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0.0.1 Problem 1

Problem
Find the Fourier cosine series of
X 0<x<1
f(x)_{ 0 1<x<2

Take L = 2.

solution
To obtain the Fourier cosine series, the function f (x) is first even extended to -2 < x < 2

with period 2L or 4. Then repeated again with period 2L over the whole x domain. The following

plot shows the original f (x)

Original f(x) before even extension

(x)

The following plot shows then even extended f; (x) over 3 periods for illustrations

even f(x) extension

The Fourier cosine series is

f(x)= % +§;ancos(%x)

Where
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Since extension is even, then the above simplifies to

ag = %ij(x) dx

But L = 2, therefore

ap

J: f(x)dx = Ll xdx + f 0dx

And

an = %J_LLf(x)cos (n%) dx

Since cosine is even, and f (x) extension is even, then the product is even and the above simplifies
to

ap = %LLf(x) cos (%) dx

Since L = 2
r2
nmw
anp = | f(x)cos (—) dx
JO 2
rl 2
nr
= | xcos (—) dx + J 0 cos (E) dx
JO 2 1 2
r1
n
= | xcos (—n) dx
JO 2
But

cosax xsinax
+

Jx cos (ax)dx = —;
a a

Where a = F here. Therefore the integral becomes
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= (Zcos (—) +n7ts1n(—) —2)
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Therefore the Fourier series is

X2 nr . (nrx nm
+Z (2cos(—) +n7rs1n(—) —2) cos (—x)
o 2 2 2

n2m?
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By Fourier convergence theorem, since f (x) and f’ (x) are piecewise contiguous, the Fourier
series will converge to each point of f (x) where there is no jump discontinuity, and will converge
to the average of f (x) at the point where there is a jump. In this example, it will converge to 1 at
the points where is a jump discontinuity There are x = 1,3,5,--- and at x = —1,-3,-5,---. At
all other points, Fourier series will converge to f (x). This is a plot of the above Fourier series for
increasing number of terms
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0.0.2 Problem 2

Problem Solve heat PDE u; = 9u,, on 0 < x < ,¢t > 0 with boundary conditions u, (0,t) =
uy (,t) = 0 and initial conditions u (x, 0) = f (x) = 5sin®x

solution

The solution to the heat PDE with isolated end points is

u(x,t)=Ag+ Z cne_/l"“zt cos (\/Anx)
n=1

Where A,, = (%)2 forn =1,2,3---. But L = 7 here. Hence A,, = n? and a = 3. Therefore the

above solution becomes
()
u(x,t) = A+ Z cne_gnzt cos (nx) (1)
n=1

At t = 0 the above becomes
f(x)=A+ Z cp, cos (nx)
n=1

(o)
5sin’x = Ay + Z cp, cos (nx)

n=1
But sin® x = % - % cos (2x), therefore the above becomes
2.2 cos (2x) = Ap + i ¢y cos (nx)
2 2 n=1
Hence Ay = % and ¢y = —% and all other ¢, = 0. Therefore the solution (1) becomes

u(x,t) = e 3% cos (2x)

\CR &
[\CR ;]

At steady state when t — oo, the solution becomes u (x) = % The solution u (%, t) becomes

/4 5 5 T
u (—, t) =2 — Ze 30 cos (2—)
2 2 2 2
S 5 36t
=-——e cos (r
53 ()
5 5
=2y 236t
2 2
5
= - (1 + e_%t)



0.0.3 Problem 3

Problem

Solve the wave equation u;; = uyy on string, where initial position f (x) = 0 and initial
velocity is g (x) = sin (x) + sin (2x). The string is fixed at both ends.

solution

a = 1 in this problem. Using D’Alembert method

x+at

u(x,t)z%(f(x+at)+f(x—at))+%J‘ tg(s)ds

X—a
Where f, g above are the odd extensions. Since f (x) is zero and a = 1, the above simplifies to

rxX+1

u(x,t) = g(s)ds

x—t
rX+1

[

sin (s) + sin (2s) ds

x+t

N|—= DN|= DN
[
=
|
-~

1
—cos(s) — > cos (2s))
x—t
x+t

1 1
=3 (cos (s) + 5 €08 (25))

= —% (cos(x+t)+%cos(2(x+t))—cos(x—t)—%cos(Z(x—t))
= —%cos(x+t)— icos(z(x+t))+ %cos(x—t)+icos(2(x—t))
= %(cos (x—t)—cos(x+1))+ }1 (cos(2(x —t)) — cos(2(x +t)))

Using Fourier series method. The solution with initial position zero is

u(x,t) = i cp sin (\/Zat) sin (\/Zx)
n=1

Where A, = (%) ® with n = 1,2,3,---.Since L = 7 and a = 1, the above solution simplifies to
u(x,t) = Z ¢y sin (nt) sin (nx) (1)
n=1
To determine cj,, the velocity from the above solution is a”g;’t) = X cpncos (nt) sin (nx). And

at t = 0, this becomes

f(x)= i ne, sin (nx)
n=1

But f (x) = sin(x) + sin (2x). Hence the above becomes
sin (x) + sin (2x) = Z ney, sin (nx)
n=1
Therefore by inspection ¢; = 1 and 2¢; = 1 or¢c; = % Therefore the solution (1) becomes
. . 1. .
u(x,t) = sin () sin (x) + 5 sin (2t) sin (2x)
Since the Fourier series and the D’Alembert must be the same, then this implies that
. . 1. . 1 1
sin (1) sin (x)+§ sin (2t) sin (2x) = > (cos(x —t) —cos(x+ t))+‘—1 (cos(2(x —t)) —cos(2(x +1)))

This was confirmed on the computer as well. In this problem, it turned out that it is easier to use
the Fourier method, since the initial velocity was given as a Fourier sine series already.

0.0.4 Problem 4

Problem
Solve Laplace PDE u,, + %ur + #ugg = 0 inside annulus a < r < b where a > 0. The boundary
conditions is u (acos 0, asinf) = 0 and u (bcos 0, bsin ) = f (0).
solution
Let u (r, 0) = R(r) © (0). Substituting this back into the PDE gives
) R// R/ @//
r‘'—+r—+-—=0
R R ©
4



R R S}
The eigenvalue ODE is
0" +10 =0
0(0)=0(2r)

0’ (0) =0 (2x)
The solution to the above is known to be

0, (0) = ¢, cos (\/EQ) + ky, sin (\//1—,,9) (1

Where A, = n? andn =0,1,2,3,---. Therefore solution (1) becomes

~

0, (0) = ¢, cos (nh) + k,, sin (nd) n=1,23,--- (1A)
0, (0) =cy n=0 (1B)

Therefore the solution to the ®,, (6) ode is

Co n=0

On (0) = { cpcos(nf) +k,sin(nf) n=1,23,---

The solution to the R (r) ode (this is a Euler ODE) will have two solutions, one when Ay = 0 when
n = 0 and another solution for A, = n?> when n > 0. When eigenvalue is zero, the R (r) ODE
becomes

2R// Rl
r‘'—+r—=20
R R
PR’ +rR' =0
rR"+R =0
This has the solution
Ro(r):Aoln(r)+B0 (2)

Applying the boundary conditions r = a to the above gives

0= th’l(a) + By
BO = _A(] In ((1)

Therefore (2) becomes

Ro(r) =A¢In(r) — Agln(a)
= Ay (In(r) — In(a)) 3)

The above is only for the zero eigenvalue. When n > 0, the R (r) ode becomes the Euler ODE

r’R"+rR = A,R =0
r’R” +rR —n’R =0

The solution to this ODE is
R,(r)=A,r" + D,r " (4)

Here the term D,r™" does not vanish as the case with the solution to the disk. But using the
boundary condition that u = 0 when r = a, the above ODE at r = a becomes

R,(a)=0=A,a" + Dpa™

an

a—n

= —A,a*"

Dy = -Ap

Substituting the above back in (4) gives

R, (r) = Apr™ - Anaan—n
= A, (r” - a2"r_") (4A)

Therefore the solution to the R (r) ode is

_ | Ao(In(r) —In(a)) n=0
R, (r) = { A(; (rn _ a2nr—n) n=123,---

5



The fundamental solution is

Un (r, 0) =R, (r) 0, (0)

zero eigenvalue n>0 eigenvalues

= cpAo (In(r) — In(a)) + (r" = @®"r™") (cn cos (n0) + ky sin (n0))

By superposition, the complete solution is
u(r,0) = cgAg(In(r) —In(a)) + Z Ap (r" - a?"r” ™) (cy cos (nf) + ky, sin (nb))
n=1
Combining ¢yA, into ¢y and A, ¢, into ¢, and A, k, into k, the above simplifies to
u(0) = co (10 (1) = In (@) + 3 (" = a™r™) (¢ cos (n0) + ky sin (n0)) )

n=1

Now the boundary condition at r = b is used to determined ¢, ¢, and k,. At r = b and for
n = 0 case, the above becomes, by orthogonality

f” £(0)d0 = (27) o (In (b) ~ In (@)
0

1 2
O @, L0 ©
And for n > 0, solution (5) becomes
)= i —@®"b™") (cn cos (nf) + ky sin (nd)) (7)

n=1
By orthogonality with cos (nf) equation (7) becomes
2

£ (0)cos (n0)do = (b" = a®"b™") cpr

0

J f(6) cos(nd)do

Cnh =

(b a2”b )
And by orthogonality with sin (nf) equation (4) becomes

27

f(6)sin(nf)do = (b" — aznb_”) knr

1 2 .
kn = (bn—az—”b_n)ﬂ' J; f(@) sin (n@) do

This completes the solution. Solution (5) becomes

1 In (r) In (a)

u(r,0) = 2 (b —In(a) (b) n () I f(60)do + i (r" - az"r_") (cn cos (n) + k, sin (nd))
Ch = m J f (9) COS (n9) do
2
k, = ! £(0) sin (n6) dO

(bn _ aan—n)ﬂ- 0
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