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0.0.1 Problem 1

Find the solution to y”’ —y =¢*,y(0) = 1,y (1) =0

solution

The solution to the homogeneous ODE is y, = Ae* + Be™™. Let the particular be y, = Cxe*.
Hence y;, = Ce* + Cxe™ and y;] = Ce™ + Ce* + Cxe™. Substituting into the ODE gives

2Ce* + Cxe* — Cxe* = e~
2C=1

1

Cc==

2

Hence y, = %xe" and the complete solution is
y=Ae* +Be ™ + %xex
A, B are now found from boundary conditions. At x = 0
1=A+B (1)

Andatx =1 )
0=Ae+Be' + Ee (2)
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(1,2) are now solved for A, B. From (1), A = 1 — B. (2) becomes
1
0=(1-B)e+Be +Ee

1
—e—Be+Be !+ =¢

=B(e_1—e)+ge
3 e

B=—-
2e 1 —¢
3 e

2e—e1

Hence
3e 2(e—e!) —3e

_2(6—6_1) - 2(e—e)
2e —2e7 ! —3e

2(e—e1)
—e—2e7!
2(e—e1)

e+ 2!
2(e71—e)

A=1

Therefore the solution is
1
y=Ae* +Be ™ + Sxe

e+ 2! 3 e

— P i —-x
2(e71—e) 2e—e!

0.0.2 Problem 2

Find Fourier cosine series for
X 0<x<l1

f(x):{l 1<x<2

Choose L = 2. Apply the Fourier convergence theorem. What do we get at x = 1?

solution

For cosine series, the function is even extended from x = —2- - - 2. Therefore only a, terms
exist.

f(x)= % +n§;ancos(%x)

Where L = 2. But % is average value. Since the area is 2 (% + 1) = 3, then the average is %, since

the extent is 4. Therefore qy = % To find a,

an = % ‘[_LL f(x) cos (%x) dx

But f (x) and cosine are even. Hence the above simplifies to

an = J: f(x) cos (%Tx) dx

|

Ll X COs (%x) dx + f cos (%x) dx)

2



But | x cos axdx = £8&x 4 XSaX ‘theryefore
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8 . (m\2 (m 81 . (2m)°
—sm(—) cos(—x)———sm — | cos(mx)—---
2 4 2 2 4 4

flo)=

MW BT W AW
|

() = = cos (ax)
— — COS|—X]|] — —coS(mtx) —~-"-"
2 2

Atx =1

~
—~
—_
p—
1
Bl wW W

|
3| o0
NE
3, =
w

. @,
=
—_
|:
S

N —
Do

(@]
o
w
—_—
[\3|§
SN —

- 0 . 2
In the limit, 37, # sin (’%) 2 cos ("7”) = —’3[—2. Therefore the above becomes

f@=



Which is the value of original f (x) at 1 as expected.
To apply Fourier convergence theorem. The function f (x) is piecewise continuous over

—-2<x<2.
0<x<l1

1<x<2

o= g

f’ (x) is also piecewise continuous. Therefore, the Fourier series of f (x) will converge to the
average of f (x) at each point.

0.0.3 Problem 3

Find Fourier sine series for
X 0<x<1

f(x):{l 1<x<2

Choose L = 2.
solution
For sine series, the function is odd extended from x = -2 - - 2. Therefore only b, terms exist.

> nr
=S, sin (—
f(x) ; s1n( 7 x)
Where L = 2. To find b, ,
1 . (nw
b, = > ‘[_2 f (x)sin (Tx) dx

But f (x) is now odd, and sine is odd, hence the product is even and the above simplifies to
2 . (nT
b, = L f(x)sin (7x) dx
1 2
= (J x sin (Ex) dx + J sin (Ex) dx)
0 2 1 2

But Jx sin axdx = S“;# - %, therefore

‘Ll x sin (n?ﬂx) dx = Sir(l

) 0
2 2( (mr ) ni (nn ))1
=|— sin|—x) — —xcos|—x
nix 2 2 0
2
2 ( (mr) nr (mr))
=|— sin{— ) — —cos|—
mr) 2 2
And
2 nir cos%x 2
J sin(—x) dx = —
2 nr
1 2 1
2 ( mr)
= —— |cosnmwr — cos —
nm
Therefore

S
3
Il

2 2(. (mr) nmr (mr)) 2 ( mr)
— sin|— | — —cos|—|) — — |cosnm — cos —
nmr 2 2 2 nmr 2

2 (nrr cosnr — 2 sin "7”)

n2m?



Therefore

b Zsm——mrcosmt ni
x) = sin { —x
f @)= 2 (=)

As in problem 2, both f (x) and f” (x) are PW.C. So E.S. converges to average of f (x) at all points.

0.0.4 Problem 4

Solve heat PDE u; = uy, with boundary conditions u, (0, t) = 0, u, (2,t) = 0 and initial conditions
u(x,0) = f (x) with f (x) from problem 2. Find steady state solution.

X 0<x<1

f(x)z{l 1<x<2

solution
When both ends are insulated the solution to the heat PDE is

C (o)
u(x,t) = EO + Z cne Mt cos (\Mnx)
n=1
Where A, = (%)2 withn =1,2,3,---.Since L = 2, then

nﬂ'z ni
uxt——+ c =(%57) cos(—x)
(1) = - Zn .

Att =0
f(x)= %0 + nz:; Ccp COS (%x) (1)
But the E.S. of f (x) was found in problem 2, with even extension. It is
3 & 2
f(x)= ie Z:; 5 sin (nn) cos (%rx) (2)
Comparing (1) and (2) gives
Co _ 3
2 4
8 nm\ 2
n= gz S (T)

Hence solution is

3 (o)
u(x,t) = Z E
n=1

At steady state, the solution is

ni 2
Since as t — oo, the term e ()t 0.



0.0.5 Problem 5

Solve heat PDE u; = u,, with boundary conditions u (0, t) = ¢, u (7, t) = 0 and initial conditions
u(x,0)=0

solution

Since boundary conditions are nonhomogeneous, the PDE is converted to one with homoge-
nous BC using a reference function. The reference function needs to only satisfy the nonhomo-
geneous B.C.

In this case, it is clear that the following function satisfies the nonhomogeneous B.C.

r(x,t) = t(l—%)

Therefore
u(,t)=wx,t)+r(xt)

Substituting this back into u; = uy, gives
Wi + T = Wyx + I'ex

butr, =1- % and ry, = 0, therefore the above simplifies to

x
W = Wyx + ——1
/s
Wi = Wyx t Q (x) (1)
Where Q (x) = 2 — 1 and where now this PDE now has now homogenous B.C
w(0,t) =0
w(m,t)=0

Since a source term exist in the PDE (nonhomogeneous in the PDE itself), then equation (1) is
solved using the method of eigenfunction expansion. Let

w(x, 1) = D an (1) Py (x)

Where ®, (x) is the eigenfunction of the homogeneous PDE w; = wyy, which is known to be

have the eigenfunction ®, (x) = sin (V/lnx) = sin nx where the eigenvalues are known to be

An = (Z£) 2 — n?withn =1,2,3,- - -. Therefore the above becomes

w(x,t) = Z ay (t) sin (nx) (1A)

Substituting this back into (1) gives

Z a; (t) @, (x) = Z an (t) CI)’/; (x) + Z Qn(bn (x)

Where Q (x) = X ¢, ®,, (x) is the eigenfunction expansion of the source term. In the above, and
after replacing @, (x) by =1, ®, (x) since ®, (x) satisfies the eigenvalue PDE @/ (x)+1,®, (x) = 0
the above becomes

Z a;l () @y (x) = - Z an (t) An®y (x) + Z qn®n (x)

ay (t) = =an () An + gn
a;; () +an(t)Adn = qn (2)



qn is now found by applying orthogonality on Q (x) = X ¢,®, (x) as follows

()= ) gt ()

| ome,wax=Za,
J” (% - 1) sin (nx) dx

0
( —nmr + sin (mr))

n2m

qn =

Equation (2) becomes

a, (t)+a, (t)yn* = —

The solution to this first order ODE can be easily found as
2 —-nt
an(t) = ——— +a, (0)e
n3r

Therefore (1A) becomes

(o)

w(x,t) = Z (—— +a,(0)e” "zt) sin (nx)

n=1

At time t = 0 the above becomes

[e0)

w(x,0) = Z (—— +ay (0)) sin (nx)

But

w(x,0)=u(x,0)—r(x,0)
=0-0

=0

Therefore (5) becomes

= i (—% + ay (0)) sin (nx)

n=1
Which implies
an (0) = ——

Hence from (4)

[e9)

w(x,t)=Z—

3
=1

(e_"zt - 1) sin (nx)
The complete solution is therefore

ul,t)=wx,t)+r(x,t)

pe s 2 2
=t(1——)+ —(e_”t—l)sinnx
s nZ:;n%r (n)

7



0.0.6 Problem 6

Solve wave PDE u;; = 4uy, on bounded domain 0 < x < z,¢t > 0 with boundary conditions
u(0,t) = 0,u(s, t) = 0 and initial conditions u (x,0) = sin®x, u; (x,0) = 0. Find d’Alembert
solution and Fourier series solution.

solution

Putting the PDE in standard form u;; = a’uy, shows that a = 2. Let f (x) = u(x,0) = sin® x
and g (x) = u; (x,0) = 0, then the d’Alembert solution is (per key solution, one must use the sign
function). Let F (x) = sign (sin x) sin® x, then the solution becomes

1 1 x+at

u(x,t):E(F(x+at)+F(x—at))+£J g(s)ds

x—at

= %(F(x+at)+F(x—at))

Now the Fourier solution is found. Applying separation of variables gives

T"X =4X"'T

1 T// X//

- = = —A
4 T X

The eigenvalue ODE is X"’ + AX = 0 with X (0) = 0, X (;r) = 0. This has eigenfunctions ®, (x) =
sin (\/Ex) with A,, = n® where n = 1,2, 3, - - - . The time ODE becomes

T +42,T =0
Since A, > 0, the solution is
T (t) = A, cos ( 4/1nt) + B,, sin ( 4/1nt)
= A, cos(2nt) + B, sin (2nt)

And
T’ = —2nA,, sin (2nt) + 2nB,, cos (2nt)

Since T’ (0) = 0, then the above implies that B, = 0. Therefore the solution simplifies to
T, (t) = A, cos (2nt)
And the fundamental solution becomes

up, = T, X,

= ¢, cos (2nt) sin (nx)

Hence by superposition, the general solution is
u(x,t) = Z cp, cos (2nt) sin (nx)
n=1
Att =0, u(x,0) = sin® x, therefore the above becomes

[e9)
sin® x = Z cp, sin (nx)
n=1



Applying orthogonality gives

N)

J sin? x sin (nx) dx = ¢, = (1)
0

[\

3

(1 1 .
— — —cos2x| sin(nx)dx = ¢, —
o \2 2 2

To evaluate L;T (3 — 3 cos 2x) sin (nx) dx, it is split into L;r (3 sin (nx) — 3 cos 2x sin (nx)) dx. But
the first part is
" L sin () dx =~ (cos (m)2
= sin (nx) dx = —— (cos (nx
o 2 2n 0
1
= ——(cos(nr)—1)
2n
For even n = 2,4, - - - the above vanishes. Forodd n =1, 3,5, - - - the above becomes

71 1
j —sin (nx)dx = —
2 n

0

Now the second integral is evaluated

T 1 1 T
‘[ -3 cos 2x sin (nx) dx = -3 ‘[ cos 2x sin (nx) dx
0 0

Using fon sin (px) cos (gx) dx = —Cozsg:__g))x - Cozsg:rg))x, then the above becomes, where p = n, q = 2
(" 1({ cos(n—2)x cos(n+2)x\”
—— | sin(nx)cos2xdx = —= |- _
0 2 2(n-2) 2(n+2) J,
_1(cos(n—2)x cos(n+2)x T
2\ 2(n-2) 2(n+2) |,
1f{cos(n=2)r cos(n+2)x 1 1
== + - _
2\ 2(n-2) 2(n+2) 2(n-2) 2(n+2)
For even n = 2,4, --- the above vanishes, since it becomes % (2(n1_2) + z(nl+z) _ 2(n1—2) _ 2(n1+2)),
and for oddn = 1,3,5, - - -, the above becomes
1" 1{ -1 1 1 1
- J‘ sin (nx) cos 2xdx = = - - _
2 Jo 2\2(n-2) 2(n+2) 2(m-2) 2(n+2)
1 -2 -2
== +
Z(Z(n—z) 2(n+2))
-1 -1
= +
21-2)  2(n+2)
: n
 on?2-4

Therefore, the final result of integration is

7 1 n
J sin? x sin (nx) dx = — — > n=1,3,5---
0 n n°—4
4 1,3,5
== n=1=15.9---
n(n?—4)

9



Hence from (1), this results in

2 4
c = ——
8 7z n(n?—4)
8 1,3,5
= - n=1,5.95"---
mn(n? —4)
Hence the final solution is
-8 > 1 .
u(x,t)= — Z 3 cos (2nt) sin (nx)
T p=i35,..1 —4n

The above solution was verified against numerical solution. The result gave an exact match
(20 terms was used in the sum).

0.0.7 Problem 7

Find d’Alembert solution for wave PDE u;; = 4uy, on infinite domain with initial position
u (x,0) = sin x and initial velocity u; (x,0) = cos x

solution

Putting the PDE in standard form u;, = a?u,, shows that a = 2. Let f (x) = u(x,0) = sinx
and g (x) = u; (x,0) = cos x, then the d’Alembert solution is

u(x.t) = %(f(x+ at) + f (x — at)) + z—tjxjatg(s)ds
B 1 ) ) 1 x+2t d
=5 (sin (x + 2t) + sin (x — 2t)) + 2 L—zt cos(s)ds

1 1 1
2 sin (x + 2t) + 2 sin (x — 2t) + 1 sin (s)X2

1 1 1
> sin (x + 2t) + > sin (x — 2t) + n (sin (x + 2t) — sin (x — 2t))

1 1 1 1
Esin(x+ 2t) + Esin(x—zt)+ Zsin(x+2t)— Zsin(x—Zt)

3 1
n sin (x + 2t) + 1 sin (x — 2t)

0.0.8 Problem 8

2 >
Solve the Dirichlet problem uyx +uyy = 0 inside the disk x*+y? < 1andu (x,y) = { 00 z < g
on the unit circle x? + y* = 1. Find u (0, 0) and u (0, %)
solution
The PDE in polar coordinates is
1
Urr + —Ur +ugg =0 (1)
-

Where r is radial distance and 0 the polar angle. The boundary conditions in polar coordinates

become
0<0<rm

T<0<2n

ro={%

The solution to (1) is

u(r,0) = C—ZO + Z r" (ap cos (nf) + b, sin (nd))
n=1
10



At r = 1 (on the boundary) the above solution become
£(0) = %0 + > a, cos (nf) + by, sin (nf)
n=1
By orthogonality on cosine the above becomes

2

2w 27 o 27
J f(6)cos(mb)do = j %0 cos (m#) d9+z an cos (m0) cos (nf) do+b,, J cos (m0) sin (n6) do
0 0 n=1 0 0
(2)
Forn=20

27 27 ¢
£(0)do = J €40
0 o 2

J 20d6 = £ (271)
. 2

C

207 = = (27)
2
co =20

For n > 0 (2) becomes

2 o) 21 2
f(6)cos(mb)do = Z an cos (m8) cos (nf)db + b,, ‘[ cos (m#) sin (nf) do
n=1 0 0

But L?” cos (m#) sin (n6) d6 = 0 for all n, m and the above reduces to

Jzn f(6)cos(nd)do = a,n
0

J 20 cos (n6)dO = a,m

0

il [sin (nO)]g = anx
n
— (sin(nr) —0) = a,7
n

Hence a, = 0 for all n > 0. By orthogonality on sine, for n > 0, (2) becomes

2 0o 2 2
J f(6)sin(mb)do = Z an sin (m6) cos (n8) do + b, J sin (m6) sin (nf) d6
0 n=1 0 0

But L?” sin (m#) cos (nf) d6 = 0 for all m, n and the above reduces to
2

f(6)sin(nf)do = b,
0

J 20sin(n8)dOl = b,
0
20
- (cos (nb))y = by
o (cos(nm)—1)=bym

20
- (1 —=cos(nr)) =bym

11



When n = 2,4,6,--- the above gives b, = 0. Forn = 1,3,5, - - - the above gives

40

— =b,r

n
40

by = —
nim

Therefore the complete solution is
40 &
u(r,0) =10+ — 2 — sin (nf)
T p=135, 1

At u (0, 0), which corresponds to r = 0,0 = 0, the above gives u(0,0) = 10. At u (0, %) which
corresponds to r = %, 0 = 7 the solution gives

40 "1 (nn
u(r,@):10+; Z (5) —sm(7)

n=1,3,5, -

Evaluated numerically, it converges to 15.90381156
To convert to x, y, the solution is first written as

40 1 1
u(r,0) =10+ — (r sin (0) + §r3 sin (30) + grs sin (50) + - - )
T

But
rsin(0) =y
And
Ssin(30) = 3] ek (1)’ g
r- sin = — X -
Z e (n— k), y
odd
_ 6 2 3
= X'y
And
Ssin(50) = 3] gk (L)' gk
r- sin = X -
£ (n—k)! Y
odd
_ 120 4 120 55 s
= 24X Yy 12X Yy +Xy

And so on. Hence the solution in xy is
10+ 29 (e L sy - o3) + L 50ty — 10x%0% 4 x00) 4
u(x,y) =10+ y+3(3xy y)+5(5xy 10x%y’ + xy°) +
/1

To verify is the above 3 terms give good approximation, the valueat x = 0,y = % is now evaluated
from the above, which gives 15.8356812467. Which is very close to the above result. One more
term can be added to improve this. I am not sure now if there is a way to obtain closed form
expression in x, y as the case was with the solution in polar coordinates.

12



0.0.9 Problem 9

Solve uyx + uy,; = 0 inside semi-infinite strip 0 < x < a,y > 0 with u(0,y) — 0,u(a,y) =
0,u (x,0) = F (x) and additional conditions that u (x,y) —» 0 asy — oo

solution

This is a plot of the boundary conditions.

Let u = X (x) Y (y). Substituting this in the PDE gives

X"Y+Y'X=0

XII YII
= —— = —/‘l
X Y

Which gives the eigenvalue ODE
X" (x)+AX(x)=0

X(0)=0

X(a)=0
which gives the eigenfunction ®, (x) = ¢, sin (\/)L_nx) where 4,, = (”7”) ®forn = 1,2,3,---.The
corresponding Y ODE is

Y -1,Y=0
Since A, > 0, then the solution to this ODE is
Y, = Anemy + Bne_my

Since A, > 0 and the solution goes to zero for large y, then A,, must be zero. Therefore the above
simplifies to

Y, (y) = Bne_my

And the complete solution becomes

u(x,y) = i cne_my sin (\/Zx)
n=1

13



Where constants are combined into c,. Since A,, = (%) 2, the above becomes
u(x,y) = Z che” @ Ysin (Ex)
n=1 a

At y = 0, the above becomes

F(x)= Z cp sin (Ex)

n=1 a
Applying orthogonality gives
a

‘[a F (x) sin (%x) dx =c,—

0

o

Cp = 2 La F (x) sin (%Tx) dx

a

Hence the complete solution is

u(x,y) = 2 ni:; (J: F (x) sin (%x) dx) e @ Ysin (Ex)

a

14
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