THE DIRICHLET PROBLEM ON AN ELLIPSE

We want to solve the Dirichlet problem

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \text { for }(x, y) \text { in } D, \\
& u(x, y)=f(x, y) \text { for }(x, y) \text { on the boundary of } D
\end{aligned}
$$

when D is the region inside the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

We assume that $a>b>0$. The focal points of the ellipse are $(\pm c, 0)$. We introduce elliptic coordinates

$$
x=c \cosh \xi \cos \eta, \quad y=c \sinh \xi \sin \eta .
$$

Usually $\xi>0$ and $0 \leq \eta<2 \pi$ or $-\pi<\eta \leq \pi$.

Figure 1. Elliptic Coordinates
We set $v(\xi, \eta)=u(c \cosh \xi \cos \eta, c \sinh \xi \sin \eta)$. Then, by the chain rule,

$$
\begin{aligned}
v_{\xi \xi}= & (c \sinh \xi \cos \eta)^{2} u_{x x}+2 c^{2} \cosh \xi \sinh \xi \cos \eta \sin \eta u_{x y} \\
& +(c \cosh \xi \sin \eta)^{2} u_{y y}+c \cosh \xi \cos \eta u_{x}+c \sinh \xi \sin \eta u_{y}, \\
v_{\eta \eta}= & (c \cosh \xi \sin \eta)^{2} u_{x x}-2 c^{2} \cosh \xi \sinh \xi \cos \eta \sin \eta u_{x y} \\
& +(c \sinh \xi \cos \eta)^{2} u_{y y}-c \cosh \xi \cos \eta u_{x}-c \sinh \xi \sin \eta u_{y} .
\end{aligned}
$$

SO

$$
v_{\xi \xi}+v_{\eta \eta}=c^{2}\left(\cosh ^{2} \xi-\cos ^{2} \eta\right)\left(u_{x x}+u_{y y}\right)
$$

Therefore, the equation $u_{x x}+u_{y y}=0$ is equivalent to $v_{\xi \xi}+v_{\eta \eta}=0$. We use separation of variables

$$
v(\xi, \eta)=\Xi(\xi) E(\eta)
$$

Then we find

$$
\Xi^{\prime \prime}-\lambda \Xi=0, \quad E^{\prime \prime}+\lambda E=0
$$

The equation for E has to have nontrivial 2π periodic solutions. Therefore, $\lambda=n^{2}, n=0,1,2, \ldots$ and

$$
E_{n}(\eta)=c_{n} \cos (n \eta)+d_{n} \sin (n \eta)
$$

The general solution of the differential equation for Ξ with $\lambda=n^{2}$ is

$$
\Xi(\xi)=a_{n} \cosh (n \xi)+d_{n} \sinh (n \xi)
$$

If we consider the function

$$
v(\xi, \eta)=\cosh n \xi \sin n \eta
$$

then we notice that $v(\xi,-\eta)=-v(\xi, \eta)$ so $u(x,-y)=-u(x, y)$. But then $u(x, 0)$ should be zero on the focal line which is not true. Therefore, $u(x, y)$ is discontinuous at the focal line $[-c, c]$. Similarly, the function $v(\xi, \eta)=$ $\sinh n \xi \cos n \eta$ has a discontinuous derivative u_{y}. Therefore, we consider only

$$
\begin{equation*}
v_{n}(\xi, \eta)=c_{n} \cosh n \xi \cos n \eta+d_{n} \sinh n \xi \sin n \eta \tag{1}
\end{equation*}
$$

In fact, we show below that the corresponding function $u_{n}(x, y)$ is a polynomial in x, y. Therefore, by superposition, we find the solution

$$
\begin{equation*}
v(\xi, \eta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty}\left(c_{n} \cosh n \xi \cos n \eta+d_{n} \sinh n \xi \sin n \eta\right) \tag{2}
\end{equation*}
$$

The boundary of D is given by $\xi=\xi_{0}$, where $\xi_{0}>0$ is determined from $c \cosh \xi_{0}=a$. Therefore, in order to satisfy the boundary condition

$$
F(\eta):=f\left(c \cosh \xi_{0} \cos \eta, c \sinh \xi_{0} \sin \eta\right)=v\left(\xi_{0}, \eta\right)
$$

we set

$$
c_{n} \cosh n \xi_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\eta) \cos n \eta d \eta, \quad n \geq 0
$$

and

$$
d_{n} \sinh n \xi_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\eta) \sin n \eta d \eta, \quad n \geq 1
$$

Substituting these values of c_{n}, d_{n} in (2) we find the solution of the Dirichlet problem for the ellipse. We see that the series in (2) converges very well for $\xi<\xi_{0}$. The quality of convergence on the boundary ellipse $\xi=\xi_{0}$ is the same as that of the Fourier series for $F(\eta)$.

The function v_{n} defined in (1) ic called an ellipsoidal harmonic of degree n. These functions are polynomials in x, y as we show below. We use the Chebyshev polynomials T_{n} defined by $\cos n \theta=T_{n}(\cos \theta)$. They also satisfy
$\cosh n z=T_{n}(\cosh z)$. The Chebyshev polynomials can be calculated from the recursion

$$
T_{0}(z)=1, T_{1}(z)=z, T_{n+1}(z)=2 z T_{n}(z)-T_{n-1}(z)
$$

so

$$
T_{2}(z)=2 z^{2}-1, \quad T_{3}(z)=4 z^{3}-3 z, \quad T_{4}(z)=8 z^{4}-8 z^{2}+1
$$

Then

$$
\begin{aligned}
\cosh n \xi \cos n \eta+i \sinh n \xi \sin n \eta & =\cosh n(\xi+i \eta) \\
& =T_{n}(\cosh (\xi+i \eta)) \\
& =T_{n}(\cosh \xi \cos \eta+i \sinh \xi \sin \eta) \\
& =T_{n}\left(c^{-1}(x+i y)\right) .
\end{aligned}
$$

For example,

$$
\begin{aligned}
\cosh 2 \xi \cos 2 \eta & =\operatorname{Re}\left(2 c^{-2}(x+i y)^{2}-1\right) \\
\sinh 2 \xi \sin 2 \eta & =2\left(\frac{x}{c}\right)^{2}-2\left(\frac{y}{c}\right)^{2}-1, \\
\operatorname{Im}\left(2 c^{-2}(x+i y)^{2}-1\right) & =2 \frac{x y}{c^{2}} .
\end{aligned}
$$

Example: Solve the Dirichlet problem $u_{x x}+u_{y y}=0$ inside the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ with boundary condition $u(x, y)=\frac{1}{3} x^{2}$.
Solution: We have $a=3, b=2$ and $c=\sqrt{5}$. The ellipse is given by $\xi=\xi_{0}$ where $c \cosh \xi_{0}=a, c \sinh \xi_{0}=b$. The boundary condition is given by the function $F(\eta)=\frac{1}{3} a^{2} \cos ^{2} \eta=3 \cos ^{2} \eta$. Its Fourier expansion is

$$
f(\eta)=3 \cos ^{2} \eta=\frac{3}{2}+\frac{3}{2} \cos 2 \eta .
$$

The solution of the Dirichlet problem in elliptic coordinates is

$$
v(\xi, \eta)=\frac{3}{2}+\frac{3}{2} \frac{\cosh 2 \xi}{\cosh 2 \xi_{0}} \cos 2 \eta .
$$

Transforming to cartesian coordinates we get

$$
u(x, y)=\frac{3}{2}+\frac{3}{2} \frac{5}{13}\left(2 \frac{x^{2}}{5}-2 \frac{y^{2}}{5}-1\right)=\frac{12}{13}+\frac{3}{13}\left(x^{2}-y^{2}\right)
$$

