THE PRÜFER ANGLE

We consider a regular Sturm-Liouville eigenvalue problem

$$
\begin{equation*}
-\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=\lambda r(x) y, \quad x \in[a, b] \tag{1}
\end{equation*}
$$

with boundary conditions of the form

$$
\begin{align*}
\cos \alpha y(a) & =\sin \alpha p(a) y^{\prime}(a), \tag{2}\\
\cos \beta y(b) & =\sin \beta p(b) y^{\prime}(b), \tag{3}
\end{align*}
$$

where

$$
0 \leq \alpha<\pi, \quad 0<\beta \leq \pi .
$$

Let $y(x)$ be a nontrivial solution of (1). Then we set

$$
\xi(x)=p(x) y^{\prime}(x)=\rho(x) \cos \phi(x), \quad \eta(x)=y(x)=\rho(x) \sin \phi(x) .
$$

Then

$$
\rho(x)=\sqrt{\xi(x)^{2}+\eta(x)^{2}}, \quad \phi(x)=\arctan \frac{\eta(x)}{\xi(x)}=\operatorname{arccot} \frac{\xi(x)}{\eta(x)} .
$$

ϕ is called Prüfer angle, and ρ is called Prüfer radius. In order to determine $\phi(x)$ we first choose $\phi(a)$, for example, $-\pi<\phi(a) \leq \pi$. Then we use the arctan-formula if $\xi \neq 0$ and the arccot-formula if $\eta \neq 0$. We have to choose the proper branch of the multi-valued arctan, arccot, so that $\phi(x)$ becomes a continuous function (and then also continuously differentiable.)

From the equations

$$
\xi^{\prime}=\rho^{\prime} \cos \phi-\rho \phi^{\prime} \sin \phi, \quad \eta^{\prime}=\rho^{\prime} \sin \phi+\rho \phi^{\prime} \cos \phi,
$$

we obtain

$$
\eta^{\prime} \cos \phi-\xi^{\prime} \sin \phi=\rho \phi^{\prime} .
$$

Since $\xi^{\prime}=\left(p u^{\prime}\right)^{\prime}=(q-\lambda r) \rho \sin \phi, \eta^{\prime}=\frac{\xi}{p}=\frac{\rho}{p} \cos \phi$, it follows that

$$
\begin{equation*}
\phi^{\prime}=\frac{1}{p} \cos ^{2} \phi+(\lambda r-q) \sin ^{2} \phi \tag{4}
\end{equation*}
$$

A similar calculation shows that

$$
\rho^{\prime}=\left(\frac{1}{p}+q-\lambda r\right) \rho \cos \phi \sin \phi .
$$

It is important to note that (4) is a first order differential equation for the Prüfer angle. In order to satisfy the first boundary condition (2), we choose $\phi(a)=\alpha$. Then $\phi(x, \lambda)$ is uniquely determined by (2). The second boundary condition (3) is satisfied if

$$
\phi(b, \lambda)=\beta+n \pi
$$

where n is an integer. One can show that $\lim _{\lambda \rightarrow-\infty} \phi(b, \lambda)=0, \lim _{\lambda \rightarrow \infty} \phi(b, \lambda)=$ ∞ and $\phi(b, \lambda)$ is an increasing function of λ. Therefore, for every $n=$
$0,1,2, \ldots$, there is a unique solution $\lambda=\lambda_{n}$ of $\phi(b, \lambda)=\beta+n$ and the sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ represents all the eigenvalues of the regular Sturm-Liouville problem.
Example: Consider

$$
-\left((1+x) y^{\prime}(x)\right)^{\prime}+x y=\lambda\left(1+x^{2}\right) y, \quad y(0)=0, y^{\prime}(1)=0
$$

Then $p(x)=1+x, q(x)=x, r(x)=1+x^{2}, \alpha=0, \beta=\pi / 2$.

Figure 1. Prüfer angle $\phi(1, \lambda)$
The smallest two eigenvalues are

$$
\lambda_{0}=2.51173, \quad \lambda_{1}=24.9158
$$

Figure 2. Eigenfunction for $\lambda=\lambda_{0}$

Figure 3. Eigenfunction for $\lambda=\lambda_{1}$

