THE FOURIER CONVERGENCE THEOREM

Before we can prove the Fourier convergence theorem we need some preparations.

Lemma 1. Let g be a T-periodic function which is integrable on $[0, T]$. Then, for all a,

$$
\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x
$$

Proof. There is an integer k such that $(k-1) T \leq a<k T$. Then

$$
\int_{a}^{a+T} g(x) d x=\int_{a}^{k T} g(x) d x+\int_{k T}^{a+T} g(x) d x
$$

In the first integral on the right-hand side we substitute $x=t-T$ and use $g(t-T)=g(t)$. Then we obtain

$$
\int_{a}^{a+T} g(x) d x=\int_{a+T}^{(k+1) T} g(t) d t+\int_{k T}^{a+T} g(x) d x
$$

Therefore,

$$
\int_{a}^{a+T} g(x) d x=\int_{k T}^{(k+1) T} g(x) d x=\int_{0}^{T} g(s) d s
$$

where we substituted $x=s+k T$.
The Dirichlet kernel $D_{n}, n=0,1,2, \ldots$, is defined by

$$
D_{n}(t)=\frac{1}{2}+\cos t+\cos (2 t)+\cdots+\cos (n t) .
$$

This is an even function with period 2π. The graph of D_{5} is shown in Figure 1.

Lemma 2. If $t \neq 0, \pm 2 \pi, \pm 4 \pi, \ldots$ then

$$
D_{n}(t)=\frac{\sin (2 n+1) \frac{1}{2} t}{2 \sin \frac{1}{2} t} .
$$

Otherwise, $D_{n}(t)=n+\frac{1}{2}$.
Proof. Using $\cos t=\frac{1}{2}\left(e^{i t}+e^{-i t}\right)$, we have

$$
D_{n}(t)=\frac{1}{2} \sum_{m=-n}^{n} e^{i m t}
$$

Figure 1. Graph of $D_{5}(t)$
We set $z=e^{i t}$. Then

$$
\begin{aligned}
D_{n}(t) & =\frac{1}{2} z^{-n}\left(1+z+z^{2}+\cdots+z^{2 n}\right) \\
& =\frac{1}{2} z^{-n} \frac{z^{2 n+1}-1}{z-1} \\
& =\frac{1}{2} e^{-i n t} \frac{e^{(2 n+1) i t}-1}{e^{i t}-1} \\
& =\frac{1}{2} \frac{e^{i(2 n+1) \frac{1}{2} t}-e^{-i(2 n+1) \frac{1}{2} t}}{e^{i \frac{1}{2} t}-e^{-i \frac{1}{2} t}} \\
& =\frac{\sin \left((2 n+1) \frac{1}{2} t\right.}{2 \sin \frac{1}{2} t}
\end{aligned}
$$

where we used $\sin t=\frac{1}{2 i}\left(e^{i t}-e^{-i t}\right)$.
Lemma 3 (Bessel's inequality). Let f be a $2 L$-periodic function which is integrable on $[-L, L]$ with Fourier coefficients

$$
\begin{equation*}
a_{m}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{m \pi t}{L} d t, \quad b_{m}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{m \pi t}{L} d t . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1}{2} a_{0}^{2}+\sum_{m=1}^{\infty}\left(a_{m}^{2}+b_{m}^{2}\right) \leq \frac{1}{L} \int_{-L}^{L} f(t)^{2} d t . \tag{2}
\end{equation*}
$$

In particular,

$$
\lim _{m \rightarrow \infty} a_{m}=0, \quad \lim _{m \rightarrow \infty} b_{m}=0
$$

Proof. Let n be a positive integer, and consider

$$
s_{n}(t)=\frac{1}{2} a_{0}+\sum_{m=1}^{n}\left(a_{m} \cos \frac{m \pi t}{L}+b_{m} \sin \frac{m \pi t}{L}\right) .
$$

Then
$0 \leq \frac{1}{L} \int_{-L}^{L}\left(f(t)-s_{n}(t)\right)^{2} d t=\frac{1}{L} \int_{-L}^{L} f(t)^{2} d t-\frac{2}{L} \int_{-L}^{L} f(t) s_{n}(t) d t+\frac{1}{L} \int_{-L}^{L} s_{n}(t)^{2} d t$.
Now, using the definition of s_{n},

$$
\frac{2}{L} \int_{-L}^{L} f(t) s_{n}(t) d t=2\left(\frac{1}{2} a_{0}^{2}+\sum_{m=1}^{n}\left(a_{m}^{2}+b_{m}^{2}\right)\right)
$$

By orthogonality,

$$
\frac{1}{L} \int_{-L}^{L} s_{n}(t)^{2} d t=\frac{1}{2} a_{0}^{2}+\sum_{m=1}^{n}\left(a_{m}^{2}+b_{m}^{2}\right)
$$

Therefore,

$$
0 \leq \frac{1}{L} \int_{-L}^{L} f(t)^{2} d t-\left(\frac{1}{2} a_{0}^{2}+\sum_{m=1}^{n}\left(a_{m}^{2}+b_{m}^{2}\right)\right) .
$$

This is true for all n so (2) follows.
Actually, equality holds in (2) (Parseval's equation) but we do not need this result right now.

A function f is said to be piecewise continuous on the interval $[a, b]$ if the interval can be partitioned by a finite number of points $a=x_{0}<x_{1}<\cdots<$ $x_{n}=b$ so that

1. f is continuous on the open interval $\left(x_{i-1}, x_{i}\right)$ for $i=1,2, \ldots, n$;
2. the one-sided limits $f\left(x_{i-1}^{+}\right)=\lim _{x \rightarrow x_{i-1}^{+}} f(x)=$ and $f\left(x_{i}^{-}\right)=\lim _{x \rightarrow x_{i}^{-}} f(x)$ exist and are finite for each $i=1,2, \ldots, n$.

Theorem 4 (Fourier convergence theorem). Let f be a function with period $2 L$ such that f and f^{\prime} are piecewise continuous on $[-L, L]$. Let a_{m}, b_{m} be the Fourier coefficients of f as defined in (1). Then, for all real x,

$$
\frac{1}{2}\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right)=\frac{1}{2} a_{0}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right) .
$$

In particular, if f is continuous at x,

$$
f(x)=\frac{1}{2} a_{0}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right) .
$$

Proof. In order to simplify the writing we assume that $L=\pi$ (consider $f\left(\frac{L}{\pi} t\right)$ in place of f.) In the following x denotes a fixed real number. For a positive integer n we define the partial sum of the Fourier series

$$
s_{n}(x)=\frac{1}{2} a_{0}+\sum_{m=1}^{n}\left(a_{m} \cos m x+b_{m} \sin m x\right) .
$$

Then using (1)

$$
\begin{aligned}
s_{n}(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t+\sum_{m=1}^{n} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)(\cos m x \cos m t+\sin m x \sin m t) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t+\sum_{m=1}^{n} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos m(t-x) d t .
\end{aligned}
$$

By definition of D_{n},

$$
s_{n}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_{n}(t-x) d t
$$

We substitute $t-x=u$. Then

$$
s_{n}(x)=\frac{1}{\pi} \int_{-\pi-x}^{\pi-x} f(x+u) D_{n}(u) d u
$$

By Lemma 1,

$$
s_{n}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+u) D_{n}(u) d u .
$$

We split the integral in two

$$
s_{n}(x)=\frac{1}{\pi} \int_{-\pi}^{0} f(x+u) D_{n}(u) d u+\frac{1}{\pi} \int_{0}^{\pi} f(x+u) D_{n}(u) d u .
$$

It follows easily from the definition of D_{n} that

$$
\frac{1}{\pi} \int_{-\pi}^{0} D_{n}(t) d t=\frac{1}{\pi} \int_{0}^{\pi} D_{n}(t) d t=\frac{1}{2} .
$$

Therefore,

$$
s_{n}(x)-\frac{1}{2}\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right)=I_{n}+J_{n},
$$

where
$I_{n}=\frac{1}{\pi} \int_{-\pi}^{0}\left(f(x+u)-f\left(x^{-}\right)\right) D_{n}(u) d u, \quad J_{n}=\frac{1}{\pi} \int_{0}^{\pi}\left(f(x+u)-f\left(x^{+}\right)\right) D_{n}(u) d u$.
We now show that the two integrals I_{n}, J_{n} converge to 0 as $n \rightarrow \infty$ which completes the proof. We do this only for J_{n}, I_{n} is treated similarly. Now, using Lemma 2,

$$
J_{n}=\frac{1}{\pi} \int_{0}^{\pi}\left(f(x+u)-f\left(x^{+}\right)\right) \frac{\sin (2 n+1) \frac{1}{2} u}{2 \sin \frac{1}{2} u} d u .
$$

Substituting $u=2 t$ we can write this as

$$
J_{n}=\frac{2}{\pi} \int_{0}^{\frac{1}{2} \pi} g(t) \sin (2 n+1) t d t
$$

where

$$
g(t)=\frac{f(x+2 t)-f\left(x^{+}\right)}{2 t} \frac{t}{\sin t} \quad \text { for } 0<t \leq \frac{1}{2} \pi .
$$

Since we assumed that f^{\prime} is piecewise continuous, the limit $\lim _{t \rightarrow 0^{+}} g(t)$ exists as a finite number (to see this one has to apply the mean-value theorem). Therefore, the function g is piecewise continuous and thus integrable on $\left[0, \frac{1}{2} \pi\right]$. It follows from Lemma 3 (with $L=\frac{1}{2} \pi$ and $g(t)=0$ for $-L<t<0$) that $\lim _{n \rightarrow \infty} J_{n}=0$.

Remark: In the proof we did not directly use that f^{\prime} is piecewise continuous. It would be simpler to just assume that the limits

$$
\lim _{t \rightarrow 0^{+}} \frac{f(x+t)-f\left(x^{+}\right)}{t}, \quad \lim _{t \rightarrow 0^{-}} \frac{f(x+t)-f\left(x^{-}\right)}{t}
$$

exist and are finite.

