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0.0.1 Problem 1

Find the solution to y ′′ − y = ex ,y (0) = 1,y (1) = 0
solution
The solution to the homogeneous ODE is yh = Aex + Be−x . Let the particular be yp = Cxex .

Hence y ′
p = Ce

x +Cxex and y ′′
p = Ce

x +Cex +Cxex . Substituting into the ODE gives

2Cex +Cxex −Cxex = ex

2C = 1

C =
1
2

Hence yp = 1
2xe

x and the complete solution is

y = Aex + Be−x +
1
2
xex

A,B are now found from boundary conditions. At x = 0

1 = A + B (1)

And at x = 1

0 = Ae + Be−1 +
1
2
e (2)

(1,2) are now solved for A,B. From (1), A = 1 − B. (2) becomes

0 = (1 − B) e + Be−1 +
1
2
e

= e − Be + Be−1 +
1
2
e

= B
(
e−1 − e

)
+
3
2
e

B = −
3
2

e

e−1 − e

=
3
2

e

e − e−1

Hence

A = 1 −
3e

2 (e − e−1)
=

2
(
e − e−1

)
− 3e

2 (e − e−1)

=
2e − 2e−1 − 3e
2 (e − e−1)

=
−e − 2e−1

2 (e − e−1)

=
e + 2e−1

2 (e−1 − e)
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Therefore the solution is

y = Aex + Be−x +
1
2
xex

=
e + 2e−1

2 (e−1 − e)
ex +

3
2

e

e − e−1
e−x +

1
2
xex

0.0.2 Problem 2

Find Fourier cosine series for
f (x) =

{
x 0 < x < 1
1 1 < x < 2

Choose L = 2. Apply the Fourier convergence theorem. What do we get at x = 1?
solution
For cosine series, the function is even extended from x = −2 · · · 2. Therefore only an terms

exist.
f (x) =

a0
2
+

∞∑
n=1

an cos
(nπ
L
x
)

Where L = 2. But a0
2 is average value. Since the area is 2

( 1
2 + 1

)
= 3, then the average is 3

4 , since
the extent is 4. Therefore a0 = 3

2 . To find an

an =
1
L

∫ L

−L
f (x) cos

(nπ
L
x
)
dx

But f (x) and cosine are even. Hence the above simplifies to

an =

∫ 2

0
f (x) cos

(nπ
2
x
)
dx

=

(∫ 1

0
x cos

(nπ
2
x
)
dx +

∫ 2

1
cos

(nπ
2
x
)
dx

)
But

∫
x cosaxdx = cosax

a2 +
x sinax

a , therefore∫ 1

0
x cos

(nπ
2
x
)
dx =

(
cos

( nπ
2 x

)( nπ
2

) 2 +
x sin

( nπ
2 x

)
nπ
2

) 1
0

=

(
2
nπ

) 2 (
cos

(nπ
2
x
)
+
nπ

2
x sin

(nπ
2
x
) ) 1

0

=

(
2
nπ

) 2 (
cos

(nπ
2

)
+
nπ

2
sin

(nπ
2

)
− 1

)
And ∫ 2

1
cos

(nπ
2
x
)
dx =

(
sin nπ

2 x
nπ
2

) 2
1

=
2
nπ

(
sinnπ − sin

nπ

2

)
= −

2
nπ

sin
nπ

2

Hence

an =

(
2
nπ

) 2 (
cos

(nπ
2

)
+
nπ

2
sin

(nπ
2

)
− 1

)
−

2
nπ

sin
nπ

2

=

(
2
nπ

) 2
cos

(nπ
2

)
+

(
2
nπ

)
sin

(nπ
2

)
−

(
2
nπ

) 2
−

2
nπ

sin
(nπ
2

)
=

2
n2π 2

(
−2 + 2 cos

(nπ
2

)
+ nπ sin

(nπ
2

) )
Which simplifies to an = −

8 sin
( nπ

4

) 2
n2π 2 . Therefore

f (x) =
3
4
−

8
π 2

∞∑
n=1

1
n2

sin
(nπ
4

) 2
cos

(nπ
2
x
)

=
3
4
−

8
π 2 sin

(π
4

) 2
cos

(π
2
x
)
−

8
π 2

1
4
sin

(
2π
4

) 2
cos (πx) − · · ·

=
3
4
−

4
π 2 cos

(π
2
x
)
−

2
π 2 cos (πx) − · · ·
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At x = 1

f (1) =
3
4
−

8
π 2

∞∑
n=1

1
n2

sin
(nπ
4

) 2
cos

(nπ
2

)
=

3
4
−

8
π 2

∞∑
n=1

1
n2

sin
(nπ
4

) 2
cos

(nπ
2

)
In the limit, ∑∞

n=1
1
n2 sin

( nπ
4

) 2 cos ( nπ
2

)
= −π 2

32 . Therefore the above becomes

f (1) =
3
4
+

8
π 2

π 2

32

=
3
4
+
1
4

= 1

Which is the value of original f (x) at 1 as expected.
To apply Fourier convergence theorem. The function f (x) is piecewise continuous over

−2 < x < 2.
f ′ (x) =

{
1 0 < x < 1
0 1 < x < 2

f ′ (x) is also piecewise continuous. Therefore, the Fourier series of f (x) will converge to the
average of f (x) at each point.

0.0.3 Problem 3

Find Fourier sine series for
f (x) =

{
x 0 < x < 1
1 1 < x < 2

Choose L = 2.
solution
For sine series, the function is odd extended from x = −2 · · · 2. Therefore only bn terms exist.

f (x) =
∞∑
n=1

bn sin
(nπ
L
x
)

Where L = 2. To find bn

bn =
1
2

∫ 2

−2
f (x) sin

(nπ
L
x
)
dx

But f (x) is now odd, and sine is odd, hence the product is even and the above simplifies to

bn =

∫ 2

0
f (x) sin

(nπ
2
x
)
dx

=

(∫ 1

0
x sin

(nπ
2
x
)
dx +

∫ 2

1
sin

(nπ
2
x
)
dx

)
But

∫
x sinaxdx = sinax

a2 − x cosax
a , therefore∫ 1

0
x sin

(nπ
2
x
)
dx =

(
sin

( nπ
2 x

)( nπ
2

) 2 −
x cos

( nπ
2 x

)
nπ
2

) 1
0

=

(
2
nπ

) 2 (
sin

(nπ
2
x
)
−
nπ

2
x cos

(nπ
2
x
) ) 1

0

=

(
2
nπ

) 2 (
sin

(nπ
2

)
−
nπ

2
cos

(nπ
2

) )
And ∫ 2

1
sin

(nπ
2
x
)
dx = −

(
cos nπ

2 x
nπ
2

) 2
1

= −
2
nπ

(
cosnπ − cos

nπ

2

)
Therefore

bn =

(
2
nπ

) 2 (
sin

(nπ
2

)
−
nπ

2
cos

(nπ
2

) )
−

2
nπ

(
cosnπ − cos

nπ

2

)
= −

2
(
nπ cosnπ − 2 sin nπ

2

)
n2π 2

Therefore
f (x) =

2
π 2

∞∑
n=1

2 sin nπ
2 − nπ cosnπ

n2
sin

(nπ
L
x
)

As in problem 2, both f (x) and f ′ (x) are P.W.C. So F.S. converges to average of f (x) at all points.
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0.0.4 Problem 4

Solve heat PDEut = uxx with boundary conditionsux (0, t) = 0,ux (2, t) = 0 and initial conditions
u (x, 0) = f (x) with f (x) from problem 2. Find steady state solution.

f (x) =

{
x 0 < x < 1
1 1 < x < 2

solution
When both ends are insulated the solution to the heat PDE is

u (x, t) =
c0
2
+

∞∑
n=1

cne
−λnt cos

(√
λnx

)
Where λn =

( nπ
L

) 2 with n = 1, 2, 3, · · · . Since L = 2, then

u (x, t) =
c0
2
+

∞∑
n=1

cne
−
( nπ

2

) 2t cos (nπ
2
x
)

At t = 0

f (x) =
c0
2
+

∞∑
n=1

cn cos
(nπ
2
x
)

(1)

But the F.S. of f (x) was found in problem 2, with even extension. It is

f (x) =
3
4
−

∞∑
n=1

8
π 2n2

sin
(nπ
4

) 2
cos

(nπ
2
x
)

(2)

Comparing (1) and (2) gives

c0
2
=

3
4

cn =
8

π 2n2
sin

(nπ
4

) 2
Hence solution is

u (x, t) =
3
4
+

∞∑
n=1

8
π 2n2

sin
(nπ
4

) 2
e−

( nπ
2

) 2t cos (nπ
2
x
)

At steady state, the solution is
u (x,∞) =

3
4

Since as t → ∞, the term e−
( nπ

2

) 2t → 0.

0.0.5 Problem 5

Solve heat PDE ut = uxx with boundary conditions u (0, t) = t,u (π , t) = 0 and initial conditions
u (x, 0) = 0

solution
Since boundary conditions are nonhomogeneous, the PDE is converted to one with homoge-

nous BC using a reference function. The reference function needs to only satisfy the nonhomo-
geneous B.C.

In this case, it is clear that the following function satisfies the nonhomogeneous B.C.

r (x, t) = t
(
1 −

x

π

)
Therefore

u (x, t) = w (x, t) + r (x, t)

Substituting this back into ut = uxx gives

wt + rt = wxx + rxx

but rt = 1 − x
π and rxx = 0, therefore the above simplifies to

wt = wxx +
x

π
− 1

wt = wxx +Q (x) (1)

Where Q (x) = x
π − 1 and where now this PDE now has now homogenous B.C

w (0, t) = 0

w (π , t) = 0
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Since a source term exist in the PDE (nonhomogeneous in the PDE itself), then equation (1) is
solved using the method of eigenfunction expansion. Let

w (x, t) =
∑

an (t)Φn (x)

Where Φn (x) is the eigenfunction of the homogeneous PDE wt = wxx , which is known to be
have the eigenfunction Φn (x) = sin

(√
λnx

)
= sinnx where the eigenvalues are known to be

λn =
( nπ
π

) 2
= n2 with n = 1, 2, 3, · · · . Therefore the above becomes

w (x, t) =
∑

an (t) sin (nx) (1A)

Substituting this back into (1) gives∑
a′n (t)Φn (x) =

∑
an (t)Φ

′′
n (x) +

∑
qnΦn (x)

Where Q (x) =
∑
qnΦn (x) is the eigenfunction expansion of the source term. In the above, and

after replacingΦ′′
n (x) by−λnΦn (x) sinceΦn (x) satisfies the eigenvalue PDEΦ′′

n (x)+λnΦn (x) = 0
the above becomes ∑

a′n (t)Φn (x) = −
∑

an (t) λnΦn (x) +
∑

qnΦn (x)

a′n (t) = −an (t) λn + qn

a′n (t) + an (t) λn = qn (2)

qn is now found by applying orthogonality on Q (x) =
∑
qnΦn (x) as follows

Q (x) =
∞∑
n=1

qnΦn (x)∫ π

0
Q (x)Φn (x)dx =

π

2
qn

qn =
2
π

∫ π

0

( x
π
− 1

)
sin (nx)dx

=
2
π

(
−nπ + sin (nπ )

n2π

)
=

2
π

(
−nπ

n2π

)
=

−2
nπ

Equation (2) becomes

a′n (t) + an (t)n
2 =

−2
nπ

The solution to this first order ODE can be easily found as

an (t) = −
2

n3π
+ an (0) e

−n2t (3)

Therefore (1A) becomes

w (x, t) =
∞∑
n=1

(
−

2
n3π
+ an (0) e

−n2t
)
sin (nx) (4)

At time t = 0 the above becomes

w (x, 0) =
∞∑
n=1

(
−

2
n3π
+ an (0)

)
sin (nx) (5)

But

w (x, 0) = u (x, 0) − r (x, 0)

= 0 − 0

= 0

Therefore (5) becomes

0 =
∞∑
n=1

(
−

2
n3π
+ an (0)

)
sin (nx)

Which implies

an (0) =
2

n3π
Hence from (4)

w (x, t) =
∞∑
n=1

2
n3π

(
e−n

2t − 1
)
sin (nx) (6)

The complete solution is therefore

u (x, t) = w (x, t) + r (x, t)

= t
(
1 −

x

π

)
+

∞∑
n=1

2
n3π

(
e−n

2t − 1
)
sin (nx)
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0.0.6 Problem 6

Solve wave PDE ut t = 4uxx on bounded domain 0 < x < π , t > 0 with boundary conditions
u (0, t) = 0,u (π , t) = 0 and initial conditions u (x, 0) = sin2 x,ut (x, 0) = 0. Find d’Alembert
solution and Fourier series solution.

solution
Putting the PDE in standard form ut t = a2uxx shows that a = 2. Let f (x) = u (x, 0) = sin2 x

and д (x) = ut (x, 0) = 0, then the d’Alembert solution is (per key solution, one must use the sign
function). Let F (x) = siдn (sinx) sin2 x , then the solution becomes

u (x, t) =
1
2
(F (x + at) + F (x − at)) +

1
2a

∫ x+at

x−at
д (s)ds

=
1
2
(F (x + at) + F (x − at))

Now the Fourier solution is found. Applying separation of variables gives

T ′′X = 4X ′′T

1
4
T ′′

T
=
X ′′

X
= −λ

The eigenvalue ODE is X ′′ + λX = 0 with X (0) = 0,X (π ) = 0. This has eigenfunctions Φn (x) =

sin
(√

λnx
)
with λn = n

2 where n = 1, 2, 3, · · · . The time ODE becomes

T ′′ + 4λnT = 0

Since λn > 0, the solution is

T (t) = An cos
(√

4λnt
)
+ Bn sin

(√
4λnt

)
= An cos (2nt) + Bn sin (2nt)

And
T ′ = −2nAn sin (2nt) + 2nBn cos (2nt)

Since T ′ (0) = 0, then the above implies that Bn = 0. Therefore the solution simplifies to

Tn (t) = An cos (2nt)

And the fundamental solution becomes

un = TnXn

= cn cos (2nt) sin (nx)

Hence by superposition, the general solution is

u (x, t) =
∞∑
n=1

cn cos (2nt) sin (nx)

At t = 0, u (x, 0) = sin2 x , therefore the above becomes

sin2 x =
∞∑
n=1

cn sin (nx)

Applying orthogonality gives ∫ π

0
sin2 x sin (nx)dx = cn

π

2
(1)∫ π

0

(
1
2
−
1
2
cos 2x

)
sin (nx)dx = cn

π

2

To evaluate
∫π
0

( 1
2 −

1
2 cos 2x

)
sin (nx)dx , it is split into

∫π
0

( 1
2 sin (nx) −

1
2 cos 2x sin (nx)

)
dx . But

the first part is ∫ π

0

1
2
sin (nx)dx = −

1
2n

(cos (nx))π0

= −
1
2n

(cos (nπ ) − 1)

For even n = 2, 4, · · · the above vanishes. For odd n = 1, 3, 5, · · · the above becomes∫ π

0

1
2
sin (nx)dx =

1
n

6



Now the second integral is evaluated∫ π

0
−
1
2
cos 2x sin (nx)dx = −

1
2

∫ π

0
cos 2x sin (nx)dx

Using
∫π
0
sin (px) cos (qx)dx = −

cos(p−q)x
2(p−q) −

cos(p+q)x
2(p+q) , then the above becomes, where p = n,q = 2

−
1
2

∫ π

0
sin (nx) cos 2xdx = −

1
2

(
−
cos (n − 2)x
2 (n − 2)

−
cos (n + 2)x
2 (n + 2)

) π
0

=
1
2

(
cos (n − 2)x
2 (n − 2)

+
cos (n + 2)x
2 (n + 2)

) π
0

=
1
2

(
cos (n − 2)π
2 (n − 2)

+
cos (n + 2)π
2 (n + 2)

−
1

2 (n − 2)
−

1
2 (n + 2)

)
For even n = 2, 4, · · · the above vanishes, since it becomes 1

2

(
1

2(n−2) +
1

2(n+2) −
1

2(n−2) −
1

2(n+2)

)
,

and for odd n = 1, 3, 5, · · · , the above becomes

−
1
2

∫ π

0
sin (nx) cos 2xdx =

1
2

(
−1

2 (n − 2)
−

1
2 (n + 2)

−
1

2 (n − 2)
−

1
2 (n + 2)

)
=

1
2

(
−2

2 (n − 2)
+

−2
2 (n + 2)

)
=

−1
2 (n − 2)

+
−1

2 (n + 2)

= −
n

n2 − 4

Therefore, the final result of integration is∫ π

0
sin2 x sin (nx)dx =

1
n
−

n

n2 − 4
n = 1, 3, 5, · · ·

= −
4

n (n2 − 4)
n = 1, 3, 5, · · ·

Hence from (1), this results in

cn = −
2
π

4
n (n2 − 4)

= −
8

πn (n2 − 4)
n = 1, 3, 5, · · ·

Hence the final solution is

u (x, t) =
−8
π

∞∑
n=1,3,5, · · ·

1
n3 − 4n

cos (2nt) sin (nx)

The above solution was verified against numerical solution. The result gave an exact match
(20 terms was used in the sum).

0.0.7 Problem 7

Find d’Alembert solution for wave PDE ut t = 4uxx on infinite domain with initial position
u (x, 0) = sinx and initial velocity ut (x, 0) = cosx

solution
Putting the PDE in standard form ut t = a2uxx shows that a = 2. Let f (x) = u (x, 0) = sinx

and д (x) = ut (x, 0) = cosx , then the d’Alembert solution is

u (x, t) =
1
2
(f (x + at) + f (x − at)) +

1
2a

∫ x+at

x−at
д (s)ds

=
1
2
(sin (x + 2t) + sin (x − 2t)) +

1
4

∫ x+2t

x−2t
cos (s)ds

=
1
2
sin (x + 2t) +

1
2
sin (x − 2t) +

1
4
sin (s)x+2tx−2t

=
1
2
sin (x + 2t) +

1
2
sin (x − 2t) +

1
4
(sin (x + 2t) − sin (x − 2t))

=
1
2
sin (x + 2t) +

1
2
sin (x − 2t) +

1
4
sin (x + 2t) −

1
4
sin (x − 2t)

=
3
4
sin (x + 2t) +

1
4
sin (x − 2t)
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0.0.8 Problem 8

Solve the Dirichlet problemuxx+uyy = 0 inside the disk x2+y2 < 1 andu (x,y) =
{
20 y > 0
0 y < 0

on the unit circle x2 + y2 = 1. Find u (0, 0) and u
(
0, 12

)
solution
The PDE in polar coordinates is

ur r +
1
r
ur + uθθ = 0 (1)

Where r is radial distance and θ the polar angle. The boundary conditions in polar coordinates
become

f (θ ) =

{
20 0 < θ < π
0 π < θ < 2π

The solution to (1) is

u (r , θ ) =
c0
2
+

∞∑
n=1

rn (an cos (nθ ) + bn sin (nθ ))

At r = 1 (on the boundary) the above solution become

f (θ ) =
c0
2
+

∞∑
n=1

an cos (nθ ) + bn sin (nθ )

By orthogonality on cosine the above becomes∫ 2π

0
f (θ ) cos (mθ )dθ =

∫ 2π

0

c0
2
cos (mθ )dθ+

∞∑
n=1

an

∫ 2π

0
cos (mθ ) cos (nθ )dθ+bn

∫ 2π

0
cos (mθ ) sin (nθ )dθ

(2)
For n = 0 ∫ 2π

0
f (θ )dθ =

∫ 2π

0

c0
2
dθ∫ π

0
20dθ =

c0
2
(2π )

20π =
c0
2
(2π )

c0 = 20

For n > 0 (2) becomes∫ 2π

0
f (θ ) cos (mθ )dθ =

∞∑
n=1

an

∫ 2π

0
cos (mθ ) cos (nθ )dθ + bn

∫ 2π

0
cos (mθ ) sin (nθ )dθ

But
∫2π
0

cos (mθ ) sin (nθ )dθ = 0 for all n,m and the above reduces to∫ 2π

0
f (θ ) cos (nθ )dθ = anπ∫ π

0
20 cos (nθ )dθ = anπ

20
n

[sin (nθ )]π0 = anπ

20
n

(sin (nπ ) − 0) = anπ

Hence an = 0 for all n > 0. By orthogonality on sine, for n > 0, (2) becomes∫ 2π

0
f (θ ) sin (mθ )dθ =

∞∑
n=1

an

∫ 2π

0
sin (mθ ) cos (nθ )dθ + bn

∫ 2π

0
sin (mθ ) sin (nθ )dθ

But
∫2π
0

sin (mθ ) cos (nθ )dθ = 0 for allm,n and the above reduces to∫ 2π

0
f (θ ) sin (nθ )dθ = bnπ∫ π

0
20 sin (nθ )dθ = bnπ

−
20
n

(cos (nθ ))π0 = bnπ

−
20
n

(cos (nπ ) − 1) = bnπ

20
n

(1 − cos (nπ )) = bnπ
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When n = 2, 4, 6, · · · the above gives bn = 0. For n = 1, 3, 5, · · · the above gives
40
n
= bnπ

bn =
40
nπ

Therefore the complete solution is

u (r , θ ) = 10 +
40
π

∞∑
n=1,3,5, · · ·

rn

n
sin (nθ )

At u (0, 0), which corresponds to r = 0,θ = 0, the above gives u (0, 0) = 10. At u
(
0, 12

)
which

corresponds to r = 1
2 , θ =

π
2 the solution gives

u (r , θ ) = 10 +
40
π

∞∑
n=1,3,5, · · ·

(
1
2

) n 1
n
sin

(nπ
2

)
Evaluated numerically, it converges to 15.90381156

To convert to x,y, the solution is first written as

u (r , θ ) = 10 +
40
π

(
r sin (θ ) +

1
3
r 3 sin (3θ ) +

1
5
r 5 sin (5θ ) + · · ·

)
But

r sin (θ ) = y

And

r 3 sin (3θ ) =
3∑

k=1
odd

n!
k! (n − k)!

xn−k (−1)
k−1
2 yk

=
6
2
x2y − y3

And

r 5 sin (5θ ) =
5∑

k=1
odd

n!
k! (n − k)!

xn−k (−1)
k−1
2 yk

=
120
24

x4y −
120
12

x2y3 + xy5

And so on. Hence the solution in xy is

u (x,y) = 10 +
40
π

(
y +

1
3

(
3x2y − y3

)
+
1
5

(
5x4y − 10x2y3 + xy5

)
+ · · ·

)
To verify is the above 3 terms give good approximation, the value at x = 0,y = 1

2 is now evaluated
from the above, which gives 15.8356812467. Which is very close to the above result. One more
term can be added to improve this. I am not sure now if there is a way to obtain closed form
expression in x,y as the case was with the solution in polar coordinates.

0.0.9 Problem 9

Solve uxx + uyy = 0 inside semi-infinite strip 0 < x < a,y > 0 with u (0,y) − 0,u (a,y) =
0,u (x, 0) = F (x) and additional conditions that u (x,y) → 0 as y → ∞

solution
This is a plot of the boundary conditions.

x

y
to ∞

a
u = F (x)

u = 0u = 0
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Let u = X (x)Y (y). Substituting this in the PDE gives

X ′′Y + Y ′′X = 0

X ′′

X
= −

Y ′′

Y
= −λ

Which gives the eigenvalue ODE

X ′′ (x) + λX (x) = 0

X (0) = 0

X (a) = 0

which gives the eigenfunction Φn (x) = cn sin
(√

λnx
)
where λn =

( nπ
a

) 2 for n = 1, 2, 3, · · · . The
corresponding Y ODE is

Y ′′ − λnY = 0

Since λn > 0, then the solution to this ODE is

Yn = Ane
√
λny + Bne

−
√
λny

Since λn > 0 and the solution goes to zero for large y, then An must be zero. Therefore the above
simplifies to

Yn (y) = Bne
−
√
λny

And the complete solution becomes

u (x,y) =
∞∑
n=1

cne
−
√
λny sin

(√
λnx

)
Where constants are combined into cn . Since λn =

( nπ
a

) 2, the above becomes

u (x,y) =
∞∑
n=1

cne
−nπ

a y sin
(nπ
a
x
)

At y = 0, the above becomes

F (x) =
∞∑
n=1

cn sin
(nπ
a
x
)

Applying orthogonality gives∫ a

0
F (x) sin

(nπ
a
x
)
dx = cn

a

2

cn =
2
a

∫ a

0
F (x) sin

(nπ
a
x
)
dx

Hence the complete solution is

u (x,y) =
2
a

∞∑
n=1

(∫ a

0
F (x) sin

(nπ
a
x
)
dx

)
e−

nπ
a y sin

(nπ
a
x
)
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