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0.0.1 Problem 1

Find the solution to y” —y = ¢*,y(0) = 1,y (1) =0
solution

O 0 I & v WD

The solution to the homogeneous ODE is y, = Ae* + Be™™. Let the particular be y, = Cxe*.

Hence y, = Ce* + Cxe* and y = Ce* + Ce* + Cxe™. Substituting into the ODE gives

2Ce* + Cxe* — Cxe* = e~
2C=1

1

Cc==

2

Hence y, = 3xe* and the complete solution is

1
y=Ae" +Be ™ + Exex

A, B are now found from boundary conditions. At x = 0
1=A+B

Andatx =1 .
0=Ae+Be_1+Ee

(1,2) are now solved for A, B. From (1), A = 1 — B. (2) becomes

1
0=(1—B)e+Be_1+§e

1
=e—Be+Be_1+5e

3
=B(e!'—¢e) + e
=)+
3 e
B=-=
2el—¢
_3 e
T 2e—e!
Hence
3e 2(e—e71) —3e
. _ 2 )
2(e—e1) 2(e—e)
_2e—2e'—3e
T 2(e—e))
_—e—2e_1
C2(e—e))
_e+2e!
~2(e7l—e)
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Therefore the solution is

0.0.2 Problem 2

Find Fourier cosine series for
X 0<x<1

f(x):{l 1<x<2

Choose L = 2. Apply the Fourier convergence theorem. What do we get at x = 1?

solution

For cosine series, the function is even extended from x = —2- - - 2. Therefore only a, terms
exist.

f(x)= % +§ancos(nfﬂx)

Where L = 2. But % is average value. Since the area is 2 (% + 1) = 3, then the average is %, since
the extent is 4. Therefore ay = % To find a,

1 L
ap = I J‘_L f(x) cos (%x) dx
But f (x) and cosine are even. Hence the above simplifies to
2 ni
anp = | f(x)cos (—x) dx
0 2
2

= ([ wcos (ox) s [ cos (%) ]

But | x cos axdx = 584X 4 XSaX theyefore
a? a

1 ni ni
T cos (2 x xsin (££x
chos(—x)dx:( ,1(22)"' n(ﬂz ))
0 (%) 2z 0
( 2 )2 nr nr nr 1
=|— (cos (—x) +—xs1n(—x))
nr 2 0
2
2 nm nt . (nmw
=|— (cos (—) + —sm(—) - 1)
(mr) 2 2
And
2 nr sm%x 2
cos (—x) dx = —
1 2 2 1
( )
= — |sinns — sin —
nr
2 . nm
= ——sin —
nr 2
Hence

2
2 nmw nr . (nrw 2 . nm
ap=|— (cos(—) + —sm(—) —1) — — sin —
2 2 nmr 2

(2 con () 2] i (22) - () - 2o ()

2 nmr . (nm
—_ (—2 + 2cos (—) + nJr sin (—))
n?m? 2 2

. nw\2
Which simplifies to a, = —8‘81:5—”72). Therefore
3 8 1 . [nm\2 nr
xX)=--— sin[— ] cos|—x
£0= 3= 2 en () eos(F)
3 8 (m\?2 (& 81 . (2r)°
=———sm(—) cos(—x)———sm — | cos(mx)—---
4 72 4 2 2 4 4
3 4
Z—;cos(zx)——zcos(nx)—---
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Atx =1

3 8 (1 n\ 2 nmw
1))=--— —sin(—) cos(—)
f£ 4 g2 ; n2 4 2
3 8 1 . (nm\2 nmw
=—- - — —sin|—] cos|—
4 g2 nzz} n? ( 4 ) ( 2 )
In the limit, 3.7, # sin (%) % cos (%) = —’3T—22. Therefore the above becomes
3 8 x?
N=>+=>—
f( ) 4 7232
3 1
= - 4+ -
4 4
=1

Which is the value of original f (x) at 1 as expected.
To apply Fourier convergence theorem. The function f (x) is piecewise continuous over

—-2<x<2.
1 0<x<1

f%ﬂ={0 1<x<2

f’ (x) is also piecewise continuous. Therefore, the Fourier series of f (x) will converge to the
average of f (x) at each point.

0.0.3 Problem 3

Find Fourier sine series for
X 0<x<1

f<x>={1

1<x<2
Choose L = 2.
solution
For sine series, the function is odd extended from x = —2 - - - 2. Therefore only b, terms exist.

> nr
=S b, sin (—
f(x) ; sm( 7 x)
Where L = 2. To find b, ,
1 . (nw
b, = > J_2 f(x)sin (Tx) dx

But f (x) is now odd, and sine is odd, hence the product is even and the above simplifies to
2 . (nT
b, = L f (x)sin (?x) dx
1 2
= (J x sin (Ex) dx + J sin (Ex) dx)
0 2 1 2

But Jx sin axdx = S“;# - %, therefore

Jol x sin (n?nx) dx = Sir(l

T) 0
L) fon () - wcos (22)).
=|— sin|—x) — —xcos|—x
nmr 2 0
2 2( (mr) nr (mr))
=|— sin({—) — —cos|—
nrx 2 2 2
And
2 nrx cos Bt x 2
sm(—x) dx = — —
2 LA
1 2 1
2 nx
= —— (cos N — cos —)
Therefore
2 2 . (nx ni nr 2 ni
b,=|— (sm(—) — — cos (—)) ——(cosnﬂ—cos—)
nr 2 2 2 ni 2
_Z(nﬂcosmr—Zsin%)
B n2sm?
Therefore

9 X Zsin% —NTCOSNT _ (nmw
fx)= Pnzz‘f e sm(Tx)
As in problem 2, both f (x) and f’ (x) are PW.C. So E.S. converges to average of f (x) at all points.
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0.0.4 Problem 4

Solve heat PDE u; = u,, with boundary conditions u, (0, t) = 0, u, (2,t) = 0 and initial conditions
u(x,0) = f (x) with f (x) from problem 2. Find steady state solution.

X 0<x<1

f(x):{ 1 1<x<2

solution
When both ends are insulated the solution to the heat PDE is

C (o)
u(x,t) = ?O + Z cne Mt cos (\Mnx)
n=1
Where A, = (%)2 withn=1,2,3,---.Since L = 2, then

c > 2 nrx
u(x,t) = EO + Z cne_(7) ! cos (7x)
n=1

Att=0 .
f(x)= %0 + nZ:; cp COS (%Tx) (1)
But the E.S. of f (x) was found in problem 2, with even extension. It is
3 & 8 nm\ 2 nw
xX)=-- sin{— | cos|—x 2
A 4 £ m?n? (4) (2 ) 2)

Comparing (1) and (2) gives

Hence solution is

u(x,t)=

> 8 nmw\2 _(nx\2 nmw
+Z sin(—) e_(T) tcos(;x)

At steady state, the solution is

nm)?2
Since as t — oo, the term e~ ("2") "t — 0.

0.0.5 Problem 5

Solve heat PDE u; = u,, with boundary conditions u (0, t) = ¢, u (7, t) = 0 and initial conditions
u(x,0)=0

solution

Since boundary conditions are nonhomogeneous, the PDE is converted to one with homoge-
nous BC using a reference function. The reference function needs to only satisfy the nonhomo-
geneous B.C.

In this case, it is clear that the following function satisfies the nonhomogeneous B.C.

r(x,t)= t(l—%)

Therefore
u(x,t)=w(x,t)+r(xt)

Substituting this back into u; = uy, gives
Wi +rt = Wxx-f-rxx
but r; = 1 — = and ryx = 0, therefore the above simplifies to
x
W = Wex +——1
T
Wi = Wyx + Q (%) (1)
Where Q (x) = 2 — 1 and where now this PDE now has now homogenous B.C

w(0,t) =0
w(m,t)=0
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Since a source term exist in the PDE (nonhomogeneous in the PDE itself), then equation (1) is
solved using the method of eigenfunction expansion. Let

w(x,t) = Z an (t) @, (x)
Where @, (x) is the eigenfunction of the homogeneous PDE w; = wy,, which is known to be

have the eigenfunction ®, (x) = sin (V/lnx) = sin nx where the eigenvalues are known to be

Ap = (%) 2 — n?withn = 1,2, 3, - --. Therefore the above becomes

w(x, t) = Z ay (t) sin (nx) (1A)

Substituting this back into (1) gives

Z a; (t) @, (x) = Z an (t) (I)’/; (x) + Z Qn(bn (x)

Where Q (x) = X ¢n®p, (x) is the eigenfunction expansion of the source term. In the above, and
after replacing ®// (x) by —A,®, (x) since ®, (x) satisfies the eigenvalue PDE @ (x)+1,®, (x) = 0
the above becomes
Z a;l () @p (x) = - Z an () 1n@y (x) + Z qn®n (x)
a;z (t) = —an (t) An + qn
ay (t) + an () An = qn ()
qn is now found by applying orthogonality on Q (x) = X ¢, ®, (x) as follows

0= guibn (x)
n=1
J” 0(x) @y (x)dx = g
0 2

qn = 2 Jw (f - 1) sin (nx) dx

)y \m
2 (—nrx + sin(nr)
T ( n’x )
2 (—-nxm
=~ (o)
-2
nx
Equation (2) becomes

-2
a, (t) +an, (t)yn* = —

The solution to this first order ODE can be easily found as

2 e
an (1) = ==+, (0) " ®)
Therefore (1A) becomes
> 2
w(x, t) = Z (—3— + a, (0) e_”zt) sin (nx) (4)
n=1 nn
At time ¢ = 0 the above becomes
> 2
w(x,0) = Z (—3— + ay (0)) sin (nx) (5)
n=1 n-r

But

w(x,0) =u(x,0)—r(x,0)
=0-0
=0

Therefore (5) becomes

0= i (—i +ay (O)) sin (nx)

3
n=1 n-n

Which implies
2
an (0) = ==
ndm

Hence from (4)

w(x,t) = i % (e_"zt - 1) sin (nx) (6)
n=1

The complete solution is therefore

ul,t)=wx,t)+r(xt)

pe s 2 2
=t(1——)+ —(e_”t—l)sinnx
s nZ:;n%r (n)
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0.0.6 Problem 6

Solve wave PDE u;; = 4uy, on bounded domain 0 < x < z,¢t > 0 with boundary conditions
u(0,t) = 0,u(s, t) = 0 and initial conditions u (x,0) = sin®x, u; (x,0) = 0. Find d’Alembert
solution and Fourier series solution.

solution

Putting the PDE in standard form u;; = a’uy, shows that a = 2. Let f (x) = u(x,0) = sin® x
and g (x) = u; (x,0) = 0, then the d’Alembert solution is (per key solution, one must use the sign
function). Let F (x) = sign (sin x) sin® x, then the solution becomes

x+at

%(F(x+at)+F(x—at))+%J g(s)ds

x—at

u(x,t)

%(F(x+at)+F(x—at))

Now the Fourier solution is found. Applying separation of variables gives

T"X = 4X"'T
lTN 3 Xll 3
4T X

The eigenvalue ODE is X" + AX = 0 with X (0) = 0, X (;r) = 0. This has eigenfunctions ®, (x) =
sin (\//Tnx) with A,, = n? where n = 1,2, 3, - - - . The time ODE becomes

T +42,T =0
Since A, > 0, the solution is
T (t) = A, cos ( 4/1nt) + B, sin ( 4/1,11‘)
= A, cos(2nt) + By, sin (2nt)

And
T’ = —2nA, sin (2nt) + 2nB,, cos (2nt)

Since T’ (0) = 0, then the above implies that B, = 0. Therefore the solution simplifies to
T, (t) = A, cos (2nt)
And the fundamental solution becomes

up = ThX,

= ¢p, cos (2nt) sin (nx)

Hence by superposition, the general solution is
u(x,t) = Z cp cos (2nt) sin (nx)
n=1
Att =0, u(x,0) = sin® x, therefore the above becomes
o0
sin® x = Z ¢p, sin (nx)
n=1

Applying orthogonality gives

ST

J sin® x sin (nx) dx = ¢, = (1)
0

3

(1 1 .
— — =cos2x| sin(nx)dx = ¢c,—
o 27 2

[\

To evaluate L;I (% - % cos 2x) sin (nx) dx, it is split into L;T (% sin (nx) — % cos 2x sin (nx)) dx. But
the first part is

J” % sin (nx) dx = —i (cos (nx))y

0

= —% (cos(nm) —1)

For even n = 2,4, - - - the above vanishes. Forodd n =1, 3,5, - - - the above becomes

71 1
J —sin (nx)dx = —
2 n

0
6



Now the second integral is evaluated

V

0 0

T 1
J — cos 2x sin (nx) dx = -3 J cos 2x sin (nx) dx

. T _ cos(p—q)x  cos(p+q)x _ _
Using Io sin (px) cos (gx) dx = — =0~ Zprq) , then the above becomes, where p = n,q = 2
1 (" . 1( cos(n—=2)x cos(n+2)x\”
—— | sin(nx)cos2xdx = —=|— -
0 2 2(n-2) 2(n+2) /,
1 (cos(n—2)x cos(n+2)x 4
2\ 2(n-2) 2(n+2) /,
1{cos(n—2)mr cos(n+2)m 1 1
= — + —_ —_
2\ 2(n-2) 2(n+2) 2(n-2) 2(n+2)
For even n = 2,4, --- the above vanishes, since it becomes % (2(n1_2) + 2(n1+2) - 2(n1—2) - 2(n1+2)),
and foroddn =1,3,5, - -, the above becomes
1 (" -1 1 1 1
—— j sin (nx) cos 2xdx = — - - -
2 Jo 2\2(n-2) 2(n+2) 2n-2) 2(n+2)
1 -2 -2
== +
2(2(n—2) 2(n+2))
-1 -1
= +
2(n-2) 2(n+2)
3 n
 n2-4
Therefore, the final result of integration is
4 1 n
j sinzxsin(nx)dx:—— n=1,3,5---
0 n n®-4
4 1,3,5
== n=15.9"---
n(n? —4)
Hence from (1), this results in
2 4
Cp=——
mn(n?—4)
8 1,3,5
= - n=15.9---
mn(n? —4)
Hence the final solution is
wn==2 > L cosent)sin(nx)
u(x,t)=— cos (2nt) sin (nx
T {351 —4n

The above solution was verified against numerical solution. The result gave an exact match

(20 terms was used in the sum).

0.0.7 Problem 7

Find d’Alembert solution for wave PDE u;; = 4uy, on infinite domain with initial position

u (x,0) = sin x and initial velocity u; (x, 0) = cos x
solution

Putting the PDE in standard form u;; = a?u,, shows that a = 2. Let f (x) = u(x,0) = sinx

and g (x) = u; (x,0) = cos x, then the d’Alembert solution is

u(x, ) = %(f(x +at)+ f (x— at)) + % ijatg(s)ds
= % (sin (x + 2t) + sin (x — 2t)) + 2 J:j:: cos(s)ds

x+2t
x—2t

1 1 1
> sin (x + 2t) + 5 sin (x — 2t) + 1 sin (s)

1 1 1 1
—sin(x + 2t) + —sin(x — 2t) + —sin (x + 2t) — —
~ sin (x + 2t) + sin (x = 20) + § sin (x +.20) =

3 1
2 sin (x + 2t) + 1 sin (x — 2t)

7

1 1 1
> sin (x + 2t) + 2 sin (x — 2t) + n (sin (x + 2t) — sin (x — 2t))

sin (x — 2t)



0.0.8 Problem 8

20 >0
Solve the Dirichlet problem uy +uyy = 0 inside the disk x*+y? < land u (x,y) = { 0 Z <0
on the unit circle x* + y* = 1. Find u (0, 0) and u (0, %)
solution
The PDE in polar coordinates is
1
Upr + —Uyr +Ugg =0 (1)
-

Where r is radial distance and 8 the polar angle. The boundary conditions in polar coordinates

become
0<O<nrm

T<0<27

ro-{%

The solution to (1) is
u(r, ) = C—Z" + Z:‘f P (ay cos (n0) + b, sin (n0))
At r =1 (on the boundary) the above solution become
£(0) = %0 + Z:} ap, cos (nf) + by sin (nf)

By orthogonality on cosine the above becomes

2

21 2 C 00
J f(6)cos(mb)do = J 2 cos (m0) d9+Z an
0 2 0

0 n=1

cos (m0) cos (nf) d6+b,, Jzn cos (m0) sin (n6) do
0
(2)

Forn=0

LM £(0)do = LG %Ode

J 20d6 = %0(2;1)

0
C
207 = Eo(m)

00:20

For n > 0 (2) becomes

2
cos (m8) cos (nf)dé + b, ‘[ cos (m0) sin (nf) do
0

2

0

Jzn f(6)cos(mb)do = i an
0 n=1

But Lf” cos (mB) sin (n8) dO = 0 for all n, m and the above reduces to

2

f(6)cos(nd)do = a,n

0

I 20 cos (nf)dO = a,m

0

il [sin (nO)]§ = apn
n
— (sin(nr) —0) = a,7
n

Hence a,, = 0 for all n > 0. By orthogonality on sine, for n > 0, (2) becomes

21 00 2 2m
f(0)sin(mb)do = Z an sin (m0) cos (nd) do0 + b, J sin (m0) sin (n@) d0
n=1 0

0

But L?” sin (m0) cos (nf) dO = 0 for all m, n and the above reduces to
2
f(6)sin(nf)do = b,
0

J 20sin(n8)d0 = b,
0
20
- (cos (nb))y = by
o (cos(nm)—1)=byx

20
- (1 —cos(nr)) =bym

8



When n = 2,4,6,--- the above gives b, = 0. Forn = 1,3,5, - - - the above gives

40

— =b,r

n
40

bp = —
nw

Therefore the complete solution is
40 &
u(r,0) =10+ — Z — sin (nd)
n=135, 1

At u (0, 0), which corresponds to r = 0,0 = 0, the above gives u(0,0) = 10. At u (0, %) which
corresponds to r = %, 0 = 7 the solution gives

u(r,0)= 10+@ i (%)nlsin(%)

n=1,3,5,---

Evaluated numerically, it converges to 15.90381156
To convert to x, y, the solution is first written as

u(r,0) =10+ 20 (r sin (0) + %r3 sin (30) + érs sin (50) + - - )
T

But
rsin(0) =y
And
3 !
3 . n: n—k kel g
30) = _ -1)z
r~sin (39) kZ:;k!(n—k)!x D7y
odd
6
=>xy -y’
And
5 !
5 . n: n—k kg
50) = _ -1)z
7 oin(50) = 3} ettt -0
odd
120 120
ETRE TR

And so on. Hence the solution in xy is
40 1 1
u(x’ y) =10+ — (y + g (3x2y - y3) + g (5x4y — 103(2y3 +xy5) 4.
T

To verify is the above 3 terms give good approximation, the valueat x = 0,y = % is now evaluated
from the above, which gives 15.8356812467. Which is very close to the above result. One more
term can be added to improve this. I am not sure now if there is a way to obtain closed form
expression in x, y as the case was with the solution in polar coordinates.

0.0.9 Problem 9

Solve uyxx + uy,; = 0 inside semi-infinite strip 0 < x < a,y > 0 with u(0,y) — 0,u(a,y) =
0,u (x,0) = F (x) and additional conditions that u (x,y) — 0 asy — oo

solution

This is a plot of the boundary conditions.

to oo




Let u = X (x) Y (y). Substituting this in the PDE gives

X"Y+Y'X=0

X// Yl/
= —— = —/1
X Y

Which gives the eigenvalue ODE

X"(x)+AX(x)=0
X(0)=0
X(a)=0

which gives the eigenfunction ®, (x) = ¢, sin (\/)L_nx) where A, = ("7”) ®forn = 1,2,3,---.The
corresponding Y ODE is
Y’ -1, Y=0

Since A, > 0, then the solution to this ODE is

Y, = ApeVin¥ 4 B e~ Viny

Since 4,, > 0 and the solution goes to zero for large y, then A, must be zero. Therefore the above
simplifies to

Y, (y) = Bne_my

And the complete solution becomes

u(x,y) = i cne_my sin (\/Ex)
n=1

ni

Where constants are combined into c,. Since A,, = (7) 2, the above becomes

b nx ni
u(x,y) = Z cpe” a Ysin (—x)
n=1 a
At y = 0, the above becomes
> nmw
F(x)= Z cp sin (—x)
n=1 a

Applying orthogonality gives

N

a
J F (x)sin (Ex) dx = cp,
0 a
2 n
Cp = — J F (x) sin (—”x) dx
aJo a
Hence the complete solution is

u =233

n=1 0

Ja F(x)sin (%x) dx) e @ Ysin (%x)
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