THE FOURIER CONVERGENCE THEOREM

Before we can prove the Fourier convergence theorem we need some prepa-
rations.

Lemma 1. Let g be a T-periodic function which is integrable on [0,T].

Then, for all a,
T a+T
/ g(x)dx :/ g(x) dz.
0 a

Proof. There is an integer k such that (k — 1)T < a < kT. Then
a+T kT a+T
/ g(x)dx = / g(x)dx + / g(x)dx.
a a k

T

In the first integral on the right-hand side we substitute x = ¢t —T" and use
g(t —T) = g(t). Then we obtain

a+T (k+1)T a+T
/ g(x)dx = / g(t)dt + / g(x)dx.
a a k

+T T
Therefore,
a+T (k+1)T T
[ swan= [ gwyde= [ gs)ds
a kT 0
where we substituted x = s + kT O

The Dirichlet kernel D,,, n =0,1,2,..., is defined by
1
D,(t) = B + cost 4 cos(2t) + - - - + cos(nt).

This is an even function with period 27w. The graph of Ds is shown in
Figure 1.

Lemma 2. Ift # 0,127, +47, ... then
sin(2n + 1)1t

D,(t) =
n(®) 2sin 3¢

Otherwise, Dy,(t) =n + 3.

Proof. Using cost = 3(e® + e~™), we have

1 —
Dn(t):§ Z €th.

m=—n

1
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FIGURE 1. Graph of Ds(t)

We set z = e't. Then

1
Dn(t) =52 "(1+2+ 224+ 27

1 3 ZZnJrl -1
N 5 z—1
1 J—int 6(2n+1)it -1
3¢ et —1
1 62(2n+1)%t _ 6—i(2n+1)§t
D) T
sin((2n + 1)3t
=01,
2sin 5t
where we used sint = o (e — ™). O

Lemma 3 (Bessel’ inequality). Let f be a 2L-periodic function which is
integrable on [—L, L] with Fourier coefficients

L
(1) / f(t) cos—dt by = %/Lf(t)sianmdt.
Then
1 2 L 2
(2) —a0+m§:1 G+ 0) < 7 _Lf(t) dt

In particular,
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Proof. Let n be a positive integer, and consider

1 - t t
sp(t) = Zag + Z (am cos mTﬂ + b, sin mgr ) .

2
m=1
Then
L L L L
o< [ GO-soPd= [ g@ra-t [ s [ s

Now, using the definition of s,

L n
2 /L F(t)salt) dt =2 Gag + 3+ bfn)> .

By orthogonality,

Therefore,

1 /L 2 Ly N2 2
0< — f@) dt — | zag + (a;, +0:,) | -
AR G
This is true for all n so (2) follows. O

Actually, equality holds in (2) (Parseval’s equation) but we do not need
this result right now.

A function f is said to be piecewise continuous on the interval [a, b] if the
interval can be partitioned by a finite number of points a = zg < 21 < --- <
T, = b so that

1. f is continuous on the open interval (z;_1,2;) for i =1,2,... n;
2. the one-sided limits f(z} |) = li]rng:_mit1 f(z) =and f(z; ) = limgg_m; f(z)
exist and are finite for each i = 1,2,...,n.

Theorem 4 (Fourier convergence theorem). Let f be a function with period
2L such that f and f' are piecewise continuous on [—L,L]. Let apy,, by, be
the Fourier coefficients of f as defined in (1). Then, for all real x,

1 1 mnx mmnx
- + ) — = idehed i
2(f(a: )+ f(z7)) 2ao+m§:1 (amcos 7 + by, sin 7 )

In particular, if f is continuous at x,

1 > mmx mnx
flx) = 540 + Z (am cos — + b, sin 7 ) .
m=1
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Proof. In order to simplify the writing we assume that L = 7 (consider
I (%t) in place of f.) In the following x denotes a fixed real number. For a

positive integer n we define the partial sum of the Fourier series
n

1
sp(z) = S0+ Z (@m cos max + by, sinma) .

m=1
Then using (1)
( )—i ﬂf(t)dt—kil 7rf(t)(cos cos mt + si sin mt) dt
sn(2) = o - 2z ), mx cos m inmaxsinm
1 (7 ~1 ("
= fydt+ > = [ f(t)cosm(t —x)dt.
2 Jn m=1" J-

By definition of D,,,

sp(z) = 1 /ﬂx f(z +u)Dy(u) du.

—TT—X

By Lemma 1,
1 ™
Sn(x) = - f(z +w)Dy(u) du.

—T
We split the integral in two

0 ™
sp(z) = % f(z+wu)Dy(u) du + % /0 f(z +u)Dy(u) du.

—T

It follows easily from the definition of D,, that

% (;Dn(t) dt = %/OﬂDn(t)dt - %
Therefore,
$n(a) — 5 (P + F@) = T+
where
L=t i< Flas)~fa N Dalw)du, gy =2 [ (G- D) da

We now show that the two integrals I, J, converge to 0 as n — oo which
completes the proof. We do this only for J,, I, is treated similarly. Now,
using Lemma 2,

™ sin(2n 1y
== / (Flo +u) — flat) 02t Dgu
0

1
2sin U
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Substituting u = 2t we can write this as
1

2 =57
Ip = — /2 g(t)sin(2n + 1)t dt,
™ Jo
where fl@+2t) - fa*) 1
x4+ 2t) — f(x t
- < o
9(t) 2t sint for 0 <t < 27T

Since we assumed that f’ is piecewise continuous, the limit lim, o+ g(t)
exists as a finite number (to see this one has to apply the mean-value the-
orem). Therefore, the function ¢ is piecewise continuous and thus inte-
grable on [0, 37]. It follows from Lemma 3 (with L = 17 and g(t) = 0 for

—L <t <0) that limy, e Jp = 0.

Remark: In the proof we did not directly use that f’ is piecewise con-
tinuous. It would be simpler to just assume that the limits

flatt) - flz7)

t) — +
i J@ )~ flz )’ lim
t—0+ t t—0— t
exist and are finite.



