
THE FOURIER CONVERGENCE THEOREM

Before we can prove the Fourier convergence theorem we need some prepa-
rations.

Lemma 1. Let g be a T -periodic function which is integrable on [0, T ].
Then, for all a,

∫

T

0
g(x) dx =

∫

a+T

a

g(x) dx.

Proof. There is an integer k such that (k − 1)T ≤ a < kT . Then
∫

a+T

a

g(x) dx =

∫

kT

a

g(x) dx +

∫

a+T

kT

g(x) dx.

In the first integral on the right-hand side we substitute x = t− T and use
g(t− T ) = g(t). Then we obtain

∫

a+T

a

g(x) dx =

∫ (k+1)T

a+T

g(t) dt +

∫

a+T

kT

g(x) dx.

Therefore,
∫

a+T

a

g(x) dx =

∫ (k+1)T

kT

g(x) dx =

∫

T

0
g(s) ds,

where we substituted x = s+ kT . �

The Dirichlet kernel Dn, n = 0, 1, 2, . . . , is defined by

Dn(t) =
1

2
+ cos t+ cos(2t) + · · ·+ cos(nt).

This is an even function with period 2π. The graph of D5 is shown in
Figure 1.

Lemma 2. If t 6= 0,±2π,±4π, . . . then

Dn(t) =
sin(2n + 1)12 t

2 sin 1
2 t

.

Otherwise, Dn(t) = n+ 1
2 .

Proof. Using cos t = 1
2(e

it + e−it), we have

Dn(t) =
1

2

n
∑

m=−n

eimt.

1
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Figure 1. Graph of D5(t)

We set z = eit. Then

Dn(t) =
1

2
z−n(1 + z + z2 + · · ·+ z2n)

=
1

2
z−n

z2n+1 − 1

z − 1

=
1

2
e−int

e(2n+1)it − 1

eit − 1

=
1

2

ei(2n+1) 1
2
t − e−i(2n+1) 1

2
t

ei
1

2
t − e−i

1

2
t

=
sin((2n + 1)12 t

2 sin 1
2 t

,

where we used sin t = 1
2i(e

it − e−it). �

Lemma 3 (Bessel’s inequality). Let f be a 2L-periodic function which is

integrable on [−L,L] with Fourier coefficients

(1) am =
1

L

∫

L

−L

f(t) cos
mπt

L
dt, bm =

1

L

∫

L

−L

f(t) sin
mπt

L
dt.

Then

(2)
1

2
a20 +

∞
∑

m=1

(a2m + b2m) ≤
1

L

∫

L

−L

f(t)2 dt.

In particular,

lim
m→∞

am = 0, lim
m→∞

bm = 0.
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Proof. Let n be a positive integer, and consider

sn(t) =
1

2
a0 +

n
∑

m=1

(

am cos
mπt

L
+ bm sin

mπt

L

)

.

Then

0 ≤
1

L

∫

L

−L

(f(t)−sn(t))
2 dt =

1

L

∫

L

−L

f(t)2 dt−
2

L

∫

L

−L

f(t)sn(t) dt+
1

L

∫

L

−L

sn(t)
2 dt.

Now, using the definition of sn,

2

L

∫

L

−L

f(t)sn(t) dt = 2

(

1

2
a20 +

n
∑

m=1

(a2m + b2m)

)

.

By orthogonality,

1

L

∫

L

−L

sn(t)
2 dt =

1

2
a20 +

n
∑

m=1

(a2m + b2m).

Therefore,

0 ≤
1

L

∫

L

−L

f(t)2 dt−

(

1

2
a20 +

n
∑

m=1

(a2m + b2m)

)

.

This is true for all n so (2) follows. �

Actually, equality holds in (2) (Parseval’s equation) but we do not need
this result right now.

A function f is said to be piecewise continuous on the interval [a, b] if the
interval can be partitioned by a finite number of points a = x0 < x1 < · · · <

xn = b so that
1. f is continuous on the open interval (xi−1, xi) for i = 1, 2, . . . , n;
2. the one-sided limits f(x+

i−1) = lim
x→x

+

i−1

f(x) = and f(x−
i
) = lim

x→x
−

i

f(x)

exist and are finite for each i = 1, 2, . . . , n.

Theorem 4 (Fourier convergence theorem). Let f be a function with period

2L such that f and f ′ are piecewise continuous on [−L,L]. Let am, bm be

the Fourier coefficients of f as defined in (1). Then, for all real x,

1

2
(f(x+) + f(x−)) =

1

2
a0 +

∞
∑

m=1

(

am cos
mπx

L
+ bm sin

mπx

L

)

.

In particular, if f is continuous at x,

f(x) =
1

2
a0 +

∞
∑

m=1

(

am cos
mπx

L
+ bm sin

mπx

L

)

.
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Proof. In order to simplify the writing we assume that L = π (consider
f(L

π
t) in place of f .) In the following x denotes a fixed real number. For a

positive integer n we define the partial sum of the Fourier series

sn(x) =
1

2
a0 +

n
∑

m=1

(am cosmx+ bm sinmx) .

Then using (1)

sn(x) =
1

2π

∫

π

−π

f(t) dt+

n
∑

m=1

1

π

∫

π

−π

f(t)(cosmx cosmt+ sinmx sinmt) dt

=
1

2π

∫

π

−π

f(t) dt+
n
∑

m=1

1

π

∫

π

−π

f(t) cosm(t− x) dt.

By definition of Dn,

sn(x) =
1

π

∫

π

−π

f(t)Dn(t− x) dt.

We substitute t− x = u. Then

sn(x) =
1

π

∫

π−x

−π−x

f(x+ u)Dn(u) du.

By Lemma 1,

sn(x) =
1

π

∫

π

−π

f(x+ u)Dn(u) du.

We split the integral in two

sn(x) =
1

π

∫ 0

−π

f(x+ u)Dn(u) du+
1

π

∫

π

0
f(x+ u)Dn(u) du.

It follows easily from the definition of Dn that

1

π

∫ 0

−π

Dn(t) dt =
1

π

∫

π

0
Dn(t) dt =

1

2
.

Therefore,

sn(x)−
1

2
(f(x+) + f(x−)) = In + Jn,

where

In =
1

π

∫ 0

−π

(f(x+u)−f(x−))Dn(u) du, Jn =
1

π

∫

π

0
(f(x+u)−f(x+))Dn(u) du.

We now show that the two integrals In, Jn converge to 0 as n → ∞ which
completes the proof. We do this only for Jn, In is treated similarly. Now,
using Lemma 2,

Jn =
1

π

∫

π

0
(f(x+ u)− f(x+))

sin(2n + 1)12u

2 sin 1
2u

du.
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Substituting u = 2t we can write this as

Jn =
2

π

∫ 1

2
π

0
g(t) sin(2n + 1)t dt,

where

g(t) =
f(x+ 2t)− f(x+)

2t

t

sin t
for 0 < t ≤

1

2
π.

Since we assumed that f ′ is piecewise continuous, the limit limt→0+ g(t)
exists as a finite number (to see this one has to apply the mean-value the-
orem). Therefore, the function g is piecewise continuous and thus inte-
grable on [0, 12π]. It follows from Lemma 3 (with L = 1

2π and g(t) = 0 for
−L < t < 0) that limn→∞ Jn = 0. �

Remark: In the proof we did not directly use that f ′ is piecewise con-
tinuous. It would be simpler to just assume that the limits

lim
t→0+

f(x+ t)− f(x+)

t
, lim

t→0−

f(x+ t)− f(x−)

t

exist and are finite.


