Review for midterm exam Math 322, Tuesday, March 13, 2018

The midterm exam is on sections 10.1-10.8 of our textbook.

1. (Section 10.1) Find the solution (if it exists) of the boundary value problem

$$
y^{\prime \prime}-y=e^{x}, \quad y(0)=1, y(1)=0
$$

2. (Sections $10.2-10.4)$ Find the Fourier cosine series for the function

$$
f(x)= \begin{cases}x & \text { if } 0<x<1 \\ 1 & \text { if } 1<x<2\end{cases}
$$

Choose $L=2$. Apply the Fourier convergence theorem. What do we get at $x=1$?
3. (Sections 10.2-10.4) Find the Fourier sine series for the function $f(x)$ of Problem 2. Choose $L=2$. Apply the Fourier convergence theorem.
4. (Section 10.5) Solve the heat equation

$$
u_{t}=u_{x x}
$$

with boundary conditions

$$
u_{x}(0, t)=0, \quad u_{x}(2, t)=0
$$

and initial condition

$$
u(x, 0)=f(x)
$$

with $f(x)$ from Problem 2. Find the steady-state temperature. 5. (Section 10.6) Solve the heat equation

$$
u_{t}=u_{x x}
$$

with boundary conditions

$$
u(0, t)=t, \quad u(\pi, t)=0
$$

and initial condition

$$
u(x, 0)=0
$$

6. (Section 10.7) Solve the wave equation

$$
u_{t t}=4 u_{x x}, \quad 0<x<\pi, t>0
$$

with boundary conditions

$$
u(0, t)=0, \quad u(\pi, t)=0
$$

and initial conditions

$$
u(x, 0)=\sin ^{2} x, \quad u_{t}(x, 0)=0
$$

Find the d'Alembert solution and the Fourier series solution.
7. (Section 10.7) Find d'Alembert's solution for the wave equation

$$
u_{t t}(x, t)=4 u_{x x}(x, t), \quad-\infty<x<\infty, t>0
$$

with initial conditions

$$
u(x, 0)=\sin x, \quad u_{t}(x, 0)=\cos x
$$

8. (Section 10.8) Solve the Dirichlet problem $u_{x x}+u_{y y}=0$ in the disk $x^{2}+y^{2}<1$ and

$$
u(x, y)= \begin{cases}20 & \text { if } y>0 \\ 0 & \text { if } y<0\end{cases}
$$

on the unit circle $x^{2}+y^{2}=1$. Find $u(0,0)$ and $u\left(0, \frac{1}{2}\right)$.
9. (Section 10.8) Find the solution $u(x, y)$ of Laplace's equation $u_{x x}+u_{y y}=$ 0 in the semi-infinite strip $0<x<a, y>0$, that satisfies $u(0, y)=0$, $u(a, y)=0$ for $y>0$ and $u(x, 0)=F(x), 0<x<a$ and the additional condition that $u(x, y) \rightarrow 0$ as $y \rightarrow \infty$.

