomes

−
√
2
∫ 1

0
x cos (nπx)dx = cn

Using
∫
x cos (ax)dx = cosax

a2 +
x sinax

a the above gives

cn = −
√
2

(
cos (nπx)

(nπ )2
+
x sin (nπx)

nπ

) 1
0

= −
√
2

(
cos (nπ )

(nπ )2
+
sin (nπ )
nπ

−
1

(nπ )2

)
= −

√
2

(
cos (nπ )

(nπ )2
−

1

(nπ )2

)
=

−
√
2

(nπ )2
(cos (nπ ) − 1) n = 1, 2, · · ·

When n is odd then cn = 2
√
2

(nπ )2
and when n is even it is zero. Now that qn is found, then bn can be solved

for form (2) above giving

∞∑
n=0

bnΦ̂
′′
n (x) + 2

∞∑
n=0

bnΦ̂n (x) =
∞∑
n=0

cnΦ̂n (x) (2A)

But Φ̂′′
n (x) = −λnΦ̂n (x) since the eigenfunction satisfies the ode y ′′ = −λy and the above simplifies to

−
∞∑
n=0

bnλnΦ̂n (x) + 2
∞∑
n=0

bnΦ̂n (x) =
∞∑
n=0

cnΦ̂n (x)
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Since Φ̂n (x) , 0 the above simplifies to

−bnλn + 2bn = cn

bn =
cn

2 − λn

Therefore the solution from (1) is

y =
∞∑
n=0

cn
2 − λn

Φ̂n (x)

=
c0

2 − λ0
Φ̂0 (x) +

∞∑
n=1,3,5, · · ·

cn
2 − λn

Φ̂n (x)

But λ0 = 0, c0 = − 1
2and Φ̂0 (x) = 1, therefore the above becomes

y (x) = −
1
4
+

∞∑
n=1,3,5, · · ·

2
√
2

(nπ )2

2 − (nπ )2
√
2 cos (nπx)

= −
1
4
+

∞∑
n=1,3,5, · · ·

2
√
2(

2 − (nπ )2
)
(nπ )2

√
2 cos (nπx)

= −
1
4
− 4

∞∑
n=1,3,5, · · ·

1(
(nπ )2 − 2

)
(nπ )2

cos (nπx)

To make the sum continuous, letm = (2n − 1) and nowm runs from 1, 2, 3, · · · and above becomes

y (x) = −
1
4
− 4

∞∑
n=1,3,5, · · ·

cos ((2n − 1)πx)(
((2n − 1)π )2 − 2

)
((2n − 1)π )2

2.1.43 Chapter 11.3, Problem 10

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y ′′ + π 2y = a + x

y (0) = 0

y (1) = 0

Solution
The eigenvalues of the corresponding homogenous eigenvalue ODEy ′′+λy = 0with same homogenous
boundary conditions are λn = (nπ )2 for n = 1, 2, · · · . Therefore one can see that λ1 is eigenvalue in the
original ODE y ′′ + π 2y = a + x . This means there is a solution (which will be non unique) only if the
forcing function is orthogonal to the specific eigenfunction Φ1 (x). Therefore the condition is∫ 1

0
f (x)Φ1 (x)dx = 0∫ 1

0
(a + x) sin (πx)dx = 0∫ 1

0
a sin (πx)dx +

∫ 1

0
x sin (πx)dx = 0

a
(
−
cosπx

π

) 1
0
+

[
sinπx
π 2 −

x cosπx
π

] 1
0
= 0

−
a

π
(cosπ − 1) +

[
sinπ
π 2 −

cosπ
π

]
= 0

−
a

π
(−1 − 1) +

[
−
−1
π

]
= 0

2a
π
+

1
π
= 0

Hence
a =

−1
2

Only when a is the above value, is there a solution. The original ODE is now solved using the direct
method (meaning, not eigenfunction expansion) when a = −1

2 as follows. Solve

y ′′ + π 2y = −
1
2
+ x

y (0) = 0

y (1) = 0
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The homogeneous solution is easily found to be yh = A cos (πx)+ B sin (πx). Since the RHS is a polyno-
mial, let the particular solution be yp = c1 + c2x . Then y ′

p = c2 and y ′′
p = 0. Then

π 2 (c1 + c2x) = −
1
2
+ x

c1π
2 + c2π

2x = −
1
2
+ x

Therefore c2π 2 = 1 or c2 = 1
π 2 and c1π 2 = − 1

2 or c1 = − 1
2π 2 . Hence yp = − 1

2π 2 +
1
π 2x . The solution is

y = yh + yp

= A cos (πx) + B sin (πx) −
1

2π 2 +
1
π 2x

Applying boundary conditions, at y (0) = 0 the above becomes

0 = A −
1

2π 2

A =
1

2π 2

Hence the solution becomes

y (x) =
1

2π 2 cos (πx) + B sin (πx) −
1

2π 2 +
1
π 2x

At y (1) = 0 the above gives

0 =
1

2π 2 cos (π ) + B sin (π ) −
1

2π 2 +
1
π 2

0 =
−1
2π 2 −

1
2π 2 +

1
π 2

0 = 0

Therefore B can be any value. Hence the final solution is

y (x) = 1
2π 2 cos (πx) + B sin (πx) + 1

π 2

(
x − 1

2

)
The solution is not unique as expected. Any arbitrary value of B gives a solution.

2.1.44 Chapter 11.3, Problem 11

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y ′′ + 4π 2y = a + x

y (0) = 0

y (1) = 0

Solution
The eigenvalues of the corresponding homogenous eigenvalue ODEy ′′+λy = 0with same homogenous
boundary conditions are λn = (nπ )2 for n = 1, 2, · · · . Therefore λ2 = 4π 2 is eigenvalue in the original
ODE y ′′ + 4π 2y = a + x . This means there is a solution (which will be non unique) only if the forcing
function is orthogonal to the eigenfunction Φ2 (x). Therefore the condition is∫ 1

0
f (x)Φ2 (x)dx = 0∫ 1

0
(a + x) sin (2πx)dx = 0∫ 1

0
a sin (2πx)dx +

∫ 1

0
x sin (2πx)dx = 0

a

(
−
cos 2πx

2π

) 1
0
+

[
sin (2πx)

4π 2 −
x cos (2πx)

2π

] 1
0
= 0

−
a

2π
(cos 2π − 1) +

[
sin 2π
4π 2 −

cos 2π
2π

]
= 0

−
a

2π
(1 − 1) +

[
−

1
2π

]
= 0

−
1
2π
= 0

But this is not possible. Hence there is no a which makes
∫1
0
(a + x) sin (2πx)dx = 0. This means there

is no solution for any a.
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2.1.45 Chapter 11.3, Problem 12

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y ′′ + π 2y = a

y ′ (0) = 0

y ′ (1) = 0

Solution
The eigenvalues of the corresponding homogenous eigenvalue ODEy ′′+λy = 0with same homogenous
boundary conditions are λ0 = 0 and λn = (nπ )2 for n = 1, 2, · · · . Therefore λ1 = π 2 is eigenvalue in
the original ODE y ′′ + π 2y = a + x . This means there is a solution (which will be non unique) only
if the forcing function is orthogonal to Φ1 (x). The eigenfunctions in this case are Φn (x) = cos (nπx).
Therefore the condition is ∫ 1

0
f (x)Φ1 (x)dx = 0∫ 1

0
a cos (πx)dx = 0

a

(
sinπx
π

) 1
0
= 0

a

π
(0) = 0

Hence any a will satisfy this. Therefore there is a solution for any a. The solution is

y = A cos (πx) + B sin (πx) + yp

Since the RHS is a constant, let yp = k . This leads to π 2k = a or k = a
π 2 . Hence the solution is

y = A cos (πx) + B sin (πx) +
a

π 2

Or
y ′ (x) = −πA sin (πx) + Bπ cos (πx)

At y ′ (0) = 0 the above becomes
0 = Bπ

Hence B = 0 and the solution now becomes

y = A cos (πx) +
a

π 2

y ′ = −Aπ sin (πx)

At y (1) = 0 the above becomes

0 = −Aπ sinπ

= −A (0)

Therefore A is arbitrary. Any A will give a solution. Hence the final solution is

y = A cos (πx) + a
π 2

For any A and where a is the given a in the original ODE which can take in any value.

2.1.46 Chapter 11.3, Problem 13

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y ′′ + π 2y = a − cosπx

y (0) = 0

y (1) = 0

Solution
The eigenvalues of the corresponding homogenous eigenvalue ODEy ′′+λy = 0with same homogenous
boundary conditions are λ0 = 0 and λn = (nπ )2 for n = 1, 2, · · · . Therefore λ1 = π 2 is eigenvalue in the
original ODE y ′′ + π 2y = a − cosπx . This means there is a solution (which will be non unique) only
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if the forcing function is orthogonal to Φ1 (x). The eigenfunctions in this case are Φn (x) = sin (nπx).
Therefore the condition is ∫ 1

0
f (x)Φ1 (x)dx = 0∫ 1

0
(a − cosπx) sin (πx)dx = 0∫ 1

0
a sin (πx)dx −

∫ 1

0
cos (πx) sin (πx)dx = 0

Using sinA cosB = 1
2 (sin (A − B) + sin (A + B)) then sin (πx) cos (πx) = 1

2 (sin (0) + sin (2πx)) =
1
2 sin (2πx)

and the above becomes ∫ 1

0
a sin (πx)dx −

1
2

∫ 1

0
sin (2πx)dx = 0

−
a

π
[cosπx]10 +

1
4π

[cos (2πx)]10 = 0

−
a

π
(cosπ − 1) +

1
4π

(cos (2π ) − 1) = 0

2a
π
= 0

Hence a = 0. Therefore there is a solution only when a = 0 . The original ODE then becomes

y ′′ + π 2y = − cosπx

The homogenous solution is
yh = A cos (πx) + B sin (πx)

Since the forcing function matches one of the basis solution, then the particular solution guess is
multiplied by extra x . Therefore

yp = x (c1 cos (πx) + c2 sin (πx))

y ′
p = c1 cos (πx) + c2 sin (πx) + x (−c1π sin (πx) + c2π cos (πx))

y ′′
p = −c1π sin (πx) + c2π cos (πx) + (−c1π sin (πx) + c2π cos (πx)) + x

(
−c1π

2 cos (πx) − c2π
2 sin (πx)

)
= sin (πx)

(
−2c1π − c2π

2x
)
+ cos (πx)

(
2c2π − c1xπ

2)
Substituting back into the ODE gives

sin (πx)
(
−2c1π − c2π

2x
)
+ cos (πx)

(
2c2π − c1xπ

2) + π 2 (x (c1 cos (πx) + c2 sin (πx))) = − cosπx

sin (πx)
(
−2c1π − c2π

2x + π 2xc2
)
+ cos (πx)

(
2c2π − c1xπ

2 + π 2xc1
)
= − cosπx

−2c1π sin (πx) + 2c2π cos (πx) = − cosπx

Hence

−2c1π = 0

2c2π = −1

Or

c1 = 0

c2 = −
1
2π

Therefore
yp = −

1
2π

x sin (πx)

And the general solution is

y (x) = A cos (πx) + B sin (πx) −
1
2π

x sin (πx)

At y (0) = 0 the above becomes
0 = A cos (πx)

Hence A = 0 and the solution now becomes

y (x) = B sin (πx) − 1
2π x sin (πx)

One can stop here, since it is known that the solution is not unique and must contain an arbitrary
constant. It is not possible to solve for B using the second boundary conditions.
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2.1.47 Chapter 11.3, Problem 16

Show that the problem y ′′ + π 2y = π 2x,y (0) = 1,y (1) = 0 has solution y = c1 sinπx + c2 cosπx + x
also show that the solution can not be obtained by splitting the problem as suggested in problem 15
since neither of the two subsidiary problems can be solve in this case.
Solution
To attempt to solve the problem by splitting, the solution is first assumed to be y = u +v where u is the
solution to u ′′ + π 2u = 0,u (0) = 1,u (1) = 0 and v is the solution to v ′′ + π 2v = π 2x,v (0) = 0,v (1) = 0.
Let us now try to solve the u ODE. The solution is

u (x) = A cosπx + B sinπx

Applying first BC u (0) = 1 gives A = 1. Hence the solution becomes u = cosπx + B sinπx . Applying
second BC u (1) = 0 gives

0 = cosπ + B sinπ

0 = 1 + B tanπ

B =
−1

tanπ
=

−1
0

Therefore there is no solution for u. Hence no solution is possible by splitting it was suggested in
problem 15 for this problem. Now the problem is solved using the direct method. The homogeneous
solution is

yh = A cosπx + B sinπx

Since the forcing function π 2x is a polynomial, let yp guess be yp = kxsubstituting this back into the
ODE gives k = 1. Hence the solution becomes

y = yh + yp

= A cosπx + B sinπx + x

Applying first BC y (0) = 1 gives 1 = A. Hence the solution now becomes y = cosπx + B sinπx + x .
Applying second BC y (1) = 0 gives

0 = cosπ + B sinπ + 1

0 = −1 + B tanπ + 1

0 = B tanπ

0 = B (0)

Therefore, any B will work. Hence the solution is not unique. Let B = 1. Therefore the final solution is

y = cosπx + sinπx + x

This is solution is not unique. This is also a solution y = cosπx + 3 sinπx + x and also this y =
cosπx + 100 sinπx + x and also y = cosπx + x and so on.

2.1.48 Chapter 11.3, Problem 19 (With interactive animation)

Use eigenfunction expansion to solve

ut = uxx − x

With initial condition u (x, 0) = sin
( πx

2

)
and boundary conditions u (0, t) = 0,ux (1, t) = 0

Solution
The homogenous PDE is first solved to find the eigenfunctions, and these are used to expand the non-
homogenous term −x in the PDE. By separation of variables, the spatial eigenvalue ODE is

X ′′ + λX = 0

X (0) = 0

X ′ (1) = 0

The eigenfunctions for this ODE are Φn (x) = sin
(√

λnx
)
with λn =

( nπ
2

) 2 for n = 1, 3, 5, · · · . or

λn = (2n − 1)2
( π
2

) 2 for n = 1, 2, 3, · · · . with now Φn (x) = sin
(
(2n − 1) π2 x

)
.

The normalized eigenfunctions are Φ̂n (x) =
√
2 sin

(√
λnx

)
. Using these, the original PDE is now solved

by assuming the solution is

u (x, t) =
∞∑
n=1

bn (t) Φ̂n (x)
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The coefficient bn (t) must be a function of time, since it includes all time contributions to the solution.
Substituting the above back into the original PDE gives

∞∑
n=1

b ′n (t) Φ̂n (x) =
d2

dx2

∞∑
n=1

bn (t) Φ̂n (x) +
∞∑
n=1

cnΦ̂n (x)

Where ∑∞
n=1 cnΦ̂n (x) is the eigenfunction expansion of −x . Assuming term by term differentiation is

allowed (can be shown to be justified here), the above becomes
∞∑
n=1

b ′n (t) Φ̂n (x) =
∞∑
n=1

bn (t) Φ̂
′′
n (x) +

∞∑
n=1

cnΦ̂n (x)

But Φ̂′′
n (x) = −λnΦ̂n (x) then the above becomes

∞∑
n=1

(
b ′n (t) + λnbn (t)

)
Φ̂n (x) =

∞∑
n=1

cnΦ̂n (x) (1)

Now cn is found. Since −x = ∑∞
n=1 cnΦ̂n (x), then applying orthogonality gives

−

∫ 1

0
r (x)xΦ̂m (x)dx =

∞∑
n=1

cn

∫ 1

0
r (x) Φ̂n (x) Φ̂mdx

But the weight r (x) = 1, hence the above simplifies to

−

∫ 1

0
xΦ̂m (x)dx = cn

∫ 1

0
Φ̂2
m (x)dx

Since eigenfunctions are normalized, then
∫1
0
r (x) Φ̂2

m (x)dx = 1 and the above reduces to

cn = −

∫ 1

0
xΦ̂n (x)dx

= −

∫ 1

0
x
√
2 sin

(
(2n − 1)

π

2

)
dx

= −
√
2

[
sin

(
(2n − 1) π2 x

)(
(2n − 1) π2

) 2 −
x cos

(
(2n − 1) π2 x

)
(2n − 1) π2

] 1
0

= −
√
2

[
sin

(
(2n − 1) π2

)(
(2n − 1) π2

) 2 −
cos

(
(2n − 1) π2

)
(2n − 1) π2

]
But cos

(
(2n − 1) π2

)
= 0 for all n, and the above now simplifies to

cn = −
√
2
sin

(
(2n − 1) π2

)(
(2n − 1) π2

) 2
= −4

√
2
sin

(
(2n − 1) π2

)
((2n − 1)π )2

But sin
(
(2n − 1) π2

)
= (−1)n−1 for n = 1, 2, 3, · · · , hence the above becomes

cn = −4
√
2

(−1)n−1

((2n − 1)π )2

= 4
√
2

(−1)n

((2n − 1)π )2

Now that cn is found, (1) is used to solve for bn (t)
∞∑
n=1

(
b ′n (t) + λnbn (t)

)
Φ̂n (x) =

∞∑
n=1

cnΦ̂n (x)

The above simplifies to
b ′n (t) + λnbn (t) = cn

The integrating factor is e
∫
λndt = eλnt , therefore d

dt

(
bn (t) e

λnt
)
= cne

λnt . Integrating gives

bn (t) e
λnt = b (0) + cn

∫ t

0
eλnsds

bn (t) = b (0) e
−λnt + cne

−λnt
∫ t

0
eλnsds

= b (0) e−λnt + cne
−λnt

(
eλnt − 1

)
λn

= b (0) e−λnt +
cn
λn

(
1 − e−λnt

)
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Therefore the solution becomes

u (x, t) =
∞∑
n=1

bn (t) Φ̂n (x)

=
∞∑
n=1

(
b (0) e−λnt +

cn
λn

(
1 − e−λnt

) )
Φ̂n (x) (2)

At t = 0, the initial conditions is u (x, 0) = sin
( πx

2

)
, therefore the above becomes

sin
(πx
2

)
=

∞∑
n=1

(
b (0) +

cn
λn

(1 − 1)

)
Φ̂n (x)

=
∞∑
n=1

b (0) Φ̂n (x)

=
∞∑
n=1

b (0)
√
2 sin

(
(2n − 1)

π

2
x
)

Hence only n = 1 gives a solution for b (0), and therefore the above becomes

sin
(πx
2

)
= b (0)

√
2 sin

(π
2
x
)

Or
b (0) = 1√

2

Therefore the solution (2) now becomes

u (x, t) =

(
b (0) e−λ1t + c1e

−λ1t

(
eλ1t − 1

)
λ1

)
Φ̂1 (x) +

∞∑
n=2

cn
λn

(
1 − e−λnt

)
Φ̂n (x) (3)

Where

cn = 4
√
2

(−1)n

((2n − 1)π )2

b (0) =
1
√
2

λn =
(
(2n − 1)

π

2

) 2
n = 1, 2, 3, · · ·

Φ̂n (x) =
√
2 sin

(
(2n − 1)

π

2
x
)

Hence the solution (3) becomes

u (x, t) =
©«
1
√
2
e−

π 2
4 t + c1e

− π 2
4 t

(
e
π 2
4 t − 1

)
π 2

4

ª®®¬
√
2 sin

(π
2
x
)

+
∞∑
n=2

cn

(2n − 1)2 π 2

4

(
1 − e−

(
(2n−1) π2

) 2t ) √2 sin (
(2n − 1)

π

2
x
)

To make it the same as back of the book solution, some more manipulation is needed.

u (x, t) = e−
π 2
4 t sin

(π
2
x
)
+ 4

√
2
c1
π 2e

− π 2
4 t

(
e
π 2
4 t − 1

)
sin

(π
2
x
)

+
√
2

∞∑
n=2

4cn
(2n − 1)2 π 2

e−
(
(2n−1) π2

) 2t (
e
(
(2n−1) π2

) 2t − 1
)
sin

(
(2n − 1)

π

2
x
)

Or

u (x, t) = e−
π 2
4 t sin

(π
2
x
)
+ 4

√
2
c1
π 2

(
1 − e−

π 2
4 t

)
sin

(π
2
x
)

+
√
2

∞∑
n=2

4cn
(2n − 1)2 π 2

(
1 − e−

(
(2n−1) π2

) 2t ) sin (
(2n − 1)

π

2
x
)

Or

u (x, t) = e−
π 2
4 t sin

(π
2
x
)
+ 4

√
2
c1
π 2 sin

(π
2
x
)
− 4

√
2
c1
π 2e

− π 2
4 t sin

(π
2
x
)

+
√
2

∞∑
n=2

4cn
(2n − 1)2 π 2

(
1 − e−

(
(2n−1) π2

) 2t ) sin (
(2n − 1)

π

2
x
)
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Or

u (x, t) =
√
2

[
4
c1
π 2 +

(
1
√
2
− 4

c1
π 2

)
e−

π 2
4 t

]
sin

(π
2
x
)

+
√
2

∞∑
n=2

4cn
(2n − 1)2 π 2

(
1 − e−

(
(2n−1) π2

) 2t ) sin (
(2n − 1)

π

2
x
)

The back of the book uses cn = 4
√
2 (−1)n+1

((2n−1)π )2
instead of cn = 4

√
2 (−1)n

((2n−1)π )2
as was done in this solution.

Therefore, changing cn to be as the back of the book means flipping the sign of each cn . (or multiplying
by −1). Hence the solution becomes now the same as the back of the book

u (x, t) =
√
2

[
−4

c1
π 2 +

(
1
√
2
+ 4

c1
π 2

)
e−

π 2
4 t

]
sin

(π
2
x
)

−
√
2

∞∑
n=2

4cn
(2n − 1)2 π 2

(
1 − e−

(
(2n−1) π2

) 2t ) sin (
(2n − 1)

π

2
x
)

Where in the above,

cn = 4
√
2

(−1)n+1

((2n − 1)π )2

Both solutions are the same. The sign is either added to cn or left outside. This completes the solution.
The following is an animation of the above solution for 1.8 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

2.1.49 Chapter 11.3, Problem 20 (With interactive animation)

Use eigenfunction expansion to solve
ut = uxx + e

−t

With initial condition u (x, 0) = 1 − x and boundary conditions ux (0, t) = 0,ux (1, t) + u (1, t) = 0
Solution
The homogenous PDE is solved first to obtain the eigenfunctions. These are then used to expand the
non-homogenous term e−t in the PDE. By separation of variables, the spatial eigenvalue ODE is

X ′′ + λX = 0

X ′ (0) = 0

X ′ (1) + X (1) = 0

The eigenfunctions for this ODE were found earlier in problem 4, Chapter 11.2. They are

Φ̂n = knΦn

=

√
2√

1 + sin2
(√

λn
) cos

(√
λnx

)
Where λn are the roots of

cos
(√

λn
)
−

√
λn sin

(√
λn

)
= 0
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For n = 1, 2, 3, · · · . Using these, the original PDE is now solved by assuming the solution is

u (x, t) =
∞∑
n=1

bn (t) Φ̂n (x)

The coefficient bn (t) must be a function of time, since it includes all time contributions to the solution.
Substituting the above back into the original PDE gives

∞∑
n=1

b ′n (t) Φ̂n (x) =
d2

dx2

∞∑
n=1

bn (t) Φ̂n (x) +
∞∑
n=1

cn (t) Φ̂n (x)

Where ∑∞
n=1 cn (t) Φ̂n (x) is the eigenfunction expansion of e−t . In the above cn (t) is now a function of

time, since the forcing function depends on time in this problem. Assuming term by term differentiation
is allowed the above becomes

∞∑
n=1

b ′n (t) Φ̂n (x) =
∞∑
n=1

bn (t) Φ̂
′′
n (x) +

∞∑
n=1

cn (t) Φ̂n (x)

But Φ̂′′
n (x) = −λnΦ̂n (x) therefore

∞∑
n=1

(
b ′n (t) + λnbn (t)

)
Φ̂n (x) =

∞∑
n=1

cn (t) Φ̂n (x) (1)

Now cn (t) is found. Since e−t =
∑∞

n=1 cn (t) Φ̂n (x), then applying orthogonality gives∫ 1

0
r (x) e−t Φ̂m (x)dx =

∞∑
n=1

cn (t)

∫ 1

0
r (x) Φ̂n (x) Φ̂mdx

But the weight r (x) = 1, hence the above simplifies to

e−t
∫ 1

0
Φ̂m (x)dx = cn (t)

∫ 1

0
Φ̂2
m (x)dx

Since eigenfunctions are normalized, then
∫1
0
r (x) Φ̂2

m (x)dx = 1 and the above reduces to

e−t
∫ 1

0
Φ̂m (x)dx = cn (t)

Hence

cn (t) = e−t
∫ 1

0
kn cos

(√
λnx

)
dx

= e−t
kn
√
λn

[
sin

(√
λnx

) ] 1
0

= e−t
kn
√
λn

sin
(√

λn
)

(2)

To make it match the way the back of the book expressed the above, let us write

cn (t) = e−tcn

Where now
cn =

kn
√
λn

sin
(√

λn
)

This makes it easier to verify the final solution found here is the same as the back of the book.
Now that cn (t) is found, (1) is used to solve for bn (t)

∞∑
n=1

(
b ′n (t) + λnbn (t)

)
Φ̂n (x) =

∞∑
n=1

e−tcnΦ̂n (x)

The above simplifies to
b ′n (t) + λnbn (t) = e−tcn

The integrating factor is e
∫
λndt = eλnt , therefore d

dt

(
bn (t) e

λnt
)
= e−tcne

λnt . Integrating gives

bn (t) e
λnt = b (0) + cn

∫ t

0
e−seλnsds

bn (t) = b (0) e
−λnt + cne

−λnt
∫ t

0
e(λn−1)sds

= b (0) e−λnt + cne
−λnt

[
e(λn−1)s

] t
0

λn − 1

= b (0) e−λnt + cne
−λnt e

(λn−1)t − 1
λn − 1

(3)
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Using the above in u (x, t) = ∑∞
n=1 bn (t) Φ̂n (x) gives the solution as

u (x, t) =
∞∑
n=1

(
b (0) e−λnt + cne

−λnt e
(λn−1)t − 1
λn − 1

)
Φ̂n (x) (4)

At t = 0, the above simplifies to

1 − x =
∞∑
n=1

b (0) Φ̂n (x)

Applying orthogonality gives∫ 1

0
r (x) (1 − x) Φ̂m (x)dx =

∞∑
n=1

b (0)
∫ 1

0
r (x) Φ̂n (x) Φ̂m (x)dx∫ 1

0
r (x) (1 − x) Φ̂m (x)dx = b (0)

∫ 1

0
r (x) Φ̂2

m (x)dx

But r (x) = 1 and
∫1
0
r (x) Φ̂2

m (x)dx = 1 therefore

b (0) =
∫ 1

0
(1 − x) Φ̂n (x)dx

=

∫ 1

0
Φ̂n (x)dx −

∫ 1

0
xΦ̂n (x)dx

= kn

(∫ 1

0
Φn (x)dx −

∫ 1

0
xΦn (x)dx

)
But Φn (x) = cos

(√
λnx

)
, hence the above becomes

b (0) = kn

(∫ 1

0
cos

(√
λnx

)
dx −

∫ 1

0
x cos

(√
λnx

)
dx

)
= kn

©«

sin

(√
λnx

)
√
λn


1

0

−


cos

(√
λnx

)
λn

+
x sin

(√
λnx

)
√
λn


1

0

ª®®®¬
= kn

©«

sin

(√
λn

)
√
λn

 −

cos

(√
λn

)
λn

+
sin

(√
λn

)
√
λn

−
1
λn


ª®®¬

= kn
©«
sin

(√
λn

)
√
λn

−

cos
(√

λn
)

λn
−

sin
(√

λn
)

√
λn

+
1
λn

ª®®¬
=
kn
λn

(
1 − cos

(√
λn

) )
Now that b (0) is found, then the solution (4) becomes

u (x, t) =
∞∑
n=1

(
kn
λn

(
1 − cos

(√
λn

) )
e−λnt + cne

−λnt e
(λn−1)t − 1
λn − 1

)
Φ̂n (x)

=
∞∑
n=1

(
kn
λn

(
1 − cos

(√
λn

) )
e−λnt +

cn
λn − 1

(
e−t − e−λnt

) )
kn cos

(√
λnx

)
But kn =

√
2√

1+sin2
(√

λn
) , hence the above becomes

u (x, t) =
√
2

∞∑
n=1

(
αne

−λnt +
cn

λn − 1

(
e−t − e−λnt

) ) cos
(√

λnx
)

√
1 + sin2

(√
λn

)
Where

αn =
kn
λn

(
1 − cos

(√
λn

) )
=

√
2
(
1 − cos

(√
λn

) )
λn

√
1 + sin2

(√
λn

)
And
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cn =
kn
√
λn

sin
(√

λn
)

=

√
2

√
λn

sin
(√

λn
)

√
1 + sin2

(√
λn

)
The following is an animation of the above solution for 6 seconds. This runs inside the PDF (need to use
standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser PDF
reader).

2.1.50 Chapter 11.3, Problem 22 (With interactive animation)

Use eigenfunction expansion to solve

ut = uxx + e
−t (1 − x)

With initial condition u (x, 0) = 0 and boundary conditions u (0, t) = 0,ux (1, t) = 0
Solution
The homogenous PDE is solved first to obtain the eigenfunctions. These are then used to expand the
non-homogenous term e−t (1 − x) in the PDE. By separation of variables, the spatial eigenvalue ODE is

X ′′ + λX = 0

X (0) = 0

X ′ (1) = 0

The eigenfunctions for this ODE were found earlier. They are

Φ̂n = knΦn

=
√
2 sin

(√
λnx

)
Where λn =

( nπ
2

) 2 for n = 1, 3, 5, · · · . Or

Φ̂n =
√
2 sin

(√
λnx

)
λn =

(
(2n − 1)

π

2

) 2
n = 1, 2, 3, · · ·

The original PDE is now solved by assuming the solution is

u (x, t) =
∞∑
n=1

bn (t) Φ̂n (x)

The coefficient bn (t) must be a function of time, since it includes all time contributions to the solution.
Substituting the above back into the original PDE gives

∞∑
n=1

b ′n (t) Φ̂n (x) =
d2

dx2

∞∑
n=1

bn (t) Φ̂n (x) +
∞∑
n=1

cn (t) Φ̂n (x)
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Where ∑∞
n=1 cn (t) Φ̂n (x) is the eigenfunction expansion of e−t (1 − x). In the above cn (t) is now a

function of time, since the forcing function depends on time in this problem. Assuming term by term
differentiation is allowed the above becomes

∞∑
n=1

b ′n (t) Φ̂n (x) =
∞∑
n=1

bn (t) Φ̂
′′
n (x) +

∞∑
n=1

cn (t) Φ̂n (x)

But Φ̂′′
n (x) = −λnΦ̂n (x) therefore

∞∑
n=1

(
b ′n (t) + λnbn (t)

)
Φ̂n (x) =

∞∑
n=1

cn (t) Φ̂n (x) (1)

Now cn (t) is found. Since e−t (1 − x) =
∑∞

n=1 cn (t) Φ̂n (x), then applying orthogonality gives∫ 1

0
r (x) e−t (1 − x) Φ̂m (x)dx =

∞∑
n=1

cn (t)

∫ 1

0
r (x) Φ̂n (x) Φ̂mdx

But the weight r (x) = 1, hence the above simplifies to

e−t
∫ 1

0
(1 − x) Φ̂m (x)dx = cn (t)

∫ 1

0
Φ̂2
m (x)dx

Since eigenfunctions are normalized, then
∫1
0
r (x) Φ̂2

m (x)dx = 1 and the above reduces to

e−t
∫ 1

0
(1 − x) Φ̂m (x)dx = cn (t)

Hence

cn (t) = e−t
∫ 1

0
(1 − x)kn sin

(√
λnx

)
dx

= e−t
√
2

(∫ 1

0
sin

(√
λnx

)
dx −

∫ 1

0
x sin

(√
λnx

)
dx

)
= e−t

√
2
©«

− cos

(√
λnx

)
√
λn


1

0

−

[
sin

√
λnx

λn
−
x cos

√
λnx

√
λn

] 1
0

ª®®®¬
= e−t

√
2
©«

− cos

(√
λn

)
√
λn

+
1

√
λn

 −
[
sin

√
λn

λn
−
cos

√
λn

√
λn

] ª®®¬
= e−t

√
2
©«
− cos

(√
λn

)
√
λn

+
1

√
λn

−
sin

√
λn

λn
+
cos

√
λn

√
λn

ª®®¬
= e−t

√
2

(
1

√
λn

−
sin

√
λn

λn

)
= e−t

√
2

λn

(√
λn − sin

√
λn

)
(2)

But λn = (2n − 1) π2 , therefore sin
(
(2n − 1) π2

)
= {1,−1, 1,−1, · · · } or (−1)n−1 and the above becomes

cn (t) = e−t
√
2

λn

(√
λn − (−1)n−1

)
= e−t

√
2

λn

(√
λn + (−1)

n
)

= e−t
√
2

λn

(√
λn + (−1)

n
)

To make it match the way the back of the book expressed the above, let us write

cn (t) = e−tcn

Where

cn =

√
2

λn

(√
λn + (−1)

n
)

(2A)

Now that cn (t) is found, (1) is used to solve for bn (t)

∞∑
n=1

(
b ′n (t) + λnbn (t)

)
Φ̂n (x) =

∞∑
n=1

e−tcnΦ̂n (x)
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The above simplifies to
b ′n (t) + λnbn (t) = e−tcn

The integrating factor is e
∫
λndt = eλnt , therefore d

dt

(
bn (t) e

λnt
)
= e−tcne

λnt . Integrating gives

bn (t) e
λnt = b (0) + cn

∫ t

0
e−seλnsds

bn (t) = b (0) e
−λnt + cne

−λnt
∫ t

0
e(λn−1)sds

= b (0) e−λnt + cne
−λnt

[
e(λn−1)s

] t
0

λn − 1

= b (0) e−λnt + cne
−λnt e

(λn−1)t − 1
λn − 1

(3)

Using the above in u (x, t) = ∑∞
n=1 bn (t) Φ̂n (x) gives the solution as

u (x, t) =
∞∑
n=1

(
b (0) e−λnt + cne

−λnt e
(λn−1)t − 1
λn − 1

)
Φ̂n (x) (4)

At t = 0, the initial conditions are zero, and above simplifies to

0 =
∞∑
n=1

b (0) Φ̂n (x)

Which implies b (0) = 0. Now that b (0) is found, then the solution (4) becomes

u (x, t) =
∞∑
n=1

cne
−λnt e

(λn−1)t − 1
λn − 1

Φ̂n (x)

=
√
2

∞∑
n=1

cn

(
e−t − e−λnt

λn − 1

)
sin

(√
λnx

)
Where cn =

√
2

λn

(√
λn + (−1)

n
)
and λn =

(
(2n − 1) π2

) 2. This completes the solution.
The solution was animated and verified it is correct against a numerical solution.
The following is an animation of the above solution for 5 seconds. This runs inside the PDF (need to use
standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser PDF
reader).

2.1.51 Chapter 11.3, Problem 24 (With interactive animation)

Solve
ut = uxx − 2

With initial condition u (x, 0) = x2 − 2x + 2 and boundary conditions u (0, t) = 1,u (1, t) = 0
Solution
Let

u (x, t) = w (x, t) +v (x)
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where v (x) is steady state solution which only needs to satisfy the non-homogenous boundary condi-
tions andw (x, t) is the transient solution which needs to satisfy the homogeneous boundary conditions.
At steady state, the PDE becomes an ODE

0 = v ′′ (x) − 2

This has the solution
v (x) = c1 + c2x + x

2

Where x2 is the particular solution. From boundary conditionsv (0) = 1,v (1) = 0, the solution becomes

v (x) = 1 − 2x + x2

Hence u (x, t) = w (x, t) + 1 − 2x + x2. Substituting this into the PDE ut = uxx − 2 results in

wt = wxx +v
′′ (x) − 2

= wxx + 2 − 2

= wxx

Hence the PDE to solve iswt = wxx withw (0, t) = 0,w (1, t) = 0. This heat PDE was solved before. Its
solution is

w (x, t) =
∞∑
n=1

cne
−λnt sin

(√
λnx

)
(1)

Where λn = (nπ )2 forn = 1, 2, 3, · · · . At t = 0, sinceu (x, 0) = w (x, 0)+v (x) thenw (x, 0) = u (x, 0)−v (x)
which gives

w (x, 0) =
(
x2 − 2x + 2

)
−

(
1 − 2x + x2

)
= 1

Hence at t = 0, (1) becomes

1 =
∞∑
n=1

cn sin
(√

λnx
)

(1A)

Applying orthogonality gives ∫ 1

0
sin

(√
λnx

)
dx =

1
2
cn

cn = 2
∫ 1

0
sin

(√
λnx

)
dx

= −2


cos

(√
λnx

)
√
λn


1

0

=
−2
√
λn

[
cos

(√
λn

)
− 1

]
=

−2
nπ

[cos (nπ ) − 1]

For even n the above is zero. And for odd n the above becomes

cn =
4
nπ

n = 1, 3, 5, · · ·

Therefore from (1) the solution tow (x, t) is

w (x, t) =
4
π

∞∑
n=1,3,5, · · ·

1
n
e−λnt sin

(√
λnx

)
The above can also be written as

w (x, t) =
4
π

∞∑
n=1

1
(2n − 1)

e−(2n−1)
2π 2t sin ((2n − 1)πx)

Now, since u (x, t) = w (x, t) +v (x), then the final solution is

u (x, t) = x2 − 2x + 1 +
4
π

∞∑
n=1

1
(2n − 1)

e−(2n−1)
2π 2t sin ((2n − 1)πx)

The following is an animation of the above solution for half second. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome browser PDF reader).
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2.1.52 Chapter 11.3, Problem 25 (With interactive animation)

Solve
ut = uxx − π 2 cosπx

With initial condition u (x, 0) = cos
( 3π
2 x

)
− cos (πx) and boundary conditions ux (0, t) = 0,u (1, t) = 1

Solution
Let

u (x, t) = w (x, t) +v (x)

where v (x) is steady state solution which only needs to satisfy the non-homogenous boundary condi-
tions andw (x, t) is the transient solution which needs to satisfy the homogeneous version of boundary
conditions.
At steady state, the PDE becomes an ODE

0 = v ′′ (x) − π 2 cosπx

This ODE can be easily solved giving
v (x) = − cos (πx)

Hence u (x, t) = w (x, t) − cos (πx). Substituting this into the PDE ut = uxx − π 2 cosπx results in

wt = wxx +v
′′ (x) − π 2 cosπx

But v ′ (x) = π sin (πx) and v ′′ (x) = π 2 cos (πx). The above becomes

wt = wxx

With boundary conditionswx (0, t) = 0,w (1, t) = 0. This was solved before. It has the solution

w (x, t) =
∞∑

n=1,3,5, · · ·
cne

−λnt cos
(√

λnx
)

(1)

Where λn =
( nπ

2

) 2 with n = 1, 3, 5, · · · . At t = 0, from u (x, 0) = w (x, 0) + v (x), then w (x, 0) =
u (x, 0) −v (x) or

w (x, 0) = cos

(
3π
2
x

)
− cos (πx) + cos (πx)

= cos

(
3π
2
x

)
Therefore, from (1) and at t = 0 we obtain

w (x, 0) =
∞∑

n=1,3,5, · · ·
cn cos

(√
λnx

)
cos

(
3π
2
x

)
=

∞∑
n=1,3,5, · · ·

cn cos
(nπ
2
x
)
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Therefore, only for n = 3 is there a solution. Therefore c3 = 1. Hence (1) becomes

w (x, t) = e−λ3t cos
(√

λ3x
)

= e−
( 3π

2

) 2t cos (
3π
2
x

)
Therefore the final solution is

u (x, t) = w (x, t) +v (x)

= − cos (πx) + e−
9π 2
4 t cos

(
3π
2
x

)
The following is an animation of the above solution for half second. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome browser PDF reader).

2.1.53 Chapter 11.3, Problem 28

Part (a) Show that by method of variation of parameters that general solution to y ′′ (x) = −f (x) can be
written as

y = c1 + c2x −

∫ x

0
(x − s) f (s)ds

part (b). Let the solution required to satisfy boundary conditions y (0) = 0,y (1) = 0. Show that c1 =
0, c2 =

∫1
0
(1 − x) f (s)ds

part (c). DefiningG (x, s) =

{
s (1 − x) 0 ≤ s ≤ x

x (1 − s) x ≤ s ≤ 1
show that the solution can be written as y (x) =∫1

0
G (x, s) f (s)ds

Solution

Part (a)

The solution is y = yh + yp . Where y ′′
h = 0. This has the solution

yh = c1 + c2x

In this expression, the basis solutions are

y1 = 1

y2 = x .

The particular solution is now found using variation of parameters, where it is assumed that

yp = y1u1 + y2u2 (1)

And u1,u2 are two functions to be determined. Using the standard formulas for finding u1,u2 gives

u1 =

∫ x

0

−y2F (s)

W (s)
ds (2)

65



2 HWs

Where in the above, F (s) is the forcing function in the RHS of the original ODE which is −f (x) here,
andW is the Wronskian. The Wronskian is found as follows

W =

�����y1 y2

y ′
1 y ′

2

�����
Substituting y1 = 1,y2 = x in the above gives

W =

�����1 x

0 1

����� = 1

Therefore (2) becomes

u1 =

∫ x

0
−s (−f (s))ds

=

∫ x

0
s f (s)ds (3)

Similarly, u2 is found using

u2 =

∫ x

0

y1F (s)

W (s)
ds

=

∫ x

0
−f (s)ds (4)

Using (3,4) in (1) gives the particular solution as

yp = y1

∫ x

0
s f (s)ds − y2

∫ x

0
f (s)ds

=

∫ x

0
s f (s)ds − x

∫ x

0
f (s)ds

=

∫ x

0
s f (s)ds −

∫ x

0
x f (s)ds

=

∫ x

0
(s − x) f (s)ds

= −

∫ x

0
(x − s) f (s)ds

Now that particular solution is found, the complete solution is found from y = yh + yp giving

y = c1 + c2x −

∫ x

0
(x − s) f (s)ds (5)

Part (b)

Using the BC y (0) = 0 on (5) gives

0 = c1 −
∫ 0

0
−s f (s)ds

c1 = 0

Hence c1 = 0 and the solution (5) now becomes

y = c2x −

∫ x

0
(x − s) f (s)ds (6)

Using the second BC y (1) = 0 the above becomes

0 = c2 −
∫ 1

0
(1 − s) f (s)ds

c2 =

∫ 1

0
(1 − s) f (s)ds

Hence the solution (6) now becomes

y = x

∫ 1

0
(1 − s) f (s)ds −

∫ x

0
(x − s) f (s)ds

=

∫ 1

0
x (1 − s) f (s)ds −

∫ x

0
(x − s) f (s)ds
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Writing
∫1
0
x (1 − s) f (s)ds =

∫x
0
x (1 − s) f (s)ds +

∫1
x x (1 − s) f (s)ds then the above becomes

y =

∫ x

0
x (1 − s) f (s)ds +

∫ 1

x
x (1 − s) f (s)ds −

∫ x

0
(x − s) f (s)ds

Combining the first and third integrals gives

y =

∫ x

0
[x (1 − s) − (x − s)] f (s)ds +

∫ 1

x
x (1 − s) f (s)ds

=

∫ x

0
[x − xs − x + s] f (s)ds +

∫ 1

x
x (1 − s) f (s)ds

=

∫ x

0
(−xs + s) f (s)ds +

∫ 1

x
x (1 − s) f (s)ds

=

∫ x

0
s (1 − x) f (s)ds +

∫ 1

x
x (1 − s) f (s)ds (7)

Which is the result required to show.

Part (c)

From part (b) above, the solution in (7) can be written as

y =

∫ x

0
GL (x, s) f (s)ds +

∫ 1

x
GR (x, s) f (s)ds (8)

Where

G (x, s) =

{
GL (x, x)

GL (x, s)
=

{
s (1 − x) 0 ≤ s ≤ x

x (1 − s) x ≤ s ≤ 1

Hence (8) can be combined into one integral

y =

∫ 1

0
G (x, s) f (s)ds

2.1.54 Chapter 11.3, Problem 29

By using procedure in problem 28 show that solution to y ′′ + y = −f (x) ,y (0) = 0,y (1) = 0 is

y =

∫ 1

0
G (x, s) f (s)

Where

G (x, s) =

{
sin(s) sin(1−x )

sin(1) 0 ≤ s ≤ x
sin(x ) sin(1−s)

sin(1) x ≤ s ≤ 1

Solution
Let y = yh +yp . Where yh is solution to y ′′

h +yh = 0. This has the solution yh = c1 cosx +c2 sinx . Hence
the bases solutions are

y1 = cosx

y2 = sinx

And therefore the Wronskian is

W =

�����y1 y2

y ′
1 y ′

2

����� =
����� cosx sinx

− sinx cosx

����� = cos2 x + sin2 x = 1

Hence
u1 =

∫ x

0

−y2F (s)

W (s)
ds

Where in the above, F (s) is the forcing function in the RHS of the original ODE which is −f (x) here,
andW is the Wronskian. Therefore

u1 =

∫ x

0
− sin (s) (−f (s))ds

=

∫ x

0
sin (s) f (s)ds
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Similarly, u2 is found using

u2 =

∫ x

0

y1F (s)

W (s)
ds

=

∫ x

0
cos (s) (−f (s))ds

Hence the particular solution is

yp = y1u1 + y2u2

= cos (x)
∫ x

0
sin (s) f (s)ds − sin (x)

∫ x

0
cos (s) f (s)ds

=

∫ x

0
cos (x) sin (s) f (s)ds −

∫ x

0
sin (x) cos (s) f (s)ds

=

∫ x

0
(cos (x) sin (s) − sin (x) cos (s)) f (s)ds

Applying (sinA cosB − cosA sinB) = sin (A − B) to the integrand above, where A = x,B = s gives

yp = −

∫ x

0
sin (x − s) f (s)ds

Therefore the solution is

y = yh + yp

= (c1 cosx + c2 sinx) −
∫ x

0
sin (x − s) f (s)ds (1)

Applying BC y (0) = 0 the above becomes

0 = c1 −
∫ 0

0
sin (−s) f (s)ds

c1 = 0

And the solution (1) simplifies to

y (x) = c2 sinx −

∫ x

0
sin (x − s) f (s)ds (2)

Applying BC y (1) = 0 the above becomes

y (x) = c2 sin 1 −
∫ 1

0
sin (1 − s) f (s)ds

Hence

c2 =
1

sin 1

∫ 1

0
sin (1 − s) f (s)ds

The solution in (2) now becomes

y (x) =
sinx
sin 1

∫ 1

0
sin (1 − s) f (s)ds −

∫ x

0
sin (x − s) f (s)ds

=
1

sin 1

∫ 1

0
sinx sin (1 − s) f (s)ds −

∫ x

0
sin (x − s) f (s)ds

Writing
∫1
0
sinx sin (1 − s) f (s)ds =

∫x
0
sinx sin (1 − s) f (s)ds+

∫1
x sinx sin (1 − s) f (s)ds then the above

becomes

y (x) =
1

sin 1

(∫ x

0
sinx sin (1 − s) f (s)ds +

∫ 1

x
sinx sin (1 − s) f (s)ds

)
−

∫ x

0
sin (x − s) f (s)ds

=

∫ x

0

sinx sin (1 − s)

sin (1)
f (s) −

∫ x

0
sin (x − s) f (s)ds +

∫ 1

x

sinx sin (1 − s)

sin (1)
f (s)ds

=

∫ x

0

[
sinx sin (1 − s)

sin (1)
− sin (x − s)

]
f (s)ds +

∫ 1

x

sinx sin (1 − s)

sin (1)
f (s)ds

=
1

sin (1)

∫ x

0
(sinx sin (1 − s) − sin (1) sin (x − s)) f (s)ds +

∫ 1

x

sinx sin (1 − s)

sin (1)
f (s)ds (3)

Using sin (A − B) = sinA cosB − cosA sinB, where now A = 1,B = s , then

sin (1 − s) = sin 1 cos s − cos 1 sin s
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And also
sin (x − s) = sinx cos s − cosx sin s

Using the above two relations in first integral of (3) which is I =
∫x
0
(sinx sin (1 − s) − sin (1) sin (x − s)) f (s)ds

gives

I =

∫ x

0
(sinx (sin 1 cos s − cos 1 sin s) − sin 1 (sinx cos s − cosx sin s)) f (s)ds

=

∫ x

0
(sinx sin 1 cos s − sinx cos 1 sin s − sin 1 sinx cos s + sin 1 cosx sin s) f (s)ds

=

∫ x

0
(− sinx cos 1 sin s + sin 1 cosx sin s) f (s)ds

=

∫ x

0
(sin s (sin 1 cosx − sinx cos 1)) f (s)ds

=

∫ x

0
(sin s sin (1 − x)) f (s)ds

Substituting the above result in (3) results in

y (x) =

∫ x

0

sin s sin (1 − x)

sin 1
f (s)ds +

∫ 1

x

sinx sin (1 − s)

sin (1)
f (s)ds (4)

Let

G (x, s) =

{
sin(s) sin(1−x )

sin(1) 0 ≤ s ≤ x
sin(x ) sin(1−s)

sin(1) x ≤ s ≤ 1

Then the solution (4) can be written as

y (x) =

∫ 1

0
G (x, s) f (s)ds

2.1.55 Chapter 11.3, Problem 31

By using procedure in problem 30 find Green function and express solution as definite integral for

−y ′′ = f (x)

y ′ (0) = 0

y (1) = 0

Solution
The first step is to determine y1 (x) ,y2 (x). These are the two fundamental solutions of y ′′ = 0. As the
book says, to simplify the derivation, y1 (x) is selected to be the solution that satisfies the boundary
conditions at the left end of domain (x = 0 in this problem) and y2 (x) satisfies the boundary condition
on the right end (x = 1).
The homogeneous solution to y ′′ = 0 is

yh (x) = c1 + c2x

Therefore y ′
1 (0) = 0.This gives c2 = 0. Hence

y1 (x) = 1

The second boundary conditions y2 (1) = 0 gives 0 = c1 + c2, or c1 = −c2 and this leads to y2 (x) =
c2 (−1 + x). Or

y2 (x) = x − 1

Given y1,y2 found above, the next step is to determine the Wronskian as follows

W (x) =

�����y1 y2

y ′
1 y ′

2

����� =
�����1 x − 1

0 1

����� = 1

Therefore, Green function is now computed using equation (iv) on page 701 of text book giving

G (x, s) =
−1

p (x)W (x)

{
y1 (s)y2 (x) 0 ≤ s ≤ x

y1 (x)y2 (s) x ≤ s ≤ 1

But p (x) = 1 andW (x) = 1, and using values found earlier for y1,y2, the above becomes

G (x, s) = −1

{
(x − 1) 0 ≤ s ≤ x

(s − 1) x ≤ s ≤ 1

=

{
x − 1 0 ≤ s ≤ x

s − 1 x ≤ s ≤ 1
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Hence the solution is

y (x, s) =

∫ 1

0
G (x, s) f (s)ds (1)

To verify this solution, it is compared to solution to same ODE using the direct method. Let f (x) = x .
Hence the ODE is

−y ′′ = x

y ′ (0) = 0

y (1) = 0

The solution found above in (1) can now be found as

y (x) =

∫ x

0
G (x, s) sds +

∫ 1

x
G (x, s) sds

=

∫ x

0
(1 − x) sds +

∫ 1

x
(1 − s) sds

=

(
s2

2
− x

s2

2

) x
0
+

(
s2

2
−
s3

3

) 1
x

=

(
x2

2
−
x3

2

)
+

( (
1
2
−
1
3

)
−

(
x2

2
−
x3

3

) )
=

1
6
−
1
6
x3 (2)

Verification The solution is verified by solving the same problem using the direct method. The ho-
mogenous solution is yh = c1 + c2x . Since the forcing function is −x , let the particular solution be
yp = kx3,y ′

p = 3kx2,y ′′ = 6kx . Therefore 6kx = −x or k = −1
6 . Therefore the particular solution is

yp =
−1
6 x

3 and the general solution is

y (x) = c1 + c2x −
1
6
x3

Applying BC y ′ (0) = 0 gives
c2 = 0

Hence the solution becomes y (x) = c1− 1
6x

3. Applying BC y (1) = 0 gives 0 = c1− 1
6 or c1 = 1

6 . Therefore
the solution is

y (x) =
1
6
−
1
6
x3 (3)

Which is the same answer found using Green function method. Of course in this case the direct method
is much simpler and easier to find.The advantage of Green method, is that once theG (x, s) is found, then
for any new f (x) only integration is needed to find the new solution, sinceG (x, s) does not changewhen
f (x) changes.The direct method requires one to find the particular solution each time, and to determine
the constants c1, c2 again from boundary conditions each time f (x) changes since the particular solution
changes when f (x) changes. With Green function method, all the work in using G (x,y) is done in
the integration step only. The solution found using Green function already incorporated the boundary
conditions in it.

2.1.56 Chapter 11.3, Problem 32

By using procedure in problem 30 find Green function and express solution as definite integral for

−y ′′ = f (x)

y (0) = 0

y (1) + y ′ (1) = 0

Solution
The first step is to determine y1 (x) ,y2 (x), where these are the fundamental solutions of y ′′ = 0 where
y1 (x) satisfies the boundary conditions at the left end of domain (x = 0) andy2 (x) satisfies the boundary
condition on the right end (x = 1).
Since the homogeneous solution to y ′′ = 0 is

yh (x) = c1 + c2x

Then y1 (0) = 0 gives c1 = 0. Therefore
y1 (x) = x

And to satisfy y2 (1) + y ′
2 (1) = 0 then

0 = (c1 + c2) + c2

c1 = −2c2
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Therefore

y2 (x) = −2c2 + c2x

= c2 (x − 2)

Hence
y2 (x) = x − 2

Now that y1,y2 are found, the next step is to find the Wronskian.

W (x) =

�����y1 y2

y ′
1 y ′

2

����� =
�����x x − 2

1 1

����� = x − (x − 2) = 2

Therefore, Green function is, using equation (iv) on page 701 of text book

G (x, s) =
−1

p (x)W (x)

{
y1 (s)y2 (x) 0 ≤ s ≤ x

y1 (x)y2 (s) x ≤ s ≤ 1

But p (x) = 1 andW (x) = 1, and using values found earlier for y1,y2, then the above becomes

G (x, s) =
−1
2

{
s (x − 2) 0 ≤ s ≤ x

x (s − 2) x ≤ s ≤ 1

=

{
s(2−x )

2 0 ≤ s ≤ x
x (2−s)

2 x ≤ s ≤ 1

And the solution is

y (x, s) =

∫ 1

0
G (x, s) f (s)ds (1)

To verify this solution, it is compared to solution to same ODE using the direct method. Let f (x) = x .
Hence the ODE is

−y ′′ = x

y ′ (0) = 0

y (1) = 0

The solution found above in (1) is now found as

y (x) =

∫ x

0
G (x, s) sds +

∫ 1

x
G (x, s) sds

=

∫ x

0

s (2 − x)

2
sds +

∫ 1

x

x (2 − s)

2
sds

=
1
2

∫ x

0

(
2s2 − xs2

)
ds +

1
2

∫ 1

x

(
2xs − xs2

)
ds

=
1
2

(
2s3

3
− x

s3

3

) x
0
+
1
2

(
xs2 − x

s3

3

) 1
x

=
1
6

(
2x3 − x4

)
+
1
2

( (
x −

x

3

)
−

(
x3 −

x4

3

) )
=

1
6

(
2x − x3

)
(2)

Verification The solution is now verified by solving the same problem using the direct method. The
homogenous solution is yh = c1 + c2x . Since the forcing function is −x , let the particular solution be
yp = kx3,y ′

p = 3kx2,y ′′ = 6kx . Therefore 6kx = −x or k = −1
6 . Therefore the particular solution is

yp =
−1
6 x

3 and the general solution is

y (x) = c1 + c2x −
1
6
x3

Applying BC y (0) = 0 gives
c1 = 0

Hence the solution becomes

y (x) = c2x −
1
6
x3

y ′ (x) = c2 −
1
2
x2

71



2 HWs

Applying BC y (1) + y ′ (1) = 0 gives

0 =

(
c2 −

1
6

)
+

(
c2 −

1
2

)
0 = 2c2 −

2
3

c2 =
1
3

Therefore the solution is

y (x) =
1
3
x −

1
6
x3

=
1
6

(
2x − x3

)
(3)

Which is the same as (2) using Green function.

2.1.57 Chapter 11.3, Problem 33

By using procedure in problem 30 find Green function and express solution as definite integral for

− (y ′′ + y) = f (x)

y ′ (0) = 0

y (1) = 0

Solution
The first step is to determine y1 (x) ,y2 (x), where these are the fundamental solutions of y ′′ + y = 0
where y1 (x) satisfies the boundary conditions at the left end of domain (x = 0) and y2 (x) satisfies the
boundary condition on the right end (x = 1).
Since the homogeneous solution to y ′′ + y = 0 is

yh (x) = c1 cosx + c2 sinx

Then y ′
1 = −c1 sinx + c2 cosx and y ′

1 (0) = 0 leads to c2 = 0, therefore

y1 (x) = cosx

And to satisfy y2 (1) = 0 then 0 = c1 cos 1 + c2 sin 1, hence c2 = −c1
cos(1)
sin(1) . therefore

y2 (x) = c1 cosx − c1
cos (1)
sin (1)

sinx

= c1

(
cosx −

cos (1)
sin (1)

sinx

)
Hence

y2 (x) = cosx −
cos (1)
sin (1)

sinx

Now that y1,y2 are found, the next step is to determine the Wronskian.

W (x) =

�����y1 y2

y ′
1 y ′

2

�����
=

������ cosx
(
cosx −

cos(1)
sin(1) sinx

)
− sinx −

(
sinx + cos(1)

sin(1) cosx
) ������

= − cosx

(
sinx +

cos (1)
sin (1)

cosx

)
+ sinx

(
cosx −

cos (1)
sin (1)

sinx

)
= − cosx sinx −

cos (1)
sin (1)

cos2 x + sinx cosx −
cos (1)
sin (1)

sin2 x

= −
cos (1)
sin (1)

(
cos2 x + sin2 x

)
= −

cos (1)
sin (1)

Therefore, Green function is, using equation (iv) on page 701 of text book

G (x, s) =
−1

p (x)W (x)

{
y1 (s)y2 (x) 0 ≤ s ≤ x

y1 (x)y2 (s) x ≤ s ≤ 1
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But p (x) = 1 andW (x) = 1, and using values found earlier for y1,y2, then the above becomes (using
p (x) = 1)

G (x, s) =
−1

−
cos(1)
sin(1)


cos s

(
cosx −

cos(1)
sin(1) sinx

)
0 ≤ s ≤ x

cosx
(
cos s − cos(1)

sin(1) sin s
)

x ≤ s ≤ 1

=
sin (1)
cos (1)


cos s

(
cosx −

cos(1)
sin(1) sinx

)
0 ≤ s ≤ x

cosx
(
cos s − cos(1)

sin(1) sin s
)

x ≤ s ≤ 1

=

{
cos s
cos(1) (sin (1) cosx − cos (1) sinx) 0 ≤ s ≤ x
cos x
cos(1) (sin (1) cos s − cos (1) sin s) x ≤ s ≤ 1

Using sinA cosB−cosA sinB = sin (A − B) then sin (1) cosx−cos (1) sinx = sin (1 − x) and sin (1) cos s−
cos (1) sin s = sin (1 − s) and the above becomes

G (x, s) =

{
cos s
cos(1) sin (1 − x) 0 ≤ s ≤ x
cos x
cos(1) sin (1 − s) x ≤ s ≤ 1

And the solution is

y (x, s) =

∫ 1

0
G (x, s) f (s)ds

To verify this solution, it is compared to the solution to same ODE using the direct method. Let f (x) = x .
Hence the ODE is

− (y ′′ + y) = x

y ′ (0) = 0

y (1) = 0

The solution found above in (1) is now computed as

y (x) =

∫ x

0
G (x, s) sds +

∫ 1

x
G (x, s) sds

=

∫ x

0

cos s
cos (1)

sin (1 − x) sds +

∫ 1

x

cosx
cos (1)

sin (1 − s) sds

= I1 + I2 (1)

The first integral is

I1 =
sin (1 − x)

cos (1)

∫ x

0
s cos sds

=
sin (1 − x)

cos (1)
(cos s + s sin s)x0

=
sin (1 − x)

cos (1)
(cosx + x sinx − 1)

The second integral is

I2 =
cosx
cos (1)

∫ 1

x
s sin (1 − s)ds

=
cosx
cos (1)

(s cos (s − 1) − sin (s − 1))1x

=
cosx
cos (1)

((cos (1 − 1) − sin (1 − 1)) − (x cos (x − 1) − sin (x − 1)))

=
cosx
cos (1)

(1 − (x cos (x − 1) − sin (x − 1)))

Hence (1) becomes

y (x) =
sin (1 − x)

cos (1)
(cosx + x sinx − 1) +

cosx
cos (1)

(1 − (x cos (x − 1) − sin (x − 1)))

=
1

cos (1)
(cosx sin (1 − x) + x sinx sin (1 − x) − sin (1 − x) + cosx − x cosx cos (x − 1) − cosx sin (x − 1))

=
1

cos (1)
(x sinx sin (1 − x) − sin (1 − x) + cosx − x cosx cos (x − 1))

=
1

cos 1
(x (sinx sin (1 − x) − cosx cos (x − 1)) − sin (1 − x) + cosx)
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But sinA sinB−cosA cosB = − cos (A + B), using this in the above, where now x = A,B = (1 − x) gives

y (x) =
1

cos 1
(x (− cos (x + 1 − x)) − sin (1 − x) + cosx)

=
1

cos 1
(−x cos (1) − sin (1 − x) + cosx)

=
cosx
cos (1)

−
sin (1 − x)

cos (1)
− x (2)

Verification The solution is now verified by solving the same problem using the direct method. The
homogenous solution to y ′′ + y = 0 is yh = c1 cosx + c2 sinx . Since the forcing function is −x , let the
particular solution be yp = k1x,y ′

p = k1,y
′′ = 0. Therefore k1x = −x or k = −1. Therefore the particular

solution is yp = −x and the general solution is

y (x) = c1 cosx + c2 sinx − x

Now BC y ′ (0) = 0 is applied. y ′ (x) = −c1 sinx + c2 cosx − 1, therefore

0 = c2 − 1

c2 = 1

Hence the solution becomes
y (x) = c1 cosx + sinx − x

Applying BC y (1) = 0 gives

0 = c1 cos (1) + sin (1) − 1

c1 =
1 − sin (1)
cos (1)

Therefore the solution is

y (x) =
(1 − sin (1))

cos (1)
cosx + sin (x) − x

=
cosx
cos (1)

+
− cosx sin (1)

cos (1)
+ sin (x) − x

=
cosx
cos (1)

+
sin (x) cos (1) − cosx sin (1)

cos (1)
− x

But sin (x) cos (1) − cosx sin (1) = sin (x − 1) = − sin (1 − x), hence the above becomes

y (x) = cos x
cos(1) −

sin(1−x )
cos(1) − x (3)

Which is the same solution in (2) found using Green function.

2.1.58 Chapter 11.3, Problem 34

By using procedure in problem 30 find Green function and express solution as definite integral for

−y ′′ = f (x)

y (0) = 0

y ′ (1) = 0

Solution
The first step is to determine y1 (x) ,y2 (x), where these are the fundamental solutions of y ′′ = 0 where
y1 (x) satisfies the boundary conditions at the left end of domain (x = 0) andy2 (x) satisfies the boundary
condition on the right end (x = 1).
Since the homogeneous solution to y ′′ = 0 is

yh (x) = c1 + c2x

Then y1 (0) = 0 gives c1 = 0. Therefore
y1 (x) = x

And to satisfy y ′
2 (1) = 0 then 0 = c2. and this leads to

y2 (x) = 1

Now that y1,y2 are found, the next step is to find the Wronskian.

W (x) =

�����y1 y2

y ′
1 y ′

2

����� =
�����x 1

1 0

����� = −1
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Therefore, Green function is, using equation (iv) on page 701 of text book

G (x, s) =
−1

p (x)W (x)

{
y1 (s)y2 (s) 0 ≤ s ≤ x

y1 (x)y2 (x) x ≤ s ≤ 1

But p (x) = 1 andW (x) = −1, and using values found earlier for y1,y2, then the above becomes

G (x, s) =

{
s 0 ≤ s ≤ x

x x ≤ s ≤ 1

And the solution is

y (x, s) =

∫ 1

0
G (x, s) f (s)ds (1)

To verify this solution, it is now compared to the solution to same ODE using the direct method. Let
f (x) = x . Hence the ODE now is

−y ′′ = x

y (0) = 0

y ′ (1) = 0

The solution found above in (1) is now computed as

y (x) =

∫ x

0
G (x, s) sds +

∫ 1

x
G (x, s) sds

=

∫ x

0
(s) sds +

∫ 1

x
(x) sds

=

(
s3

3

) x
0
+ x

(
s2

2

) 1
x

=
1
3
x3 +

x

2

(
1 − x2

)
=

1
2
x −

1
6
x3 (2)

Verification The above solution is now verified by solving the same problem using the direct method.
The homogenous solution to y ′′ = 0 is yh = c1 + c2x . Since the forcing function is −x , the particular
solution is yp = −1

6 x
3 and the general solution is

y (x) = c1 + c2x −
1
6
x3

BC y (0) = 0 gives c1 = 0. The solution becomes y (x) = c2x − 1
6x

3 and y ′ (x) = c2 −
1
2x

2. BC y ′ (1) = 0
gives

0 = c2 −
1
2

c2 =
1
2

Hence the solution becomes
y (x) =

1
2
x −

1
6
x3

Which is the same solution in (2) found using Green function.

2.1.59 Chapter 11.4, Problem 1

Find formal solution to
− (xy ′)

′
= µxy + f (x)

where y,y ′ bounded as x → 0 and y (1) = 0
Solution
The given ODE can be written as

−
1
x
(xy ′)

′
= µy +

f (x)

x
(1)

The corresponding homogeneous ODE

−
1
x
(xy ′)

′
= λy (2)

Where p = x,q = 0, r = x . This was solved in the textbook at page 707. The fundamental solution
is given by yn = Φn (x) = J0

(√
λnx

)
where the eigenvalues λn are the roots of Jo

(√
λn

)
= 0. These
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eigenfunctions are not normalized. Therefore, the solution of the inhomogeneous ODE (1) can be now
written as

y (x) =
∞∑
n=1

bnΦn (x)

Using this in (1) gives

−
1
x
(xy ′)

′
= µ

∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x)

But from (2), − 1
x (xy ′)′ can be replaced by λy, so the above becomes

∞∑
n=1

λnbnΦn (x) = µ
∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x) (3)

Where
∞∑
n=1

cnΦn (x) =
f (x)

x

cn is now found by orthogonality. Multiplying both sides of the above by r (x)Φm (x), where the weight
r (x) = x , and integrating gives∫ 1

0
x
f (x)

x
Φm (x)dx =

∞∑
n=1

cn

∫ 1

0
xΦn (x)Φm (x)dx∫ 1

0
f (x)Φm (x)dx =

∞∑
n=1

cn

∫ 1

0
xΦn (x)Φm (x)dx

Due to orthogonality of the eigenfunctions, the above simplifies to

cn =

∫1
0
f (x)Φn (x)dx∫1
0
xΦ2

n (x)dx
(4)

Since Φn (x) is not normalized,
∫1
0
xΦ2

n (x)dx can not be replaced by 1.The above is left as is. Substituting
(4) in (3) and simplifying gives

λnbn = µbn + cn

bn =
cn

(λn − µ)

Where λn , µ. Hence the formal solution y = ∑∞
n=1 bnΦn (x) can be written as

y (x) =
∞∑
n=1

cn
(λn − µ)

Jo
(√

λnx
)

Using (4) in the above gives

y (x) =
∞∑
n=1

©«
∫1
0
f (x)Φn (x)dx∫1
0
xΦ2

n (x)dx

ª®¬
Jo

(√
λnx

)
(λn − µ)

2.1.60 Chapter 11.4, Problem 2

Consider BVP
− (xy ′)

′
= λxy

where y,y ′ bounded as x → 0 and y ′ (1) = 0. (a) Show that λ0 = 0 is eigenvalue corresponding to
Φ0 = 1. If λ > 0 show formally that the eigenfunctions are given by Φn = J0

(√
λnx

)
where

√
λn is the

nth positive root in increasing order of J ′0
(√

λn
)
= 0. It is possible to show there are infinite sequence

of such roots.
(b) Show that ifm = 0, 1, 2, · · · then

∫1
0
xΦm (x)Φn (x)dx = 0,m , n.

(c) Find formal solution to nonhomogeneous problem − (xy ′)′ = µxy + f (x), where y,y ′ bounded as
x → 0 and y ′ (1) = 0, where f is given continuous function on 0 ≤ x ≤ 1 and µ is not eigenvalue of the
corresponding homogeneous ODE.
Solution
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Part (a)

The given ODE can be written as
xy ′′ + y ′ + λxy = 0 (1)

Let t =
√
λx , then dy

dx =
dy
dt

dt
dx =

dy
dt

√
λ and d2y

dx 2 =
d
dx

(
dy
dt

√
λ
)
=
√
λ
d2y
dt 2

dt
dx =

√
λ
d2y
dt 2

√
λ = λ

d2y
dt 2 . Hence

(1) becomes

t
√
λ
λy ′′ (t) +

√
λy ′ (t) + λ

t
√
λ
y (t) = 0

t
√
λy ′′ (t) +

√
λy ′ (t) +

√
λty (t) = 0

Since problem says that λ > 0, then dividing by
√
λ the above simplifies to

ty ′′ (t) + y ′ (t) + ty (t) = 0

This is Bessel ODE of zero order. Its solution is y (t) = c1 J0 (t) + c2Y0 (t). Where J0 (0) = 0 and
limt→0 Y0 (t) → ∞. Hence a bounded solution requires that c2 = 0. Therefore the solution becomes

y (t) = c1 J0 (t)

or in terms of x
y (x) = c1 J0

(√
λx

)
To satisfy the second boundary condition, since y ′ (x) = c1 J

′
0

(√
λx

)
= −c1 J1

(√
λx

)
. Therefore the

eigenvalues are roots of
J1

(√
λx

)
= 0

Plotting J1
(√

λx
)
shows that the first roots are λ = 0. Numerically, the first few eigenvalues are

λ = {0, 14.682, 49.2185, 103, 499, 177.532, · · · } (2)

Hence the fundamental solution isy (x) = J0
(√

λnx
)
where λn is given by above. When λ = 0, J0 (0) = 1.

Therefore the eigenfunction associated with λ = 0 is Φ0 (x) = 1. Since there are infinite eigenvalues (2),
there are infinite eigenfunctions Φn (x) = J0

(√
λnx

)
where n = 0, 1, 2, 3, · · ·

Part (b)

Let Φn (x) ,Φm (x) be any two eigenfunctions of (xy ′)′ + λxy = 0. Therefore each satisfies the ODE.
Hence (

xΦ′
n
) ′
+ λnxΦn (x) = 0 (3A)(

xΦ′
m
) ′
+ λmxΦm (x) = 0 (3B)

Multiplying (3A) by Φm and (3B) by Φn and subtracting gives

Φm
(
xΦ′

n
) ′
+ λnxΦmΦn (x) − Φn

(
xΦ′

m
) ′
− λmxΦnΦm (x) = 0

Φm
(
xΦ′

n
) ′
− Φn

(
xΦ′

m
) ′
+ (λn − λm)xΦnΦm (x) = 0

Integrating from 0 · · · 1 gives∫ 1

0
Φm

(
xΦ′

n
) ′
dx −

∫ 1

0
Φn

(
xΦ′

m
) ′
dx + (λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0 (4)

Integrating
∫1
0
Φm

(
xΦ′

n
) ′
dx by parts gives

∫ 1

0

u︷︸︸︷
Φm

dv︷  ︸︸  ︷(
xΦ′

n
) ′
dx =

[
ΦmxΦ

′
n
] 1
0 −

∫ 1

0
Φ′
m

(
xΦ′

n
)
dx (5A)

And similarly, Integrating
∫1
0
Φn

(
xΦ′

m
) ′
dx by parts gives

∫ 1

0

u︷︸︸︷
Φn

dv︷  ︸︸  ︷(
xΦ′

m
) ′
dx =

[
ΦnxΦ

′
m
] 1
0 −

∫ 1

0
Φ′
n
(
xΦ′

m
)
dx (5B)

Substituting (5A,5B) back in (4) gives[
ΦmxΦ

′
n
] 1
0 −

∫ 1

0
Φ′
m

(
xΦ′

n
)
dx −

[
ΦnxΦ

′
m
] 1
0 +

∫ 1

0
Φ′
n
(
xΦ′

m
)
dx + (λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0
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The above simplifies to [
ΦmxΦ

′
n − ΦnxΦ

′
m
] 1
0 + (λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0 (6)

The boundary terms above simplifies to[
ΦmxΦ

′
n − ΦnxΦ

′
m
] 1
0 =

[
Φm (1)Φ′

n (1) − Φn (1)Φ
′
m (1)

]
But Φ′

n (1) and Φ′
m (1) are zero. This is because of the given boundary conditions y ′ (1) = 0. Hence[

ΦmxΦ
′
n − ΦnxΦ

′
m
] 1
0 = 0. Therefore (6) now simplifies to

(λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0

But since λn − λm , 0, since these are different eigenvalues, then one concludes that∫ 1

0
xΦnΦm (x)dx = 0

Which is the result asked to show.

Part (c)

The problem to solve is written as

−
1
x
(xy ′)

′
= µy +

f (x)

x
(A)

The solution to the corresponding homogeneous ODE − 1
x (xy ′)′ = λy was found in part (a). Using

eigenfunction expansion, the solution of the nonhomogeneous ODE (A) can then be written as

y (x) =
∞∑
n=0

bnΦn (x) (7)

Where Φn (x) = J0
(√

λnx
)
,n = 0, 1, 2, · · · and λn are roots of −J1

(√
λ
)
= 0. Using (7) in − (xy ′)′ =

µxy + f (x) gives

−
1
x
(xy ′)

′
= x

∞∑
n=0

bnΦn (x) +
∞∑
n=0

cnΦn (x)

But since − 1
x (xy ′)′ = λy from part (a), then the above becomes

∞∑
n=0

λnbnΦn (x) = µ
∞∑
n=0

bnΦn (x) +
∞∑
n=0

cnΦn (x) (8)

Where
∞∑
n=0

cnΦn (x) =
f (x)

x

cn is now found by orthogonality. Multiplying both sides of the above by r (x)Φm (x), where the weight
r (x) = x , and integrating gives∫ 1

0
x
f (x)

x
Φm (x)dx = c0

∫ 1

0
xΦ0 (x)Φm (x)dx +

∞∑
n=1

cn

∫ 1

0
xΦn (x)Φm (x)dx∫ 1

0
f (x)Φm (x)dx = c0

∫ 1

0
xΦ0 (x)Φm (x)dx +

∞∑
n=1

cn

∫ 1

0
xΦn (x)Φm (x)dx (9)

Form = 0, the eigenfunction is Φ0 (x) = 1, and the above becomes∫ 1

0
f (x)dx = c0

∫ 1

0
xdx

= c0

[
x2

2

] 1
0
=
c0
2

Therefore

c0 = 2
∫ 1

0
f (x)dx (10)

Form > 0, (9) becomes ∫ 1

0
f (x)Φm (x)dx =

∞∑
n=1

cn

∫ 1

0
xΦn (x)Φm (x)dx
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Due to orthogonality of the eigenfunctions from part (b)
∫1
0
xΦn (x)Φm (x)dx = 0 form , n , and the

above simplifies to

cn =

∫1
0
f (x)Φn (x)dx∫1
0
xΦ2

n (x)dx
(11)

Since Φn (x) is not normalized,
∫1
0
xΦ2

n (x)dx can not be replaced by 1.The above is left as is. Substituting
(10,11) in (8) and simplifying gives

∞∑
n=0

λnbnΦn (x) = µ
∞∑
n=0

bnΦn (x) +
∞∑
n=0

cnΦn (x) (12)

For n = 0 only, and since λn = 0 then (12) gives

0 = µb0Φ0 (x) + c0Φ0 (x)

But Φ0 (x) = 1, hence

0 = µb0 + c0

b0 = −
c0
µ

For n > 0, then (12) gives

∞∑
n=1

λnbnΦn (x) = µ
∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x)

λnbn = µbn + cn

bn =
cn

(λn − µ)

Where λn , µ. Hence the formal solution y = ∑∞
n=0 bnΦn (x) can be written as

y (x) = b0Φ0 (x) +
∞∑
n=1

bnΦ0 (x)

= −
c0
µ
+

∞∑
n=1

cn
(λn − µ)

Jo
(√

λnx
)

= −
2
µ

∫ 1

0
f (x)dx +

∞∑
n=1

1
(λn − µ)

∫1
0
f (x) Jo

(√
λnx

)
dx∫1

0
x J 2o

(√
λnx

)
dx

Jo
(√

λnx
)

But
∫1
0
x J 2o

(√
λnx

)
dx = 1

2

(
J 2o

(√
λn

)
+ J 21

(√
λn

) )
, hence the above becomes

y (x) = −
2
µ

∫ 1

0
f (x)dx + 2

∞∑
n=1

1
(λn − µ)

∫1
0
f (x) Jo

(√
λnx

)
dx

J 2o

(√
λn

)
+ J 21

(√
λn

) Jo
(√

λnx
)

2.1.61 Chapter 11.4, Problem 3

Consider − (xy ′)′ + k2

x y = λxy. with y,y ′ bounded as x → 0 and y (1) = 0, where k is positive integer.
(a) using t =

√
λx show the ODE reduces to Bessel of order k . (b) show formally that the eigenvalues

λ1, λ2, · · · of the given differential equation are the squares of positive zeros of Jk
(√

λ
)
and that the

corresponding eigenfunctions are Φn (x) = Jk

(√
λx

)
. It is possible to show there as infinite sequence

of such zeros. (c) Show that the eigenfunctions Φn (x) satisfy the orthogonality relation∫ 1

0
xΦm (x)Φn (x)dx = 0 m , n

(d) Determine the coefficients of the formal series expansion f (x) =
∑∞

n=1 anΦn (x). (e) Final formal
solution of the nonhomogeneous problem

− (xy ′)
′
+
k2

x
y = µxy + f (x)

With y,y ′ bounded as x → 0 and y (1) = 0, where f is given continuous function on 0 ≤ x ≤ 1 and µ is
eigenvalue of the corresponding homogeneous problem.
Solution
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part (a)

The ODE to solve is
− (xy ′)

′
+
k2

x
y − λxy = 0

Note: The problem seems to not have mentioned that λ > 0 here as well, as in the problem above it. This
condition is needed to fully solve this problem with y,y ′ bounded as x → 0 and y (1) = 0. The ODE can
be written as

−xy ′′ − y ′ + y

(
k2

x
− λx

)
= 0

xy ′′ + y ′ + y

(
λx −

k2

x

)
= 0 (1)

Let t =
√
λx , then dy

dx =
dy
dt

dt
dx =

dy
dt

√
λ and d2y

dx 2 =
d
dx

(
dy
dt

√
λ
)
=
√
λ
d2y
dt 2

dt
dx =

√
λ
d2y
dt 2

√
λ = λ

d2y
dt 2 . Hence

(1) becomes

t
√
λ
λy ′′ (t) +

√
λy ′ (t) + y (t)

(
λ

t
√
λ
−
k2

t

√
λ

)
= 0

t
√
λy ′′ (t) +

√
λy ′ (t) +

√
λy (t)

(
t −

k2

t

)
= 0

t2y ′′ + ty ′ +
(
t2 − k2

)
y = 0

This is Bessel ODE of k order.

Part (b)

The solution to the above ODE is known to be

y (t) = c1 Jk (t) + c2Yk (t)

Where Jk (0) = 0 and limt→0 Yk (t) → ∞. Hence a bounded solution requires that c2 = 0. Therefore the
solution becomes

y (t) = c1 Jk (t)

Or in terms of x
y (x) = c1 Jk

(√
λx

)
To satisfy the second boundary condition y (1) = 0 gives

c1 Jk

(√
λ
)
= 0

Non-trivial solution implies Jk
(√

λ
)
= 0. Therefore the eigenvalues are the square of positive roots of

this equation. Even though there are negative and positive roots for Jk
(√

λ
)
= 0 but for real root, λ

must be non-negative. It assumed λ > 0. There are infinite number of positive roots for Jk
(√

λ
)
= 0.

Hence the eigenfunctions are

Φn (x) = Jk

(√
λnx

)
n = 1, 2, 3, · · ·

Where λn are square of the all positive zeros of Jk
(√

λ
)
= 0.

Part (c)

Show that the eigenfunctions Φn (x) satisfy the orthogonality relation∫ 1

0
xΦm (x)Φn (x)dx = 0 m , n

Let Φn (x) ,Φm (x) be any two eigenfunctions of − (xy ′)′ + k2

x y = λxy where now Φn (x) = Jk

(√
λnx

)
and Φm (x) = Jk

(√
λmx

)
. Therefore each satisfies the ODE. Hence

−
(
xΦ′

n
) ′
+
k2

x
Φn (x) − λnxΦn (x) = 0 (3A)

−
(
xΦ′

m
) ′
+
k2

x
Φm (x) − λmxΦm (x) = 0 (3B)
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Multiplying 3A by Φm and 3B by Φn and subtracting gives

−Φm
(
xΦ′

n
) ′
+ Φm

k2

x
Φn (x) − λnxΦmΦn (x) −

(
−

(
ΦnxΦ

′
m
) ′
+
k2

x
ΦnΦm (x) − λmxΦnΦm (x)

)
= 0

−Φm
(
xΦ′

n
) ′
+
k2

x
ΦmΦn (x) − λnxΦmΦn (x) + Φn

(
xΦ′

m
) ′
−
k2

x
ΦnΦm (x) + λmxΦnΦm (x) = 0

−
(
xΦ′

n
) ′
+

(
xΦ′

m
) ′
+ (λm − λn)xΦnΦm (x) = 0

Integrating from 0 · · · 1 gives∫ 1

0
Φm

(
xΦ′

n
) ′
dx −

∫ 1

0
Φn

(
xΦ′

m
) ′
dx + (λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0 (4)

Integrating
∫1
0
Φm

(
xΦ′

n
) ′
dx by parts gives

∫ 1

0

u︷︸︸︷
Φm

dv︷  ︸︸  ︷(
xΦ′

n
) ′
dx =

[
ΦmxΦ

′
n
] 1
0 −

∫ 1

0
Φ′
m

(
xΦ′

n
)
dx (5A)

And similarly, Integrating
∫1
0
Φn

(
xΦ′

m
) ′
dx by parts gives

∫ 1

0

u︷︸︸︷
Φn

dv︷  ︸︸  ︷(
xΦ′

m
) ′
dx =

[
ΦnxΦ

′
m
] 1
0 −

∫ 1

0
Φ′
n
(
xΦ′

m
)
dx (5B)

Substituting (5A,5B) back in (4) gives[
ΦmxΦ

′
n
] 1
0 −

∫ 1

0
Φ′
m

(
xΦ′

n
)
dx −

[
ΦnxΦ

′
m
] 1
0 +

∫ 1

0
Φ′
n
(
xΦ′

m
)
dx + (λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0

The above simplifies to [
ΦmxΦ

′
n − ΦnxΦ

′
m
] 1
0 + (λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0 (6)

Let ∆ =
[
ΦmxΦ

′
n − ΦnxΦ

′
m
] 1
0, then the boundary terms above simplifies to

∆ =
[
Φm (1)Φ′

n (1) − Φn (1)Φ
′
m (1)

]
− lim

x→0

[
xΦm (x)Φ′

n (x) − xΦn (x)Φ
′
m (x)

]
But Φn (1) and Φm (1) are zero. This is because of the given boundary conditions. Hence the above
simplifies to [

ΦmxΦ
′
n − ΦnxΦ

′
m
] 1
0 = − lim

x→0

(
x

(
Φm (x)Φ′

n (x) − Φn (x)Φ
′
m (x)

) )
But since bothΦm (x) ,Φn (x) ,Φ

′
n (x) ,Φ

′
m (x) are bounded as x → 0 then the above vanishes.This means

the all the boundary terms are zero and (6) simplifies to

(λn − λm)

∫ 1

0
xΦnΦm (x)dx = 0

But since λn − λm , 0, since these are different eigenvalues, therefore∫ 1

0
xΦnΦm (x)dx = 0

Which is the result asked to show.

Part (d,e)

This is both parts combined. To solve − (xy ′)′ + k2

x y = µxy + f (x), we start with dividing by x to get
the ODE to the form

−
1
x
(xy ′)

′
+
k2

x2
y = µy +

f (x)

x
(1)

The homogeneous ode − 1
x (xy ′)′ + k2

x 2y = λy was solved in part (a,b). And since the problem says that
λ , µ, then the solution to the above nonhomogeneous ODE is

y (x) =
∞∑
n=1

bnΦn (x) (1)

Where Φn (x) are eigenfunctions of the homogeneous ODE found above to be

Φn (x) = Jk

(√
λnx

)
n = 1, 2, 3, · · ·
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Substituting (2) in RHS of (1) gives

−
1
x
(xy ′)

′
+
k2

x2
y = µ

∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x)

Where ∑∞
n=1 cnΦn (x) =

f (x )
x . But − 1

x (xy ′)′ + k2

x 2y = λy from part (a,b). Therefore the above becomes

∞∑
n=1

λnbnΦn (x) = µ
∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x)

Or

λnbn = µbn + cn

bn =
cn

λn − µ

What is left is to to find cn (called an in this problem). Since ∑∞
n=1 cnΦn (x) =

f (x )
x , then applying

orthogonality gives

cn

∫ 1

0
r (x)Φ2

n (x)dx =

∫ 1

0
r (x)

f (x)

x
Φn (x)dx

But r (x) = x , and the above becomes

cn

∫ 1

0
x J 2k

(√
λnx

)
dx =

∫ 1

0
f (x) Jk

(√
λnx

)
dx

cn =

∫1
0
f (x) Jk

(√
λnx

)
dx∫1

0
x J 2k

(√
λnx

)
dx

This complete the solution.

y (x) =
∞∑
n=1

bn Jk

(√
λnx

)
=

∞∑
n=1

cn
λn − µ

Jk

(√
λnx

)
=

∞∑
n=1

∫1
0
f (x) Jk

(√
λnx

)
dx∫1

0
x J 2k

(√
λnx

)
dx

Jk

(√
λnx

)
λn − µ

2.1.62 Chapter 11.4, Problem 4

Consider Legendre equation −
( (
1 − x2

)
y ′

) ′
= λy subject to boundary conditions y (0) = 0 with y,y ′

bounded as x → 1 and Φ1 (x) = P1 (x) , Φ2 (x) = P3 (x), Φn (x) = P2n−1 (x) corresponding to eigenvalues
λ1 = 2, λ2 = 4 ·3, · · · , λn = 2n (2n − 1) . (a) Show that the eigenfunctions Φn (x) satisfy the orthogonality
relation ∫ 1

0
Φm (x)Φn (x)dx = 0 m , n

(b) Final formal solution of the nonhomogeneous problem −
( (
1 − x2

)
y ′

) ′
= µy + f (x) where y (0) = 0

with y,y ′ bounded as x → 1 where f (x) is continuous function on 0 ≤ x ≤ 1 and µ is not eigenvalue
of −

( (
1 − x2

)
y ′

) ′
= λy

Solution

Part (a)

Let Φn (x) ,Φm (x) be any two eigenfunctions of −
( (
1 − x2

)
y ′

) ′
= λy associated with eigenvalues

λn, λm , where Φn (x) = Pn (x) and Φm (x) = Pm (x). Therefore each satisfies the ODE. Hence( (
1 − x2

)
Φ′
n (x)

) ′
+ λnΦn = 0 (3A)( (

1 − x2
)
Φ′
m (x)

) ′
+ λmΦm = 0 (3B)

Multiplying 3A by Φm and 3B by Φn and subtracting gives

Φm
( (
1 − x2

)
Φ′
n (x)

) ′
+ λnΦmΦn −

(
Φn

( (
1 − x2

)
Φ′
m (x)

) ′
+ λmΦnΦm

)
= 0

Φm
( (
1 − x2

)
Φ′
n (x)

) ′
− Φn

( (
1 − x2

)
Φ′
m (x)

) ′
+ (λn − λm)ΦnΦm = 0

Integrating from 0 · · · 1 gives (all upper limits below show be limε→0−
∫1−ε
0

instead of
∫1
0
but to simplify

notation, the latter is used and at the end, it is switched back to former.∫ 1

0
Φm

( (
1 − x2

)
Φ′
n (x)

) ′
dx −

∫ 1

0
Φn

( (
1 − x2

)
Φ′
m (x)

) ′
dx + (λn − λm)

∫ 1

0
ΦnΦm (x)dx = 0 (4)
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The first integral in (4)
∫1
0

u︷︸︸︷
Φm

dv︷                 ︸︸                 ︷( (
1 − x2

)
Φ′
n (x)

) ′
dx is integrated by parts, giving

∫ 1

0
Φm

( (
1 − x2

)
Φ′
n (x)

) ′
dx =

[
Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 −

∫ 1

0
Φ′
m

( (
1 − x2

)
Φ′
n (x)

)
dx

=
[
Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 −

∫ 1

0
Φ′
n
( (
1 − x2

)
Φ′
m (x)

)
dx (4A)

Similarly, the second integral in (4)
∫1
0

u︷︸︸︷
Φn

dv︷                 ︸︸                 ︷( (
1 − x2

)
Φ′
m (x)

) ′
dx is integrated by parts, giving

∫ 1

0
Φn

( (
1 − x2

)
Φ′
m (x)

) ′
dx =

[
Φn

(
1 − x2

)
Φ′
m (x)

] 1
0 −

∫ 1

0
Φ′
n
( (
1 − x2

)
Φ′
m (x)

)
dx

=
[
Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 −

∫ 1

0
Φ′
n
( (
1 − x2

)
Φ′
m (x)

)
dx (4B)

Substituting (4A) and (4B) back into (4) gives

[
Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 −

∫ 1

0
Φ′
n
( (
1 − x2

)
Φ′
m (x)

)
dx−( [

Φm
(
1 − x2

)
Φ′
n (x)

] 1
0 −

∫ 1

0
Φ′
n
( (
1 − x2

)
Φ′
m (x)

)
dx

)
+ (λn − λm)

∫ 1

0
ΦnΦm (x)dx = 0

Terms cancel and the above reduces to[
Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 −

[
Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 + (λn − λm)

∫ 1

0
ΦnΦm (x)dx = 0[

Φm
(
1 − x2

)
Φ′
n (x) − Φm

(
1 − x2

)
Φ′
n (x)

] 1
0 + (λn − λm)

∫ 1

0
ΦnΦm (x)dx = 0 (5)

Let ∆ =
[
Φm

(
1 − x2

)
Φ′
n (x) − Φm

(
1 − x2

)
Φ′
n (x)

] 1
0. The boundary terms above are evaluated as follows

∆ = lim
x→1

[
Φm (x)

(
1 − x2

)
Φ′
n (x) − Φm (x)

(
1 − x2

)
Φ′
n (x)

]
−

(
Φm (0)Φ′

n (0) − Φm (0)Φ′
n (0)

)
Since Φm (0) = 0,Φm (0) = 0, the above simplifies to

∆ = lim
x→1

[
Φm (x)

(
1 − x2

)
Φ′
n (x) − Φm (x)

(
1 − x2

)
Φ′
n (x)

]
= lim

x→1

(
1 − x2

) [
Φm (x)Φ′

n (x) − Φm (x)Φ′
n (x)

]
Since Φm (x) ,Φ′

n (x) ,Φm (x)Φ′
n (x) are all bounded as x → 1 then the above goes to zero in the limit.

Which means all boundary conditions term vanish. Hence (5) reduces to

(λn − λm)

∫ 1

0
ΦnΦm (x)dx = 0

But since λn − λm , 0, since these are different eigenvalues, therefore∫ 1

0
ΦnΦm (x)dx = 0

Which is the result asked to show.

Part (b)

Since λ , µ, then the the solution to nonhomogeneous ODE is

y (x) =
∞∑
n=1

bnΦn (x) (1)

Where Φn (x) are eigenfunctions Φn (x) = P(2n−1) (x). Substituting (1) in −
( (
1 − x2

)
y ′

) ′
= µy + f (x)

gives

−
( (
1 − x2

)
y ′

) ′
= µ

∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x)
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Where ∑∞
n=1 cnΦn (x) = f (x). But −

( (
1 − x2

)
y ′

) ′
= λy, therefore the above becomes

∞∑
n=1

λnbnΦn (x) = µ
∞∑
n=1

bnΦn (x) +
∞∑
n=1

cnΦn (x)

Or

λnbn = µbn + cn

bn =
cn

λn − µ

What is left is to to find cn . Since
∑∞

n=1 cnΦn (x) = f (x), then applying orthogonality gives

cn

∫ 1

0
r (x)Φ2

n (x)dx =

∫ 1

0
r (x) f (x)Φn (x)dx

But r (x) = 1, and the above becomes

cn

∫ 1

0
P2
(2n−1) (x)dx =

∫ 1

0
f (x) P(2n−1) (x)dx

cn =

∫1
0
f (x) P(2n−1) (x)dx∫1
0
P2
(2n−1) (x)dx

This complete the solution.

y (x) =
∞∑
n=1

bnP(2n−1) (x)

=
∞∑
n=1

cn
λn − µ

P(2n−1) (x)

=
∞∑
n=1

∫1
0
f (x) P(2n−1) (x)dx∫1
0
P2
(2n−1) (x)dx

P(2n−1) (x)

λn − µ

2.1.63 Chapter 11.4, Problem 5

Equation
(
1 − x2

)
y ′′ − xy ′ + λy = 0 is Chebyshev’s equation. (a) show it can be written as

−

(√
1 − x2y ′

) ′
=

λ
√
1 − x2

y − 1 < x < 1

(b) consider boundary conditions y,y ′ bounded as x → −1 and x → +1. Show that the problem is self
adjoint. (c) Show that ∫ 1

−1

Tm (x)Tn (x)
√
1 − x2

dx = 0

Where Tn (x) are the eigenfunctions :T0 (x) = 1,T1 (x) = x,T2 (x) = 1 − 2x2, · · · and eigenvalues are
λn = n

2 for n = 0, 1, 2, · · ·
Solution

Part (a)

Writing the ODE
(
1 − x2

)
y ′′ − xy ′ + λy = 0 as

P (x)y ′′ +Q (x)y ′ + R (x)y = 0

Where P (x) =
(
1 − x2

)
,Q (x) = −x,R (x) = λ, then the integrating factor is

µ =
1
P
e
∫ Q (x )
P (x ) dx

=
1

(1 − x2)
e

∫
−x(

1−x2
) dx

But
∫

x
(1−x 2)

dx = 1
2 ln

��1 − x2
��, therefore e 1

2 ln
��1−x 2

��
=
√
1 − x2 and the above becomes µ = 1√

1−x 2
. Hence

the SL form is

(µPy ′)
′
+ µR (x)y = 0(

1
√
1 − x2

(
1 − x2

)
y ′

) ′

+
1

√
1 − x2

λy = 0

−

(√
1 − x2y ′

) ′
=

1
√
1 − x2

λy
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Part (b)

A problem is self adjoint if
〈L [u] ,v〉 = 〈u, L [v]〉

Where u,v are any two arbitrary eigenfunctions of the ODE which therefore by definition satisfy the
ODE and the boundary conditions as given. Starting with 〈L [u] ,v〉 and it is evaluated to see if it leads
to 〈u, L [v]〉 . The operator is defined as (from part (a)) as

L [y] = −

(√
1 − x2y ′

) ′
=

1
√
1 − x2

λy

Therefore

〈L [u] ,v〉 =

∫ 1

−1

dv︷             ︸︸             ︷
−

(√
1 − x2u ′

) ′ u︷︸︸︷
v dx

Integrating by parts gives

〈L [u] ,v〉 =
[
−

(√
1 − x2u ′

)
v
] 1
−1

−

∫ 1

−1
−

(√
1 − x2u ′

)
v ′dx

=
[
−

(√
1 − x2u ′

)
v
] 1
−1

−

∫ 1

−1

u︷            ︸︸            ︷
−

(√
1 − x2v ′

) dv︷︸︸︷
u ′ dx

Integrating by parts again gives

〈L [u] ,v〉 =
[
−

(√
1 − x2u ′

)
v
] 1
−1

−

( [
−

(√
1 − x2v ′

)
u
] 1
−1

−

∫ 1

−1
−

(√
1 − x2v ′

) ′
udx

)
=

[
−
√
1 − x2u ′v +

√
1 − x2v ′u

] 1
−1
+

∫ 1

−1
−

(√
1 − x2v ′

) ′
udx

=
[√

1 − x2 (v ′u − u ′v)
] 1
−1
+ 〈u, L [v]〉

Therefore the ODE is self adjoint if the boundary terms vanish. Let ∆ =
[√

1 − x2 (v ′u − u ′v)
] 1
−1
. Evalu-

ating this gives

∆ = lim
x→1

√
1 − x2 (v ′ (x)u (x) − u ′ (x)v (x)) − lim

x→−1

√
1 − x2 (v ′ (x)u (x) − u ′ (x)v (x))

But since u,u ′ are bounded as x → −1 and x → +1 and also v,v ′ are bounded as x → −1 and x → +1,
then this shows that ∆ → 0. Therefore

〈L [u] ,v〉 = 〈u, L [v]〉

Hence the ODE is self adjoint.

Part (c)

Since Tn (x) ,Tm (x) are two eigenfunctions of −
(√

1 − x2y ′
) ′
= 1√

1−x 2
λy then each satisfies the ODE.

Hence (√
1 − x2T ′

n

) ′
+

1
√
1 − x2

λnTn = 0 (3A)(√
1 − x2T ′

m

) ′
+

1
√
1 − x2

λmTm = 0 (3B)

Multiplying 3A by Tm and 3B by Tn and subtracting gives

Tm
(√

1 − x2T ′
n

) ′
+

1
√
1 − x2

λnTmTn −

(
Tn

(√
1 − x2T ′

m

) ′
+

1
√
1 − x2

λmTnTm

)
= 0

Tm
(√

1 − x2T ′
n

) ′
−Tn

(√
1 − x2T ′

m

) ′
+ (λn − λm)

1
√
1 − x2

TmTn = 0

Integrating from −1 · · · 1 gives∫ 1

−1
Tm

(√
1 − x2T ′

n

) ′
dx −

∫ 1

−1
Tn

(√
1 − x2T ′

m

) ′
dx + (λn − λm)

∫ 1

−1

TmTn
√
1 − x2

dx = 0 (1)

Integrating by parts the first integral in (1) above gives∫ 1

−1
Tm

(√
1 − x2T ′

n

) ′
dx =

[
Tm

√
1 − x2T ′

n

] 1
−1

−

∫ 1

−1
T ′
m

(√
1 − x2T ′

n

)
dx (1A)

85



2 HWs

Integrating by parts the second integral in (1) gives∫ 1

−1
Tn

(√
1 − x2T ′

m

) ′
dx =

[
Tn

√
1 − x2T ′

m

] 1
−1

−

∫ 1

−1
T ′
n

(√
1 − x2T ′

m

)
dx (1B)

Substituting (1A) and (1B) back into (1) and simplifying gives[
Tm

√
1 − x2T ′

n

] 1
−1

−

[
Tn

√
1 − x2T ′

m

] 1
−1
+ (λn − λm)

∫ 1

−1

TmTn
√
1 − x2

dx = 0[
Tm

√
1 − x2T ′

n −Tn
√
1 − x2T ′

m

] 1
−1
+ (λn − λm)

∫ 1

−1

TmTn
√
1 − x2

dx = 0[√
1 − x2

(
TmT

′
n −TnT

′
m
) ] 1

−1
+ (λn − λm)

∫ 1

−1

TmTn
√
1 − x2

dx = 0 (1C)

Let ∆ =
[√

1 − x2
(
TmT

′
n −TnT

′
m
) ] 1

−1
, then

∆ = lim
x→1

√
1 − x2

(
Tm (x)T ′

n (x) −Tn (x)T
′
m (x)

)
− lim

x→−1

√
1 − x2

(
Tm (x)T ′

n (x) −Tn (x)T
′
m (x)

)
But sinceTn (x) ,Tm (x) ,T ′

n (x) ,T
′
m (x) are all bounded as x → −1 and as x → +1, then ∆ → 0. Therefore

(1C) becomes

(λn − λm)

∫ 1

−1

TmTn
√
1 − x2

dx = 0

But since λn , λm , sincem , n, then ∫ 1

−1

TmTn
√
1 − x2

dx = 0

Which is what we are asked to show.

2.1.64 Chapter 11.5, Problem 2 (With interactive animation)

Find displacement u (r , t) in vibrating circular elastic membrane of radius 1 that satisfies the boundary
conditions

u (1, t) = 0 t ≥ 0

And initial conditions

u (r , 0) = 0

ut (r , 0) = д (r )

For 0 ≤ r ≤ 1, where д (1) = 0.
Solution
The wave equation is ut t = a2

(
uxx + uyy

)
. In polar coordinates this becomes

1
a2
ut t = ur r +

1
r
ur +

1
r 2
uθθ

Due to circular symmetry, the above simplifies to

1
a2
ut t = ur r +

1
r
ur

Applying separation of variables. Let u = T (t)R (r ). Substituting this in the above PDE gives

1
a2
T ′′R = R′′T +

1
r
R′T

Dividing by RT results in
1
a2

T ′′

T
=

R′′

R
+
1
r

R′

R
= −λ2

Where λ is the sepration constant. For λ > 0 (it is known λ = 0 is not eigenvalue, as well as there are
no negative eigenvalues.) The above gives two ODE

T ′′ + λ2a2T = 0

And
rR′′ (r ) + R′ (r ) + λ2rR (r ) = 0 (1)

With the boundary conditions R (1) = 0 and to R (0) is bounded. This comes from physics, since one
expects the vibration not to blow up in the center of the membrane. The ODE (1) is now transformed
to Bessel ODE using

ξ = λr
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Hence dR
dr =

dR
dξ

dξ
dr = λ dRdξ and d2R

dr 2 = λ2 d
2R

dξ 2 . Therefore (1) becomes

ξ

λ
λ2R′′ (ξ ) + λR′ (ξ ) + λ2

ξ

λ
R (ξ ) = 0

The above simplifies to
ξR′′ (ξ ) + R′ (ξ ) + ξR (ξ ) = 0

The above is Bessel ODE of order zero. Its solution is

R (ξ ) = c1 J0 (ξ ) + c2Y0 (ξ )

Converting back to r the above becomes

R (r ) = c1 J0 (rλ) + c2Y0 (rλ)

Since R (r ) is bounded as r → 0, then c2 = 0 as Y0 (rλ) blows up at r = 0. Therefore the radial solution
becomes

R (r ) = c1 J0 (rλ)

At boundary conditions R (1) = 0 the above becomes

0 = c1 J0 (λ)

Non trivial solution requires J0 (λ) = 0. Therefore the eigenvalues are the the positive roots of J0 (λ) = 0.
The first few eigenvalues are λ1 = 5.78319, λ2 = 30.4713, λ3 = 74.887, · · · . Hence

Rn (r ) = cn J0 (λnr ) n = 1, 2, 3, · · ·

Now the time ODE is
T ′′ + λ2a2T = 0

Since λ > 0 then the solution is

Tn (t) = An cos (λnat) + Bn sin (λnat)

Therefore the fundamental solution is

un (r , t) = Tn (t)Rn (r )

And by superposition, the general solution is

u (r , t) =
∞∑
n=1

(An cos (λnat) + Bn sin (λnat)) J0 (λnr ) (1A)

Where the cn is merged intoAn,Bn due to the product. At t = 0 and sinceu (r , 0) = 0, the above becomes

0 =
∞∑
n=1

An J0 (λnr )

Hence An = 0. The solution simplifies to

u (r , t) =
∞∑
n=1

Bn sin (λnat) J0 (λnr )

Taking time derivative gives

ut (r , t) =
∞∑
n=1

Bnλna cos (λnat) J0 (λnr )

At t = 0, and from initial conditions, the above becomes

д (r ) =
∞∑
n=1

BnλnaJ0 (λnr )

Applying orthogonality, and since the weight is r , therefore∫ 1

0
rд (r ) J0 (λnr )dr = Bnλna

∫ 1

0
r J 20 (λnr )dr

Bn =
1

λna

∫1
0
rд (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

(2)

Therefore the final solution is

u (r , t) =
∞∑
n=1

Bn sin (λnat) J0 (λnr )

With Bn given by (2).
The following is an animation of the above solution. a = 0.2 and д(r ) = r was used. This runs inside the
PDF (need to use standard PDF reader to run the animation. Might not run inside Chrome browser PDF
reader).
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2.1.65 Chapter 11.5, Problem 3 (With interactive animation)

Find displacement u (r , t) in vibrating circular elastic membrane of radius 1 that satisfies the boundary
conditions

u (1, t) = 0 t ≥ 0

And initial conditions

u (r , 0) = f (r )

ut (r , 0) = д (r )

For 0 ≤ r ≤ 1, where д (1) = 0.
Solution
The same steps are used to reach the general solution as was done in the above problem. The difference
is when initial conditions are used to determine the coefficients.
The general solution from the above problem was found to be

u (r , t) =
∞∑
n=1

(An cos (λnat) + Bn sin (λnat)) J0 (λnr ) (1A)

At t = 0

f (r ) =
∞∑
n=1

An J0 (λnr )

Applying orthogonality, and since the weight is r results in∫ 1

0
r f (r ) J0 (λnr )dr = An

∫ 1

0
r J 20 (λnr )dr

An =

∫1
0
r f (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

(2)

Taking time derivative of the solution (1A)

ut (r , t) =
∞∑
n=1

−An
√
λna sin (λnat) + Bnλna cos (λnat) J0 (λnr )
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At t = 0, and from initial conditions, the above becomes

д (r ) =
∞∑
n=1

BnλnaJ0 (λnr )

Applying orthogonality, and since the weight is r , therefore∫ 1

0
rд (r ) J0 (λnr )dr = Bnλna

∫ 1

0
r J 20 (λnr )dr

Bn =
1

λna

∫1
0
rд (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

(3)

The two coefficients An,Bn are now found. Therefore the final solution is

u (r , t) =
∞∑
n=1

(
An cos

(√
λnat

)
+ Bn sin

(√
λnat

) )
J0

(√
λnr

)
With An given by (2) and Bn given by (3)
The following is an animation of the above solution. a = 0.2, д(r ) = r and f (r ) = 1 − r was used.
This runs inside the PDF (need to use standard PDF reader to run the animation. Might not run inside
Chrome browser PDF reader).

2.1.66 Chapter 11.5, Problem 4

The wave equation in polar coordinates is

1
a2
ut t = ur r +

1
r
ur +

1
r 2
uθθ

Show that if u (r , θ , t) = R (r )Θ (θ )T (t) then R,Θ,T satisfy the ODE’s

r 2R′′ + rR′ +
(
λ2r 2 − n2

)
R = 0

Θ′′ + n2Θ = 0

T ′′ + λ2a2T = 0

Solution
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Let u (r , θ , t) = R (r )Θ (θ )T (t). Substituting in the wave PDE gives

1
a2
T ′′RΘ = R′′TΘ +

1
r
R′TΘ +

1
r 2
Θ′′RT

dividing by RΘT gives
1
a2

T ′′

T
=

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2

Where λ is separation constant. The above now become

1
a2

T ′′

T
= −λ2 (1)

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2

The second ODE above can now be written as

r 2
R′′

R
+ r

R′

R
+
Θ′′

Θ
= −r 2λ2

r 2
R′′

R
+ r

R′

R
+ r 2λ2 = −

Θ′′

Θ
= n2

Where n is the new separation constant (I do not like using n for this, but this is what the book did).
The above now gives the ODE’s

−
Θ′′

Θ
= n2 (2)

r 2
R′′

R
+ r

R′

R
+ r 2λ2 = n2 (3)

Therefore (1,2,3) becomes

T ′′ + a2λ2T = 0 (1A)
Θ′′ + n2Θ = 0 (2A)

r 2R′′ + rR′ +
(
r 2λ2 − n2

)
R = 0 (3A)

Which is what the problem asked to show.

2.1.67 Chapter 11.5, Problem 5

In the circular cylindrical coordinates r , θ, z defined by

x = r cosθ

y = r sinθ

z = z

Laplace equation is

ur r +
1
r
ur +

1
r 2
uθθ + uzz = 0

(a) Show that if u (r , θ , t) = R (r )Θ (θ )Z (z) then R,Θ,Z satisfy the ODE’s

r 2R′′ + rR′ +
(
λ2r 2 − n2

)
R = 0

Θ′′ + n2Θ = 0

Z ′′ − λ2Z = 0

(b) Show that if u (r , θ, z) is independent of θ then the first equation in (a) becomes

r 2R′′ + rR′ + λ2r 2R = 0

The second is omitted altogether and the third is unchanged.
Solution

Part (a)

Let u (r , θ , z) = R (r )Θ (θ )Z (z). Substituting in the wave PDE ur r +
1
rur +

1
r 2uθθ + uzz = 0 gives

R′′ΘZ +
1
r
R′ΘZ +

1
r 2
Θ′′RZ + Z ′′RΘ = 0

dividing by RΘZ gives
R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −

Z ′′

Z
= −λ2

90



2.1 my solved problems

Where λ is separation constant. The above now become

Z ′′ − λ2Z = 0 (1)
R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2

The second ODE above can now be written as

r 2
R′′

R
+ r

R′

R
+
Θ′′

Θ
= −r 2λ2

r 2
R′′

R
+ r

R′

R
+ r 2λ2 = −

Θ′′

Θ
= n2

Where n is the new separation constant. The above now gives the ODE’s

−
Θ′′

Θ
= n2 (2)

r 2
R′′

R
+ r

R′

R
+ r 2λ2 = n2 (3)

Therefore (1,2,3) becomes

Z ′′ − λ2Z = 0 (1A)
Θ′′ + n2Θ = 0 (2A)

r 2R′′ + rR′ +
(
r 2λ2 − n2

)
R = 0 (3A)

Part (b)

When no dependency on θ then the ODE becomes ur r + 1
rur + uzz = 0. Let u (r , z) = R (r )Z (z).

Substituting into the wave PDE

R′′Z +
1
r
R′Z + Z ′′R = 0

dividing by RZ gives
R′′

R
+
1
r

R′

R
= −

Z ′′

Z
= −λ2

The above gives

R′′

R
+
1
r

R′

R
= −λ2

−
Z ′′

Z
= −λ2

Or

R′′ +
1
r
R′ + λ2R = 0

Z ′′ − λ2Z = 0

2.1.68 Chapter 11.5, Problem 6

Find steady state solution in semi-infinite rod 0 < z < ∞, 0 ≤ r ≤ 1 if the temperature is independent
of θ and approaches zero as z → ∞. Assume u (r , z) satisfies boundary conditions

u (1, z) = 0 z > 0

u (r , 0) = f (r ) 0 ≤ r ≤ 1

Solution
The PDE is

ur r +
1
r
ur + uzz = 0

By separation of variables, as was done in problem 5 above, this gives

R′′ +
1
r
R′ + λ2R = 0 (1)

R (1) = 0

lim
r→0

R (0) → bounded

And

Z ′′ − λ2Z = 0 (2)
Z (0) = f (r )

lim
z→∞

Z (r ) → 0
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The solution to (2) is known to be
R (r ) = cn J0 (λnr )

Where λn are the positive roots of J0 (λn) = 0. The solution to (2) is

Z (z) = Ane
λnz + Bne

−λnz

Since u goes to zero as z → ∞, then this implies An = 0. Hence

Z (z) = Bne
−λnz

Hence the overall solution becomes

u (r , z) =
∞∑
n=1

Bne
−λnz J0 (λnr )

Where cn is combined with Bn . To find Bn , using the final boundary condition u (r , 0) = f (r ) gives

f (r ) =
∞∑
n=1

Bn J0 (λnr )

Applying orthogonality and using the weight of r gives

∫ 1

0
r f (r ) J0 (λnr )dr = Bn

∫ 1

0
r J 20 (λnr )dr

Bn =

∫1
0
r f (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

Hence the solution is now complete. It is given by

u (r , z) =
∞∑
n=1

∫1
0
r f (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

e−λnz J0 (λnr )

2.1.69 Chapter 11.5, Problem 7

August 7, 2012 21:05 c11 Sheet number 51 Page number 727 cyan black

11.5 A Bessel Series Expansion 727

7. The equation
vxx + vyy + k2v = 0

is a generalizationofLaplace’s equationand is sometimes called theHelmholtz12 equation.

(a) In polar coordinates the Helmholtz equation is

vrr + (1/r)vr + (1/r2)vθθ + k2v = 0.
If v(r, θ) = R(r)�(θ), show that R and � satisfy the ordinary differential equations

r2R′′ + rR′ + (k2r2 − λ2)R = 0, �′′ + λ2� = 0.
(b) Consider the Helmholtz equation in the disk r < c. Find the solution that remains
bounded at all points in the disk, that is periodic in θ with period 2π, and that satisfies the
boundary condition v(c, θ) = f (θ), where f is a given function on 0 ≤ θ < 2π.
Hint:The equation for R is a Bessel equation. See Problem 3 of Section 11.4.

8. Consider the flow of heat in a cylinder 0 ≤ r < 1, 0 ≤ θ < 2π, −∞ < z < ∞ of radius 1
and of infinite length. Let the surface of the cylinder be held at temperature zero, and let
the initial temperature distribution be a function of the radial variable r only. Then the
temperature u is a function of r and t only and satisfies the heat conduction equation

α2[urr + (1/r)ur] = ut , 0 < r < 1, t > 0,

and the following initial and boundary conditions:

u(r, 0) = f (r), 0 ≤ r ≤ 1,
u(1, t) = 0, t > 0.

Show that

u(r, t) =
∞∑

n=1
cnJ0(λnr)e−α2λ2nt ,

where J0(λn) = 0. Find a formula for cn.

9. In the spherical coordinates ρ,θ,φ (ρ > 0,0 ≤ θ < 2π, 0 ≤ φ ≤ π) defined by the equations

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ,

Laplace’s equation is

ρ2uρρ + 2ρuρ + (csc2 φ)uθθ + uφφ + (cotφ)uφ = 0.
(a) Show that if u(ρ, θ,φ) = P(ρ)�(θ)�(φ), then P,�, and � satisfy ordinary differential
equations of the form

ρ2P′′ + 2ρP′ − μ2P = 0,
�′′ + λ2� = 0,

(sin2 φ)�′′ + (sinφ cosφ)�′ + (μ2 sin2 φ − λ2)� = 0.

12The German scientist Hermann von Helmholtz (1821–1894) was trained in medicine and physiology;
early in his career he made important contributions to physiological optics and acoustics, including the
invention of the ophthalmoscope in 1851. Later his interests turned to physics, especially fluid mechan-
ics and electrodynamics. During his lifetime, he held chairs in physiology or physics at several German
universities.

Solution

Part (a)

Substituting v (r , θ ) = R (r )Θ (θ ) into the PDE gives

R′′Θ +
1
r
R′Θ +

1
r 2
Θ′′R + k2RΘ = 0

Dividing by RΘ gives

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
+ k2 = 0

r 2
R′′

R
+ r

R′

R
+ r 2k2 = −

Θ′′

Θ
= λ2
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Where λ is the separation constant. This gives

r 2
R′′

R
+ r

R′

R
+ r 2k2 − λ2 = 0

And
−
Θ′′

Θ
= λ2

Hence

r 2R′′ + rR′ + R
(
r 2k2 − n2

)
= 0

Θ′′ + λ2Θ = 0

Part (b)

Starting with Θ′′ + λ2Θ = 0. The eigenvalue λ can not be negative. The following two cases are
considered.
Case λ = 0
Solution is

Θ (θ ) = c1θ + c2

The boundary conditions are periodic with period 2π , meaning

Θ (0) = Θ (2π )

Θ′ (0) = Θ′ (2π )

Applying first BC gives
c2 = c12π + c2 (1)

Applying second BC gives
c1 = c1 (2)

So c1 can be any value. But to solve (1) c1 must be zero. Hence first BC now gives

c2 = c2

Which means c2 can be any value, say 1. Therefore λ = 0 is an eigenvalue with eigenfunction Φ0 (θ ) = 1
Case λ > 0
The solution now is

Θ (θ ) = A cos (λθ ) + B sin (λθ )

The boundary conditions are periodic with period 2π , meaning

Θ (0) = Θ (2π )

Θ′ (0) = Θ′ (2π )

Applying the above boundary conditions gives

A = A cos (λ2π ) + B sin (λ2π )

Bλ = Aλ sin (λ2π ) + Bλ cos (λ2π )

This means λ must be an integer n = 1, 2, · · · for the above relations be satisfied. Since only when n is
an integer, the above gives A = A and Bλ = Bλ. Hence the eigenfunction in this case is

Φn (θ ) = An cos (nθ ) + Bn sin (nθ ) n = 1, 2, · · ·

Now that the eigenvalues are found, the solution to the R ODE is found. Summary of the above result:
The eigenvalues are n = 0 with eigenfunction Φ0 (θ ) = 1 and n = 1, 2, 3, · · · with eigenfunction Φn (θ ) =
An cos (nθ ) + Bn sin (nθ ) .
Case λ = n = 0
In this case, the R ODE above r 2R′′ + rR′ + R

(
r 2k2 − λ2

)
= 0 reduces to

r 2R′′ + rR′ + Rr 2k2 = 0

let
t = rk

Therefore R′ (r ) = R′ (t)k and R′′ (r ) = R′′ (t)k2. Substituting these in the above ODE gives

t2

k2
k2R′′ (t) +

t

k
kR′ (r ) + R

t2

k2
k2 = 0

t2R′′ (t) + tR′ (t) + t2R (t) = 0
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This is now Bessel ODE of order zero. Its solution is

R0 (t) = A0 J0 (t) + B0Y0 (t)

Converting back to r , the above becomes

R0 (r ) = A0 J0 (rk) + B0Y0 (rk)

Since R is bounded at r = 0, this implies B0 = 0, since Y0 (rk) blows up at r = 0. Hence

R0 (r ) = A0 J0 (rk)

This is the solution for eigenvalue n = 0.
Case λ = n > 0
The Bessel PDE now has the form r 2R′′ (r ) + rR′ (r ) +

(
r 2k2 − n2

)
R (r ) = 0. To convert the ODE to

standard Bessel form let
t = rk

Therefore R′ (r ) = R′ (t)k and R′′ (r ) = R′′ (t)k2. Substituting these in the above ODE gives

t2

k2
k2R′′ (t) +

t

k
kR′ (r ) + R

(
t2

k2
k2 − n2

)
= 0

t2R′′ (t) + tR′ (t) + R (t)
(
t2 − n2

)
= 0

This is now Bessel ODE of order n. Its solution is

Rn (t) = An Jn (t) + BnYn (t)

Converting back to r , the above becomes

Rn (r ) = An Jn (rk) + BnYn (rk)

Since R is bounded at r = 0, this implies Bn = 0, since Yn (rk) blows up at r = 0. Hence R (r ) = An Jn (rk).
This is the solution for eigenvalue n > 0.
Hence the fundamental solution is

v0 (r , θ ) = Φ0 (θ )R0 (r )

= A0 J0 (rk)

Since Φ0 (θ ) = 1 and

vn (r , θ ) = Φn (θ )Rn (r )

= (An cos (nθ ) + Bn sin (nθ )) Jn (rk)

Where the constants are combined. Therefore the general solution becomes

v (r , θ ) = A0 J0 (rk) +
∞∑
n=1

(An cos (nθ ) + Bn sin (nθ )) Jn (rk) (3)

Constants A0,An,Bn are found from boundary conditions. At r = c , u (c, θ ) = f (θ ) and the above
becomes

f (θ ) = A0 J0 (ck) +
∞∑
n=1

(An cos (nθ ) + Bn sin (nθ )) Jn (ck)

For n = 0 only and applying orthogonality∫ 2π

0
f (θ )dθ =

∫ 2π

0
A0 J0 (ck)dθ∫ 2π

0
f (θ )dθ = A0 J0 (ck)

∫ 2π

0
dθ

= 2πA0 J0 (ck)

Hence

A0 =

∫2π
0

f (θ )dθ

2π J0 (ck)

And for n > 0∫ 2π

0
f (θ ) sin (mθ )dθ =

∞∑
n=1

∫ 2π

0
(An cos (nθ ) + Bn sin (nθ )) sin (mθ ) Jn (ck)dθ

=
∞∑
n=1

Jn (ck)An

∫ 2π

0
cos (nθ ) sin (mθ )dθ + Bn

∞∑
n=1

Jn (ck)

∫ 2π

0
sin (nθ ) sin (mθ )dθ
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But
∫2π
0

cos (nθ ) sin (mθ )dθ = 0 for all n,m and the above now is solved for Bn∫ 2π

0
f (θ ) sin (mθ )dθ = Bn

∞∑
n=1

Jn (ck)

∫ 2π

0
sin (nθ ) sin (mθ )dθ

= Bm Jm (ck)

∫ 2π

0
sin2 (mθ )dθ

= Bm Jm (ck)π

Hence

Bn =

∫2π
0

f (θ ) sin (nθ )dθ

π Jn (ck)

Similarly, to find An∫ 2π

0
f (θ ) cos (mθ )dθ =

∞∑
n=1

∫ 2π

0
(An cos (nθ ) + Bn sin (nθ )) cos (mθ ) Jn (ck)dθ

=
∞∑
n=1

Jn (ck)An

∫ 2π

0
cos (nθ ) cos (mθ )dθ + Bn

∞∑
n=1

Jn (ck)

∫ 2π

0
sin (nθ ) cos (mθ )dθ

But
∫2π
0

sin (nθ ) cos (mθ )dθ = 0 for all n,m and the above now is solved for An∫ 2π

0
f (θ ) sin (mθ )dθ = An

∞∑
n=1

Jn (ck)

∫ 2π

0
cos (nθ ) cos (mθ )dθ

= Am Jm (ck)

∫ 2π

0
cos2 (mθ )dθ

= Am Jm (ck)π

Hence

An =

∫2π
0

f (θ ) cos (nθ )dθ

π Jn (ck)

The complete solution from (3) becomes

v (r , θ ) = A0 J0 (rk) +
∞∑
n=1

(An cos (nθ ) + Bn sin (nθ )) Jn (rk)

A0 =

∫2π
0

f (θ )dθ

2π J0 (ck)

Bn =

∫2π
0

f (θ ) sin (nθ )dθ

π Jn (ck)

An =

∫2π
0

f (θ ) cos (nθ )dθ

π Jn (ck)
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7. The equation
vxx + vyy + k2v = 0

is a generalizationofLaplace’s equationand is sometimes called theHelmholtz12 equation.

(a) In polar coordinates the Helmholtz equation is

vrr + (1/r)vr + (1/r2)vθθ + k2v = 0.
If v(r, θ) = R(r)�(θ), show that R and � satisfy the ordinary differential equations

r2R′′ + rR′ + (k2r2 − λ2)R = 0, �′′ + λ2� = 0.
(b) Consider the Helmholtz equation in the disk r < c. Find the solution that remains
bounded at all points in the disk, that is periodic in θ with period 2π, and that satisfies the
boundary condition v(c, θ) = f (θ), where f is a given function on 0 ≤ θ < 2π.
Hint:The equation for R is a Bessel equation. See Problem 3 of Section 11.4.

8. Consider the flow of heat in a cylinder 0 ≤ r < 1, 0 ≤ θ < 2π, −∞ < z < ∞ of radius 1
and of infinite length. Let the surface of the cylinder be held at temperature zero, and let
the initial temperature distribution be a function of the radial variable r only. Then the
temperature u is a function of r and t only and satisfies the heat conduction equation

α2[urr + (1/r)ur] = ut , 0 < r < 1, t > 0,

and the following initial and boundary conditions:

u(r, 0) = f (r), 0 ≤ r ≤ 1,
u(1, t) = 0, t > 0.

Show that

u(r, t) =
∞∑

n=1
cnJ0(λnr)e−α2λ2nt ,

where J0(λn) = 0. Find a formula for cn.

9. In the spherical coordinates ρ,θ,φ (ρ > 0,0 ≤ θ < 2π, 0 ≤ φ ≤ π) defined by the equations

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ,

Laplace’s equation is

ρ2uρρ + 2ρuρ + (csc2 φ)uθθ + uφφ + (cotφ)uφ = 0.
(a) Show that if u(ρ, θ,φ) = P(ρ)�(θ)�(φ), then P,�, and � satisfy ordinary differential
equations of the form

ρ2P′′ + 2ρP′ − μ2P = 0,
�′′ + λ2� = 0,

(sin2 φ)�′′ + (sinφ cosφ)�′ + (μ2 sin2 φ − λ2)� = 0.

12The German scientist Hermann von Helmholtz (1821–1894) was trained in medicine and physiology;
early in his career he made important contributions to physiological optics and acoustics, including the
invention of the ophthalmoscope in 1851. Later his interests turned to physics, especially fluid mechan-
ics and electrodynamics. During his lifetime, he held chairs in physiology or physics at several German
universities.
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Solution
Let u (r , t) = R (r )T (t). Substituting into the PDE gives

1
α2T

′R = R′′T +
1
r
R′T

Dividing by RT gives
1
α2

T ′

T
=

R′′

R
+
1
r

R′

R
= −λ2

Where λ is the separation constant. This gives the ODE

R′′ +
1
r
R + λ2R = 0

rR′′ + R + λ2rR = 0

(rR′)
′
+ λ2rR = 0 (1)

With BC

R (1) = 0

lim
r→0

R (r ) → bounded

And
T ′ + α2λ2R = 0 (2)

ODE (1) is Sturm Liouville ODE where p = r ,q = 0 and the weight is r . The eigenvalue can not be
negative. Two cases to consider.
Case λ = 0
The ODE becomes (rR′)′ = 0 which has solution rR′ = c1 or r dRdr = c1 or dR = c1

r dr . Integrating gives

R (r ) = c1 ln r + c2

Since R is bounded at r = 0, then c1 = 0. The solution becomes R (r ) = c2. Since R (1) = 0 then c2 = 0.
Hence trivial solution. Therefore λ = 0 is not an eigenvalue.
Case λ > 0
The ODE now becomes rR′′ (r ) + R (r ) + λ2rR (r ) = 0. Let t = λr . Hence R′ (r ) = λR′ (t) and R′′ (r ) =
λ2R′′ (t) and the ODE becomes

t

λ
λ2R′′ (t) + λR′ (t) + λ2

t

λ
R (t) = 0

tλR′′ (t) + λR′ (t) + λtR (t) = 0

tR′′ (t) + R′ (t) + tR (t) = 0

This is Bessel ODE of order zero. Its solution is

R (t) = c1 Jo (t) + c2Yo (t)

Converting back to r
R (r ) = c1 Jo (λr ) + c2Yo (λr )

Since R is bounded at r = 0 then c2 = 0 and the solution becomes

R (r ) = c1 Jo (λr )

Since R (1) = 0 then
0 = c1 Jo (λ)

For nontrivial solution, Jo (λ) = 0. This gives the eigenvalues as the positive roots of Jo (λ) = 0. Hence
the solution is

Rn (r ) = cn Jo (λnr )

Where λn are roots of Jo (λ) = 0 for n = 1, 2, 3, · · · . The Time ODE (2) has solution

Tn (t) = Ane
−λ2nα

2t

Hence the final solution is
u (r , t) =

∞∑
n=1

cne
−λ2nα

2t J0 (λnr )

Where constantsAn, cn are combined into cn . cn is now found from initial conditions. At t = 0 the above
becomes

u (r , 0) = f (r ) =
∞∑
n=1

cn J0 (λnr )
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The weight is r , since the R ODE in S.L. form is (rR′)′ + λ2rR = 0. Therefore, applying orthogonality
gives ∫ 1

0
r f (r ) J0 (λnr )dr = cn

∫ 1

0
r J 20 (λnr )dr

cn =

∫1
0
r f (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

This completes the solution.

u (r , t) =
∞∑
n=1

∫1
0
r f (r ) J0 (λnr )dr∫1
0
r J 20 (λnr )dr

e−λ
2
nα

2t J0 (λnr )
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7. The equation
vxx + vyy + k2v = 0

is a generalizationofLaplace’s equationand is sometimes called theHelmholtz12 equation.

(a) In polar coordinates the Helmholtz equation is

vrr + (1/r)vr + (1/r2)vθθ + k2v = 0.
If v(r, θ) = R(r)�(θ), show that R and � satisfy the ordinary differential equations

r2R′′ + rR′ + (k2r2 − λ2)R = 0, �′′ + λ2� = 0.
(b) Consider the Helmholtz equation in the disk r < c. Find the solution that remains
bounded at all points in the disk, that is periodic in θ with period 2π, and that satisfies the
boundary condition v(c, θ) = f (θ), where f is a given function on 0 ≤ θ < 2π.
Hint:The equation for R is a Bessel equation. See Problem 3 of Section 11.4.

8. Consider the flow of heat in a cylinder 0 ≤ r < 1, 0 ≤ θ < 2π, −∞ < z < ∞ of radius 1
and of infinite length. Let the surface of the cylinder be held at temperature zero, and let
the initial temperature distribution be a function of the radial variable r only. Then the
temperature u is a function of r and t only and satisfies the heat conduction equation

α2[urr + (1/r)ur] = ut , 0 < r < 1, t > 0,

and the following initial and boundary conditions:

u(r, 0) = f (r), 0 ≤ r ≤ 1,
u(1, t) = 0, t > 0.

Show that

u(r, t) =
∞∑

n=1
cnJ0(λnr)e−α2λ2nt ,

where J0(λn) = 0. Find a formula for cn.

9. In the spherical coordinates ρ,θ,φ (ρ > 0,0 ≤ θ < 2π, 0 ≤ φ ≤ π) defined by the equations

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ,

Laplace’s equation is

ρ2uρρ + 2ρuρ + (csc2 φ)uθθ + uφφ + (cotφ)uφ = 0.
(a) Show that if u(ρ, θ,φ) = P(ρ)�(θ)�(φ), then P,�, and � satisfy ordinary differential
equations of the form

ρ2P′′ + 2ρP′ − μ2P = 0,
�′′ + λ2� = 0,

(sin2 φ)�′′ + (sinφ cosφ)�′ + (μ2 sin2 φ − λ2)� = 0.

12The German scientist Hermann von Helmholtz (1821–1894) was trained in medicine and physiology;
early in his career he made important contributions to physiological optics and acoustics, including the
invention of the ophthalmoscope in 1851. Later his interests turned to physics, especially fluid mechan-
ics and electrodynamics. During his lifetime, he held chairs in physiology or physics at several German
universities.
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The first of these equations is of the Euler type, while the third is related to Legendre’s
equation.

(b) Show that if u(ρ, θ,φ) is independent of θ, then the first equation in part (a) is
unchanged, the second is omitted, and the third becomes

(sin2 φ)�′′ + (sinφ cosφ)�′ + (μ2 sin2 φ)� = 0.
(c) Show that if a new independent variable is defined by s = cosφ, then the equation for
� in part (b) becomes

(1− s2)
d2�
ds2

− 2s d�

ds
+ μ2� = 0, −1 ≤ s ≤ 1.

Note that this is Legendre’s equation.

10. Find the steady state temperature u(ρ,φ) in a sphere of unit radius if the temperature is
independent of θ and satisfies the boundary condition

u(1,φ) = f (φ), 0 ≤ φ ≤ π.

Hint:Refer to Problem 9 and to Problems 22 through 29 of Section 5.3. Use the fact that
the only solutions of Legendre’s equation that are finite at both ±1 are the Legendre
polynomials.

11.6 Series of Orthogonal Functions: Mean Convergence

In Section 11.2 we stated that under certain restrictions, a given function f can be
expanded in a series of eigenfunctions of a Sturm–Liouville boundary value problem,
the series converging to [f (x+) + f (x−)]/2 at each point in the open interval. Under
somewhat more restrictive conditions, the series converges to f (x) at each point in
the closed interval. This type of convergence is referred to as pointwise convergence.
In this section we describe a different kind of convergence that is especially useful
for series of orthogonal functions, such as eigenfunctions.
Suppose that we are given the set of functions φ1,φ2, . . . ,φn, that are continuous

on the interval 0 ≤ x ≤ 1 and satisfy the orthonormality condition∫ 1

0
r(x)φi(x)φj(x) dx =

{
0, i �= j,
1, i = j,

(1)

where r is a nonnegative weight function. Suppose also that we wish to approximate
a given function f , defined on 0 ≤ x ≤ 1, by a linear combination of φ1, . . . ,φn. That
is, if

Sn(x) =
n∑

i=1
aiφi(x), (2)

we wish to choose the coefficients a1, . . . , an so that the function Sn will best approx-
imate f on 0 ≤ x ≤ 1. The first problem that we must face in doing this is to state
precisely what we mean by “best approximate f on 0 ≤ x ≤ 1.” There are several
reasonable meanings that can be attached to this phrase.

Solution

Part (a)

Let
u (ρ, θ,ϕ) = P (ρ)Θ (θ )Φ (ϕ)

Substituting the above in the Laplace PDE given results in

ρ2P ′′ΘΦ + 2ρP ′ΘΦ +
(
csc2 ϕ

)
Θ′′PΦ + Φ′′PΘ + cot (ϕ)Φ′PΘ = 0

Dividing by PΘΦ gives

ρ2
P ′′

P
+ 2ρ

P ′

P
+

(
csc2 ϕ

) Θ′′

Θ
+
Φ′′

Φ
+ cot (ϕ)

Φ′

Φ
= 0

ρ2
P ′′

P
+ 2ρ

P ′

P
= −

(
csc2 ϕ

) Θ′′

Θ
−
Φ′′

Φ
− cot (ϕ)

Φ′

Φ
= µ2
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Where µ is the first separation constant. The above gives

ρ2
P ′′

P
+ 2ρ

P ′

P
= µ2

−
(
csc2 ϕ

) Θ′′

Θ
−
Φ′′

Φ
− cot (ϕ)

Φ′

Φ
− µ2 = 0

The first ODE above becomes
ρ2P ′′ + 2ρP ′ − Pµ2 = 0

And the second equation is now separated again into two additional ODE’s as follows

−
Θ′′

Θ
−

1
csc2 ϕ

Φ′′

Φ
−

cotϕ

csc2 ϕ
Φ′

Φ
−

µ2

csc2 ϕ
= 0

1
csc2 ϕ

Φ′′

Φ
+
cot (ϕ)

csc2 ϕ
Φ′

Φ
+

µ2

csc2 ϕ
= −

Θ′′

Θ
= λ2

Where λ is the second separation constant. The above gives the following two ODE’s

Θ′′ + λ2Θ = 0

And, since csc2 ϕ = 1
sin2 ϕ and cot (ϕ) = 1

tanϕ , the third ODE is

sin2 ϕ
Φ′′

Φ
+
sin2 ϕ

tanϕ
Φ′

Φ
+ µ2 sin2 ϕ = λ2

sin2 ϕ
Φ′′

Φ
+ sinϕ cosϕ

Φ′

Φ
+ µ2 sin2 ϕ = λ2(

sin2 ϕ
)
Φ′′ + (sinϕ cosϕ)Φ′ +

(
µ2 sin2 ϕ − λ2

)
Φ = 0

Part (b)

If u is independent of θ then the PDE simplifies to

ρ2uρρ + 2ρuρ + uϕϕ + cotϕuϕ = 0 (1)

Let
u (ρ,ϕ) = P (ρ)Φ (ϕ)

Substituting the above in the Laplace PDE (1) results in

ρ2P ′′Φ + 2ρP ′Φ + Φ′′P + cot (ϕ)Φ′P = 0

Dividing by PΦ gives

ρ2
P ′′

P
+ 2ρ

P ′

P
+
Φ′′

Φ
+ cot (ϕ)

Φ′

Φ
= 0

ρ2
P ′′

P
+ 2ρ

P ′

P
= −

Φ′′

Φ
− cot (ϕ)

Φ′

Φ
= µ2

Where µ is the first separation constant. The above gives

ρ2
P ′′

P
+ 2ρ

P ′

P
= µ2

−
Φ′′

Φ
− cot (ϕ)

Φ′

Φ
− µ2 = 0

The first ODE above becomes
ρ2P ′′ + 2ρP ′ − µ2P = 0

And the second ODE becomes

−Φ′′ − cot (ϕ)Φ′ − µ2Φ = 0

Φ′′ +
1

tanϕ
Φ′ + µ2Φ = 0

Φ′′ +
cosϕ

sinϕ
Φ′ + µ2Φ = 0

(sinϕ)Φ′′ + (cosϕ)Φ′ +
(
µ2 sinϕ

)
Φ = 0

Multiplying again by sinϕ to get it to the form needed gives

sin2 ϕΦ′′ + (sinϕ cosϕ)Φ′ +
(
µ2 sin2 ϕ

)
Φ = 0 (2)

Therefore the first PDE in P (ρ), the second ODE in Θ (θ ) is now eliminated, and the third ODE changes
to the above.
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Part (c)

The equation for Φ found in part (b) is

sin2 ϕ
d2Φ

dϕ2 + (sinϕ cosϕ)
dΦ

dϕ
+

(
µ2 sin2 ϕ

)
Φ = 0 (1)

Let s = cosϕ, then

dΦ

dϕ
=
dΦ

ds

ds

dϕ

=
dΦ

ds
(− sinϕ) (2)

And

d2Φ

dϕ2 =
d

dϕ

(
dΦ

dϕ

)
=

d

dϕ

(
dΦ

ds
(− sinϕ)

)
=
d2Φ

ds2
(
sin2 ϕ

)
−
dΦ

ds
(cosϕ) (3)

Substituting (2,3) into (1) gives

sin2 ϕ

(
d2Φ

ds2
(
sin2 ϕ

)
−
dΦ

ds
(cosϕ)

)
+ (sinϕ cosϕ)

(
dΦ

ds
(− sinϕ)

)
+

(
µ2 sin2 ϕ

)
Φ = 0

Dividing by sin2 ϕ gives

d2Φ

ds2
sin2 ϕ −

dΦ

ds
cosϕ − cosϕ

dΦ

ds
+ µ2Φ = 0

d2Φ

ds2
sin2 ϕ − 2

dΦ

ds
cosϕ + µ2Φ = 0

But cosϕ = s and sin2 ϕ = 1 − cos2 ϕ = 1 − s2, therefore the above reduces to(
1 − s2

) d2Φ
ds2

− 2s
dΦ

ds
+ µ2Φ = 0

Which is Legendre’s equation.
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The first of these equations is of the Euler type, while the third is related to Legendre’s
equation.

(b) Show that if u(ρ, θ,φ) is independent of θ, then the first equation in part (a) is
unchanged, the second is omitted, and the third becomes

(sin2 φ)�′′ + (sinφ cosφ)�′ + (μ2 sin2 φ)� = 0.
(c) Show that if a new independent variable is defined by s = cosφ, then the equation for
� in part (b) becomes

(1− s2)
d2�
ds2

− 2s d�

ds
+ μ2� = 0, −1 ≤ s ≤ 1.

Note that this is Legendre’s equation.

10. Find the steady state temperature u(ρ,φ) in a sphere of unit radius if the temperature is
independent of θ and satisfies the boundary condition

u(1,φ) = f (φ), 0 ≤ φ ≤ π.

Hint:Refer to Problem 9 and to Problems 22 through 29 of Section 5.3. Use the fact that
the only solutions of Legendre’s equation that are finite at both ±1 are the Legendre
polynomials.

11.6 Series of Orthogonal Functions: Mean Convergence

In Section 11.2 we stated that under certain restrictions, a given function f can be
expanded in a series of eigenfunctions of a Sturm–Liouville boundary value problem,
the series converging to [f (x+) + f (x−)]/2 at each point in the open interval. Under
somewhat more restrictive conditions, the series converges to f (x) at each point in
the closed interval. This type of convergence is referred to as pointwise convergence.
In this section we describe a different kind of convergence that is especially useful
for series of orthogonal functions, such as eigenfunctions.
Suppose that we are given the set of functions φ1,φ2, . . . ,φn, that are continuous

on the interval 0 ≤ x ≤ 1 and satisfy the orthonormality condition∫ 1

0
r(x)φi(x)φj(x) dx =

{
0, i �= j,
1, i = j,

(1)

where r is a nonnegative weight function. Suppose also that we wish to approximate
a given function f , defined on 0 ≤ x ≤ 1, by a linear combination of φ1, . . . ,φn. That
is, if

Sn(x) =
n∑

i=1
aiφi(x), (2)

we wish to choose the coefficients a1, . . . , an so that the function Sn will best approx-
imate f on 0 ≤ x ≤ 1. The first problem that we must face in doing this is to state
precisely what we mean by “best approximate f on 0 ≤ x ≤ 1.” There are several
reasonable meanings that can be attached to this phrase.

Solution
TO DO
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Chapter 3: Quizzes

3.1 Quizz 1

3.1.1 Problem 1

Problem Solve the boundary value problem

y ′′ (x) − y (x) = x (1)

with y (0) = 1,y (1) = 1
solution
The general solution is the sum of the homogeneous and the particular solution

y = yh + yp (2)

Where yh (x) is the homogeneous solution of y ′′
h − yh = 0. Since this is a constant coefficients ODE, the

characteristic equation is found by assuming yh = erx and substituting this into y ′′ (x) − y (x) = 0 and
finding the roots. This results in

r 2 − 1 = 0

r = ±1

Therefore the two linearly independent basis solutions are y1 = ex and y2 = e−x . The homogeneous
solution is a linear combination of these two basis solutions. In other words

yh (x) = c1e
x + c2e

−x

Before proceeding to find the general solution, a check is made now to determine if a unique solution
exists or not. The WronskianW (x) is�����y1 (0) y2 (0)

y1 (1) y2 (2)

����� =
�����e0 e−0

e1 e−1

����� =
����� 1 1

e1 e−1

����� = e−1 − e , 0

SinceW (x) , 0, then a unique solution exists.
The particular solution is now found using the method of undetermined coefficients. Since the RHS is
polynomial, let the particular solution guess be the following polynomial

yp = A + Bx +Cx2

Therefore y ′
p = B + 2Cx and y ′′

p = 2C . Substituting these into the original ODE (1) gives

2C −
(
A + Bx +Cx2

)
= x

x2 (−C) + x (−B) + (2C −A) = x

Comparing coefficients of both sides results in

−C = 0

−B = 1

2C −A = 0

Solving for the coefficients gives

C = 0

B = −1

A = 0

Therefore the particular solution is now found as

yp = A + Bx +Cx2

= −x

The full solution from (2) becomes

y =

yh︷         ︸︸         ︷
c1e

x + c2e
−x − x (3)
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Boundary conditions are now used to determine c1 and c2. At x = 0 the above becomes

1 = c1 + c2 (4)

And at x = 1 (3) gives

1 = c1e + c2e
−1 − 1

c1e + c2e
−1 = 2 (5)

Equations (4,5) are now solved for c1, c2. From (4), c1 = 1 − c2. Substituting this into (5) gives

(1 − c2) e + c2e
−1 = 2

c2
(
−e + e−1

)
+ e = 2

c2 =
2 − e

e−1 − e

Therefore
c1 = 1 −

2 − e

e−1 − e

Hence the general solution (3) becomes

y (x) =

(
1 −

2 − e

e−1 − e

)
ex +

(
2 − e

e−1 − e

)
e−x − x

=

(
e−1 − e − 2 + e

)
e−1 − e

ex +
2 − e

e−1 − e
e−x − x

Or

y (x) =

(
e−1 − 2

)
e−1 − e

ex +
(2 − e) e−x

e−1 − e
− x

This is a plot of the above solution

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(
x)

Plot of solution to problem 1
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3.1.2 Problem 2

Problem Find the Fourier sine series for f (x) = x (1 − x) , 0 ≤ x ≤ 1. Use the result to evaluate the
infinite series 1

13 −
1
33 +

1
53 −

1
73 · · ·

solution
This is a plot of the function f (x) = x (1 − x) , 0 ≤ x ≤ 1

x

f(
x)

Plot of x(1-x)

In the above
L = 1

To obtain the Fourier sine series, the function is first odd extended to −1 ≤ x < 0 and after the extension
is made, it is repeated using a period 2L so that it becomes a periodic function. Here is a plot of the
periodic function, called fo (x) now. One period is shown in this plot for illustration.

x

fo
(x
)

Plot of odd extension of f(x)

Since fo (x) is an odd function, its Fourier series will contain bn terms only. The bn terms are given by
the standard formula

bn =
1
L

∫ L

−L
fo (x) sin

(nπ
L
x
)
dx

But fo (x) is odd function and sine is also odd, therefore the product is an even function, and the above
simplifies to

bn =
2
L

∫ L

0
fo (x) sin

(nπ
L
x
)
dx

But over 0 < x < 1, the function fo (x) is the same as the original function f (x) which is the non-
periodic function given. Therefore the above can be written as

bn =
2
L

∫ L

0
f (x) sin

(nπ
L
x
)
dx

Since L = 1 in this problem, the above simplifies to

bn = 2
∫1
0
f (x) sin (nπx)dx
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And since f (x) = x (1 − x), and the above becomes

bn = 2
∫ 1

0

(
x − x2

)
sin (nπx)dx

= 2

(∫ 1

0
x sin (nπx)dx −

∫ 1

0
x2 sin (nπx)dx

)
= 2 (I1 − I2) (1)

These two integrals are solved using integration by parts. Considering I1 =
∫1
0
x sin (nπx)dx and using∫

udv = uv −
∫
vdu. Let u = x,dv = sin (nπx), then du = 1 and v = −

( 1
nπ

)
cos (nπx). Hence

I1 = uv −

∫
vdu

=

(
−x

(
1
nπ

)
cos (nπx)

) 1
0
+

1
nπ

∫ 1

0
cos (nπx)dx

=

(
−1
nπ

cos (nπ )

)
+

1

(nπ )2
(sin (nπx))10

=

(
−1
nπ

(−1)n
)
+

1

(nπ )2
(sin (nπ ) − 0)

=

(
−1
nπ

(−1)n
)

=
(−1)n+1

nπ

For the second integral, let I2 =
∫1
0
x2 sin (nπx)dx and u = x2,dv = sin (nπx), therefore du = 2x,v =

− 1
nπ cos (nπx). Hence

I2 = uv −

∫
vdu

=

(
−x2

1
nπ

cos (nπx)

) 1
0
+

2
nπ

∫ 1

0
x cos (nπx)dx

=

(
−

1
nπ

(−1)n
)
+

2
nπ

∫ 1

0
x cos (nπx)dx

The above integral in the RHS is also found by integration by parts. Let u = x,dv = cos (nπx) or
du = 1,v = 1

nπ sin (nπx). The above becomes

I2 =
(−1)n+1

nπ
+

2
nπ

[ (
x

1
nπ

sin (nπx)

) 1
0
−

1
nπ

∫ 1

0
sin (nπx)dx

]
=

(−1)n+1

nπ
+

2
nπ

[
0 −

1
nπ

(
−

1
nπ

cos (nπx)

) 1
0

]
=

(−1)n+1

nπ
+

2
nπ

[
1

(nπ )2
(cos (nπ ) − 1)

]
=

(−1)n+1

nπ
+

2

(nπ )3
((−1)n − 1)

Substituting I1, I2 found above back into equation (1) gives the final result

bn = 2

(
(−1)n+1

nπ
−

(
(−1)n+1

nπ
+

2

(nπ )3
((−1)n − 1)

) )
= 2

(
(−1)n+1

nπ
−
(−1)n+1

nπ
−

2

(nπ )3
((−1)n − 1)

)
= 2

(
(−1)n+1

nπ
−
(−1)n+1

nπ
−
2 (−1)n

(nπ )3
+

2

(nπ )3

)
= 4

(
−
(−1)n

(nπ )3
+

1

(nπ )3

)
= 4

(
1 − (−1)n

(nπ )3

)
For odd n, the above gives

bn =

{
4

(
2
π 3

)
, 4

(
2

(3π )3

)
, 4

(
2

(5π )3

)
, · · ·

}
= 8

{(
1
π 3

)
,

(
1

(3π )3

)
,

(
1

(5π )3

)
, · · ·

}
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And for even n all bn = 0. Therefore

bn =

{
8

(nπ )3
n = 1, 3, 5, · · ·

0 otherwise

The Fourier sine series for f (x) can now be written as

f (x) =
∑

n=1,3,5, · · ·
bn sin (nπx)

=
8
π 3

∑
n=1,3,5, · · ·

1
n3

sin (nπx)

Since f (x) = x (1 − x) , the above is the same as

x (1 − x) = 8

(
1
π 3 sin (πx) +

1
33π 3 sin (3πx) +

1
53π 3 sin (5πx) +

1
73π 3 sin (7πx) + · · ·

)
To obtain the required result, let x = 1

2 in the above, which gives

1
2

(
1 −

1
2

)
= 8

(
1

13π 3 sin
(π
2

)
+

1
33π 3 sin

(
3
2
π

)
+

1
53π 3 sin

(
5
2
π

)
+

1
73π 3 sin

(
7
2
π

)
+ · · ·

)
1
4
=

8
π 3

(
1
13

sin
(π
2

)
+

1
33

sin

(
3
2
π

)
+

1
53

sin

(
5
2
π

)
+

1
73

sin

(
7
2
π

)
+ · · ·

)
π 3

32
=

1
13

−
1
33
+

1
53

−
1
73
+ · · ·

The above can also be written as
π 3

32
=

∞∑
n=1

(−1)n+1

(−1 + 2n)3
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3.1.3 Problem 3

Problem Find the solution to heat equation ut = uxx with initial conditions u (x, 0) = f (x) with
f (x) = x (1 − x) , 0 ≤ x ≤ 1 and boundary conditions u (0, t) = u (1, t) = 0. Approximate u

( 1
2 , 1

)
to 10

decimal places.
solution
Using separation of variables, let u (x, t) = X (x)T (t). Substituting this back into the PDE gives

T ′X = X ′′T

T ′

T
=
X ′′

X
= −λ

Where the separation constant is some real value −λ. This gives the following two ODE’s to solve

T ′ + λT = 0 (1)
X ′′ + λX = 0 (2)

Starting with the spatial ODE in order to obtain the eigenvalues and eigenfunctions. The boundary
conditions on the spatial ODE become

X (0) = 0

X (1) = 0

Since equation (2) is a constant coefficient ODE, its characteristic equation is r 2 + λ = 0, which has the
solution r = ±

√
−λ, therefore its solution is given by

X (x) = c1e
rx + c2e

−rx

= c1e
√
−λx + c2e

−
√
−λx (3)

There are three cases to consider, depending on if λ < 0, λ = 0, λ > 0. Each one of these cases gives a
different solution that needs to be examined to see if the solution satisfies the boundary conditions.
Case 1 Assuming λ < 0. Therefore −λ is positive and

√
−λ is also positive. Let

√
−λ = µ, where µ is some

positive number. The solution (3) can now be written as

X (x) = c1e
µx + c2e

−µx (3A)

This can be rewritten in terms of the hyperbolic trig functions (to make it easier to manipulate) as

X (x) = c1 cosh (µx) + c2 sinh (µx) (3B)

Where the constants ci in (3A) are different from the constants in (3B), but kept the same for simplicity
of notation so as not to introduce new constants. Applying left boundary conditions to (3B) results in

0 = c1

The solution (3B) now reduces to
X (x) = c2 sinh (µx)

Applying right side boundary conditions to the above results in

0 = c2 sinh (µ)

But sinh (µ) , 0 since it was assumed µ is not zero and sinh is only zero when its argument is zero. The
only possibility then is c2 = 0, which leads to trivial solution. Therefore λ < 0 is not an eigenvalue.
Case 2. Assuming λ = 0. The ODE becomes X ′′ = 0, which has the solution

X (x) = c1x + c2

Applying left side B.C. gives
0 = c2

The solution now reduces to
X (x) = c1x

Applying right side B.C. gives
0 = c1

Leading to the trivial solution. Therefore λ = 0 is not an eigenvalue.
Case 3 Assuming λ > 0. In this case equation

√
−λ is complex and equation (3) can be expressed in

terms of trig functions using Euler relation which results in

X (x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx

)
(4)
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Applying left side B.C. gives
0 = c1

Solution (4) now reduces to
X (x) = c2 sin

(√
λx

)
(5)

Applying right side B.C. gives
0 = c2 sin

(√
λ
)

Non-trivial solution implies sin
(√

λ
)
= 0 or

√
λ = nπ for n = 1, 2, 3, · · · . Therefore the eigenvalues are

λn = (nπ )2 n = 1, 2, 3, · · ·

And the corresponding eigenfunctions from (5) are

Xn (x) = cn sin
(√

λnx
)

(6)

Now that the eigenvalues are known, the solution to the time ODE (1) can be found.

T ′ + λnT = 0

This has the solution (using an integrating factor method)

Tn (t) = e−λnt (7)

The constant of integration is not needed for (7) since it will be absorbed with the constant of integration
coming from solution of the spatial ODE (6) when these solutions are multiplied with each others below.
Therefore the fundamental solution is

un (x, t) = Tn (t)Xn (x)

Linear combination of fundamental solutions is also a solution (since this is a linear PDE). Therefore
the general solution is given by

u (x, t) =
∞∑
n=1

un

=
∞∑
n=1

Tn (t)Xn (x)

=
∞∑
n=1

cne
−λnt sin

(√
λnx

)
(8)

Initial conditions is now used to determine cn , . At t = 0, u (x, 0) = f (x) and the above becomes

f (x) =
∞∑
n=1

cn sin
(√

λnx
)

Multiplying both sides of the above equation by eigenfunction sin
(√

λmx
)
and integrating over the

domain of f (x) gives∫ 1

0
f (x) sin

(√
λmx

)
dx =

∫ 1

0

∞∑
n=1

cn sin
(√

λnx
)
sin

(√
λmx

)
dx

Interchanging the order of summation and integration gives∫ 1

0
f (x) sin

(√
λmx

)
dx =

∞∑
n=1

cn

∫ 1

0
sin

(√
λnx

)
sin

(√
λmx

)
dx

By the orthogonality of the sine functions, all terms in the right side vanish except when n =m, leading
to ∫ 1

0
f (x) sin

(√
λmx

)
dx = cm

∫ 1

0
sin2

(√
λmx

)
dx

= cm
1
2

Therefore (replacingm back to n now, since it is arbitrary)

cn = 2
∫ 1

0
f (x) sin

(√
λnx

)
dx n = 1, 2, 3, · · ·
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But
√
λn = nπ , hence

cn = 2
∫ 1

0
f (x) sin (nπx)dx n = 1, 2, 3, · · ·

Since f (x) is the same as in problem 2, the above shows that cn is the same as bn found in problem 2
above. This means cn is the sine Fourier series coefficients of f (x)which was found in problem 2. Using
that result obtained earlier

cn = bn =

{
8

(nπ )3
n = 1, 3, 5, · · ·

0 otherwise

Using the above in (8), the general solution is therefore

u (x, t) =
8
π 3

∞∑
n=1,3,5, · · ·

1
n3

e−λnt sin
(√

λnx
)

=
8
π 3

∞∑
n=1,3,5, · · ·

1
n3

e−n
2π 2t sin (nπx)

The Following is plot of the solution for increasing values of time starting from t = 0, using 10 terms in
the sum. At about t = 0.3 seconds, the temperature reduces to almost zero.

x

u(
x,
t)

u(x,t) at time =0

x

u(
x,
t)

u(x,t) at time =0.05

x

u(
x,
t)

u(x,t) at time =0.1

x

u(
x,
t)

u(x,t) at time =0.15

x

u(
x,
t)

u(x,t) at time =0.2

x

u(
x,
t)

u(x,t) at time =0.25

To approximate u
( 1
2 , 1

)
to 10 decimal places, first the solution is written at x = 1

2 and t = 1. From above,
the solution is

u

(
1
2
, 1

)
=

8
π 3

∞∑
n=1,3,5, · · ·

1
n3

e−n
2π 2

sin
(
n
π

2

)
Due to the fast convergence, only one term was needed. Result for n = 1 and n = 3 are

u1

(
1
2
, 1

)
=

8
π 3

(
e−π

2
sin

(π
2

) )
= 0.000013345216966776341

u3

(
1
2
, 1

)
=

8
π 3

(
e−π

2
sin

(π
2

)
+

1
27

e−9π
2
sin

(
3
π

2

) )
= 0.000013345216966776341

The above shows that the solution u1
( 1
2 , 1

)
did not change beyond the first 10 decimal points when

adding one more term in the series. Therefore, only one term is needed. Therefore, the final result
(rounded to 10 decimal points) is

u
( 1
2 , 1

)
= 0.0000133452
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Problem Solve ut + u = uxx with initial conditions u (x, 0) = f (x) and boundary conditions u (0, t) =
u (L, t) = 0.
solution
Using separation of variables, let u (x, t) = X (x)T (t). Substituting this back into the PDE gives

T ′X +TX = X ′′T

T ′

T
+ 1 =

X ′′

X
= −λ

Where the separation constant is some real value −λ. This gives the following two ODE’s to solve

T ′ + (1 + λ)T = 0 (1)
X ′′ + λX = 0 (2)

Starting with the spatial ODE in order to obtain the eigenvalues. The boundary conditions on the spatial
ODE become

X (0) = 0

X (1) = 0

The above boundary value ODE was solved in problem 3. The eigenvalues were found to be

λn =
(nπ
L

) 2
n = 1, 2, 3, · · ·

And the corresponding eigenfunctions are

Xn (x) = cn sin
(√

λnx
)

The solution to the time ODE (1) using integrating factor method is

T (t) = e−(1+λn )t

Therefore, as before, the general solution is obtained by linear combination of the fundamental solutions
giving

u (x, t) =
∞∑
n=1

cne
−(1+λn )t sin

(√
λnx

)
(3)

Initial conditions are used to determine cn . At t = 0, u (x, 0) = f (x) and the above becomes

f (x) =
∞∑
n=1

cn sin
(√

λnx
)

Multiplying both sides by sin
(√

λmx
)
and integrating over the domain of f (x) gives∫ L

0
f (x) sin

(√
λmx

)
dx =

∫ L

0

∞∑
n=1

cn sin
(√

λnx
)
sin

(√
λmx

)
dx

Interchanging the order of summation and integrating gives∫ L

0
f (x) sin

(√
λmx

)
dx =

∞∑
n=1

cn

∫ L

0
sin

(√
λnx

)
sin

(√
λmx

)
dx

By orthogonality of sine functions, all terms in the right side vanish except when n =m, leading to∫ L

0
f (x) sin

(√
λmx

)
dx = cm

∫ L

0
sin2

(√
λmx

)
dx

= cm
L

2
Therefore

cn =
2
L

∫ L

0
f (x) sin

(√
λnx

)
dx n = 1, 2, 3, · · · (4)

But
√
λn =

nπ
L , hence

cn =
2
L

∫ L

0
f (x) sin

(nπ
L
x
)
dx n = 1, 2, 3, · · ·

The above shows that cn is the Fourier sine series of f (x). Since f (x) is not given, explicit solution for
cn can not be found. Therefore the final solution is

u (x, t) =
∞∑
n=1

cne
−(1+λn )t sin

(√
λnx

)
=

∞∑
n=1

(
2
L

∫ L

0
f (x) sin

(√
λnx

)
dx

)
e−(1+λn )t sin

(√
λnx

)
With λn =

( nπ
L

) 2.
3.1.5 key solution



Homework 1, Math 322

1. Solve the boundary value problem

y′′ − y = x, y(0) = 0, y(1) = 1.

Solution: The general solution is

y = c1 coshx+ c2 sinhx− x.

The boundary condition give c1 = 0, c2 sinh 1 = 2. The solution of the BVP
is

y =
2

sinh 1
sinhx− x.

2. Find the Fourier sine series for the function f(x) = x(1− x), 0 ≤ x ≤ 1.
Use the result to evaluate the infinite series

1

13
− 1

33
+

1

53
− 1

73
± . . . .

Solution: The Fourier coefficients are

cn = 2

∫ 1

0
x(1− x) sinnπx dx

=− 2

nπ
x(1− x) cosnπx|x=1

x=0 +
2

nπ

∫ 1

0
(1− 2x) cosnπx dx

=
2

nπ

∫ 1

0
(1− 2x) cosnπx dx

=
2

n2π2
(1− 2x) sinnπx dx|x=1

x=0 +
2

n2π2

∫ 1

0
(−2) sinnπx dx

=− 4

n2π2

∫ 1

0
sinnπx dx

=

{
8

n3π3 if n is odd

0 if n is even.

By the convergence theorem, we have, for all 0 ≤ x ≤ 1,

x(1− x) =
8

π3

∞∑
k=1

1

(2k − 1)3
sin(2k − 1)πx.

If we choose x = 1
2 , we get

1

4
=

8

π3

∞∑
k=1

(−1)k+1

(2k − 1)3
,

so
∞∑
k=1

(−1)k+1

(2k − 1)3
=
π3

32
.

1



2

3. Find the solution to the heat equation ut = uxx with initial condition
u(x, 0) = f(x) with f(x) as in problem 2, and boundary conditions u(0, t) =
u(1, t) = 0. Approximate u(12 , 1) to 10 decimal places.
Solution: The solution is

u(x, t) =
8

π3

∞∑
k=1

1

(2k − 1)3
e−(2k−1)

2π2t sin((2k − 1)πx).

Then

u(12 , 1) =
8

π3

∞∑
k=1

e−(2k−1)
3π2 (−1)k+1

(2k − 1)3
.

This is an alternating series s =
∑∞

k=1(−1)k+1ak with ak ≥ 0, ak ≥ ak+1,

ak → 0. Then
∣∣∣s−∑K

k=1(−1)k+1ak

∣∣∣ ≤ aK+1. Therefore,∣∣∣∣∣u(12 , 1)− 8

π3

K∑
k=1

e−(2k−1)
3π2 (−1)k+1

(2k − 1)3

∣∣∣∣∣ < 8

π3
e−(2K+1)3π2 1

(2K + 1)3
.

When we choose K = 1, the error is less than 10−40. Therefore, we obtain

u(12 , 1) ≈ 8

π3
e−π

2
= 0.00001334521692 . . .

with an error less than 10−40.

4. Solve the partial differential equation ut + u = uxx with initial condition
u(x, 0) = f(x) and boundary conditions u(0, t) = u(L, t) = 0 using Fourier
series.
Solution: Using the method of separation of variables u(x, t) = X(x)T (t)
we find

T ′(t)

T (t)
+ 1 =

X ′′(x)

X(x)
= −λ.

Therefore, we obtain

X ′′ + λX = 0, X(0) = X(L) = 0,

and
T ′ + (λ+ 1)T (t) = 0.

This gives

un(x, t) = e−(n
2π2/L2+1)t sin(nπx/L).

The solution is

u(x, t) =

∞∑
n=1

cne
−(n2π2/L2+1)t sin(nπx/L),

where

cn =
2

L

∫ L

0
f(x) sin(nπx/L) dx.
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3.2 Quizz 2

3.2.1 Problem 1

Problem Solve the wave equation ut t = uxx for infinite domain −∞ < x < ∞ with initial position
u (x, 0) = f (x) = 1

1+x 2 and zero initial velocity д (x) = 0. Plot the solution for t = 0, 1, 2 seconds.
solution
The solution for wave PDE ut t = a2uxx on infinite domain can be written as a series solution or as
general solution using D’Alembert form. Using D’Alembert, the solution is

u (x, t) =
1
2
(f (x − at) + f (x + at)) +

1
2a

∫ x+at

x−at
д (s)ds

Where in this problem a = 1 and д (x) = 0. Therefore the above simplifies to

u (x, t) =
1
2
(f (x − t) + f (x + t))

f (x − t) is the initial position shifted to the right by t and f (x + t) is the initial position shifted to the
left by t . Since f (x) = 1

1+x 2 , the above solution becomes

u (x, t) =
1
2

(
1

1 + (x − t)2
+

1

1 + (x + t)2

)
This is a plot of the solution at time t = 0 (which is just 1

1+x 2 )

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x

u(
x,
t)

Plot of solution to problem 1 at t=0

This is a plot of the solution at time t = 1

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

x

u(
x,
t)

Plot of solution to problem 1 at t=1
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This is a plot of the solution at time t = 2

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

x

u(
x,
t)

Plot of solution to problem 1 at t=2

The above shows that, eventually, the initial position splits into two halves, where one half moves to
the right and one half moves to the left, but the sum (energy) of the parts remain equal to that at t = 0
since there is no damping. An Animation was also made of this solution for better illustration.
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3.2.2 Problem 2

Problem Apply the method of separation of variables to the damped wave equation ut t + 2ut = uxx
on finite domain with fixed ends u (0, t) = 0 and u (π , t) = 0. Let initial position be u (x, 0) = f (x) and
initial velocity ut (x, 0) = 0. Determine the first term in the series solution.
solution
Let the solution be u (x, t) = X (x)T (t). Substituting this back into the PDE gives

T ′′X + 2T ′X = X ′′T

Dividing throughout by XT , 0 and simplifying gives

T ′′

T
+ 2

T ′

T
=
X ′′

X
= −λ

Hence the eigenvalue ODE is

X ′′ + λX = 0 (1)
X (0) = 0

X (π ) = 0

And the corresponding time ODE
T ′′ + 2T ′ + λT = 0 (2)

The eigenvalue ODE for the homogeneous boundary condition was solved before. The eigenvalues are

λn =
(nπ
L

) 2
n = 1, 2, 3, · · ·

Since L = π , the above becomes
λn = n

2 n = 1, 2, 3, · · · (3)

The corresponding eigenfunctions are

Xn (x) = cn sin (nx)

Now that the eigenvalues are found, the time ODE (2) is solved.

T ′′
n + 2T

′
n + n

2Tn = 0

This is constant coefficient ODE. The characteristic equation is

r 2 + 2r + n2 = 0

The roots are

r =
−b ±

√
b2 − 4ac
2a

=
−2 ±

√
4 − 4n2

2

= −1 ±
√
1 − n2

For n = 1 the root becomes r = −1 (double root), hence the solution is

T1 (t) = A1e
−t + B1te

−t (4)

And for the remaining value n = 2, 3, · · · , the term
√
1 − n2 becomes complex. Therefore the roots can

now be written as r = −1±i
√
n2 − 1. This implies that the solution can be expressed using trigonometric

functions as

Tn (t) = e−t
(
An cos

(
t
√
n2 − 1

)
+ Bn sin

(
t
√
n2 − 1

) )
n = 2, 3, · · · (5)

Since initial velocity is zero at t = 0, then (4) leads to T ′
1 = −A1e

−t + B1e
−t − tB1e

−t . At t = 0 this gives
0 = −A1 + B1. Therefore solution (4) becomes

T1 (t) = A1
(
e−t + te−t

)
(4A)

Taking time derivative for (5) gives

T ′
n (t) = −e−t

(
An cos

(√
n2 − 1t

)
+ Bn sin

(√
n2 − 1t

) )
+

e−t
(
−An

√
n2 − 1 sin

(√
n2 − 1t

)
+ Bn

√
n2 − 1 cos

(√
n2 − 1t

) )
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At t = 0 the above becomes
0 = −An + Bn

√
n2 − 1

Hence An = Bn
√
n2 − 1 and (5) reduces to

Tn (t) = Bne
−t

(√
n2 − 1 cos

(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
n = 2, 3, · · · (5A)

Therefore the fundamental solution is

un (x, t) = Tn (t)Xn (x)

u (x, t) =
∞∑
n=1

Tn (t)Xn (x)

= T1 (t)X1 (x) +
∞∑
n=2

Tn (t)Xn (x)

= c1
( (
e−t + te−t

)
sinx

)
+

∞∑
n=2

cne
−t

(√
n2 − 1 cos

(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
sin (nx) (6)

Where the constant A1 was combined into c1 and Bn combined into cn . The constants c1 and cn are now
found from initial position. At t = 0 (6) becomes

f (x) = c1 sinx +
∞∑
n=2

cn
√
n2 − 1 sin (nx)

Multiplying both sides by sin (mx) and Integrating gives∫ π

0
f (x) sin (mx)dx =

∫ π

0
c1 sinx sin (mx)dx +

∞∑
n=2

cn
√
n2 − 1

(∫ π

0
sin (nx) sin (mx)dx

)
(7)

Form = 1 the above reduces to ∫ π

0
f (x) sinxdx =

∫ π

0
c1 sin

2 xdx∫ π

0
f (x) sinxdx =

π

2
c1

c1 =
2
π

∫ π

0
f (x) sinxdx

And form = 2, 3, · · · (7) becomes

∫ π

0
f (x) sin (mx)dx =

0︷                       ︸︸                       ︷∫ π

0
c1 sinx sin (mx)dx + cm

√
m2 − 1

(∫ π

0
sin2 (mx)dx

)
= cm

√
m2 − 1

(∫ π

0
sin2 (mx)dx

)
Hence for n = 2, 3, · · · the above gives∫ π

0
f (x) sin (nx)dx = cn

√
n2 − 1

(π
2

)
Therefore

cn =
2

π
√
n2 − 1

∫ π

0
f (x) sinnxdx n = 2, 3, · · ·

This completes the solution. The final solution from (6) becomes

u (x, t) =

(
2
π

∫ π

0
f (x) sinxdx

) (
e−t + te−t

)
sin (x)

+
2
π

∞∑
n=2

∫π
0
f (x) sin (nx)dx
√
n2 − 1

e−t
(√

n2 − 1 cos
(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
sin (nx)

To test the solution, it is compared to numerical differential equation solution. Using f (x) = x (π − x)
as an example. The result showed an exact match. An animation was also made. Therefore the first term
is (

2
π

∫ π

0
f (x) sinxdx

) (
e−t + te−t

)
sin (x)

And for n = 2, 3, · · · the nth term is(
2
π

∫ π

0
f (x) sin (nx)dx

) e−t
(√

n2 − 1 cos
(
t
√
n2 − 1

)
+ sin

(
t
√
n2 − 1

) )
sin (nx)

√
n2 − 1
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3.2.3 Problem 3

Problem Solve uxx + uyy = 0 on the square 0 ≤ x,y ≤ 1. If u (0,y) = u (x, 0) = u (x, 1) = 0 and
u (1,y) = y − y2. Find an approximate value for u

( 1
2 ,

1
2

)
solution To make the solution steps more useful and general, a is used for the length of the x dimension
and b for the length of the y dimension, then these are replaced by 1 at the very end. This is a plot of
boundary conditions

x

y

1

1u = 0

u = 0

u = 0

f(y) = y(1− y)uxx + uyy = 0

Let u (x,y) = X (x)Y (x). Substituting this into the PDE gives

X ′′Y + Y ′′X = 0

Dividing throughout by XY , 0 and simplifying gives

X ′′

X
= −

Y ′′

Y
= λ

This gives the eigenvalue ODE

Y ′′ + λY = 0 (1)
Y (0) = 0

Y (b) = 0

The solution to (1) gives the eigenvalues λn =
( nπ
L

) 2 for n = 1, 2, 3 · · · and since L = b, this becomes

λn =
(nπ
b

) 2
n = 1, 2, · · ·

And the corresponding eigenfunction

Yn (y) = cn sin
(√

λny
)

= cn sin
(nπ
b
y
)

Therefore the corresponding nonhomogeneous X (x) ODE

X ′′
n − λnXn = 0 (2)

Xn (0) = 0

Xn (a) = y − y2

The solution to (2), since λn is positive is

Xn (x) = An cosh
(√

λnx
)
+ Bn sinh

(√
λnx

)
= An cosh

(nπ
b
x
)
+ Bn sinh

(nπ
b
x
)

Boundary conditions X (0) = 0 gives
0 = An

The solution (3) now simplifies to
Xn (x) = Bn sinh

(nπ
b
x
)
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Hence the fundamental solution is

un (x,y) = XnYn

= cn sinh
(nπ
b
x
)
sin

(nπ
b
y
)

Where the constants Bn is merged with cn . The solution is

u (x,y) =
∞∑
n=1

cn sinh
(nπ
b
x
)
sin

(nπ
b
y
)

(3)

cn is now found by applying the boundary condition at x = a. The above becomes

y − y2 =
∞∑
n=1

cn sinh
(nπ
b
a
)
sin

(nπ
b
y
)

Multiplying both sides by sin
(mπ

b y
)
and integrating gives∫ b

0

(
y − y2

)
sin

(mπ

b
y
)
dy =

∞∑
n=1

cn sinh
(nπ
b
a
) (∫ b

0
sin

(mπ

b
y
)
sin

(nπ
b
y
)
dy

)
By orthogonality the above reduces to∫ b

0

(
y − y2

)
sin

(mπ

b
y
)
dy = cn sinh

(mπ

b
a
) ∫ b

0
sin2

(mπ

b
y
)
dy

=
b

2
cm sinh

(mπ

b
a
)

Therefore

cn =
2
b

1

sinh
(mπ

b a
) ∫ b

0

(
y − y2

)
sin

(nπ
b
y
)
dy

Now replacing a = 1,b = 1, the above becomes

cn =
2

sinh (nπ )

∫ 1

0

(
y − y2

)
sin (nπy)dy

=
2

sinh (nπ )

(
−2 (−1 + (−1)n)

n3π 3

)
=

−4
sinh (nπ )

(−1 + (−1)n)
n3π 3

Hence the solution (3) becomes

u (x,y) =
−4
π 3

∞∑
n=1

(−1 + (−1)n)
n3

sinh (nπx)
sinh (nπ )

sin (nπy)

At x = 1
2 ,y =

1
2 the above becomes

u

(
1
2
,
1
2

)
=

−4
π 3

∞∑
n=1

(−1 + (−1)n)
n3

sinh
( nπ

2

)
sinh (nπ )

sin
(nπ
2

)
For n = 1, the above gives 0.0514136952911346 and for n = 2 the value do not change beyond 16 decimal
points. So only need to use one term to get very good approximation value as

u

(
1
2
,
1
2

)
= 0.0514136952911346

This value is between zero and 0.25, where 0.25 is the maximum value at the boundary and zero is
the minimum value at the boundary. This agrees with the min-max principle. This is a 3D plot of the
solution over the whole square.

In[40]:= mySol[x_, y_] := -4 / Pi^3 Sum
(-1 + (-1)^n)

n^3

Sinh[n Pi x]

Sinh[n Pi]
Sin[n Pi y] , {n, 1, 2}

Plot3D[mySol[x, y], {x, 0, 1}, {y, 0, 1}, AxesLabel → {"x", "y", "u(x,y)"}, BaseStyle → 14]

Out[41]=
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This is a contour plot

ContourPlot[Evaluate[mySol[x, y]], {x, 0, 1}, {y, 0, 1}, AxesLabel → {x, y},

PlotRange → {-1, 1}, Contours → 100, PlotTheme -> "Scientific", PlotLegends → Automatic]

Out[16]=

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.019

0.057

0.095

0.133

0.171

0.209

0.247
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3.2.4 Problem 4

Problem Solve uxx +uyy = 0 on disk x2 +y2 < 1 with boundary condition xy2 when x2 +y2 = a. Where
a = 1 in this problem. Express solution in x,y
solution The first step is to convert the boundary condition to polar coordinates. Since x = r cosθ ,y =
r sinθ , then at the boundary u (r , θ ) = r cosθ (r sinθ )2. But r = 1 (the radius). Hence at the boundary,
u (1, θ ) = f (θ ) where

f (θ ) = cosθ sin2 θ

= cosθ
(
1 − cos2 θ

)
= cosθ − cos3 θ

But cos3 θ = 3
4 cosθ +

1
4 cos 3θ . Therefore the above becomes

f (θ ) = cosθ −

(
3
4
cosθ +

1
4
cos 3θ

)
=

1
4
cosθ −

1
4
cos 3θ (1)

The above is also seen as the Fourier series of f (θ ). The PDE in polar coordinates is

ur r +
1
r
ur +

1
r 2
uθθ = 0

The solution is known to be

u (r , θ ) =
c0
2
+

∞∑
n=1

rn (cn cos (nθ ) + kn sin (nθ )) (2)

Since the above solution is the same as f (θ ) when r = 1, then equating (2) when r = 1 to (1) gives

1
4
cosθ −

1
4
cos 3θ =

c0
2
+

∞∑
n=1

(cn cos (nθ ) + kn sin (nθ ))

By comparing terms on both sides, this shows by inspection that

c0 = 0

c1 =
1
4

c3 =
−1
4

And all other cn,kn are zero. Using the above result back in (2) gives the solution as

u (r , θ ) = r
4 cosθ − r 3

4 cos 3θ (3)

This solution is now converted to xy using the formula

rn cosnθ =
n∑

k=0
even

(
n

k

)
xn−k (−1)

k
2 yk

=
n∑

k=0
even

n!
k! (n − k)!

xn−k (−1)
k
2 yk

For n = 1 the above gives

r cosθ =
1!

0! (1 − 0)!
x1−0 (−1)0y0

= x (4)

And for n = 3

r 3 cos 3θ =
3!

0! (3 − 0)!
x3−0 (−1)0y0 +

3!
2! (3 − 2)!

x3−2 (−1)1y2

= x3 − 3xy2 (5)

Using (4,5) in (3) gives the solution in x,y

u (x,y) = 1
4x − 1

4

(
x3 − 3xy2

)
(6)
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This is now verified that is satisfies the PDE uxx + uyy = 0.

∂u

∂x
=

1
4
−
1
4

(
3x2 − 3y2

)
∂2u

∂x2
= −

6
4
x

And

∂u

∂y
=

6
4
xy

∂2u

∂y2
=

6
4
x

Therefore ∂2u
∂x 2 +

∂2u
∂y2 = 0.

Now the boundary conditions u (x,y) = xy2 are also verified. This condition applies when x2 + y2 = 1
or y2 = 1 − x2. Substituting this into (6) gives

u (x,y)@D =
1
4
x −

1
4

©«x
3 − 3x

y2︷   ︸︸   ︷(
1 − x2

) ª®®®¬
Simplifying gives

u (x,y)@D =
1
4
x −

1
4

(
x3 −

(
3x − 3x3

) )
=

1
4
x −

1
4
x3 +

1
4

(
3x − 3x3

)
=

1
4
x −

1
4
x3 +

3
4
x −

3
4
x3

= x − x3

= x
(
1 − x2

)
= xy2

Verified. This is 3D plot of the solution

In[76]:= ParametricPlot3D[{r Cos[t], r Sin[t], r/ 4 Cos[t] - r^3/ 4 Cos[3 t]},

{r, 0, 1}, {t, 0, 2 Pi}, AxesLabel → {x, y, "u(x,y)"},

PlotLabel → "3D plot of solution to problem 4", ImageSize → 500]

Out[76]=

This is a contour plot
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In[96]:= ContourPlot[1 / 4 x - 1 / 4 (x^3 - 3 x y^2), {x, -1, 1}, {y, -1, 1}, AxesLabel → {x, y},

Contours → 50, PlotLegends → Automatic, ColorFunction → "Pastel",

Epilog → {Thick, Circle[]},

PlotRange → {-1, 1},

RegionFunction → Function[{x, y, z}, Norm[{x, y}] < 1.]]

Out[96]=

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-0.351

-0.234

-0.117

0

0.117

0.234

0.351

3.2.5 key solution



Homework 2, Math 322

1. Solve the wave equation utt = uxx for −∞ < x < ∞, t ≥ 0 with initial
conditions

u(x, 0) =
1

1 + x2
, ut(x, 0) = 0.

Plot the solutions u(x, t) for t = 0, t = 1, t = 2.
Solution: The d’Alembert solution is

u(x, t) =
1

2
(f(x+ t) + f(x− t)) =

1

2

(

1

(1 + (x− t)2
+

1

1 + (x− t)2

)

.

2. Apply the method of separation of variables to the damped wave equation
utt + 2ut = uxx, u(0, t) = u(π, t) = 0, u(x, 0) = f(x), ut(x, 0) = 0.
Determine the first term in the solution u(x, t) =

∑

∞

n=1 . . .

Solution: By separation of variables we obtain the solutions

yn(x, t) = sin(nx)Tn(t),

where Tn is the solution of

T ′′

n + 2T ′

n + n2Tn = 0, Tn(0) = 1, T ′

n(0) = 0.

Thus

T1(t) = (1 + t)e−t

and, for n ≥ 2,

Tn(t) = e−t sin(t
√
n2 − 1)

√
n2 − 1

+ e−t cos(t
√

n2 − 1).

By superposition, we obtain the solution

y(x, t) =

∞
∑

n=1

bnTn(t) sin(nx)



where bn are the Fourier sine coefficients of f(x). The first term in the
solution formula is

2

π

(
∫ π

0
f(s) sin s ds

)

e−t(t+ 1) sin x.

3. Solve the Dirichlet problem uxx + uyy = 0 on the square 0 ≤ x, y ≤ 1 if
u(0, y) = u(x, 0) = u(x, 1) = 0 and u(1, y) = y(1− y). Find an approximate
value for u(12 ,

1
2).

Solution: The Fourier sine series for y(1− y), 0 ≤ y ≤ 1, is

y(1− y) =
8

π3

∞
∑

n=1,n odd

1

n3
sin(nπy).

According to Section 10.8, the solution of the Dirichley problem is

u(x, y) =
8

π3

∞
∑

n=1,n odd

1

n3

sinhnπx

sinhnπ
sin(nπy).

Then

u(12 ,
1
2) =

8

π3

∞
∑

n=1,n odd

1

n3

sinhnπ 1
2

sinhnπ
(−1)(n−1)/2.

Taking two terms of the series, we find

u(12 ,
1
2) ≈ 0.05132 . . .

4. Solve the Dirichlet problem

uxx + uyy = 0 if x2 + y2 < 1,

u(x, y) = xy2 if x2 + y2 = 1.

Express the solution u(x, y) in terms of x, y.
Solution: We use the terminating Fourier series

cos θ sin2 θ = cos θ−cos3 θ = cos θ−
(

3

4
cos θ +

1

4
cos(3θ)

)

=
1

4
cos θ−

1

4
cos(3θ).

Then from Section 10.8

v(r, θ) = u(r cos θ, r sin θ) =
1

4
r cos θ −

1

4
r3 cos(3θ),

or

v(r, θ) =
1

4
r cos θ −

1

4
r3(−3 cos θ + 4cos3 θ).

Then

u(x, y) =
1

4
x+

3

4
x(x2 + y2)− x3 =

1

4
x−

1

4
x3 +

3

4
xy2.
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3.3 Quizz 3

3.3.1 Problem 1

Problem Find the eigenvalues and normalized eigenfunctions of the RSL problem

y ′′ + λy = 0 (1)
y (0) − y ′ (0) = 0

y (π ) − y ′ (π ) = 0

solution
The characteristic equation for y ′′ + λy = 0 is given by r 2 + λ = 0. Hence the roots are

r = ±
√
−λ

There are 3 cases to consider.
case λ = 0 This implies that r = 0 is a double root. The solution becomes

y = c1 + c2x

y ′ = c2

The first boundary conditions y (0) − y ′ (0) = 0 gives c1 − c2 = 0 or c1 = c2.The above solution now
becomes

y = c1 (1 + x)

y ′ = c1

The second boundary conditions y (π ) − y ′ (π ) = 0 gives c1 (1 + π ) − c1 = 0 or π = 0. Which is not
possible. Therefore λ = 0 is not an eigenvalue.
case λ < 0 Let λ = −ω2 for some realω. Hence the roots now are r = ±

√
ω2 = ±ω. Therefore the solution

is
y = c1e

ωx + c2e
−ωx

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions
as

y = c1 coshωx + c2 sinhωx

y ′ = c1ω sinhωx + c2ω coshωx

The first boundary conditions y (0) − y ′ (0) = 0 gives 0 = c1 − c2ω or c1 = c2ω. Therefore the above
solution becomes

y = c2ω coshωx + c2 sinhωx (2)
= c2 (ω coshωx + sinhωx)

Hence
y ′ = c2

(
ω2 sinhωx + ω coshωx

)
The second boundary conditions y (π ) − y ′ (π ) = 0 gives

0 = c2 (ω coshωπ + sinhωπ ) − c2
(
ω2 sinhωπ + ω coshωπ

)
= c2

(
ω coshωπ + sinhωπ − ω2 sinhωπ − ω coshωπ

)
= c2

(
sinhωπ − ω2 sinhωπ

)
= c2

(
1 − ω2) sinhωπ

Non-trivial solution implies either
(
1 − ω2) = 0 or sinhωπ = 0. But sinhωπ = 0 only when its argument

is zero. Butω , 0 in this case.The other option is that
(
1 − ω2) = 0.This impliesω2 = 1 or, since λ = −ω2,

that λ = −1. Hence λ = −1 is an eigenvalue. Therefore the solution from (2) above becomes

y (x) = c2 coshx + c2 sinhx

= c2 (coshx + sinhx)

But ex = coshx + sinhx , hence the solution can be written as

y = c2e
x

The eigenfunction in this case is therefore

Φ−1 (x) = ex

124



3.3 Quizz 3

To obtain the normalized eigenfunction, let Φ̂−1 (x) = k−1Φ−1 (x). The normalization factor k−1 is found

by setting
∫π
0

(
r (x) Φ̂−1 (x)

) 2
dx = 1. But the weight r (x) = 1 in this problem from looking at the Sturm

Liouville form given. Therefore solving ∫ π

0
Φ̂2
−1 (x)dx = 1∫ π

0
(k−1e

x )
2 dx = 1

k2−1

∫ π

0
e2xdx = 1

k2−1

(
e2x

2

) π
0
= 1

k2
−1

2

(
e2π − 1

)
= 1

Therefore

k−1 =

√
2

√
e2π − 1

Hence the normalized eigenfunction is

Φ̂−1 (x) =

( √
2

√
e2π − 1

)
ex

case λ > 1 Since λ is positive, then the roots are r = ±
√
−λ = ±i

√
λ. This gives the solution

y = c1e
i
√
λx + c2e

−i
√
λx

Since the exponents are complex, the above solution can be written in terms of the circular trigonometric
functions as

y = c1 cos
(√

λx
)
+ c2 sin

√
λx

y ′ = −c1
√
λ sin

(√
λx

)
+ c2

√
λ cos

√
λx

The first boundary conditions y (0) − y ′ (0) = 0 gives 0 = c1 − c2
√
λ or c1 = c2

√
λ. The above solution

becomes

y = c2
√
λ cos

(√
λx

)
+ c2 sin

√
λx (3)

= c2
(√

λ cos
(√

λx
)
+ sin

√
λx

)
Therefore

y ′ = c2
(
−λ sin

(√
λx

)
+
√
λ cos

√
λx

)
Applying second boundary condition y (π ) − y ′ (π ) = 0 to the above gives

0 = c2
(√

λ cos
(√

λπ
)
+ sin

(√
λπ

) )
− c2

(
−λ sin

(√
λπ

)
+
√
λ cos

(√
λπ

) )
= c2

(√
λ cos

(√
λπ

)
+ sin

(√
λπ

)
+ λ sin

(√
λπ

)
−
√
λ cos

(√
λπ

) )
= c2

(
sin

(√
λπ

)
+ λ sin

(√
λπ

) )
= c (1 + λ) sin

(√
λπ

)
For non-trivial solution, either 1 + λ = 0 or sin

(√
λπ

)
= 0. But 1 + λ = 0 implies λ = −1. But it is

assumed that λ is positive. The other possibility is that sin
(√

λπ
)
= 0 which implies

√
λπ = nπ n = 1, 2, 3, · · ·

Or
λn = n

2 1, 2, 3, · · ·

The corresponding solution from (3) becomes

yn (x) = cn (n cos (nx) + sin (nx))

Therefore the eigenfunctions are

Φn (x) = n cos (nx) + sin (nx)
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3 Quizzes

To obtain the normalized eigenfunctions, as was done above,
∫π
0

(
r (x) Φ̂n (x)

) 2
dx = 1 is solved for kn

giving ∫ π

0
(knΦn (x))

2 dx = 1

k2n

∫ π

0
(n cos (nx) + sin (nx))2 dx = 1

k2n

∫ π

0

(
n2 cos2 (nx) + sin2 (nx) + 2n cos (nx) sin (nx)

)
dx = 1

n2
∫ π

0
cos2 (nx)dx +

∫ π

0
sin2 (nx)dx + 2n

∫ π

0
cos (nx) sin (nx)dx =

1

k2n
(4)

But
∫π
0
cos2 (nx)dx = π

2 and
∫π
0
sin2 (nx)dx = π

2 and for the last integral above∫ π

0
cos (nx) sin (nx)dx =

∫ π

0

1
2
sin (2nx)dx

=
1
2

(
− cos (2nx)

2n

) π
0

=
−1
4n

(cos (2nx))π0

=
−1
4n

(cos (2nπ ) − 1)

But cos (2nπ ) = 1 because n = 1, 2, 3, · · · . Therefore the above simplifies to
∫π
0
cos (nx) sin (nx)dx = 0.

Using these results in (4) gives
k2n

(
n2

π

2
+
π

2

)
= 1

Or

kn =

√
2√

π (1 + n2)

The normalized eigenfunctions are therefore

Φ̂n (x) =

√
2√

π (1 + n2)
(n cos (nx) + sin (nx)) n = 1, 2, 3, · · ·

In summary

λ = −1 is eigenvalue with corresponding normalized eigenfunction Φ̂−1 (x) =
( √

2
√
e2π−1

)
ex

λn = n
2 forn = 1, 2, · · · with corresponding normalized eigenfunctions Φ̂n (x) =

√
2√

π (1+n2)
(n cos (nx) + sin (nx)).

The normalized eigenfunctions Φ̂−1, Φ̂1, Φ̂2, Φ̂3 are plotted next to each others below
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second eigenfunction (eigenvalue = 1)

π
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π

4
π

2
3π
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Fourth eigenfunction (eigenvalue = 9)

The normalized eigenfunctions Φ̂−1, Φ̂1, Φ̂2, Φ̂3 are plotted on the same plot below as well for illustration.
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n = 1

n = 2

n = 3

n = -1

π

4
π

2
3π
4 π

x

-0.5

0.5

1.0

1.5

Normalized eigenfunction

Some observations: The first eigenfunction Φ̂−1 (x) has no root in [0, π ], the second eigenfunction Φ̂1

has one root in [0, π ] and the third eigefunction has two roots in [0, π ] and so on. This is what is to be
expected. The nth ordered eigenfunction will have (n − 1) number of roots (or x axis crossings) inside
the domain.

3.3.2 Problem 2

Problem Expand f (x) = 1 in a series of eigenfunctions of problem 1
solution
Let

f (x) = b−1Φ̂−1 (x) +
∞∑
n=1

bnΦ̂n (x) (1)

The goal is to determine b−1,b1,b2, · · · . This is done by applying orthogonality. Multiplying both sides
of (1) by r (x) Φ̂−1 (x) and integrating over the domain gives∫ π

0
r (x) f (x) Φ̂−1 (x)dx =

∫ π

0
b−1r (x) Φ̂

2
−1 (x)dx +

∞∑
n=1

bn

∫ π

0
r (x) Φ̂−1 (x) Φ̂n (x)dx

But r (x) = 1 and due to orthogonality of eigenfunctions, all terms in the sum are zero. The above
simplifies to ∫ π

0
f (x) Φ̂−1 (x)dx = b−1

∫ π

0
Φ̂2
−1 (x)dx

But f (x) = 1 and
∫π
0
Φ̂2
−1 (x)dx = 1 since normalized eigenfunctions. Hence the above becomes

b−1 =

∫ π

0
Φ̂−1 (x)dx

From problem one, Φ̂−1 (x) =
( √

2
√
e2π−1

)
ex , therefore the above becomes

b−1 =

√
2

√
e2π − 1

∫ π

0
exdx

=

√
2

√
e2π − 1

[ex ]π0

=

√
2 (eπ − 1)
√
e2π − 1

Going back to equation (1), but now the equation is multiplied by r (x) Φ̂m (x) form > 0 and integrated
using r (x) = 1 and f (x) = 1 giving∫ π

0
Φ̂m (x)dx =

∫ π

0
b−1Φ̂−1 (x) Φ̂m (x)dx +

∞∑
n=1

bn

∫ π

0
Φ̂n (x) Φ̂m (x)dx

Due to orthogonality of eigenfunctions, the above simplifies to∫ π

0
Φ̂m (x)dx = bm

∫ π

0
Φ̂2
m (x)dx

But
∫π
0
Φ̂2
m (x)dx = 1, therefore the above becomes

bn =

∫ π

0
Φ̂n (x)dx
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From problem one, using Φ̂n (x) =
√
2√

π (1+n2)
(n cos (nx) + sin (nx)) the above becomes

bn =

√
2√

π (1 + n2)

∫ π

0
(n cos (nx) + sin (nx))dx

=

√
2√

π (1 + n2)

(∫ π

0
n cos (nx)dx +

∫ π

0
sin (nx)dx

)
=

√
2√

π (1 + n2)

(
n

[
sin (nx)

n

] π
0
−

[
cos (nx)

n

] π
0

)
=

√
2√

π (1 + n2)

(
sin (nπ ) −

1
n
[cos (nπ ) − 1]

)
But sin (nπ ) = 0 since n is integer and cos (nπ ) = (−1)n . The above becomes

bn =

√
2√

π (1 + n2)

(
−
1
n
[−1n − 1]

)
=

√
2

n
√
π (1 + n2)

(
(−1)n+1 + 1

)
For n = 1, 3, 5, · · · the above simplifies to

bn =
2
√
2

n
√
π (1 + n2)

And for n = 2, 4, 6, · · · gives bn = 0. Therefore the expansion (1) becomes

f (x) =

√
2 (eπ − 1)
√
e2π − 1

Φ̂−1 (x) +
∞∑

n=1,3,5, · · ·

2
√
2

n
√
π (1 + n2)

Φ̂n (x)

1 =

√
2 (eπ − 1)
√
e2π − 1

( √
2

√
e2π − 1

)
ex +

∞∑
n=1,3,5, · · ·

2
√
2

n
√
π (1 + n2)

√
2√

π (1 + n2)
(n cos (nx) + sin (nx))

1 =
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1,3,5, · · ·

1
n (1 + n2)

(n cos (nx) + sin (nx))

The above can also be written as

1 =
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1

1

(2n − 1)
(
1 + (2n − 1)2

) ((2n − 1) cos ((2n − 1)x) + sin ((2n − 1)x))

To verify the above result, it is plotted for increasing number of n and compared to f (x) = 1 to see how
well it converges.
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3.3 Quizz 3

Some observations: As more terms are added, the series approximation approaches f (x) = 1 more. The
convergence is more rapid in the internal of the domain than near the edges. Near the edges at x = 0
and x = 1 , more terms are needed to get better approximation. More oscillation is seen near the edges.
This is due to Gibbs phenomenon. Converges is of the order ofO

(
1
n2

)
and the converges is to the mean

of f (x).

3.3.3 Problem 3

Problem Consider the regular SL problem

y ′′ + λy = 0 (1)
y (0) = 0

2y (1) − y ′ (1) = 0

Show that the problem has exactly one negative eigenvalue and compute numerically.
solution
The characteristic equation is r 2+λ = 0. Therefore the roots are r = ±

√
−λ. There are 3 cases to consider.

This problem is asking only for the negative eigenvalues. Therefore only the case λ < 0 is considered.
Let λ = −ω2 for some real constant. The roots are r = ±

√
ω2 = ±ω. The solution becomes

y = c1e
ωx + c2e

−ωx

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions

y = c1 coshωx + c2 sinhωx

The first boundary conditions y (0) = 0 gives 0 = c1. The solution becomes

y = c2 sinhωx (2)
y ′ = c2ω coshωx

Applying the second boundary conditions 2y (1) − y ′ (π ) = 0 gives

0 = 2c2 sinhω − c2ω coshω

= c2 (2 sinhω − ω coshω)

Non trivial solution requires that

2 sinhω − ω coshω = 0

2 tanhω = ω

The above equation needs to be solved numerically to find its real roots ω. One root is ω = 0, but this
implies λ = 0. To find if there are other real roots, the function 2 tanhω and ω were plotted and where
they intersect is located. Root finding was then used to obtain the exact numerical value of the roots.
The plot below shows that near ω = ±2 there is an intersection. There are no other roots since the line
f (ω) = ω will keep increasing/decreasing and will not intersect f (ω) = 2 tanhω any more after these
two roots.

2 tanh(w)

w

-3 -2 -1 1 2 3
w

-3

-2

-1

1

2

3

f(w)
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3 Quizzes

Numerical root finding was used to find the roots near points of intersections. It shows that the exact
value of ω = ±1.91501. Since λ = −ω2, therefore

λ = −3.66726

Is the only negative eigenvalue.

3.3.4 Problem 4

Problem Solve the inhomogeneous B.V.P.

−y ′′ = µy + 1 (1)
y (0) − y ′ (0) = 0

y (π ) − y ′ (π ) = 0

for µ = 0, µ = 1 by methods of section 11.3

Part (a)

−y ′′ − µy = 1

y ′′ + µy = −1

Using chapter 11.3 method, first the eigenfunctions for the corresponding homogenous ODEy ′′+µy = 0
are found for the same boundary conditions. In problem one, it was found that λ = −1 is eigenvalue
with corresponding normalized eigenfunction Φ̂−1 (x) =

( √
2

√
e2π−1

)
ex and λn = n2 for n = 1, 2, · · ·

with corresponding normalized eigenfunctions Φ̂n (x) =
√
2√

π (1+n2)
(n cos (nx) + sin (nx)). Since λ = 0

is not an eigenvalue of the corresponding homogeneous B.V.P., then there is a solution which is by
eigenfunction expansion is given by

y = b−1Φ̂−1 (x) +
∞∑
n=1

bnΦ̂n (x) (1)

Substituting this back into the original ODE gives(
b−1Φ̂

′′
−1 (x) +

∞∑
n=1

bnΦ̂
′′
n (x)

)
+ µ

(
b−1Φ̂−1 (x) +

∞∑
n=1

bnΦ̂n (x)

)
= c−1Φ̂−1 (x) +

∞∑
n=1

cnΦ̂n (x)

Where −1 = c−1Φ̂−1 (x)+
∑∞

n=1 cnΦ̂n (x) is the eigenfunction expansion of −1. Since µ = 0, and Φ̂′′
n (x) =

−λnΦ̂n (x), the above simplifies to

−λ−1b−1Φ̂−1 (x) −
∞∑
n=1

bnλnΦ̂n (x) = c−1Φ̂−1 (x) +
∞∑
n=1

cnΦ̂n (x)

Therefore, equating coefficients gives

−λ−1b−1 = c−1

−bnλn = cn

Or

b−1 = −
c−1
λ−1

(2)

bn = −
cn
λn

What is left is to find c−1, cn . These are found by applying orthogonality since

−1 = c−1Φ̂−1 (x) +
∞∑
n=1

cnΦ̂n (x)

This was done in problem 2. The difference is the minus sign. Therefore the result from problem 2 is
used but c−1, cn from problem 2 are now multiplied by −1 giving

c−1 = −

√
2 (eπ − 1)
√
e2π − 1

cn = −
2
√
2

n
√
π (1 + n2)

n = 1, 3, 5, · · ·
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Now that c−1, cn are found, using equation (2) b−1,bn are can now be found

b−1 =

√
2(eπ−1)
√
e2π−1

(−1)
= −

√
2 (eπ − 1)
√
e2π − 1

bn =

2
√
2

n
√
π (1+n2)

n2
=

2
√
2

n3
√
π (1 + n2)

n = 1, 3, 5, · · ·

Hence the solution (1) becomes

y = b−1Φ̂−1 (x) +
∞∑
n=1

bnΦ̂n (x)

= −

√
2 (eπ − 1)
√
e2π − 1

Φ̂−1 (x) +
∞∑

n=1,3,5, · · ·

2
√
2

n3
√
π (1 + n2)

Φ̂n (x)

= −

√
2 (eπ − 1)
√
e2π − 1

( √
2

√
e2π − 1

)
ex +

∞∑
n=1,3,5, · · ·

2
√
2

n3
√
π (1 + n2)

√
2√

π (1 + n2)
(n cos (nx) + sin (nx))

= −
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1,3,5, · · ·

1
n3 (1 + n2)

(n cos (nx) + sin (nx)) (2A)

The above can also be also be written as

y (x) = −
2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1

1

(2n − 1)3
(
1 + (2n − 1)2

) ((2n − 1) cos ((2n − 1)x) + sin ((2n − 1)x))

(2A)
To verify the above solution, it was plotted against the solution of y ′′ = −1 found using the direct
method to see if they match. The solution using the direct method is found as follows: The homogenous
solution is yh = c1 + c2x . Let yp = kx2,y ′

p = 2kx,y ′′
p = 2k . Substituting these back into y ′′ = −1 gives

2k = −1 or k = − 1
2 . Hence yp = −x 2

2 and the solution becomes

y = yh + yp

= c1 + c2x −
x2

2

Boundary conditions are now applied to determine c1, c2. From above, y ′ (x) = c2 − x . Applying y (0) −
y ′ (0) = 0 gives

0 = c1 − c2

c2 = c1

Therefore the solution becomes

y (x) = c1 (1 + x) −
x2

2
y ′ (x) = c1 − x

Applying second BC y (π ) − y ′ (π ) = 0 gives

0 = c1 (1 + π ) −
π 2

2
− c1 + π

0 = c1 (1 + π − 1) −
π 2

2
+ π

c1 =
π 2

2 − π

π

=
π

2
− 1

Therefore, the solution, using direct method is

y (x) =
(π
2
− 1

)
(1 + x) −

x2

2

=
π

2
+
π

2
x − 1 − x −

x2

2

Or

y (x) = −x 2

2 + x
( π
2 − 1

)
− 1 + π

2 (3)
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What the above says, is that if (2A) solution is correct, it will converge to solution (3) as more terms are
added. In other words

−
x2

2
+ x

(π
2
− 1

)
− 1 +

π

2
≈ −

2 (eπ − 1)
e2π − 1

ex +
4
π

∞∑
n=1,3,5, · · ·

1
n3 (1 + n2)

(n cos (nx) + sin (nx))

To verify this, the solution from both the direct and the series method were plotted next to each other.
Using only n = 10 in the sum shows that the plots are identical.
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Then the difference between these two solution was plotted. A maximum of n = 50 is used in the sum.
The plot shows the difference is almost zero in the internal region and near the edges of the domain
the difference of order 10−7.This is expected due to Gibbs phenomenon. Adding more terms made the
difference smaller. The converges is of order O

(
1
n2

)
.

mySol[max_, x_] := -
2 (Exp[Pi] - 1)

Exp[2 Pi] - 1
Exp[x] +

4

Pi
Sum

1

n^3 (1 + n^2)
(n Cos[n x] + Sin[n x]), {n, 1, max, 2}

direct[x_] :=
-x2

2
+ x

Pi

2
- 1 - 1 +

Pi

2
;

π

4
π

2

3π
4 π

x

-4.× 10-6

-2.× 10-6

2.×10-6

4.×10-6

difference
Showing difference in direct and 11.3 method

Part (b)

Now the same process as in part (a) is repeated for µ = 1

−y ′′ − µy = 1

y ′′ + µy = −1

Using 11.3 method, first the eigenfunctions for the corresponding homogenous ODE y ′′ + µy = 0
are found for the same boundary conditions. In problem one, it was found that λ = −1 is eigen-
value with corresponding normalized eigenfunction Φ̂−1 (x) =

( √
2

√
e2π−1

)
ex and λn = n2 for n =

1, 2, · · · with corresponding normalized eigenfunctions Φ̂n (x) =
√
2√

π (1+n2)
(n cos (nx) + sin (nx)). There-

fore λ = 1 is an eigenvalue that corresponds to µ = 1. In this case, a solution will exist (and will not be
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unique) only if the forcing function −1 is orthogonal to Φ̂1 (x). This is verified as follows. Since r (x) = 1,
and n = 1, then ∫ π

0
(−1) r (x) Φ̂1 (x)dx = −

∫ π

0

√
2√

π (1 + n2)
(n cos (nx) + sin (nx))dx

= −

∫ π

0

√
2√

π (1 + 1)
(cos (x) + sin (x))dx

=
−
√
2

√
2π

∫ π

0
cos (x) + sin (x)dx

=
−1
√
π

(
(sinx)π0 − (cosx)π0

)
=

−1
√
π
(0 − (−1 − 1))

=
−2
√
π

Which is not zero. This means there is no solution.

3.3.5 key solution



Homework 3, Math 322

1. Find the eigenvalues and normalized eigenfunctions of the regular Sturm-
Liouville problem

y′′ + λy = 0, y(0)− y′(0) = 0, y(π)− y′(π) = 0.

Solution: Let λ = −ω2 with ω > 0, and y(x) = c1e
ωx + c2e

−ωx. Then the
boundary conditions give

(c1 + c2)− ω(c1 − c2) = 0, (c1e
ωπ + c2e

−ωπ)− (c1ωe
ωπ − c2ωe

−ωπ) = 0.

In order to get a nontrivial solution c1, c2 we need
∣

∣

∣

∣

1− ω 1 + ω

(1− ω)eωπ (1 + ω)e−ωπ

∣

∣

∣

∣

= (1− ω2)(e−ωπ − eωπ) = 0.

The only solution ω > 0 is ω = 1. Then c2 = 0. Therefore, λ = −1 is an
eigenvalue and φ0(x) = k0e

x is a corresponding eigenfunction.
If λ = 0 then y(x) = c1 + c2x. The boundary conditions give

c1 − c2 = 0, c1 + c2π − c2 = 0.

It follows that c1 = c2 = 0, so λ = 0 is not an eigenvalue.
Let λ = ω2, ω > 0, and y(x) = c1 cosωx + c2 sinωx . The boundary
conditions give

c1 − ωc2 = 0, (c1 cosωπ + c2 sinωπ)− (−c1ω sinωπ + c2ω cosωπ) = 0.

In order to get a nontrivial solution we need
∣

∣

∣

∣

1 −ω

cosωπ + ω sinωπ sinωπ − ω cosωπ

∣

∣

∣

∣

= (1 + ω2) sinωπ.

The solutions ω > 0 are ω = n = 1, 2, . . . . Then c1 = nc2. Therefore, we
found the eigenvalues λn = n2 with corresponding eigenfunctions φn(x) =
kn(n cosnx+ sinnx). We calculate

1 = k20

∫

π

0

(ex)2 dx= k20
1

2
(e2π − 1),

1 = k2
n

∫

π

0

(n cosnx+ sinnx)2 dx= k2
n
(1 + n2)

π

2
,

and find the normalized eigenfunctions

φ̂0(x)=

√
2√

e2π − 1
ex,

φ̂n(x)=

√

2

π

1√
1 + n2

(n cosnx+ sinnx), n = 1, 2, . . .

2. Expand the function f(x) = 1 in a series of eigenfunctions of problem 1.
Solution: For general f(x) the expansion is

f(x) =

∞
∑

n=0

cnφ̂n(x),

1



2

where

cn =

∫

π

0

f(t)φ̂nt) dt.

If f(x) = 1 then

c0= k0

∫

π

0

et dt = k0(e
π − 1),

cn= kn

∫

π

0

(n cosnt+ sinnt) dt = kn
1 + (−1)n+1

n
.

Therefore,

1 =
2

eπ + 1
ex +

4

π

∑

n≥1 odd

1

n(1 + n2)
(n cosnx+ sinnx).

3. Consider the regular Sturm-Liouville problem

y′′ + λy = 0, y(0) = 0, 2y(1) − y′(1) = 0.

Show that this problem has exactly one negative eigenvalue and compute it
numerically.
Solution: We set λ = −ω2 with ω > 0. The condition y(0) = 0 gives
y(x) = c sinhωx. The boundary condition at x = 1 shows that λ is an
eigenvalue if and only if

2 sinhω = ω coshω

or

tanhω =
1

2
ω.

The function tanhω is concave for ω > 0 so it is clear from the picture that
there is exactly one positive solution ω = 1.9150 . . . The negative eigenvalue
is λ = −3.66725 . . .



3

4. Solve the inhomogeneous boundary value problem

−y′′ = µy + 1, y(0)− y′(0) = 0, y(π)− y′(π) = 0

for µ = 0 and µ = 1 by the method of Section 11.3.
Solution: If µ is not an eigenvalue, then the solution is

y(x) =

∞
∑

n=0

cn

λn − µ
φ̂n(x).

Therefore, if µ = 0 the solution is

y(x) = − 2

eπ + 1
ex +

4

π

∑

n≥1 odd

1

n3(1 + n2)
(n cosnx+ sinnx).

µ = 1 agrees with the eigenvalue λ1. There exists a solution only if c1 = 0.
But in our example, c1 6= 0 so there is no solution.
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3.4 Quizz 4

3.4.1 Problem 1

Problem Solve the PDE

ut = uxx + xt 0 ≤ x ≤ 1, t ≥ 0 (1)

With boundary conditions

u (0, t) = 0

u (1, t) = 0

And initial condition
u (x, 0) = sin (πx)

Solution
The corresponding homogeneous PDE ut = uxx with the same homogeneous boundary conditions was
solved before. It was found to have eigenfunctions

Φn (x) = sin
(√

λnx
)

With corresponding eigenvalues

λn = n
2π 2 n = 1, 2, 3, · · ·

Using eigenfunction expansion, it is now assumed that the solution to the given inhomogeneous PDE
is given by

u (x, t) =
∞∑
n=1

bn (t)Φn (x)

Substituting the above into the original PDE (1), and since term by term differentiation is justified
(eigenfunctions are continuous) results in

∞∑
n=1

b ′n (t)Φn (x) =
∞∑
n=1

bn (t)Φ
′′
n (x) +

∞∑
n=1

γn (t)Φn (x) (1A)

Where ∑∞
n=1 γn (t)Φn (x) is the expansion of the forcing function xt using same eigenfunctions

xt =
∞∑
n=1

γn (t)Φn (x) (1B)

But Φ′′
n (x) = −λnΦn (x) since the eigenfunctions satisfy the eigenvalue ODE X ′′ = −λnX . Therefore

(1A) simplifies to
∞∑
n=1

b ′n (t)Φn (x) =
∞∑
n=1

−λnbn (t)Φn (x) +
∞∑
n=1

γn (t)Φn (x)

b ′n (t) + λnbn (t) = γn (t) (2)

γn (t) is now found by applying orthogonality to (1B), and using the weight r (x) = 1 gives

t

∫ 1

0
xΦn (x)dx = γn (t)

∫ 1

0
Φ2
n (x)dx

Using Φn (x) = sin
(√

λnx
)
= sin (nπx) and

∫1
0
sin2 (nπx)dx = 1

2 , the above simplifies to

t

∫ 1

0
x sin (nπx)dx = γn (t)

1
2

γn (t) = 2t
∫ 1

0
x sin (nπx)dx (3)

The integral on the right side above is found using
∫
x sin (ax)dx = sinax

a2 − x cosax
a , therefore∫ 1

0
x sin (nπx)dx =

(
sinnπx
n2π 2 −

x cosnπx
nπ

) 1
0

=

(
sinnπ
n2π 2 −

cosnπ
nπ

)
= −

cosnπ
nπ

=
− (−1)n

nπ

=
(−1)n+1

nπ
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Hence equation (3) now can be written as

γn (t) =
2 (−1)n+1

nπ
t

Substituting the above in (2) gives the first order ODE to solve for bn (t)

b ′n (t) + (nπ )
2 bn (t) =

2 (−1)n+1

nπ
t

The integrating factor is I = en
2π 2t . Hence the above becomes, after multiplying both sides by I

d

dt

(
en

2π 2tbn (t)
)
=

2 (−1)n+1

nπ
ten

2π 2t

Integrating both sides gives

en
2π 2tbn (t) =

2 (−1)n+1

nπ

∫ t

0
sen

2π 2sds + bn (0) (4)

Where bn (0) is the constant of integration. Dividing both sides by en2π 2t gives

bn (t) =
2 (−1)n+1

nπ

∫ t

0
sen

2π 2(s−t )ds + bn (0) e
−n2π 2t

But
∫ t
0
sen

2π 2(s−t )ds = n2π 2t−1+e−n
2π 2t

n4π 4 by integration by parts. The above now becomes

bn (t) = 2 (−1)n+1
(
n2π 2t − 1 + e−n

2π 2t

n5π 5

)
+ bn (0) e

−n2π 2t

Now that bn (t) is found, the final solution is

u (x, t) =
∞∑
n=1

bn (t)Φn (x)

=
∞∑
n=1

(
2 (−1)n+1

(
n2π 2t − 1 + e−n

2π 2t

n5π 5

)
+ bn (0) e

−n2π 2t

)
sin (nπx) (5)

bn (0) is determined from the given initial conditions u (x, 0) = sinπx . The above becomes at t = 0

sinπx =
∞∑
n=1

(
2 (−1)n+1

(
−1 + 1
n5π 5

)
+ bn (0)

)
sin (nπx)

=
∞∑
n=1

bn (0) sin (nπx)

Therefore when n = 1 (since LHS is sinπx ) the above gives

b1 (0) = 1

And bn (0) = 0 for all other n. Equation (5) now simplifies to

u (x, t) =

n=1 term︷                                              ︸︸                                              ︷(
2

(
π 2t − 1 + e−π

2t

π 5

)
+ e−π

2t

)
sin (πx) +

1
π 5

∞∑
n=2

2
n5

(−1)n+1
(
n2π 2t + e−n

2π 2t − 1
)
sin (nπx)

To verify the above solution, it was plotted against numerical solution for different instances of time
and also animated. It gave an exact match. A small number of terms was needed in the summation since
convergence was fast and is of order O

(
1
n3

)
. The following is a plot of the above solution for different

instances of times using 5 terms.
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3.4.2 Problem 2

Problem Show that

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

Hint: Use the same method that proves orthogonality of eigenfunctions in 11.4
Solution
In the above, λ and µ are the eigenvalues, with the corresponding eigenfunctions

Φλ (x) = Jo
(√

λx
)

(1)

Φµ (x) = Jo
(√

µx
)

(2)

These come from the Sturm Liouville equation

− (xy ′)
′
= λxy (3)

Where

p (x) = x

q (x) = 0

r (x) = x

In operator form
L [Φλ] = −

(
Φ′
λ
) ′
= λxΦλ (4)

Similarly for any other eigenvalue such as µ. Multiplying both sides of (4) by Φµ (x) and integrating
gives ∫ 1

0
L [Φλ]Φµdx =

∫ 1

0

dv︷  ︸︸  ︷
−

(
Φ′
λ
) ′ u︷︸︸︷

Φµ dx

Integrating by part the right side results in∫ 1

0
L [Φλ]Φµdx =

[
−Φ′

λΦµ
] 1
0 −

∫ 1

0
−Φ′

λΦ
′
µdx

Integrating by parts again the second integral above, where now dv = −Φ′
λ,u = Φ′

µ gives∫ 1

0
L [Φλ]Φµdx =

[
−Φ′

λΦµ
] 1
0 −

( [
−ΦλΦ

′
µ

] 1
0
−

∫ 1

0
−ΦλΦ

′′
µdx

)
=

[
−Φ′

λΦµ
] 1
0 −

[
−ΦλΦ

′
µ

] 1
0
+

∫ 1

0
−ΦλΦ

′′
µdx

=
[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0
+

∫ 1

0
Φλ

(
−Φ′

µ

) ′
dx

But
(
−Φ′

µ

) ′
= L

[
Φµ

]
. Hence the above can be written as∫ 1

0
L [Φλ]Φµdx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0
+

∫ 1

0
L

[
Φµ

]
Φλdx∫ 1

0
L [Φλ]Φµdx −

∫ 1

0
L

[
Φµ

]
Φλdx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0∫ 1

0

(
L [Φλ]Φµ − L

[
Φµ

]
Φλ

)
dx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0

But L [Φλ] = λxΦλ and L
[
Φµ

]
= µxΦµ , therefore the above can be written as∫ 1

0

(
λxΦλΦµ − µxΦµΦλ

)
dx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0∫ 1

0
(λ − µ)

(
xΦλΦµ

)
dx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0

(λ − µ)

∫ 1

0
xΦλΦµdx =

[
−Φ′

λΦµ + ΦλΦ
′
µ

] 1
0

(5)

Since Φλ (x) = Jo
(√

λx
)
,Φ′

λ (x) =
√
λJ ′o

(√
λx

)
and Φµ (x) = Jo

(√
µx

)
,Φ′

µ (x) =
√
µJ ′o

(√
µx

)
, then the

above simplifies to

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

[
−
√
λJ ′o

(√
λx

)
Jo

(√
µx

)
+ Jo

(√
λx

)
√
µJ ′o

(√
µx

) ] 1
0
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What is left is to evaluate the boundary terms ∆ =
[
−
√
λJ ′o

(√
λx

)
Jo

(√
µx

)
+ Jo

(√
λx

)
√
µJ ′o

(√
µx

) ] 1
0
.

This gives

∆ =
[
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)
+ Jo

(√
λ
)
√
µJ ′o

(√
µ
) ]

−

[
−
√
λJ ′o (0) Jo (0) + Jo (0)

√
µJ ′o (0)

]
But J ′o (0) = 0 (since J ′o (x) = −J1 (x) and J1 (0) = 0 ). Therefore the boundary terms reduces to

∆ = Jo
(√

λ
)
√
µJ ′o

(√
µ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

Substituting this back in (5) gives the desired result

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

3.4.3 Problem 3

Problem By letting µ → λ in the formula of problem 2, derive a formula for
∫1
0
x J 20

(√
λx

)
dx . Then show

that the normalized eigenfunctions of the eigenvalue problem in section 11.4 is

Φ̂n (x) =

√
2J0 (jnx)��J ′0 (jn)��

where 0 < j1 < j2 < j3 < · · · denote the positive zeros of J0
Solution

Part (a)

From problem 3, the formula obtained is

(λ − µ)

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

Moving (λ − µ) to the right side gives

∫ 1

0
x Jo

(√
λx

)
Jo

(√
µx

)
dx =

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

(λ − µ)

Taking the limit lim µ → λ then the integral on the left becomes
∫1
0
xΦ2

λdx resulting in

∫ 1

0
x J 2o

(√
λx

)
dx = lim

µ→λ

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
)

(λ − µ)
(1)

When µ → λ the right side becomes indeterminate form 0
0 . Therefore L’hospital rule is used, which says

that
lim
x→a

f (x)

д (x)
= lim

x→a

f ′ (x)

д′ (x)

Comparing the above to (1) shows that µ is now like x and λ is like a. Therefore f ′ (x) is like

f ′ (x) ≡
d

dµ

(
√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−
√
λJ ′o

(√
λ
)
Jo

(√
µ
) )

≡
d

dµ

√
µJ ′o

(√
µ
)
Jo

(√
λ
)
−

d

dµ

√
λJ ′o

(√
λ
)
Jo

(√
µ
)

≡
1
2

1
√
µ
J ′o

(√
µ
)
Jo

(√
λ
)
+
√
µ

1
2
√
µ
J ′′o

(√
µ
)
Jo

(√
λ
)
−

1
2
√
µ

√
λJ ′o

(√
λ
)
J ′o

(√
µ
)

And д′ (x) is like d
dµ (λ − µ) = −1. Using the above result back in (1) gives∫ 1

0
x J 2o

(√
λ
)
dx ≡ lim

x→a

f ′ (x)

д′ (x)

= lim
µ→λ

(
−
1
2

1
√
µ
J ′o

(√
µ
)
Jo

(√
λ
)
−
√
µ

1
2
√
µ
J ′′o

(√
µ
)
Jo

(√
λ
)
+

1
2
√
µ

√
λJ ′o

(√
λ
)
J ′o

(√
µ
) )

= lim
µ→λ

(
−
1
2

1
√
µ
J ′o

(√
µ
)
Jo

(√
λ
)
−
1
2
J ′′o

(√
µ
)
Jo

(√
λ
)
+
1
2
J ′o

(√
λ
)
J ′o

(√
µ
) )
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Now the limit is taken, since there is no indeterminate form. The above becomes∫ 1

0
x J 2o

(√
λx

)
dx = −

1
2

1
√
λ
J ′o

(√
λ
)
Jo

(√
λ
)
−
1
2
J ′′o

(√
λ
)
Jo

(√
λ
)
+
1
2
J ′o

(√
λ
)
J ′o

(√
λ
)

=
1
2

( [
J ′o

(√
λ
) ] 2

−
1
√
λ
J ′o

(√
λ
)
Jo

(√
λ
)
− J ′′o

(√
λ
)
Jo

(√
λ
) )

(2)

To simplify the above, the following relations were obtained from dlmf.NIST.gov to simplify the above

J ′n (x) = Jn−1 (x) −
(n + 1)

x
Jn (x)

J ′n (x) = −Jn+1 (x) +
n

x
Jn (x)

Using these, then J ′o

(√
λ
)
= −J1

(√
λ
)
and J ′′0

(√
λ
)
= −J0

(√
λ
)
+ 1√

λ
J1

(√
λ
)
. Equation (2) now simplifies

to∫ 1

0
x J 2o

(√
λx

)
dx =

1
2

( [
J ′o

(√
λ
) ] 2

−
1
√
λ

(
−J1

(√
λ
) )

Jo
(√

λ
)
−

(
−J0

(√
λ
)
+

1
√
λ
J1

(√
λ
) )

Jo
(√

λ
) )

=
1
2

( [
J ′o

(√
λ
) ] 2
+

1
√
λ
J1

(√
λ
)
Jo

(√
λ
)
+ J0

(√
λ
)
Jo

(√
λ
)
−

1
√
λ
J1

(√
λ
)
Jo

(√
λ
) )

The second term cancels with the last term above giving the final result∫ 1

0
x J 2o

(√
λx

)
dx =

1
2

( [
J ′o

(√
λ
) ] 2
+ J 20

(√
λ
) )

(3)

Part (b)

√
λn are the positive zeros of J0

(√
λn

)
= 0. Below,

√
λn is replaced by jn where now jn are the zeros

of J0 (jn). One way to find the normalized eigenfunction Ĵ0 (jnx) is by dividing J0 (jnx) by its norm. In
other words,

Ĵ0 (jnx) =
J0 (jnx)

‖ J0 (jnx)‖
(1A)

But

‖ J0 (jnx)‖ =

√∫ 1

0
r (x) J 20 (jnx)dx

Which is by the definition of the norm of a function with the corresponding weight r (x). But from
part(a) ‖ J0 (jnx)‖ =

∫1
0
r (x) J 20 (jnx)dx was found to be 1

2

( [
J ′o (jn)

] 2
+ J 20 (jn)

)
. Therefore (1A) becomes

Ĵ0 (jnx) =
J0 (jnx)√

1
2

(
[J ′o (jn)]

2 + J 20 (jn)
)

=

√
2J0 (jnx)√

[J ′o (jn)]
2 + J 20 (jn)

But since jn are the zeros of J0 (jn), then all the J0 (jn) terms above vanish giving

Ĵ0 (jnx) =

√
2J0 (jnx)√
[J ′o (jn)]

2

=

√
2J0 (jnx)
| J ′o (jn)|

(1)

Another way to find the normalized eigenfunctions Ĵ0 (jnx) is as was done in the text book, which is to
first determine kn as follows. Let Ĵ0 (jnx) = kn J0 (jnx), then the following equation is solved for kn∫ 1

0
r (x)

[
Ĵ0 (jnx)

] 2
dx = 1 (2)

But the weight r (x) = x, equation (2) becomes

k2n

∫ 1

0
x J 20 (jnx)dx = 1

But from part(a),
∫1
0
x J 20 (jnx)dx =

1
2

( [
J ′o (jn)

] 2
+ J 20 (jn)

)
. Hence the above becomes

k2n =
1

1
2

(
[J ′o (jn)]

2 + J 20 (jn)
)

kn =

√
2√

[J ′o (jn)]
2 + J 20 (jn)
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As above, since all J0 (jn) = 0 then

kn =

√
2√

[J ′o (jn)]
2

And the normalized eigenfunction become

Ĵ0 (jnx) = kn J0 (jnx)

=

√
2J0 (jnx)√
[J ′o (jn)]

2

=

√
2J0 (jnx)
| J ′o (jn)|

Which is the same result as (1).

3.4.4 Problem 4

Problem Solve the inhomogeneous differential equation

−
( (
1 − x2

)
y ′

) ′
= y + x3 − 1 < x < 1

With boundary conditions y (x) ,y ′ (x) bounded as x → −1+ and x → 1−.
Solution
This problem is solved using 11.3 method (Eigenfunction expansion). The ODE is written as

−
( (
1 − x2

)
y ′

) ′
= µy + x3 (1)

Where µ = 1 in this case. The corresponding homogeneous eigenvalue ODE to solve is then

−
( (
1 − x2

)
y ′

) ′
= λy (2)

Comparing to Sturm-Liouville form − (py ′)′ + qy = rλy, then p (x) =
(
1 − x2

)
,q = 0, r = 1. Since p (x)

must be positive over all points in the domain, and since in this problem p (−1) = 0 and p (1) = 0, then
both x = −1,+1 are singular points. They can be shown to be regular singular points.
Equation (2), where λ is now is an eigenvalue, is the Legendre equation(

1 − x2
)
y ′′ − 2xy ′ + λy = 0

Comparing to the standard Legendre equation form in chapter 5(
1 − x2

)
y ′′ − 2xy ′ + n (n + 1)y = 0 (3)

There are two cases to consider. n is integer and n is not an integer.
Case n is not an integer. It is know that now the solution to (3) is

y (x) = c1P̄n (x) + c2Q̄n (x)

Where P̄n (x) is called the Legendre function of order n and Q̄n (x) is called the Legendre function of
the second kind of order n. These solutions are valid for |x | < 1 since series expansion was about point
x = 0. But both of these functions are unbounded at the end points (Q̄n (x) blows up at x = ±1 and
P̄n (x) blows up at x = −1) leading to trivial solution.
This means n must be an integer. When n is an integer, then λn = n (n + 1). It is known (from chapter 5),
that in this case the solution to (3) becomes a terminating power series (a polynomial), which is called
the Legendre polynomial Pn (x) .These polynomials are there bounded everywhere, including at the end
points x = ±1, and therefore these solutions satisfy the boundary conditions. Hence the Legendre Pn (x)
are the eigenfunctions to (3). This table summaries the result found

n eigenvalue eigenfunctions
0 λ0 = 0 P0 (x) = 1

1 λ1 = 2 P1 (x) = x

2 λ2 = 6 P2 (x) =
1
2

(
3x2 − 1

)
3 λ3 = 12 P3 (x) =

1
2

(
5x3 − 3x

)
...
...

...

n λn = n (n + 1) Pn (x) =
1

2nn!
dn
dx 2

(
x2 − 1

) n
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3.4 Quizz 4

What the above says, is that the solution to(
1 − x2

)
P ′′
n (x) − 2xP ′

n (x) + λnPn (x) = 0

Is Pn (x) with the corresponding eigenvalue λn = n (n + 1) as given by the above table. Now that the
eigenfunctions of the corresponding homogeneous eigenvalue ODE are found, they are used to solve
the given inhomogeneous ODE

−
( (
1 − x2

)
y ′

) ′
= µy + x3 (4)

Using eigenfunction expansion method. Since µ = 1 and since there is no eigenvalue which is also 1,
then a solution exists. Let the solution be

y (x) =
∞∑
n=0

cnPn (x)

Substituting this solution into (4), and noting that L [y] = −
( (
1 − x2

)
y ′

) ′
= λny gives

λn
∞∑
n=0

cnPn (x) = µ
∞∑
n=0

cnPn (x) + x
3

Expanding x3 using the same eigenfunctions (this can be done, since x3 is continuous function and the
eigenfunctions are complete), then the above becomes

λn
∞∑
n=0

cnPn (x) = µ
∞∑
n=0

cnPn (x) +
∞∑
n=0

dnPn (x)

λncn = µcn + dn

cn =
dn

λn − µ

What is left is to determine dn from

x3 =
∞∑
n=0

dnPn (x)

The above can be solved for dn using orthogonality, or by direct expansion (otherwise called undeter-
mined coefficients method). Since the force x3 is already a polynomial in x and of a small order, then
direct expansion is simpler. The above then becomes

x3 = d0P0 (x) + d1P1 (x) + d2P2 (x) + d3P3 (x)

There is no need to expand for more than n = 3, since the LHS polynomial is of order 3. Substituting
the known Pn (x) expressions into the above equation gives

x3 = d0 + d1x + d2
1
2

(
3x2 − 1

)
+ d3

1
2

(
5x3 − 3x

)
= d0 + d1x + d2

(
3
2
x2 −

1
2

)
+ d3

(
5
2
x3 −

3
2
x

)
Collecting terms of equal powers in x results in

x3 = x0
(
d0 −

1
2
d2

)
+ x

(
d1 −

3
2
d3

)
+ x2

(
3
2
d2

)
+ x3

(
5
2
d3

)
Or

d0 −
1
2
d2 = 0

d1 −
3
2
d3 = 0

3
2
d2 = 0

5
2
d3 = 1

From third equation, d2 = 0. From first equation d0 = 0, and substituting last equation in the second
equation give d1 = 3

2 . Therefore

d1 =
3
5

d3 =
2
5

And all other dn are zero. Now the cn are found using cn = dn
λn−µ
. For n = 1

c1 =
d1

λ1 − µ
=

3
5

2 − 1
=

3
5
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And for n = 3

c3 =
d3

λ3 − µ
=

2
5

12 − 1
=

2
55

And all other cn are zero. Hence the final solution from y (x) =
∑∞

n=0 cnPn (x) reduces to only two terms
in the sum

y (x) = c1P1 (x) + c3P3 (x)

=
3
5
x +

2
55

(
1
2

(
5x3 − 3x

) )
Giving the final solution as

y (x) = 1
11x

(
x2 + 6

)
This is a plot of the solution
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Solution to Problem 4 using eigenfunction expansion

Appendix for problem 4

Initially I did not know we had to use eigenfunction expansion, so solved it directly as follows. Let the
solution to (

1 − x2
)
y ′′ − 2xy ′ + y = x3

Be
y (x) = yh (x) + yp (x)

Whereyh (x) is the homogeneous solution to
(
1 − x2

)
y ′′−2xy ′+y = 0 andyp (x) is a particular solution.

Now, since
(
1 − x2

)
y ′′ − 2xy ′ +y = 0 is a Legendre ODE but with a non-integer order, then its solution

is not a terminating polynomials, but instead is given by

yh (x) = c1P̄n (x) + c2Q̄n (x)

Where P̄n (x) is called the Legendre function of order n and Q̄n (x) is called the Legendre function of the
second kind of order n, and yp (x) is a particular solution. The particular solution can be found, using
method of undetermined coefficients to be yp (x) = 1

11x
3 + 6

11x . Hence the general solution becomes

y (x) = c1P̄n (x) + c2Q̄n (x) +
1
11

x
(
x2 + 6

)
Now since the solution must be bounded as x → ±1, then we must set c1 = 0 and c2 = 0, because both
P̄n (x) and Q̄n (x) are unbounded at the end points (Q̄n (x) blows up at x = ±1 and P̄n (x) blows up at
only x = −1), therefore the final solution contains only the particular solution

y (x) =
1
11

x
(
x2 + 6

)
Which is the same solution found using eigenfunction expansion. At first I thought I made an error
somewhere, since I did not think all of the homogenous solution basis could vanish leaving only a
particular solution.

3.4.5 key solution



Homework 4, Math 322

1. Solve the the partial differential equation

ut = uxx + xt, 0 ≤ x ≤ 1, t ≥ 0

with boundary conditions

u(0, t) = u(1, t) = 0

and initial condition

u(x, 0) = sinπx.

Solution: The eigenvalue problem −y′′ = λy, y(0) = y(1) = 0 has eigen-

values λn = n2π2 and normalized eigenfunctions φ̂n(x) =
√

2 sin(nx), n =
1, 2, . . . Therefore, we are looking for a solution in the form

u(x, t) =

∞∑
n=1

bn(t)φ̂n(x).

We know from the textbook, Section 11.3, that bn(t) is determined by

b′n(t) + λnbn(t) = γn(t), bn(0) = Bn,

where

γn(t) =

∫ 1

0
xtφ̂n(x) dx

and the sequence Bn is determined by

u(x, 0) =
∞∑
n=1

Bnφ̂m(x).

Therefore, in our problem, B1 = 1√
2

and Bn = 0 for n ≥ 2. Moreover,

γn(t) = t
√

2

∫ 1

0
x sin(nπx) dx = t

√
2(−1)n+1 1

nπ
.

Solving the differential equation for bn(t) we find

b1(t) =

√
2

π5

(
π2t− 1 + e−π

2t

(
1

2
π5 + 1

))
.

and, for n ≥ 2,

bn(t) =

√
2(−1)n+1

π5n5

(
π2n2t− 1 + e−n

2π2t
)
.

1



The solution is

u(x, t) =
2

π5

(
π2t− 1 + e−π

2t

(
1

2
π5 + 1

))
sinπx

+
∞∑
n=2

2(−1)n+1

π5n5

(
π2n2t− 1 + e−n

2π2t
)

sin(nπx)

= e−π
2t sinπx+

∞∑
n=1

2(−1)n+1

π5n5

(
π2n2t− 1 + e−n

2π2t
)

sin(nπx).

2. Show that

(λ− µ)

∫ 1

0
xJ0(
√
λx)J0(

√
µx) dx =

√
µJ ′0(
√
µ)J0(

√
λ)−

√
λJ ′0(
√
λ)J0(

√
µ)

for λ, µ > 0.
Solution: Let y = J0(

√
λx) and z = J0(

√
µx). Then

−(xy′)′ = λxy, −(xz′)′ = µxz.

We multiply the first equation by z, the second by y, subtract and integrate,
to find ∫ 1

0

(
(xz′)′y − (xy′)′z

)
dx = (λ− µ)

∫ 1

0
xyz dx.

Integration by parts gives

xz′y − xy′z
∣∣1
0

= (λ− µ)

∫ 1

0
xyz dx

which is the desired identity.

3. By letting µ → λ in the formula of Problem 2, derive a formula for∫ 1
0 xJ0(

√
λx)2 dx. Then show that the normalized eigenfunctions of the

eigenvalue problem in Section 11.4 are

φ̂n(x) =

√
2J0(jnx)

|J ′0(jn)|
,

where 0 < j1 < j2 < j3 < . . . denote the positive zeros of J0.
Solution: We divide the identity from problem 2 by λ− µ, and let µ→ λ.
Using L’Hospital’s rule we find∫ 1

0
xJ0(
√
λx)2 dx = lim

µ→λ

√
µJ ′0(
√
µ)J0(

√
λ)−

√
λJ ′0(
√
λ)J0(

√
µ)

λ− µ

=− lim
µ→λ

1

2
µ−1/2J ′0(

√
µ)J0(

√
λ) +

1

2
J ′′0 (
√
µ)J0(

√
λ)−

√
λJ ′0(
√
λ)

1

2
µ−1/2J ′0(

√
µ)

=−1

2
λ−1/2J ′0(

√
λ)J0(

√
λ)− 1

2
J ′′0 (
√
λ)J0(

√
λ) +

1

2
J ′0(
√
λ)2.

Now we use √
λJ ′′0 (

√
λ) + J ′0(

√
λ) +

√
λJ0(
√
λ) = 0.



Then we obtain∫ 1

0
xJ0(
√
λx)2 dx =

1

2
J0(
√
λ)2 +

1

2
J ′0(
√
λ)2.

If λ = j2n then this formula simplifies to∫ 1

0
xJ0(jnx)2 dx =

1

2
J ′0(jn)2.

The normalized eigenfunctions are

J0(jnr)(∫ 1
0 xJ0(jnx)2 dx

)1/2 =

√
2J0(jnr)

|J ′0(jn)|
.

4. Solve the inhomogeneous differential equation

−((1− x2)y′)′ = y + x3, −1 < x < 1

with boundary condition

y(x), y′(x) bounded as x→ −1+ and x→ 1−.

Solution We use the method from Section 11.3. It is stated for regular
Sturm-Liouville problems but it works equally well for our singular Sturm-
Liouville problem. We look for the solution in the form

y =
∞∑
n=0

bnPn(x).

The bn satisfy

bn =
cn

λn − µ
.

The sequence cn is determined by

x3 =
∞∑
n=0

cnPn(x).

Since P3(x) = 5
2x

3 − 3
2x and P1(x) = x, we find

c3 =
2

5
, c1 =

3

5
,

and all other cn = 0. The eigenvalues are λn = n(n + 1) and µ = 1.
Therefore,

y =
c1

2− 1
P1(x) +

c3
12− 1

P3(x) =
3

5
x+

2

5

1

11

(
5

2
x3 − 3

2
x

)
=

6

11
x+

1

11
x3.





Chapter 4: Handouts

4.1 Fourier hand out, Jan 31, 2018
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THE FOURIER CONVERGENCE THEOREM

Before we can prove the Fourier convergence theorem we need some prepa-
rations.

Lemma 1. Let g be a T -periodic function which is integrable on [0, T ].
Then, for all a,

∫

T

0
g(x) dx =

∫

a+T

a

g(x) dx.

Proof. There is an integer k such that (k − 1)T ≤ a < kT . Then
∫

a+T

a

g(x) dx =

∫

kT

a

g(x) dx +

∫

a+T

kT

g(x) dx.

In the first integral on the right-hand side we substitute x = t− T and use
g(t− T ) = g(t). Then we obtain

∫

a+T

a

g(x) dx =

∫ (k+1)T

a+T

g(t) dt +

∫

a+T

kT

g(x) dx.

Therefore,
∫

a+T

a

g(x) dx =

∫ (k+1)T

kT

g(x) dx =

∫

T

0
g(s) ds,

where we substituted x = s+ kT . �

The Dirichlet kernel Dn, n = 0, 1, 2, . . . , is defined by

Dn(t) =
1

2
+ cos t+ cos(2t) + · · ·+ cos(nt).

This is an even function with period 2π. The graph of D5 is shown in
Figure 1.

Lemma 2. If t 6= 0,±2π,±4π, . . . then

Dn(t) =
sin(2n + 1)12 t

2 sin 1
2 t

.

Otherwise, Dn(t) = n+ 1
2 .

Proof. Using cos t = 1
2(e

it + e−it), we have

Dn(t) =
1

2

n
∑

m=−n

eimt.

1



2 THE FOURIER CONVERGENCE THEOREM

Figure 1. Graph of D5(t)

We set z = eit. Then

Dn(t) =
1

2
z−n(1 + z + z2 + · · ·+ z2n)

=
1

2
z−n

z2n+1 − 1

z − 1

=
1

2
e−int

e(2n+1)it − 1

eit − 1

=
1

2

ei(2n+1) 1
2
t − e−i(2n+1) 1

2
t

ei
1

2
t − e−i

1

2
t

=
sin((2n + 1)12 t

2 sin 1
2 t

,

where we used sin t = 1
2i(e

it − e−it). �

Lemma 3 (Bessel’s inequality). Let f be a 2L-periodic function which is

integrable on [−L,L] with Fourier coefficients

(1) am =
1

L

∫

L

−L

f(t) cos
mπt

L
dt, bm =

1

L

∫

L

−L

f(t) sin
mπt

L
dt.

Then

(2)
1

2
a20 +

∞
∑

m=1

(a2m + b2m) ≤
1

L

∫

L

−L

f(t)2 dt.

In particular,

lim
m→∞

am = 0, lim
m→∞

bm = 0.
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Proof. Let n be a positive integer, and consider

sn(t) =
1

2
a0 +

n
∑

m=1

(

am cos
mπt

L
+ bm sin

mπt

L

)

.

Then

0 ≤
1

L

∫

L

−L

(f(t)−sn(t))
2 dt =

1

L

∫

L

−L

f(t)2 dt−
2

L

∫

L

−L

f(t)sn(t) dt+
1

L

∫

L

−L

sn(t)
2 dt.

Now, using the definition of sn,

2

L

∫

L

−L

f(t)sn(t) dt = 2

(

1

2
a20 +

n
∑

m=1

(a2m + b2m)

)

.

By orthogonality,

1

L

∫

L

−L

sn(t)
2 dt =

1

2
a20 +

n
∑

m=1

(a2m + b2m).

Therefore,

0 ≤
1

L

∫

L

−L

f(t)2 dt−

(

1

2
a20 +

n
∑

m=1

(a2m + b2m)

)

.

This is true for all n so (2) follows. �

Actually, equality holds in (2) (Parseval’s equation) but we do not need
this result right now.

A function f is said to be piecewise continuous on the interval [a, b] if the
interval can be partitioned by a finite number of points a = x0 < x1 < · · · <

xn = b so that
1. f is continuous on the open interval (xi−1, xi) for i = 1, 2, . . . , n;
2. the one-sided limits f(x+

i−1) = lim
x→x

+

i−1

f(x) = and f(x−
i
) = lim

x→x
−

i

f(x)

exist and are finite for each i = 1, 2, . . . , n.

Theorem 4 (Fourier convergence theorem). Let f be a function with period

2L such that f and f ′ are piecewise continuous on [−L,L]. Let am, bm be

the Fourier coefficients of f as defined in (1). Then, for all real x,

1

2
(f(x+) + f(x−)) =

1

2
a0 +

∞
∑

m=1

(

am cos
mπx

L
+ bm sin

mπx

L

)

.

In particular, if f is continuous at x,

f(x) =
1

2
a0 +

∞
∑

m=1

(

am cos
mπx

L
+ bm sin

mπx

L

)

.
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Proof. In order to simplify the writing we assume that L = π (consider
f(L

π
t) in place of f .) In the following x denotes a fixed real number. For a

positive integer n we define the partial sum of the Fourier series

sn(x) =
1

2
a0 +

n
∑

m=1

(am cosmx+ bm sinmx) .

Then using (1)

sn(x) =
1

2π

∫

π

−π

f(t) dt+

n
∑

m=1

1

π

∫

π

−π

f(t)(cosmx cosmt+ sinmx sinmt) dt

=
1

2π

∫

π

−π

f(t) dt+
n
∑

m=1

1

π

∫

π

−π

f(t) cosm(t− x) dt.

By definition of Dn,

sn(x) =
1

π

∫

π

−π

f(t)Dn(t− x) dt.

We substitute t− x = u. Then

sn(x) =
1

π

∫

π−x

−π−x

f(x+ u)Dn(u) du.

By Lemma 1,

sn(x) =
1

π

∫

π

−π

f(x+ u)Dn(u) du.

We split the integral in two

sn(x) =
1

π

∫ 0

−π

f(x+ u)Dn(u) du+
1

π

∫

π

0
f(x+ u)Dn(u) du.

It follows easily from the definition of Dn that

1

π

∫ 0

−π

Dn(t) dt =
1

π

∫

π

0
Dn(t) dt =

1

2
.

Therefore,

sn(x)−
1

2
(f(x+) + f(x−)) = In + Jn,

where

In =
1

π

∫ 0

−π

(f(x+u)−f(x−))Dn(u) du, Jn =
1

π

∫

π

0
(f(x+u)−f(x+))Dn(u) du.

We now show that the two integrals In, Jn converge to 0 as n → ∞ which
completes the proof. We do this only for Jn, In is treated similarly. Now,
using Lemma 2,

Jn =
1

π

∫

π

0
(f(x+ u)− f(x+))

sin(2n + 1)12u

2 sin 1
2u

du.
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Substituting u = 2t we can write this as

Jn =
2

π

∫ 1

2
π

0
g(t) sin(2n + 1)t dt,

where

g(t) =
f(x+ 2t)− f(x+)

2t

t

sin t
for 0 < t ≤

1

2
π.

Since we assumed that f ′ is piecewise continuous, the limit limt→0+ g(t)
exists as a finite number (to see this one has to apply the mean-value the-
orem). Therefore, the function g is piecewise continuous and thus inte-
grable on [0, 12π]. It follows from Lemma 3 (with L = 1

2π and g(t) = 0 for
−L < t < 0) that limn→∞ Jn = 0. �

Remark: In the proof we did not directly use that f ′ is piecewise con-
tinuous. It would be simpler to just assume that the limits

lim
t→0+

f(x+ t)− f(x+)

t
, lim

t→0−

f(x+ t)− f(x−)

t

exist and are finite.



4.2 Laplace inside an ellipse, March 6, 2018



THE DIRICHLET PROBLEM ON AN ELLIPSE

We want to solve the Dirichlet problem

uxx + uyy = 0 for (x, y) in D,

u(x, y) = f(x, y) for (x, y) on the boundary of D

when D is the region inside the ellipse

x2

a2
+

y2

b2
= 1.

We assume that a > b > 0. The focal points of the ellipse are (±c, 0). We
introduce elliptic coordinates

x = c cosh ξ cos η, y = c sinh ξ sin η.

Usually ξ > 0 and 0 ≤ η < 2π or −π < η ≤ π.

Figure 1. Elliptic Coordinates

We set v(ξ, η) = u(c cosh ξ cos η, c sinh ξ sin η). Then, by the chain rule,

vξξ = (c sinh ξ cos η)2uxx + 2c2 cosh ξ sinh ξ cos η sin η uxy

+(c cosh ξ sin η)2uyy + c cosh ξ cos η ux + c sinh ξ sin η uy,

vηη = (c cosh ξ sin η)2uxx − 2c2 cosh ξ sinh ξ cos η sin η uxy

+(c sinh ξ cos η)2uyy − c cosh ξ cos η ux − c sinh ξ sin η uy.
1



2 THE DIRICHLET PROBLEM ON AN ELLIPSE

so
vξξ + vηη = c2(cosh2 ξ − cos2 η)(uxx + uyy).

Therefore, the equation uxx+uyy = 0 is equivalent to vξξ + vηη = 0. We use
separation of variables

v(ξ, η) = Ξ(ξ)E(η).

Then we find
Ξ′′ − λΞ = 0, E′′ + λE = 0.

The equation for E has to have nontrivial 2π periodic solutions. Therefore,
λ = n2, n = 0, 1, 2, . . . and

En(η) = cn cos(nη) + dn sin(nη).

The general solution of the differential equation for Ξ with λ = n2 is

Ξ(ξ) = an cosh(nξ) + dn sinh(nξ).

If we consider the function

v(ξ, η) = coshnξ sinnη,

then we notice that v(ξ,−η) = −v(ξ, η) so u(x,−y) = −u(x, y). But then
u(x, 0) should be zero on the focal line which is not true. Therefore, u(x, y)
is discontinuous at the focal line [−c, c]. Similarly, the function v(ξ, η) =
sinhnξ cosnη has a discontinuous derivative uy. Therefore, we consider only

(1) vn(ξ, η) = cn coshnξ cosnη + dn sinhnξ sinnη.

In fact, we show below that the corresponding function un(x, y) is a poly-
nomial in x, y. Therefore, by superposition, we find the solution

(2) v(ξ, η) =
c0

2
+

∞
∑

n=1

(cn cosh nξ cosnη + dn sinhnξ sinnη).

The boundary of D is given by ξ = ξ0, where ξ0 > 0 is determined from
c cosh ξ0 = a. Therefore, in order to satisfy the boundary condition

F (η) := f(c cosh ξ0 cos η, c sinh ξ0 sin η) = v(ξ0, η)

we set

cn coshnξ0 =
1

π

∫ 2π

0

F (η) cos nη dη, n ≥ 0

and

dn sinhnξ0 =
1

π

∫ 2π

0

F (η) sin nη dη, n ≥ 1.

Substituting these values of cn, dn in (2) we find the solution of the Dirichlet
problem for the ellipse. We see that the series in (2) converges very well for
ξ < ξ0. The quality of convergence on the boundary ellipse ξ = ξ0 is the
same as that of the Fourier series for F (η).

The function vn defined in (1) ic called an ellipsoidal harmonic of degree
n. These functions are polynomials in x, y as we show below. We use the
Chebyshev polynomials Tn defined by cosnθ = Tn(cos θ). They also satisfy
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coshnz = Tn(cosh z). The Chebyshev polynomials can be calculated from
the recursion

T0(z) = 1, T1(z) = z, Tn+1(z) = 2zTn(z)− Tn−1(z)

so
T2(z) = 2z2 − 1, T3(z) = 4z3 − 3z, T4(z) = 8z4 − 8z2 + 1.

Then

coshnξ cosnη + i sinhnξ sinnη = coshn(ξ + iη)

= Tn(cosh(ξ + iη))

= Tn(cosh ξ cos η + i sinh ξ sin η)

= Tn(c
−1(x+ iy)).

For example,

cosh 2ξ cos 2η = Re (2c−2(x+ iy)2 − 1) = 2
(x

c

)2

− 2
(y

c

)2

− 1,

sinh 2ξ sin 2η = Im(2c−2(x+ iy)2 − 1) = 2
xy

c2
.

Example: Solve the Dirichlet problem uxx + uyy = 0 inside the ellipse
x2

9
+ y2

4
= 1 with boundary condition u(x, y) = 1

3
x2.

Solution: We have a = 3 , b = 2 and c =
√
5. The ellipse is given by ξ = ξ0

where c cosh ξ0 = a, c sinh ξ0 = b. The boundary condition is given by the
function F (η) = 1

3
a2 cos2 η = 3cos2 η. Its Fourier expansion is

f(η) = 3 cos2 η =
3

2
+

3

2
cos 2η.

The solution of the Dirichlet problem in elliptic coordinates is

v(ξ, η) =
3

2
+

3

2

cosh 2ξ

cosh 2ξ0
cos 2η.

Transforming to cartesian coordinates we get

u(x, y) =
3

2
+

3

2

5

13

(

2
x2

5
− 2

y2

5
− 1

)

=
12

13
+

3

13
(x2 − y2).
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We want to derive a lower bound for the eigenvalues of a regular Sturm-
Liouville problem. We first need a lemma (related to the Sobolev embedding
theorem.)

Lemma 1. Let f ∈ C1[a, b], x ∈ [a, b], h > 0. Then

f(x)2 ≤
(

1

b− a
+

1

h

)∫ b

a
f(t)2 dt+ h

∫ b

a
f ′(t)2 dt.

Proof. For all x, s ∈ [a, b] we have

f(x)2 − f(s)2 =

∫ x

s
2f(t)f ′(t) dt ≤

∫ b

a
2|f(t)||f ′(t)| dt.

We estimate

2|f(t)||f ′(t| = 2

(
|f(t)|√
h

)
(
√
h|f ′(t)|) ≤ 1

h
f(t)2 + hf ′(t)2.

Therefore,

f(x)2 − f(s)2 ≤ 1

h

∫ b

a
f(t)2 dt+ h

∫ b

a
f ′(t)2 dt.

We integrate this inequality from s = a to s = b. Then we obtain

(b− a)f(x)2 −
∫ b

a
f(s)2 ds ≤ b− a

h

∫ b

a
f(t)2 dt+ (b− a)h

∫ b

a
f ′(t)2 dt.

This is equivalent to the inequality in the statement of the lemma. �

We consider the regular Sturm-Liouville problem

d

dx

(
p(x)

dy

dx

)
− q(x)y + λr(x)y = 0,

α1y(a) + α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0.

We define

c1 =

{
0 if α2 = 0 or α1

α2
≤ 0,

p(a)α1
α2

if α1
α2
> 0,

and

c2 =

{
0 if β2 = 0 or β1

β2
≥ 0,

−p(b)β1β2 if β1
β2
< 0.

Then we set c = c1 + c2 ≥ 0.
1
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Theorem 2. Every eigenvalue λ of a regular Sturm-Liouville problem, sat-
isfies the inequality

(1) λ ≥ 1

min r

(
− c

b− a
− c2

min p

)
+ min

q

r
.

Proof. Let φ(x) be an eigenfunction corresponding to the eigenvalue λ.
Then, using integration by parts,

λ

∫
rφ2 = −

∫
(pφ′)′φ+

∫
qφ2 = − p(x)φ′(x)φ(x)

∣∣b
a

+

∫
p(φ′)2 +

∫
qφ2,

where
∫
f denotes

∫ b
a f(x) dx. Now

− p(x)φ′(x)φ(x)
∣∣b
a

= p(b)
β1
β2
φ(b)2 − p(a)

α1

α2
φ(a)2,

where β1
β2

= 0 if β2 = 0 and α1
α2

= 0 if α2 = 0. Using the definition of c, we

find
− p(x)φ′(x)φ(x)

∣∣b
a
≥ −cmax

{
φ(a)2, φ(b)2

}
.

Therefore,

(2) λ

∫
rφ2 ≥ −cmax

{
φ(a)2, φ(b)2

}
+ min p

∫
(φ′)2 + min q

r

∫
rφ2.

If c = 0 then

λ

∫
rφ2 ≥ min q

r

∫
rφ2.

This gives (1) after division by
∫
rφ2 > 0.

If c > 0 then we use Lemma 1, and obtain from (2)
(3)

λ

∫
rφ2 ≥ −c

(
1

b− a
+

1

h

)∫
φ2−ch

∫
(φ′)2 +min p

∫
(φ′)2 +min

q

r

∫
rφ2,

where h can be any positive number. We choose h = min p
c . Then (3) gives

λ

∫
rφ2 ≥

(
− c

b− a
− c2

min p

)
1

min r

∫
rφ2 + min

q

r

∫
rφ2

which again gives (1) after division by
∫
rφ2. �
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We consider a regular Sturm-Liouville eigenvalue problem

(1) −(p(x)y′)′ + q(x)y = λ r(x)y, x ∈ [a, b]

with boundary conditions of the form

(2) cosαy(a) = sinα p(a)y′(a),

(3) cos β y(b) = sinβ p(b)y′(b),

where
0 ≤ α < π, 0 < β ≤ π.

Let y(x) be a nontrivial solution of (1). Then we set

ξ(x) = p(x)y′(x) = ρ(x) cos φ(x), η(x) = y(x) = ρ(x) sinφ(x).

Then

ρ(x) =
√

ξ(x)2 + η(x)2, φ(x) = arctan
η(x)

ξ(x)
= arccot

ξ(x)

η(x)
.

φ is called Prüfer angle, and ρ is called Prüfer radius. In order to determine
φ(x) we first choose φ(a), for example, −π < φ(a) ≤ π. Then we use the
arctan-formula if ξ 6= 0 and the arccot-formula if η 6= 0. We have to choose
the proper branch of the multi-valued arctan, arccot, so that φ(x) becomes
a continuous function (and then also continuously differentiable.)

From the equations

ξ′ = ρ′ cosφ− ρφ′ sinφ, η′ = ρ′ sinφ+ ρφ′ cosφ,

we obtain
η′ cosφ− ξ′ sinφ = ρφ′.

Since ξ′ = (pu′)′ = (q − λr)ρ sinφ, η′ = ξ
p
= ρ

p
cosφ, it follows that

(4) φ′ =
1

p
cos2 φ+ (λr − q) sin2 φ.

A similar calculation shows that

ρ′ = (1
p
+ q − λr)ρ cosφ sinφ.

It is important to note that (4) is a first order differential equation for
the Prüfer angle. In order to satisfy the first boundary condition (2), we
choose φ(a) = α. Then φ(x, λ) is uniquely determined by (2). The second
boundary condition (3) is satisfied if

φ(b, λ) = β + nπ,

where n is an integer. One can show that limλ→−∞ φ(b, λ) = 0, limλ→∞ φ(b, λ) =
∞ and φ(b, λ) is an increasing function of λ. Therefore, for every n =

1
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0, 1, 2, . . . , there is a unique solution λ = λn of φ(b, λ) = β + n and the se-
quence {λn}

∞

n=0 represents all the eigenvalues of the regular Sturm-Liouville
problem.
Example: Consider

−((1 + x)y′(x))′ + xy = λ(1 + x2)y, y(0) = 0, y′(1) = 0.

Then p(x) = 1 + x, q(x) = x, r(x) = 1 + x2, α = 0, β = π/2.

Figure 1. Prüfer angle φ(1, λ)

The smallest two eigenvalues are

λ0 = 2.51173, λ1 = 24.9158
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Figure 2. Eigenfunction for λ = λ0

Figure 3. Eigenfunction for λ = λ1





Chapter 5: Exams

5.1 First exam

5.1.1 First exam practice questions
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Review for midterm exam Math 322,
Tuesday, March 13, 2018

The midterm exam is on sections 10.1–10.8 of our textbook.

1. (Section 10.1) Find the solution (if it exists) of the boundary value
problem

y′′ − y = ex, y(0) = 1, y(1) = 0.

2. (Sections 10.2–10.4) Find the Fourier cosine series for the function

f(x) =

{
x if 0 < x < 1,

1 if 1 < x < 2.

Choose L = 2. Apply the Fourier convergence theorem. What do we get at
x = 1?
3. (Sections 10.2–10.4) Find the Fourier sine series for the function f(x) of
Problem 2. Choose L = 2. Apply the Fourier convergence theorem.
4. (Section 10.5) Solve the heat equation

ut = uxx

with boundary conditions

ux(0, t) = 0, ux(2, t) = 0

and initial condition

u(x, 0) = f(x)

with f(x) from Problem 2. Find the steady-state temperature.
5. (Section 10.6) Solve the heat equation

ut = uxx

with boundary conditions

u(0, t) = t, u(π, t) = 0

and initial condition

u(x, 0) = 0.

6. (Section 10.7) Solve the wave equation

utt = 4uxx, 0 < x < π, t > 0

with boundary conditions

u(0, t) = 0, u(π, t) = 0

and initial conditions

u(x, 0) = sin2 x, ut(x, 0) = 0.

Find the d’Alembert solution and the Fourier series solution.
7. (Section 10.7) Find d’Alembert’s solution for the wave equation

utt(x, t) = 4uxx(x, t), −∞ < x <∞, t > 0



with initial conditions

u(x, 0) = sinx, ut(x, 0) = cosx.

8. (Section 10.8) Solve the Dirichlet problem uxx + uyy = 0 in the disk
x2 + y2 < 1 and

u(x, y) =

{
20 if y > 0

0 if y < 0

on the unit circle x2 + y2 = 1. Find u(0, 0) and u(0, 12).
9. (Section 10.8) Find the solution u(x, y) of Laplace’s equation uxx+uyy =
0 in the semi-infinite strip 0 < x < a, y > 0, that satisfies u(0, y) = 0,
u(a, y) = 0 for y > 0 and u(x, 0) = F (x), 0 < x < a and the additional
condition that u(x, y)→ 0 as y →∞.
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5.1.2 My solution to first exam practice questions

Problem 1

Find the solution to y ′′ − y = ex ,y (0) = 1,y (1) = 0
solution
The solution to the homogeneous ODE is yh = Aex + Be−x . Let the particular be yp = Cxex . Hence
y ′
p = Ce

x +Cxex and y ′′
p = Ce

x +Cex +Cxex . Substituting into the ODE gives

2Cex +Cxex −Cxex = ex

2C = 1

C =
1
2

Hence yp = 1
2xe

x and the complete solution is

y = Aex + Be−x +
1
2
xex

A,B are now found from boundary conditions. At x = 0

1 = A + B (1)

And at x = 1

0 = Ae + Be−1 +
1
2
e (2)

(1,2) are now solved for A,B. From (1), A = 1 − B. (2) becomes

0 = (1 − B) e + Be−1 +
1
2
e

= e − Be + Be−1 +
1
2
e

= B
(
e−1 − e

)
+
3
2
e

B = −
3
2

e

e−1 − e

=
3
2

e

e − e−1

Hence

A = 1 −
3e

2 (e − e−1)
=

2
(
e − e−1

)
− 3e

2 (e − e−1)

=
2e − 2e−1 − 3e
2 (e − e−1)

=
−e − 2e−1

2 (e − e−1)

=
e + 2e−1

2 (e−1 − e)

Therefore the solution is

y = Aex + Be−x +
1
2
xex

=
e + 2e−1

2 (e−1 − e)
ex +

3
2

e

e − e−1
e−x +

1
2
xex

Problem 2

Find Fourier cosine series for

f (x) =

{
x 0 < x < 1

1 1 < x < 2

Choose L = 2. Apply the Fourier convergence theorem. What do we get at x = 1?
solution
For cosine series, the function is even extended from x = −2 · · · 2. Therefore only an terms exist.

f (x) =
a0
2
+

∞∑
n=1

an cos
(nπ
L
x
)

Where L = 2. But a0
2 is average value. Since the area is 2

( 1
2 + 1

)
= 3, then the average is 3

4 , since the
extent is 4. Therefore a0 = 3

2 . To find an

an =
1
L

∫ L

−L
f (x) cos

(nπ
L
x
)
dx
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But f (x) and cosine are even. Hence the above simplifies to

an =

∫ 2

0
f (x) cos

(nπ
2
x
)
dx

=

(∫ 1

0
x cos

(nπ
2
x
)
dx +

∫ 2

1
cos

(nπ
2
x
)
dx

)
But

∫
x cosaxdx = cosax

a2 +
x sinax

a , therefore∫ 1

0
x cos

(nπ
2
x
)
dx =

(
cos

( nπ
2 x

)( nπ
2

) 2 +
x sin

( nπ
2 x

)
nπ
2

) 1
0

=

(
2
nπ

) 2 (
cos

(nπ
2
x
)
+
nπ

2
x sin

(nπ
2
x
) ) 1

0

=

(
2
nπ

) 2 (
cos

(nπ
2

)
+
nπ

2
sin

(nπ
2

)
− 1

)
And ∫ 2

1
cos

(nπ
2
x
)
dx =

(
sin nπ

2 x
nπ
2

) 2
1

=
2
nπ

(
sinnπ − sin

nπ

2

)
= −

2
nπ

sin
nπ

2

Hence

an =

(
2
nπ

) 2 (
cos

(nπ
2

)
+
nπ

2
sin

(nπ
2

)
− 1

)
−

2
nπ

sin
nπ

2

=

(
2
nπ

) 2
cos

(nπ
2

)
+

(
2
nπ

)
sin

(nπ
2

)
−

(
2
nπ

) 2
−

2
nπ

sin
(nπ
2

)
=

2
n2π 2

(
−2 + 2 cos

(nπ
2

)
+ nπ sin

(nπ
2

) )
Which simplifies to an = −

8 sin
( nπ

4

) 2
n2π 2 . Therefore

f (x) =
3
4
−

8
π 2

∞∑
n=1

1
n2

sin
(nπ
4

) 2
cos

(nπ
2
x
)

=
3
4
−

8
π 2 sin

(π
4

) 2
cos

(π
2
x
)
−

8
π 2

1
4
sin

(
2π
4

) 2
cos (πx) − · · ·

=
3
4
−

4
π 2 cos

(π
2
x
)
−

2
π 2 cos (πx) − · · ·

At x = 1

f (1) =
3
4
−

8
π 2

∞∑
n=1

1
n2

sin
(nπ
4

) 2
cos

(nπ
2

)
=

3
4
−

8
π 2

∞∑
n=1

1
n2

sin
(nπ
4

) 2
cos

(nπ
2

)
In the limit, ∑∞

n=1
1
n2 sin

( nπ
4

) 2 cos ( nπ
2

)
= −π 2

32 . Therefore the above becomes

f (1) =
3
4
+

8
π 2

π 2

32

=
3
4
+
1
4

= 1

Which is the value of original f (x) at 1 as expected.
To apply Fourier convergence theorem. The function f (x) is piecewise continuous over −2 < x < 2.

f ′ (x) =

{
1 0 < x < 1

0 1 < x < 2

f ′ (x) is also piecewise continuous. Therefore, the Fourier series of f (x) will converge to the average
of f (x) at each point.
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Problem 3

Find Fourier sine series for

f (x) =

{
x 0 < x < 1

1 1 < x < 2

Choose L = 2.
solution
For sine series, the function is odd extended from x = −2 · · · 2. Therefore only bn terms exist.

f (x) =
∞∑
n=1

bn sin
(nπ
L
x
)

Where L = 2. To find bn

bn =
1
2

∫ 2

−2
f (x) sin

(nπ
L
x
)
dx

But f (x) is now odd, and sine is odd, hence the product is even and the above simplifies to

bn =

∫ 2

0
f (x) sin

(nπ
2
x
)
dx

=

(∫ 1

0
x sin

(nπ
2
x
)
dx +

∫ 2

1
sin

(nπ
2
x
)
dx

)
But

∫
x sinaxdx = sinax

a2 − x cosax
a , therefore∫ 1

0
x sin

(nπ
2
x
)
dx =

(
sin

( nπ
2 x

)( nπ
2

) 2 −
x cos

( nπ
2 x

)
nπ
2

) 1
0

=

(
2
nπ

) 2 (
sin

(nπ
2
x
)
−
nπ

2
x cos

(nπ
2
x
) ) 1

0

=

(
2
nπ

) 2 (
sin

(nπ
2

)
−
nπ

2
cos

(nπ
2

) )
And ∫ 2

1
sin

(nπ
2
x
)
dx = −

(
cos nπ

2 x
nπ
2

) 2
1

= −
2
nπ

(
cosnπ − cos

nπ

2

)
Therefore

bn =

(
2
nπ

) 2 (
sin

(nπ
2

)
−
nπ

2
cos

(nπ
2

) )
−

2
nπ

(
cosnπ − cos

nπ

2

)
= −

2
(
nπ cosnπ − 2 sin nπ

2

)
n2π 2

Therefore
f (x) =

2
π 2

∞∑
n=1

2 sin nπ
2 − nπ cosnπ

n2
sin

(nπ
L
x
)

As in problem 2, both f (x) and f ′ (x) are P.W.C. So F.S. converges to average of f (x) at all points.

Problem 4

Solve heat PDE ut = uxx with boundary conditions ux (0, t) = 0,ux (2, t) = 0 and initial conditions
u (x, 0) = f (x) with f (x) from problem 2. Find steady state solution.

f (x) =

{
x 0 < x < 1

1 1 < x < 2

solution
When both ends are insulated the solution to the heat PDE is

u (x, t) =
c0
2
+

∞∑
n=1

cne
−λnt cos

(√
λnx

)
Where λn =

( nπ
L

) 2 with n = 1, 2, 3, · · · . Since L = 2, then

u (x, t) =
c0
2
+

∞∑
n=1

cne
−
( nπ

2

) 2t cos (nπ
2
x
)
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At t = 0

f (x) =
c0
2
+

∞∑
n=1

cn cos
(nπ
2
x
)

(1)

But the F.S. of f (x) was found in problem 2, with even extension. It is

f (x) =
3
4
−

∞∑
n=1

8
π 2n2

sin
(nπ
4

) 2
cos

(nπ
2
x
)

(2)

Comparing (1) and (2) gives

c0
2
=

3
4

cn =
8

π 2n2
sin

(nπ
4

) 2
Hence solution is

u (x, t) =
3
4
+

∞∑
n=1

8
π 2n2

sin
(nπ
4

) 2
e−

( nπ
2

) 2t cos (nπ
2
x
)

At steady state, the solution is
u (x,∞) =

3
4

Since as t → ∞, the term e−
( nπ

2

) 2t → 0.

Problem 5

Solve heat PDE ut = uxx with boundary conditions u (0, t) = t,u (π , t) = 0 and initial conditions
u (x, 0) = 0
solution
Since boundary conditions are nonhomogeneous, the PDE is converted to one with homogenous BC
using a reference function. The reference function needs to only satisfy the nonhomogeneous B.C.
In this case, it is clear that the following function satisfies the nonhomogeneous B.C.

r (x, t) = t
(
1 −

x

π

)
Therefore

u (x, t) = w (x, t) + r (x, t)

Substituting this back into ut = uxx gives

wt + rt = wxx + rxx

but rt = 1 − x
π and rxx = 0, therefore the above simplifies to

wt = wxx +
x

π
− 1

wt = wxx +Q (x) (1)

Where Q (x) = x
π − 1 and where now this PDE now has now homogenous B.C

w (0, t) = 0

w (π , t) = 0

Since a source term exist in the PDE (nonhomogeneous in the PDE itself), then equation (1) is solved
using the method of eigenfunction expansion. Let

w (x, t) =
∑

an (t)Φn (x)

Where Φn (x) is the eigenfunction of the homogeneous PDEwt = wxx , which is known to be have the
eigenfunction Φn (x) = sin

(√
λnx

)
= sinnx where the eigenvalues are known to be λn =

( nπ
π

) 2
= n2

with n = 1, 2, 3, · · · . Therefore the above becomes

w (x, t) =
∑

an (t) sin (nx) (1A)

Substituting this back into (1) gives∑
a′n (t)Φn (x) =

∑
an (t)Φ

′′
n (x) +

∑
qnΦn (x)
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Where Q (x) =
∑
qnΦn (x) is the eigenfunction expansion of the source term. In the above, and after

replacing Φ′′
n (x) by −λnΦn (x) since Φn (x) satisfies the eigenvalue PDE Φ′′

n (x)+λnΦn (x) = 0 the above
becomes ∑

a′n (t)Φn (x) = −
∑

an (t) λnΦn (x) +
∑

qnΦn (x)

a′n (t) = −an (t) λn + qn

a′n (t) + an (t) λn = qn (2)

qn is now found by applying orthogonality on Q (x) =
∑
qnΦn (x) as follows

Q (x) =
∞∑
n=1

qnΦn (x)∫ π

0
Q (x)Φn (x)dx =

π

2
qn

qn =
2
π

∫ π

0

( x
π
− 1

)
sin (nx)dx

=
2
π

(
−nπ + sin (nπ )

n2π

)
=

2
π

(
−nπ

n2π

)
=

−2
nπ

Equation (2) becomes

a′n (t) + an (t)n
2 =

−2
nπ

The solution to this first order ODE can be easily found as

an (t) = −
2

n3π
+ an (0) e

−n2t (3)

Therefore (1A) becomes

w (x, t) =
∞∑
n=1

(
−

2
n3π
+ an (0) e

−n2t
)
sin (nx) (4)

At time t = 0 the above becomes

w (x, 0) =
∞∑
n=1

(
−

2
n3π
+ an (0)

)
sin (nx) (5)

But

w (x, 0) = u (x, 0) − r (x, 0)

= 0 − 0

= 0

Therefore (5) becomes

0 =
∞∑
n=1

(
−

2
n3π
+ an (0)

)
sin (nx)

Which implies

an (0) =
2

n3π

Hence from (4)

w (x, t) =
∞∑
n=1

2
n3π

(
e−n

2t − 1
)
sin (nx) (6)

The complete solution is therefore

u (x, t) = w (x, t) + r (x, t)

= t
(
1 −

x

π

)
+

∞∑
n=1

2
n3π

(
e−n

2t − 1
)
sin (nx)
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Problem 6

Solve wave PDE ut t = 4uxx on bounded domain 0 < x < π , t > 0 with boundary conditions u (0, t) =
0,u (π , t) = 0 and initial conditions u (x, 0) = sin2 x,ut (x, 0) = 0. Find d’Alembert solution and Fourier
series solution.
solution
Putting the PDE in standard form ut t = a2uxx shows that a = 2. Let f (x) = u (x, 0) = sin2 x and
д (x) = ut (x, 0) = 0, then the d’Alembert solution is (per key solution, one must use the sign function).
Let F (x) = siдn (sinx) sin2 x , then the solution becomes

u (x, t) =
1
2
(F (x + at) + F (x − at)) +

1
2a

∫ x+at

x−at
д (s)ds

=
1
2
(F (x + at) + F (x − at))

Now the Fourier solution is found. Applying separation of variables gives

T ′′X = 4X ′′T

1
4
T ′′

T
=
X ′′

X
= −λ

The eigenvalue ODE is X ′′ + λX = 0 with X (0) = 0,X (π ) = 0. This has eigenfunctions Φn (x) =

sin
(√

λnx
)
with λn = n

2 where n = 1, 2, 3, · · · . The time ODE becomes

T ′′ + 4λnT = 0

Since λn > 0, the solution is

T (t) = An cos
(√

4λnt
)
+ Bn sin

(√
4λnt

)
= An cos (2nt) + Bn sin (2nt)

And
T ′ = −2nAn sin (2nt) + 2nBn cos (2nt)

Since T ′ (0) = 0, then the above implies that Bn = 0. Therefore the solution simplifies to

Tn (t) = An cos (2nt)

And the fundamental solution becomes

un = TnXn

= cn cos (2nt) sin (nx)

Hence by superposition, the general solution is

u (x, t) =
∞∑
n=1

cn cos (2nt) sin (nx)

At t = 0, u (x, 0) = sin2 x , therefore the above becomes

sin2 x =
∞∑
n=1

cn sin (nx)

Applying orthogonality gives ∫ π

0
sin2 x sin (nx)dx = cn

π

2
(1)∫ π

0

(
1
2
−
1
2
cos 2x

)
sin (nx)dx = cn

π

2

To evaluate
∫π
0

( 1
2 −

1
2 cos 2x

)
sin (nx)dx , it is split into

∫π
0

( 1
2 sin (nx) −

1
2 cos 2x sin (nx)

)
dx . But the

first part is ∫ π

0

1
2
sin (nx)dx = −

1
2n

(cos (nx))π0

= −
1
2n

(cos (nπ ) − 1)

For even n = 2, 4, · · · the above vanishes. For odd n = 1, 3, 5, · · · the above becomes∫ π

0

1
2
sin (nx)dx =

1
n
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Now the second integral is evaluated∫ π

0
−
1
2
cos 2x sin (nx)dx = −

1
2

∫ π

0
cos 2x sin (nx)dx

Using
∫π
0
sin (px) cos (qx)dx = −

cos(p−q)x
2(p−q) −

cos(p+q)x
2(p+q) , then the above becomes, where p = n,q = 2

−
1
2

∫ π

0
sin (nx) cos 2xdx = −

1
2

(
−
cos (n − 2)x
2 (n − 2)

−
cos (n + 2)x
2 (n + 2)

) π
0

=
1
2

(
cos (n − 2)x
2 (n − 2)

+
cos (n + 2)x
2 (n + 2)

) π
0

=
1
2

(
cos (n − 2)π
2 (n − 2)

+
cos (n + 2)π
2 (n + 2)

−
1

2 (n − 2)
−

1
2 (n + 2)

)
For even n = 2, 4, · · · the above vanishes, since it becomes 1

2

(
1

2(n−2) +
1

2(n+2) −
1

2(n−2) −
1

2(n+2)

)
, and for

odd n = 1, 3, 5, · · · , the above becomes

−
1
2

∫ π

0
sin (nx) cos 2xdx =

1
2

(
−1

2 (n − 2)
−

1
2 (n + 2)

−
1

2 (n − 2)
−

1
2 (n + 2)

)
=

1
2

(
−2

2 (n − 2)
+

−2
2 (n + 2)

)
=

−1
2 (n − 2)

+
−1

2 (n + 2)

= −
n

n2 − 4

Therefore, the final result of integration is∫ π

0
sin2 x sin (nx)dx =

1
n
−

n

n2 − 4
n = 1, 3, 5, · · ·

= −
4

n (n2 − 4)
n = 1, 3, 5, · · ·

Hence from (1), this results in

cn = −
2
π

4
n (n2 − 4)

= −
8

πn (n2 − 4)
n = 1, 3, 5, · · ·

Hence the final solution is

u (x, t) =
−8
π

∞∑
n=1,3,5, · · ·

1
n3 − 4n

cos (2nt) sin (nx)

The above solution was verified against numerical solution. The result gave an exact match (20 terms
was used in the sum).

Problem 7

Find d’Alembert solution for wave PDEut t = 4uxx on infinite domainwith initial positionu (x, 0) = sinx
and initial velocity ut (x, 0) = cosx
solution
Putting the PDE in standard form ut t = a2uxx shows that a = 2. Let f (x) = u (x, 0) = sinx and
д (x) = ut (x, 0) = cosx , then the d’Alembert solution is

u (x, t) =
1
2
(f (x + at) + f (x − at)) +

1
2a

∫ x+at

x−at
д (s)ds

=
1
2
(sin (x + 2t) + sin (x − 2t)) +

1
4

∫ x+2t

x−2t
cos (s)ds

=
1
2
sin (x + 2t) +

1
2
sin (x − 2t) +

1
4
sin (s)x+2tx−2t

=
1
2
sin (x + 2t) +

1
2
sin (x − 2t) +

1
4
(sin (x + 2t) − sin (x − 2t))

=
1
2
sin (x + 2t) +

1
2
sin (x − 2t) +

1
4
sin (x + 2t) −

1
4
sin (x − 2t)

=
3
4
sin (x + 2t) +

1
4
sin (x − 2t)
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Problem 8

Solve the Dirichlet problem uxx +uyy = 0 inside the disk x2 +y2 < 1 and u (x,y) =

{
20 y > 0

0 y < 0
on

the unit circle x2 + y2 = 1. Find u (0, 0) and u
(
0, 12

)
solution
The PDE in polar coordinates is

ur r +
1
r
ur + uθθ = 0 (1)

Where r is radial distance and θ the polar angle. The boundary conditions in polar coordinates become

f (θ ) =

{
20 0 < θ < π

0 π < θ < 2π

The solution to (1) is

u (r , θ ) =
c0
2
+

∞∑
n=1

rn (an cos (nθ ) + bn sin (nθ ))

At r = 1 (on the boundary) the above solution become

f (θ ) =
c0
2
+

∞∑
n=1

an cos (nθ ) + bn sin (nθ )

By orthogonality on cosine the above becomes∫ 2π

0
f (θ ) cos (mθ )dθ =

∫ 2π

0

c0
2
cos (mθ )dθ+

∞∑
n=1

an

∫ 2π

0
cos (mθ ) cos (nθ )dθ+bn

∫ 2π

0
cos (mθ ) sin (nθ )dθ

(2)
For n = 0 ∫ 2π

0
f (θ )dθ =

∫ 2π

0

c0
2
dθ∫ π

0
20dθ =

c0
2
(2π )

20π =
c0
2
(2π )

c0 = 20

For n > 0 (2) becomes∫ 2π

0
f (θ ) cos (mθ )dθ =

∞∑
n=1

an

∫ 2π

0
cos (mθ ) cos (nθ )dθ + bn

∫ 2π

0
cos (mθ ) sin (nθ )dθ

But
∫2π
0

cos (mθ ) sin (nθ )dθ = 0 for all n,m and the above reduces to∫ 2π

0
f (θ ) cos (nθ )dθ = anπ∫ π

0
20 cos (nθ )dθ = anπ

20
n

[sin (nθ )]π0 = anπ

20
n

(sin (nπ ) − 0) = anπ

Hence an = 0 for all n > 0. By orthogonality on sine, for n > 0, (2) becomes∫ 2π

0
f (θ ) sin (mθ )dθ =

∞∑
n=1

an

∫ 2π

0
sin (mθ ) cos (nθ )dθ + bn

∫ 2π

0
sin (mθ ) sin (nθ )dθ

But
∫2π
0

sin (mθ ) cos (nθ )dθ = 0 for allm,n and the above reduces to∫ 2π

0
f (θ ) sin (nθ )dθ = bnπ∫ π

0
20 sin (nθ )dθ = bnπ

−
20
n

(cos (nθ ))π0 = bnπ

−
20
n

(cos (nπ ) − 1) = bnπ

20
n

(1 − cos (nπ )) = bnπ
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When n = 2, 4, 6, · · · the above gives bn = 0. For n = 1, 3, 5, · · · the above gives
40
n
= bnπ

bn =
40
nπ

Therefore the complete solution is

u (r , θ ) = 10 +
40
π

∞∑
n=1,3,5, · · ·

rn

n
sin (nθ )

Atu (0, 0), which corresponds to r = 0,θ = 0, the above givesu (0, 0) = 10. Atu
(
0, 12

)
which corresponds

to r = 1
2 , θ =

π
2 the solution gives

u (r , θ ) = 10 +
40
π

∞∑
n=1,3,5, · · ·

(
1
2

) n 1
n
sin

(nπ
2

)
Evaluated numerically, it converges to 15.90381156
To convert to x,y, the solution is first written as

u (r , θ ) = 10 +
40
π

(
r sin (θ ) +

1
3
r 3 sin (3θ ) +

1
5
r 5 sin (5θ ) + · · ·

)
But

r sin (θ ) = y

And

r 3 sin (3θ ) =
3∑

k=1
odd

n!
k! (n − k)!

xn−k (−1)
k−1
2 yk

=
6
2
x2y − y3

And

r 5 sin (5θ ) =
5∑

k=1
odd

n!
k! (n − k)!

xn−k (−1)
k−1
2 yk

=
120
24

x4y −
120
12

x2y3 + xy5

And so on. Hence the solution in xy is

u (x,y) = 10 +
40
π

(
y +

1
3

(
3x2y − y3

)
+
1
5

(
5x4y − 10x2y3 + xy5

)
+ · · ·

)
To verify is the above 3 terms give good approximation, the value at x = 0,y = 1

2 is now evaluated from
the above, which gives 15.8356812467. Which is very close to the above result. One more term can be
added to improve this. I am not sure now if there is a way to obtain closed form expression in x,y as
the case was with the solution in polar coordinates.

Problem 9

Solveuxx +uyy = 0 inside semi-infinite strip 0 < x < a,y > 0withu (0,y)−0,u (a,y) = 0,u (x, 0) = F (x)
and additional conditions that u (x,y) → 0 as y → ∞

solution
This is a plot of the boundary conditions.

x

y
to ∞

a
u = F (x)

u = 0u = 0
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Let u = X (x)Y (y). Substituting this in the PDE gives

X ′′Y + Y ′′X = 0

X ′′

X
= −

Y ′′

Y
= −λ

Which gives the eigenvalue ODE

X ′′ (x) + λX (x) = 0

X (0) = 0

X (a) = 0

which gives the eigenfunction Φn (x) = cn sin
(√

λnx
)

where λn =
( nπ
a

) 2 for n = 1, 2, 3, · · · . The
corresponding Y ODE is

Y ′′ − λnY = 0

Since λn > 0, then the solution to this ODE is

Yn = Ane
√
λny + Bne

−
√
λny

Since λn > 0 and the solution goes to zero for large y, then An must be zero. Therefore the above
simplifies to

Yn (y) = Bne
−
√
λny

And the complete solution becomes

u (x,y) =
∞∑
n=1

cne
−
√
λny sin

(√
λnx

)
Where constants are combined into cn . Since λn =

( nπ
a

) 2, the above becomes

u (x,y) =
∞∑
n=1

cne
−nπ

a y sin
(nπ
a
x
)

At y = 0, the above becomes

F (x) =
∞∑
n=1

cn sin
(nπ
a
x
)

Applying orthogonality gives∫ a

0
F (x) sin

(nπ
a
x
)
dx = cn

a

2

cn =
2
a

∫ a

0
F (x) sin

(nπ
a
x
)
dx

Hence the complete solution is

u (x,y) =
2
a

∞∑
n=1

(∫ a

0
F (x) sin

(nπ
a
x
)
dx

)
e−

nπ
a y sin

(nπ
a
x
)

5.1.3 My post-exam solution to first exam

Problem 1

Problem
Find the Fourier cosine series of

f (x) =

{
x 0 < x ≤ 1

0 1 < x ≤ 2

Take L = 2.
solution
To obtain the Fourier cosine series, the function f (x) is first even extended to −2 < x < 2 with period
2L or 4. Then repeated again with period 2L over the whole x domain. The following plot shows the
original f (x)
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0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Original f(x) before even extension

The following plot shows then even extended fe (x) over 3 periods for illustrations
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The Fourier cosine series is
f (x) =

a0
2
+

∞∑
n=1

an cos
(nπ
L
x
)

Where

a0 =
1
L

∫ L

−L
f (x)dx

Since extension is even, then the above simplifies to

a0 =
2
L

∫ L

0
f (x)dx

But L = 2, therefore

a0 =

∫ 2

0
f (x)dx =

∫ 1

0
xdx +

∫ 2

1
0dx

=
1
2

(
x2

) 1
0

=
1
2

And

an =
1
L

∫ L

−L
f (x) cos

(nπ
L

)
dx

Since cosine is even, and f (x) extension is even, then the product is even and the above simplifies to

an =
2
L

∫ L

0
f (x) cos

(nπ
L

)
dx

Since L = 2

an =

∫ 2

0
f (x) cos

(nπ
2

)
dx

=

∫ 1

0
x cos

(nπ
2

)
dx +

∫ 2

1
0 cos

(nπ
2

)
dx

=

∫ 1

0
x cos

(nπ
2

)
dx
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But ∫
x cos (ax)dx =

cosax
a2

+
x sinax

a

Where a = nπ
2 here. Therefore the integral becomes

an =

∫ 1

0
x cos

(nπ
2

)
dx

=

(
cos

( nπ
2 x

)( nπ
2

) 2 +
x sin

( nπ
2 x

)( nπ
2

) ) 1
0

=
cos

( nπ
2

)( nπ
2

) 2 + sin
( nπ

2

)( nπ
2

) −
1( nπ
2

) 2
=

4 cos
( nπ

2

)
(nπ )2

+
2 sin

( nπ
2

)
nπ

−
4

(nπ )2

=
4 cos

( nπ
2

)
+ 2nπ sin

( nπ
2

)
− 4

n2π 2

=
2

n2π 2

(
2 cos

(nπ
2

)
+ nπ sin

(nπ
2

)
− 2

)
Therefore the Fourier series is

f (x) =
1
4
+

∞∑
n=1

2
n2π 2

(
2 cos

(nπ
2

)
+ nπ sin

(nπ
2

)
− 2

)
cos

(nπ
2
x
)

By Fourier convergence theorem, since f (x) and f ′ (x) are piecewise contiguous, the Fourier series will
converge to each point of f (x) where there is no jump discontinuity, and will converge to the average
of f (x) at the point where there is a jump. In this example, it will converge to 1

2 at the points where
is a jump discontinuity There are x = 1, 3, 5, · · · and at x = −1,−3,−5, · · · . At all other points, Fourier
series will converge to f (x). This is a plot of the above Fourier series for increasing number of terms
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Problem 2

Problem Solve heat PDEut = 9uxx on 0 < x < π , t > 0with boundary conditionsux (0, t) = ux (π , t) = 0
and initial conditions u (x, 0) = f (x) = 5 sin2 x
solution
The solution to the heat PDE with isolated end points is

u (x, t) = A0 +
∞∑
n=1

cne
−λna2t cos

(√
λnx

)
Where λn =

( nπ
L

) 2 for n = 1, 2, 3 · · · . But L = π here. Hence λn = n2 and a = 3. Therefore the above
solution becomes

u (x, t) = A0 +
∞∑
n=1

cne
−9n2t cos (nx) (1)
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At t = 0 the above becomes

f (x) = A0 +
∞∑
n=1

cn cos (nx)

5 sin2 x = A0 +
∞∑
n=1

cn cos (nx)

But sin2 x = 1
2 −

1
2 cos (2x), therefore the above becomes

5
2
−
5
2
cos (2x) = A0 +

∞∑
n=1

cn cos (nx)

Hence A0 =
5
2 and c2 = − 5

2 and all other cn = 0. Therefore the solution (1) becomes

u (x, t) =
5
2
−
5
2
e−36t cos (2x)

At steady state when t → ∞, the solution becomes u (x) = 5
2 . The solution u

( π
2 , t

)
becomes

u
(π
2
, t

)
=

5
2
−
5
2
e−36t cos

(
2
π

2

)
=

5
2
−
5
2
e−36t cos (π )

=
5
2
+
5
2
e−36t

=
5
2

(
1 + e−36t

)
Problem 3

Problem
Solve the wave equation ut t = uxx on string, where initial position f (x) = 0 and initial velocity is
д (x) = sin (x) + sin (2x). The string is fixed at both ends.
solution
a = 1 in this problem. Using D’Alembert method

u (x, t) =
1
2
(f (x + at) + f (x − at)) +

1
2

∫ x+at

x−at
д (s)ds

Where f ,д above are the odd extensions. Since f (x) is zero and a = 1, the above simplifies to

u (x, t) =
1
2

∫ x+t

x−t
д (s)ds

=
1
2

∫ x+t

x−t
sin (s) + sin (2s)ds

=
1
2

(
− cos (s) −

1
2
cos (2s)

) x+t
x−t

= −
1
2

(
cos (s) +

1
2
cos (2s)

) x+t
x−t

= −
1
2

(
cos (x + t) +

1
2
cos (2 (x + t)) − cos (x − t) −

1
2
cos (2 (x − t))

)
= −

1
2
cos (x + t) −

1
4
cos (2 (x + t)) +

1
2
cos (x − t) +

1
4
cos (2 (x − t))

=
1
2
(cos (x − t) − cos (x + t)) +

1
4
(cos (2 (x − t)) − cos (2 (x + t)))

Using Fourier series method. The solution with initial position zero is

u (x, t) =
∞∑
n=1

cn sin
(√

λnat
)
sin

(√
λnx

)
Where λn =

( nπ
L

) 2 with n = 1, 2, 3, · · · . Since L = π and a = 1, the above solution simplifies to

u (x, t) =
∞∑
n=1

cn sin (nt) sin (nx) (1)

To determine cn , the velocity from the above solution is ∂u(x ,t )
∂t =

∑∞
n=1 cnn cos (nt) sin (nx). And at

t = 0, this becomes

f (x) =
∞∑
n=1

ncn sin (nx)
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But f (x) = sin (x) + sin (2x). Hence the above becomes

sin (x) + sin (2x) =
∞∑
n=1

ncn sin (nx)

Therefore by inspection c1 = 1 and 2c2 = 1 or c2 = 1
2 . Therefore the solution (1) becomes

u (x, t) = sin (t) sin (x) +
1
2
sin (2t) sin (2x)

Since the Fourier series and the D’Alembert must be the same, then this implies that

sin (t) sin (x) +
1
2
sin (2t) sin (2x) =

1
2
(cos (x − t) − cos (x + t)) +

1
4
(cos (2 (x − t)) − cos (2 (x + t)))

This was confirmed on the computer as well. In this problem, it turned out that it is easier to use the
Fourier method, since the initial velocity was given as a Fourier sine series already.

Problem 4

Problem
Solve Laplace PDEur r + 1

rur +
1
r 2uθθ = 0 inside annulus a < r < b where a > 0. The boundary conditions

is u (a cosθ,a sinθ ) = 0 and u (b cosθ,b sinθ ) = f (θ ).
solution
Let u (r , θ ) = R (r )Θ (θ ). Substituting this back into the PDE gives

r 2
R′′

R
+ r

R′

R
+
Θ′′

Θ
= 0

Or
r 2
R′′

R
+ r

R′

R
= −

Θ′′

Θ
= λ

The eigenvalue ODE is

Θ′′ + λΘ = 0

Θ (0) = Θ (2π )

Θ′ (0) = Θ′ (2π )

The solution to the above is known to be

Θn (θ ) = cn cos
(√

λnθ
)
+ kn sin

(√
λnθ

)
(1)

Where λn = n2 and n = 0, 1, 2, 3, · · · . Therefore solution (1) becomes

Θn (θ ) = cn cos (nθ ) + kn sin (nθ ) n = 1, 2, 3, · · · (1A)
Θn (θ ) = c0 n = 0 (1B)

Therefore the solution to the Θn (θ ) ode is

Θn (θ ) =

{
c0 n = 0

cn cos (nθ ) + kn sin (nθ ) n = 1, 2, 3, · · ·

The solution to the R (r ) ode (this is a Euler ODE) will have two solutions, one when λ0 = 0 when n = 0
and another solution for λn = n2 when n > 0. When eigenvalue is zero, the R (r ) ODE becomes

r 2
R′′

R
+ r

R′

R
= 0

r 2R′′ + rR′ = 0

rR′′ + R′ = 0

This has the solution
R0 (r ) = A0 ln (r ) + B0 (2)

Applying the boundary conditions r = a to the above gives

0 = A0 ln (a) + B0

B0 = −A0 ln (a)

Therefore (2) becomes

R0 (r ) = A0 ln (r ) −A0 ln (a)

= A0 (ln (r ) − ln (a)) (3)
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The above is only for the zero eigenvalue. When n > 0, the R (r ) ode becomes the Euler ODE

r 2R′′ + rR′ − λnR = 0

r 2R′′ + rR′ − n2R = 0

The solution to this ODE is
Rn (r ) = Anr

n + Dnr
−n (4)

Here the term Dnr
−n does not vanish as the case with the solution to the disk. But using the boundary

condition that u = 0 when r = a, the above ODE at r = a becomes

Rn (a) = 0 = Ana
n + Dna

−n

Dn = −An
an

a−n

= −Ana
2n

Substituting the above back in (4) gives

Rn (r ) = Anr
n −Ana

2nr−n

= An
(
rn − a2nr−n

)
(4A)

Therefore the solution to the R (r ) ode is

Rn (r ) =

{
A0 (ln (r ) − ln (a)) n = 0

An
(
rn − a2nr−n

)
n = 1, 2, 3, · · ·

The fundamental solution is

un (r , θ ) = Rn (r )Θn (θ )

=

zero eigenvalue︷                   ︸︸                   ︷
c0A0 (ln (r ) − ln (a)) +

n>0 eigenvalues︷                                               ︸︸                                               ︷(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ ))

By superposition, the complete solution is

u (r , θ ) = c0A0 (ln (r ) − ln (a)) +
∞∑
n=1

An
(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ ))

Combining c0A0 into c0 and Ancn into cn and Ankn into kn the above simplifies to

u (r , θ ) = c0 (ln (r ) − ln (a)) +
∞∑
n=1

(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ )) (5)

Now the boundary condition at r = b is used to determined c0, cn and kn . At r = b and for n = 0 case,
the above becomes, by orthogonality∫ 2π

0
f (θ )dθ = (2π ) c0 (ln (b) − ln (a))

c0 =
1

2π (ln (b) − ln (a))

∫ 2π

0
f (θ )dθ (6)

And for n > 0, solution (5) becomes

f (θ ) =
∞∑
n=1

(
bn − a2nb−n

)
(cn cos (nθ ) + kn sin (nθ )) (7)

By orthogonality with cos (nθ ) equation (7) becomes∫ 2π

0
f (θ ) cos (nθ )dθ =

(
bn − a2nb−n

)
cnπ

cn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) cos (nθ )dθ

And by orthogonality with sin (nθ ) equation (4) becomes∫ 2π

0
f (θ ) sin (nθ )dθ =

(
bn − a2nb−n

)
knπ

kn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) sin (nθ )dθ

This completes the solution. Solution (5) becomes

u (r , θ ) =
1
2π

ln (r ) − ln (a)
ln (b) − ln (a)

∫ 2π

0
f (θ )dθ +

∞∑
n=1

(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ ))

cn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) cos (nθ )dθ

kn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) sin (nθ )dθ
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5.2 Final exam

5.2.1 questions

5.2.2 Problem 1

Solve the heat equation
ut = 9uxx
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For 0 ≤ x ≤ 1, t ≥ 0 with boundary conditions

u (0, t) = 0

u (1, t) = 1

And initial conditions
u (x, 0) = x2

solution
Since the one of the boundary conditions are inhomogeneous, the solution is broken into two parts. Let
the solution be

u (x, t) = w (x, t) +v (x) (1)

Wherew (x, t) is the solution to the PDEwith homogeneous boundary conditions andv (x) is a reference
solution which is only required to satisfy the inhomogeneous boundary condition1.
Let v (x) = Ax + B. At x = 0 then v (0) = 0 which gives B = 0. Hence v (x) = Ax . At x = 1, v (1) = 1 or
A = 1. Therefore

v (x) = x

And (1) becomes
u (x, t) = w (x, t) + x (1A)

Where noww (x, t) satisfies the PDE
wt = 9wxx (1B)

For 0 ≤ x ≤ 1, t ≥ 0 but with the following homogeneous boundary conditions

w (0, t) = 0

w (1, t) = 0

And initial conditions given by

w (x, 0) = u (x, 0) −v (x)

= x2 − x (2)

The PDE (1B) is the heat PDE with homogeneous boundary conditions. This was solved before. It has
the solution

w (x, t) =
∞∑
n=1

cne
−λnα 2t sin

(√
λnx

)
Where in this problem α2 = 9 and λn =

( nπ
L

) 2
,n = 1, 2, 3 · · · . But L = 1, therefore the above solution

reduces to
w (x, t) =

∞∑
n=1

cne
−9n2π 2t sin (nπx) (3)

cn is now found from the initial conditions (2). At t = 0 the above becomes

x2 − x =
∞∑
n=1

cn sin (nπx)

Applying orthogonality gives∫ 1

0

(
x2 − x

)
sin (nπx)dx = cn

∫ 1

0
sin2 (nπx)dx

= cn
1
2

Hence

cn = 2
∫ 1

0

(
x2 − x

)
sin (nπx)dx

= 2

(∫ 1

0
x2 sin (nπx) −

∫ 1

0
x sin (nπx)dx

)
(3A)

Applying the following rule based on integration by parts
∫
x2 sin (ax) = 2x sinax

a2 +
(
2
a3 −

x 2

a

)
cosax ,

the first integral above becomes (where a = nπ )∫ 1

0
x2 sin (nπx) =

[
2x sinnπx

(nπ )2
+

(
2

(nπ )3
−

x2

nπ

)
cosnπx

] 1
0

=

[
2 sinnπ

(nπ )2
+

(
2

(nπ )3
−

1
nπ

)
cosnπ −

2

(nπ )3

]
1w (x, t) is called the transient solution with homogeneous boundary conditions, and v (x) the steady state solution with the

inhomogeneous boundary conditions.
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But sinnπ = 0 and cosnπ = (−1)n , therefore the above becomes∫ 1

0
x2 sin (nπx) =

(
2

n3π 3 −
1
nπ

)
(−1)n −

2
n3π 3

=
2 (−1)n

n3π 3 −
(−1)n

nπ
−

2
n3π 3

=
(−1)n+1

nπ
+

2
n3π 3 (−1 + (−1)

n) (3A1)

Applying the following rule based on integration by parts
∫
x sin (ax) = sinax

a2 − x cosax
a , then the second

integral in (3A) becomes (where a = nπ )∫ 1

0
x sin (nπx)dx =

[
sinnπx
n2π 2 −

x cosnπx
nπ

] 1
0

=
sinnπ
n2π 2 −

cosnπ
nπ

=
(−1)n+1

nπ
(3A2)

Substituting (3A1) and (3A2) into (3A) gives

cn = 2

(
(−1)n+1

nπ
+

2
n3π 3 (−1 + (−1)

n) −
(−1)n+1

nπ

)
=

4
n3π 3 (−1 + (−1)

n)

Therefore, the solutionw (x, t) from (3) becomes

w (x, t) =
∞∑
n=1

4
(−1 + (−1)n)

n3π 3 e−9n
2π 2t sin (nπx)

And the solution u (x, t) from (1A) is

u (x, t) = x +
4
π 3

∞∑
n=1

(−1 + (−1)n)
n3

e−9n
2π 2t sin (nπx)

Only few terms are needed to obtain a very good approximation, since the convergence is of order
O

(
1
n3

)
.
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5.2.3 Problem 2

Solve the Dirichlet problem uxx + uyy = 0 on the unit disk x2 + y2 ≤ 1 with boundary conditions
u (cosθ , sinθ ) = π 2 − θ 2 and −π < θ ≤ π
solution
This is Laplace PDE on disk. Where a = 1 is the radius and r , θ are polar coordinates. The Laplacian in
polar coordinates is

ur r +
1
r
ur +

1
r 2
uθθ = 0

With boundary conditions on r being

u (a, θ ) = f (θ ) = π 2 − θ 2

u (0, θ ) < ∞

And with standard periodic boundary conditions on θ

u (r ,−π ) = u (r , π )

∂u

∂θ
(r ,−π ) =

∂u

∂θ
(r , π )

This PDE was solved before and the solution to the Laplace PDE inside a disk is known to be

u (r , θ ) = A0 +
∞∑
n=1

rn (cn cosnθ + dn sinnθ ) (1)

With Fourier coefficients given by

A0 =
1
2π

∫ π

−π
f (θ )dθ

cn =
1

πan

∫ π

−π
f (θ ) cos (nθ )dθ

dn =
1

πan

∫ π

−π
f (θ ) sin (nθ )dθ

Since the radius a = 1 in this problem, then the above become

A0 =
1
2π

∫ π

−π
f (θ )dθ

cn =
1
π

∫ π

−π
f (θ ) cos (nθ )dθ

dn =
1
π

∫ π

−π
f (θ ) sin (nθ )dθ

The coefficients are now calculated2.

A0 =
1
2π

∫ π

−π

(
π 2 − θ 2

)
dθ

But
∫π
−π

(
π 2 − θ 2

)
dθ =

∫π
−π π

2dθ −
∫π
−π θ

2dθ = 2π 3 −

[
θ 3

3

] π
−π
= 2π 3 − 1

3

[
π 3 + π 3

]
= 2π 3 − 2

3π
3 = 4

3π
3.

Therefore

A0 =
1
2π

(
4
3
π 3

)
=

2π 2

3

And

cn =
1
π

∫ π

−π
f (θ ) cos (nθ )dθ

=
1
π

∫ π

−π

(
π 2 − θ 2

)
cos (nθ )dθ

= π

∫ π

−π
cos (nθ )dθ −

1
π

∫ π

−π
θ 2 cos (nθ )dθ

But
∫π
−π cos (nθ )dθ = 0 and by integration by parts as was done earlier

∫π
−π θ

2 cos (nθ )dθ = 4(−1)nπ
n2 ,

hence the above simplifies to

cn = −
4 (−1)n

n2

2It is important to use integration limit −π · · · π and not 0 · · · 2π .
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And

dn =
1
π

∫ π

−π
f (θ ) sin (nθ )dθ

=
1
π

∫ π

−π

(
π 2 − θ 2

)
sin (nθ )dθ

= π

∫ π

−π
sin (nθ )dθ −

1
π

∫ π

−π
θ 2 sin (nθ )dθ

But
∫π
−π sin (nθ )dθ = 0, and by integration by parts as was done earlier,

∫π
−π θ

2 sin (nθ )dθ = 0, hence

dn = 0

Using the value of A0, cn,dn found above the solution (1) becomes

u (r , θ ) = A0 +
∞∑
n=1

rn (cn cosnθ + dn sinnθ )

=
2π 2

3
− 4

∞∑
n=1

(−1)n

n2
rn cosnθ
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5.2.4 Problem 3

Solve the inhomogeneous wave equation

ut t = uxx + x sin t

For 0 ≤ x ≤ 1, t ≥ 0 with boundary conditions

u (0, t) = 0

u (1, t) = 0

And initial conditions

u (x, 0) = 0

ut (x, 0) = 0

solution
Since the inhomogeneity is in the PDE itself (rather than in the boundary conditions), then the method
of eigenfunction expansion is used to obtain the solution. Let the solution be

u (x, t) =
∞∑
n=1

bn (t)Φn (x) (1)

Where Φn (x) are the eigenfunctions of the spatial eigenvalue ODE problem that comes from solving
the homogeneous wave equation with the given homogeneous boundary conditions, which isut t = uxx .
This wave PDE with the given homogeneous boundary conditions was solved before using separation
of variables. The eigenfunctions were found to be

Φn (x) = sin
(√

λnx
)

n = 1, 2, 3, · · ·

With eigenvalues

λn =
(nπ
L

) 2
n = 1, 2, 3, · · ·

But L = 1 here, therefore
λn = n

2π 2 n = 1, 2, 3, · · ·

Now that the eigenvalues and eigenfunctions are found, equation (1) is substituted back into the PDE
resulting in

∞∑
n=1

b ′′n (t)Φn (x) =
∞∑
n=1

bn (t)Φ
′′
n (x) + x sin t

Since x sin t is a piecewise continuous function in x , it can be represented using the same eigenfunctions3
and the above equation becomes

∞∑
n=1

b ′′n (t)Φn (x) =
∞∑
n=1

bn (t)Φ
′′
n (x) +

∞∑
n=1

γn (t)Φn (x)

Since Φ′′
n (x) = −λnΦn (x), which comes from the eigenvalue ODE, the above simplifies to

∞∑
n=1

b ′′n (t)Φn (x) =
∞∑
n=1

−bn (t) λnΦn (x) +
∞∑
n=1

γn (t)Φn (x)

b ′′n (t) + bn (t) λn = γn (t) (2)

To solve the above ODE for bn (t), γn (t) needs to be found first. Using

x sin t =
∞∑
n=1

γn (t)Φn (x)

Applying orthogonality gives

sin (t)
∫ 1

0
xΦn (x)dx = γn (t)

∫ 1

0
Φ2
n (x)dx

Since Φn (x) = sin
(√

λnx
)
, then

∫1
0
Φ2
n (x)dx =

1
2 and the above reduces to

sin (t)
∫ 1

0
x sin (nπx)dx =

1
2
γn (t)

3This is the same as saying the eigenfunctions are complete.
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But
∫1
0
x sin (nπx)dx = (−1)n+1

nπ by integration by part as was done before, and the above becomes

(−1)n+1

nπ
sin (t) =

1
2
γn (t)

γn (t) = 2
(−1)n+1

nπ
sin (t)

Using the above back in (2), ODE (2) now becomes

b ′′n (t) + bn (t)n
2π 2 = 2

(−1)n+1

nπ
sin (t) (3)

This is a second order, inhomogeneous, linear, with constant coefficients ODE. The solution is the sum
of the homogeneous and particular solutions (the subscript n is removed for now from bn (t), to simplify
the notations, then added back after the solution is obtained). Let the solution to (3) be

b (t) = bh (t) + bp (t)

The homogeneous solution is seen to be (since n2π 2 is always positive)

bh (t) = A cos (nπt) + B sin (nπt)

To find the particular solution, the method of undetermined coefficients is used. let

bp (t) = C cos (t) + D sin (t) (4)

Hence b ′p = −C sin (t) + D cos (t) ,b ′′p = −C cos (t) − D sin (t). Substituting these into (3) gives

−C cos (t) − D sin (t) + (C cos (t) + D sin (t))n2π 2 = 2
(−1)n+1

nπ
sin (t)

cos (t)
[
−C +Cn2π 2] + sin (t) [−D + Dn2π 2] = 2

(−1)n+1

nπ
sin (t)

Therefore, by comparing coefficients

−C +Cn2π 2 = 0

C
(
n2π 2 − 1

)
= 0

C = 0

And

−D + Dn2π 2 = 2
(−1)n+1

nπ

D
(
n2π 2 − 1

)
= 2

(−1)n+1

nπ

D = 2
(−1)n+1

nπ (n2π 2 − 1)

Hence the particular solution (4) is

bp (t) = C cos (t) + D sin (t)

= 2
(−1)n+1

nπ (n2π 2 − 1)
sin (t)

Now that the particular solution is found, the final solution to (3) becomes

bn (t) = An cos (nπt) + Bn sin (nπt) − 2
(−1)n

nπ (n2π 2 − 1)
sin (t) (4)

Using the above in the solution (1) gives

u (x, t) =
∞∑
n=1

bn (t)Φn (x)

=
∞∑
n=1

(
An cos (nπt) + Bn sin (nπt) − 2

(−1)n

nπ (n2π 2 − 1)
sin (t)

)
sin (nπx)

An,Bn are found from initial conditions. At t = 0 the above simplifies to

0 =
∞∑
n=1

An sin (nπx)
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Therefore An = 0 and the solution above reduces to

u (x, t) =
∞∑
n=1

(
Bn sin (nπt) − 2

(−1)n

nπ (n2π 2 − 1)
sin (t)

)
sin (nπx) (5)

Taking time derivative gives

ut (x, t) =
∞∑
n=1

(
Bnnπ cos (nπt) − 2

(−1)n

nπ (n2π 2 − 1)
cos (t)

)
sin (nπx)

At t = 0 the above simplifies to

0 =
∞∑
n=1

(
Bnnπ − 2

(−1)n

nπ (n2π 2 − 1)

)
sin (nπx)

Since this is valid for each n, then
(
Bnnπ − 2 (−1)n

nπ (n2π 2−1)

)
= 0 or

Bn = 2
(−1)n

n2π 2 (n2π 2 − 1)

Using the above in (5), the final solution becomes

u (x, t) =
∞∑
n=1

2

(
(−1)n

n2π 2 (n2π 2 − 1)
sin (nπt) −

(−1)n

nπ (n2π 2 − 1)
sin (t)

)
sin (nπx)

= 2
∞∑
n=1

(−1)n

nπ (n2π 2 − 1)

(
sin (nπt)

nπ
− sin (t)

)
sin (nπx)
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5.2.5 Problem 4

Solve the wave equation

ut t = uxx + uyy

On the unit disk x2 + y2 ≤ 1 with with boundary conditions

u (x,y) = 0 if x2 + y2 = 1

And initial conditions

u (x,y, 0) = 0

ut (x,y, 0) =

{
1

πϵ 2 if
√
x2 + y2 ≤ ϵ

0 otherwise

Where 0 < ϵ < 1. Hint: The formula d
dx (x J1 (x)) = x J0 (x) may be used. Extra credit: Plot the solution

u (r , t) for ϵ = 1
2 , t = 1 and t = 2.

solution
The PDE and initial and boundary conditions are converted to polar coordinates to become

ut t = ur r +
1
r
ur +

1
r 2
uθθ (1)

On the unit disk with radius 1. The boundary conditions are

u (1, θ, t) = 0

u (0, θ, t) < ∞

Where u (0, θ , t) < ∞ means the solution is bounded at center of disk r = 0. The boundary conditions
on θ are the standard periodic boundary conditions

u (r ,−π , t) = u (r , π , t)

uθ (r ,−π , t) = uθ (r , π , t)

And initial conditions are4

u (r , θ, 0) = 0

ut (r , θ, 0) =

{
1

πϵ 2 if r ≤ ϵ

0 otherwise

The above PDE is solved by separation of variables. Let u (r , θ, t) = T (t)R (r )Θ (θ ). Substituting this in
the PDE (1) gives

T ′′RΘ = R′′TΘ +
1
r
R′TΘ +

1
r 2
Θ′′RT

Dividing by RTΘ
T ′′

T
=

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2

Where λ is the first separation variable. This results in two equations

T ′′

T
= −λ2 (1)

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2 (2)

The time ODE (1) is
T ′′ + λ2T = 0 (1A)

Multiplying (2) by r 2 and rearranging

r 2
R′′

R
+ r

R′

R
+ r 2λ2 = −

Θ′′

Θ
= µ2

Where µ is the second separation constant. This gives the R ODE as

r 2R′′ + rR′ +
(
r 2λ2 − µ2

)
R = 0 (3)

And the Θ ODE as
Θ′′ + µ2Θ = 0 (4)

4The original r2 ≤ ϵ was changed to r ≤ ϵ
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The eigenvalues for (4) determine the Bessel equation (3) order. Therefore (4) needs to be solved first to
determined the order. The ODE boundary conditions for (4) are periodic

Θ (−π ) = Θ (π )

Θ′ (−π ) = Θ′ (π )

case µ = 0. This leads to solution

Θ = c1θ + c2

Θ′ = c1

First BC gives

−c1π + c2 = c1π + c2

c1 = 0

And since second BC Θ′ = c1, this implies Θ (θ ) is constant. So µ = 0 is an eigenvalue, with Θ0 (θ ) = 1
being the eigenfunction.
Case µ > 0 The solution to (4) becomes

Θ (θ ) = A cos (µθ ) + B sin (µθ )

To satisfy the periodic boundary conditions, µ must be an integer, and since µ > 0, then µ = n for
n = 1, 2, 3, · · · . Therefore

Θ0 (θ ) = 1 n = 0 (5A)
Θn (θ ) = An cosnθ + Bn sinnθ n = 1, 2, 3, · · · (5B)

The above solution can be combined to one

Θn (θ ) = An cosnθ + Bn sinnθ n = 0, 1, 2, · · · (5)

Because when n = 0 the above solution gives Θ0 (θ ) = A0 which is the constant eigenfunction. Now
that µ is found, Bessel ODE (3) can be solved.

r 2R′′ (r ) + rR′ (r ) +
(
r 2λ2 − n2

)
R (r ) = 0 n = 0, 1, 2, 3, · · · (5C)
R (1) = 0

R (0) < ∞

λ = 0 is not a possible eigenvalue. This can be shown as follows. When λ = 0 equation (5C) becomes
the Euler ODE

r 2R′′ (r ) + rR′ (r ) + n2R (r ) = 0 n = 0, 1, 2, 3, · · ·

Now, when n = 0, then the ODE becomes r 2R′′ (r ) + rR′ (r ) = 0 whose solution is R (r ) = c1 + c2 ln (r ).
Since solution is bounded at r = 0, then R (r ) = c1. And since R (1) = 0 then c1 = 0 also, leading to
trivial solution. When n > 0, the ODE becomes r 2R′′ (r )+ rR′ (r )+n2R (r ) = 0 whose solution is R (r ) =
c1r

n + c2
1
rn . Since solution is bounded at r = 0, then c2 = 0 and the solution now becomes R (r ) = c1r

n .
Using BC R (1) = 0 gives c1 = 0 leading again to trivial solution. This shows that λ = 0 is not eigenvalue.
Now that λ is is shown not to be zero, the Bessel ODE (5C) is solved . The first step is to convert the
ODE to a Bessel ODE in the classical form in order to use the standard solution. Let t = λr , then
R′ (r ) = R′ (t) λ and R′′ (r ) = R′′ (t) λ2. ODE (5C) becomes

t2

λ2
λ2R′′ (t) +

t

λ
λR′ (t) +

(
t2

λ2
λ2 − n2

)
R (t) = 0

t2R′′ (t) + tR′ (t) +
(
t2 − n2

)
R (t) = 0

This is now in standard Bessel ODE form. This is of order n, where n is n = 0, 1, 2, 3, · · · . Since the order
is integer, then the solution is given by

Rn (t) = Cn Jn (t) + DnYn (t)

Where Jn (t) is the Bessel function of order n and Yn (t) is the Bessel function of second kind of order n.
In terms of r the above solution becomes

Rn (r ) = Cn Jn (λr ) + DnYn (λr )

Because the solution is bounded at r = 0 and since Yn (0) blows up, then Dn = 0. The above solution
simplifies to

Rn (r ) = Cn Jn (λr )
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Applying the second boundary conditions, when r = 1 then

0 = Cn Jn (λ)

For non-trivial solution Jn (λ) = 0. Hence λ are the positive zeros of Jn (z). Let the positive zeros of Jn (z)
be jnm . Form = 1, 2, 3, · · · . Therefore

λnm = jnm n = 0, 1, 2, · · · ,m = 1, 2, 3, · · ·

Thismeans that jnm is themth eigenvalue for thenth order Bessel function Jn (z). So there are two indices
to handle in this problem. The order of the Bessel function is determined from the Θn (θ ) eigenvalues,
and then once this order n is fixed, the second eigenvalue λnm is determined from the zeros of the Bessel
function Jn (z). Hence the Rnm (r ) solution is

Rnm (r ) = Cnm Jn (λnmr ) n = 0, 1, 2, 3, · · · ,m = 1, 2, 3, · · ·

Now that λnm is known, the time ODE (1) can be solved

T ′′
nm + λ

2
nmTnm = 0

Tnm = Anm cos (λnmt) + Bnm sin (λnmt) n = 0, 1, 2, 3, · · · ,m = 1, 2, 3, · · ·

The fundamental solution is therefore

unm (r , θ, t) = Θn (θ )Tnm (t)Rnm (r )

The complete solution is the superposition of the fundamental solutions given by

u (r , θ , t) =
∞∑
n=0

∞∑
m=1

Θn (θ )Tnm (t)Rnm (r )

=
∞∑
n=0

∞∑
m=1

(An cosnθ + Bn sinnθ ) {Anm cos (λnmt) + Bnm sin (λnmt)}Cnm Jn (λnmr )

The above can now be written as

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

An cosnθ ((Anm cos (λnmt) + Bnm sin (λnmt))Cnm Jn (λnmr ))

+
∞∑
n=1

∞∑
m=1

Bn sinnθ ((Anm cos (λnmt) + Bnm sin (λnmt))Cnm Jn (λnmr ))

Or

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

An cosnθAnm cos (λnmt)Cnm Jn (λnmr )

+
∞∑
n=0

∞∑
m=1

An cosnθBnm sin (λnmt)Cnm Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

Bn sinnθAnm cos (λnmt)Cnm Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

Bn sinnθBnm sin (λnmt)Cnm Jn (λnmr ) (6)

Constants are now merged and renamed as follows in order to simplify the rest of the solution. Let

AnAnmCnm = Ānm

AnBnmCnm = B̄nm

BnAnmCnm = C̄nm

BnBnmCnm = D̄nm

Equation (6) can now be written as

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

Ānm cos (nθ ) cos (λnmt) Jn (λnmr )

+
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) sin (λnmt) Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

C̄nm sin (nθ ) cos (λnmt) Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) sin (λnmt) Jn (λnmr ) (7)
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Initial conditions are used to determine the 4 new constants above. Using initial condition at t =
0,u (r , θ , 0) = 0 the above equation becomes

0 =
∞∑
n=0

∞∑
m=1

Ānm cos (nθ ) Jn (λnmr ) +
∞∑
n=1

∞∑
m=1

C̄nm sin (nθ ) Jn (λnmr )

Applying orthogonality on cos (nθ ) and sin (nθ ) in turn shows that Ānm = 0 and C̄nm = 0. Therefore
the solution (7) reduces to the following two sums only

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) sin (λnmt) Jn (λnmr ) +
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) sin (λnmt) Jn (λnmr ) (8)

Taking time derivative gives

ut (r , θ , t) =
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) λnm cos (λnmt) Jn (λnmr )+
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) λnm cos (λnmt) Jn (λnmr )

Applying the second initial condition at t = 0 gives

∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) λnm Jn (λnmr ) +
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) λnm Jn (λnmr ) =

{
1

πϵ 2 if r ≤ ϵ

0 otherwise
(9)

Case n = 0 (9) becomes
∞∑

m=1
B̄0mλ0m J0 (λ0mr ) =

{
1

πϵ 2 if r ≤ ϵ

0 otherwise

Applying orthogonality on J0 (λ0mr ) results in

B̄0mλ0m

∫ 1

0
r J 20 (λ0mr )dr =

1
πϵ2

∫ ϵ

0
r J0 (λ0mr )dr

B̄0m =
1

πϵ2λ0m

∫ϵ
0
r J0 (λ0mr )dr∫1

0
r J 20 (λ0mr )dr

(9A)

Case n > 1 Applying orthogonality on cos (nθ ) , equation (9) becomes

∞∑
m=1

B̄nm

(∫ π

−π
cos2 (nθ )dθ

)
λnm Jn (λnmr ) =

{
1

πϵ 2
∫π
−π cos (nθ )dθ if r 2 ≤ ϵ

0 otherwise
∞∑

m=1
π B̄nmλnm Jn (λnmr ) =

{
0 if r 2 ≤ ϵ

0 otherwise

Hence B̄nm = 0 for all n > 0.
The same is now done to find D̄nm . Applying orthogonality on sin (nθ ) , equation (9) becomes

∞∑
m=1

D̄nm

(∫ π

−π
sin2 (nθ )dθ

)
λnm Jn (λnmr ) =

{
1

πϵ 2
∫π
−π sin (nθ )dθ if r 2 ≤ ϵ

0 otherwise
∞∑

m=1
D̄nm

(∫ π

−π
sin2 (nθ )dθ

)
λnm Jn (λnmr ) =

{
0 if r 2 ≤ ϵ

0 otherwise

Hence all D̄nm = 0 for all n > 0.
Therefore the solution (8) reduces to only using n = 0,m = 1, 2, 3, · · · . The solution can now be written
as

u (r , θ, t) =
∞∑

m=1
B̄0m sin (λ0mt) J0 (λ0mr ) (10)

Where B̄0m =
1

πϵ 2λ0m

∫ϵ
0 r J0(λ0mr )dr∫1
0 r J

2
0 (λ0mr )dr

And λ0m are all the positive zeros of J0 (z),m = 1, 2, 3, · · · .

B̄0m is now simplified more. Considering first the numerator of B̄0m which is
∫ϵ
0
r J0 (λ0mr )dr . The hint

given says that
d

dr
(r J1 (r )) = r J0 (r )

This is the same as saying

r J1 (r ) =

∫
r J0 (r )dr (10A)

However the integral in B̄0m is
∫
r J0 (λ0mr )dr and not

∫
r J0 (r )dr . To transform it so that the hint can

be used, let λ0mr = r̄ , then dr
dr̄ =

1
λ0m

or dr = dr̄
λ0m

. Now
∫
r J0 (λ0mr )dr becomes

∫
r̄

λ0m
J0 (r̄ )

dr̄
λ0m

or
1

λ20m

∫
r̄ J0 (r̄ )dr̄ and now the hint (10A) can be used on this integral giving

1

λ20m

(∫
r̄ J0 (r̄ )dr̄

)
=

1

λ20m
(r̄ J1 (r̄ ))
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Replacing r̄ back by λ0mr , gives the result needed

1

λ20m
(r̄ J1 (r̄ )) =

1

λ20m
(λ0mr J1 (λ0mr ))

=
1

λ0m
r J1 (λ0mr )

Now the limits are applied, using the fundamental theory of calculus∫ ϵ

0
r J0 (λ0mr )dr =

1
λ0m

[r J1 (λ0mr )]
ϵ
0

=
ϵ

λ0m
J1 (λ0mϵ) (10B)

This completes finding the numerator integral in B̄0m .The denominator integral in B̄0m is
∫1
0
r J 20 (λ0mr )dr .

This was found in HW4, from problem 3, which is∫ 1

0
r J 20 (λ0mr )dr =

1
2

[
J ′0 (λ0m)

] 2
But J ′0 (λ0m) = −J1 (λ0m), hence the above becomes∫ 1

0
r J 20 (λ0mr )dr =

1
2
J 21 (λ0m) (10C)

Applying (10B) and (10C), B̄0m simplifies to the following expression

B̄0m =
1

πϵ2λ0m

ϵ
λ0m

J1 (λ0mϵ)

1
2 J

2
1 (λ0m)

=
2

πϵλ20m

J1 (λ0mϵ)

J 21 (λ0m)

Therefore the final solution becomes

u (r , θ , t) =
∞∑

m=1
B̄0m sin (λ0mt) J0 (λ0mr )

u (r , θ , t) =
2
πϵ

∞∑
m=1

1

λ20m

J1 (λ0mϵ)

J 21 (λ0m)
J0 (λ0mr ) sin (λ0mt) (11)
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Plotting. When ϵ = 1
2 , the above solution (11) becomes

u (r , θ, t) =
4
π

∞∑
m=1

1

λ20m

J1
( 1
2λ0m

)
J 21 (λ0m)

J0 (λ0mr ) sin (λ0mt) (11A)

This is the 3D plot at t = 1 second

Out[ ]=

time 101

time = 1.

This is the 3D plot at t = 2 seconds

Out[ ]=

time 201

time = 2.

198



5.2 Final exam

5.2.6 Problem 5

Find the radial eigenfunctions and corresponding eigenvalues of the Laplace operator on the unit
ball subject to Dirichlet boundary conditions. A radial eigenfunction is one which depends only on
r =

√
x2 + y2 + z2. That is, solve

uxx + uyy + uzz + λ
2u = 0

Where u (x,y, z) = R (r ) with boundary conditions u (x,y, z) = 0 when x2 + y2 + z2 = 1.
Hint: The substitution rR (r ) = R̄ (r ) is useful.
solution
This is Helmholtz PDE ∇2u + λ2u = 0 in 3D. (Steady state of the wave equation, or standing waves).
The following spherical coordinates system are used 5

x

y

z
(r, θ, φ)

φ

θ

r

The Laplace operator in 3D using spherical coordinates (r , θ ,ϕ) is given by

∇2u =
1
r 2
∂

∂r

(
r 2
∂u

∂r

)
+

1
r 2 sinθ

∂

∂θ

(
sinθ

∂u

∂θ

)
+

1

r 2 sin2 θ

∂2u

∂ϕ2

Therefore ∇2u + λ2u = 0 becomes

1
r 2
∂

∂r

(
r 2
∂u

∂r

)
+

1
r 2 sinθ

∂

∂θ

(
sinθ

∂u

∂θ

)
+

1

r 2 sin2 θ

∂2u

∂ϕ2 + λ
2u = 0

The problem says that u (x,y, z) = R (r ). This implies that solution depends only on r . This means there
is no dependency on θ nor on ϕ. In this case, the PDE above simplifies to an ODE in r only.

1
r 2

d

dr

(
r 2
du

dr

)
+ λ2u = 0

d

dr

(
r 2
du

dr

)
+ λ2r 2u = 0

r 2
d2u

dr 2
+ 2r

du

dr
+ λ2r 2u = 0

And since u (r , θ ,ϕ) ≡ R (r ), then the above can be written as

r 2R′′ (r ) + 2rR′ (r ) + λ2r 2R (r ) = 0 (1)

With the boundary conditions R (1) = 0. Now the eigenvalue will be found.
case λ = 0
The ODE (1) becomes r 2R′′ + 2rR′ = 0. Let R′ (r ) = v (r ), and the ODE becomes v ′ + 2

rv = 0. The
integrating factor is e

∫
2
r dr = e2 ln |r | = r 2. d

dr

(
r 2v

)
= 0 or v = c1

r 2 . Therefore R′ (r ) = c1
r 2 . Integrating

again gives
R (r ) = c2 −

c1
r

At R (1) = 0, the above becomes

0 = c2 − c1

c2 = c1

Hence the solution becomes
R (r ) = c1

(
1 −

1
r

)
5Image obtained from Wikepedia
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The solution must be bounded as r → 0, therefore only choice is c1 = 0, leading to trivial solution.
Therefore λ = 0 is not eigenvalue.
Case λ , 0 6

The ODE is
r 2R′′ (r ) + 2rR′ (r ) + λ2r 2R (r ) = 0

Using standard transformation t = λr , then R′ (r ) = λR′ (t) and R′′ (r ) = λ2R′′ (t). The above ODE
becomes

λ2r 2R′′ (t) + 2λrR′ (t) + λ2r 2R (t) = 0

t2R′′ (t) + 2tR′ (t) + t2R (t) = 0 (2)

This looks like a Bessel ODE of zero order, except Bessel ODE is t2R′′ (t) + tR′ (t) + t2R (t) = 0. The
difference is (2) has 2t instead of t . To convert it to Bessel ODE, there is another transformation in the
dependent variable to achieve this. Let R (t) = Z (t )

√
t
, then

R′ (t) =
Z ′ (t)
√
t

−
1
2
Z (t)

1

t
3
2

(3)

R′′ (t) =
Z ′′ (t)
√
t

−
1
2
Z ′ (t)

1

t
3
2

−
1
2
Z ′ (t)

1

t
3
2

−
1
2

(
−
3
2

)
Z (t)

1

t
5
2

(4)

=
Z ′′ (t)
√
t

− Z ′ (t)
1

t
3
2

+
3
4
Z (t)

1

t
5
2

Substituting (3,4) back in (2) gives

t2
(
Z ′′ (t)
√
t

− Z ′ (t)
1

t
3
2

+
3
4
Z (t)

1

t
5
2

)
+ 2t

(
Z ′ (t)
√
t

−
1
2
Z (t)

1

t
3
2

)
+ t2

Z (t)
√
t
= 0

Multiplying by
√
t gives

t2
(
Z ′′ (t) − Z ′ (t)

1
t
+
3
4
Z (t)

1
t2

)
+ 2t

(
Z ′ (t) −

1
2
Z (t)

1
t

)
+ t2Z (t) = 0(

t2Z ′′ (t) − tZ ′ (t) +
3
4
Z (t)

)
+ (2tZ ′ (t) − Z (t)) + t2Z (t) = 0

t2Z ′′ (t) + tZ ′ (t) +
3
4
Z (t) − Z (t) + t2Z (t) = 0

t2Z ′′ (t) + tZ ′ (t) +

(
3
4
− 1 + t2

)
Z (t) = 0

t2Z ′′ (t) + tZ ′ (t) +

(
t2 −

1
4

)
Z (t) = 0

Or
t2Z ′′ (t) + tZ ′ (t) +

(
t2 −

1
4

)
Z (t) = 0

This is now in standard Bessel ODE form. To find the order, comparing it to t2Z ′′ (t) + tZ ′ (t) +(
t2 − n2

)
Z (t) = 0 shows that n2 = 1

4 , hence the order is 1
2 . (the negative root, give Bessel function

that blow up at zero. Therefore only 1
2 root is used as the order. The solution of the above Bessel ODE is

known to be
Z (t) = c1 J 1

2
(t) + c2Y 1

2
(t)

From above, R (t) = Z (t )
√
t
.Therefore the solution now becomes

R (t) = c1
J 1
2
(t)

√
t
+ c2

Y 1
2
(t)

√
t

And converting back to R (r ) finally gives the radial solution as

R (r ) = c1
J 1
2
(λr )

√
λr
+ c2

Y 1
2
(λr )

√
λr

Since the solution is bounded at r = 0, then c2 = 0 and the solution simplifies to

R (r ) = c1
J 1
2
(λr )

√
λr

(5)

Using R (1) = 0 gives

0 = c1
J 1
2
(λ)

√
λ

6I am assuming λ is real eigenvalue. Not complex.
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For non-trivial solution then
J 1
2
(λ) = 0

Hence λ are the positive zeros of J 1
2
(λ). These are the eigenvalues. The zeros of J 1

2
(λ) are multiple of π .

Hence the first zero is π , the second zero is 2π and so on.

λn = nπ n = 1, 2, 3, · · ·

Therefore, the eigenfunctions (5) becomes

Rn (r ) =

√
1

nπr
J 1
2
(nπr ) n = 1, 2, 3, · · · (6)

These are also called spherical Bessel functions, since half integer order. There is a known relation
between spherical Bessel functions and circular trigonometric functions which says

J 1
2
(x) =

√
2
πx

sin (x)

Using the above, the eigenfunctions (6) can also be written as

Rn (r ) =

√
2
π 3

sin (nπr )
nr

n = 1, 2, 3, · · ·

Note that

lim
r→0

√
2
π 3

sin (nπr )
nr

=

√
2
π

= 0.797885

For all n. Below is a plot of the first 6 eigenfunctions
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Radial solution R(r) for the eigenvalue 2π
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Radial solution R(r) for the eigenvalue 3π
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Radial solution R(r) for the eigenvalue 4π

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

r

R
(r
)

Radial solution R(r) for the eigenvalue 5π
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Radial solution R(r) for the eigenvalue 6π
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Chapter 6: Study notes, cheat sheets

6.1 cheat sheets

6.1.1 First exam cheat sheet
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