my post-mortem solution to first midterm exam
 Math 332 Introduction to Partial differential equations
 Spring 2018

Nasser M. Abbasi

September 17, 2018 Compiled on September 17, 2018 at 8:35pm

0.0.1 Problem 1

Problem
Find the Fourier cosine series of

$$
f(x)= \begin{cases}x & 0<x \leq 1 \\ 0 & 1<x \leq 2\end{cases}
$$

Take $L=2$.
solution
To obtain the Fourier cosine series, the function $f(x)$ is first even extended to $-2<x<2$ with period $2 L$ or 4 . Then repeated again with period $2 L$ over the whole x domain. The following plot shows the original $f(x)$

The following plot shows then even extended $f_{e}(x)$ over 3 periods for illustrations

The Fourier cosine series is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)
$$

Where

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x
$$

Since extension is even, then the above simplifies to

$$
a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x
$$

But $L=2$, therefore

$$
\begin{aligned}
a_{0} & =\int_{0}^{2} f(x) d x=\int_{0}^{1} x d x+\int_{1}^{2} 0 d x \\
& =\frac{1}{2}\left(x^{2}\right)_{0}^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

And

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L}\right) d x
$$

Since cosine is even, and $f(x)$ extension is even, then the product is even and the above simplifies to

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L}\right) d x
$$

Since $L=2$

$$
\begin{aligned}
a_{n} & =\int_{0}^{2} f(x) \cos \left(\frac{n \pi}{2}\right) d x \\
& =\int_{0}^{1} x \cos \left(\frac{n \pi}{2}\right) d x+\int_{1}^{2} 0 \cos \left(\frac{n \pi}{2}\right) d x \\
& =\int_{0}^{1} x \cos \left(\frac{n \pi}{2}\right) d x
\end{aligned}
$$

But

$$
\int x \cos (a x) d x=\frac{\cos a x}{a^{2}}+\frac{x \sin a x}{a}
$$

Where $a=\frac{n \pi}{2}$ here. Therefore the integral becomes

$$
\begin{aligned}
a_{n} & =\int_{0}^{1} x \cos \left(\frac{n \pi}{2}\right) d x \\
& =\left(\frac{\cos \left(\frac{n \pi}{2} x\right)}{\left(\frac{n \pi}{2}\right)^{2}}+\frac{x \sin \left(\frac{n \pi}{2} x\right)}{\left(\frac{n \pi}{2}\right)}\right)_{0}^{1} \\
& =\frac{\cos \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)^{2}}+\frac{\sin \left(\frac{n \pi}{2}\right)}{\left(\frac{n \pi}{2}\right)}-\frac{1}{\left(\frac{n \pi}{2}\right)^{2}} \\
& =\frac{4 \cos \left(\frac{n \pi}{2}\right)}{(n \pi)^{2}}+\frac{2 \sin \left(\frac{n \pi}{2}\right)}{n \pi}-\frac{4}{(n \pi)^{2}} \\
& =\frac{4 \cos \left(\frac{n \pi}{2}\right)+2 n \pi \sin \left(\frac{n \pi}{2}\right)-4}{n^{2} \pi^{2}} \\
& =\frac{2}{n^{2} \pi^{2}}\left(2 \cos \left(\frac{n \pi}{2}\right)+n \pi \sin \left(\frac{n \pi}{2}\right)-2\right)
\end{aligned}
$$

Therefore the Fourier series is

$$
f(x)=\frac{1}{4}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left(2 \cos \left(\frac{n \pi}{2}\right)+n \pi \sin \left(\frac{n \pi}{2}\right)-2\right) \cos \left(\frac{n \pi}{2} x\right)
$$

By Fourier convergence theorem, since $f(x)$ and $f^{\prime}(x)$ are piecewise contiguous, the Fourier series will converge to each point of $f(x)$ where there is no jump discontinuity, and will converge to the average of $f(x)$ at the point where there is a jump. In this example, it will converge to $\frac{1}{2}$ at the points where is a jump discontinuity There are $x=1,3,5, \cdots$ and at $x=-1,-3,-5, \cdots$. At all other points, Fourier series will converge to $f(x)$. This is a plot of the above Fourier series for increasing number of terms

0.0.2 Problem 2

Problem Solve heat PDE $u_{t}=9 u_{x x}$ on $0<x<\pi, t>0$ with boundary conditions $u_{x}(0, t)=$ $u_{x}(\pi, t)=0$ and initial conditions $u(x, 0)=f(x)=5 \sin ^{2} x$
solution
The solution to the heat PDE with isolated end points is

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} a^{2} t} \cos \left(\sqrt{\lambda_{n} x}\right)
$$

Where $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ for $n=1,2,3 \cdots$. But $L=\pi$ here. Hence $\lambda_{n}=n^{2}$ and $a=3$. Therefore the above solution becomes

$$
\begin{equation*}
u(x, t)=A_{0}+\sum_{n=1}^{\infty} c_{n} e^{-9 n^{2} t} \cos (n x) \tag{1}
\end{equation*}
$$

At $t=0$ the above becomes

$$
\begin{aligned}
f(x) & =A_{0}+\sum_{n=1}^{\infty} c_{n} \cos (n x) \\
5 \sin ^{2} x & =A_{0}+\sum_{n=1}^{\infty} c_{n} \cos (n x)
\end{aligned}
$$

But $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos (2 x)$, therefore the above becomes

$$
\frac{5}{2}-\frac{5}{2} \cos (2 x)=A_{0}+\sum_{n=1}^{\infty} c_{n} \cos (n x)
$$

Hence $A_{0}=\frac{5}{2}$ and $c_{2}=-\frac{5}{2}$ and all other $c_{n}=0$. Therefore the solution (1) becomes

$$
u(x, t)=\frac{5}{2}-\frac{5}{2} e^{-36 t} \cos (2 x)
$$

At steady state when $t \rightarrow \infty$, the solution becomes $u(x)=\frac{5}{2}$. The solution $u\left(\frac{\pi}{2}, t\right)$ becomes

$$
\begin{aligned}
u\left(\frac{\pi}{2}, t\right) & =\frac{5}{2}-\frac{5}{2} e^{-36 t} \cos \left(2 \frac{\pi}{2}\right) \\
& =\frac{5}{2}-\frac{5}{2} e^{-36 t} \cos (\pi) \\
& =\frac{5}{2}+\frac{5}{2} e^{-36 t} \\
& =\frac{5}{2}\left(1+e^{-36 t}\right)
\end{aligned}
$$

0.0.3 Problem 3

Problem
Solve the wave equation $u_{t t}=u_{x x}$ on string, where initial position $f(x)=0$ and initial velocity is $g(x)=\sin (x)+\sin (2 x)$. The string is fixed at both ends.
solution
$a=1$ in this problem. Using D'Alembert method

$$
u(x, t)=\frac{1}{2}(f(x+a t)+f(x-a t))+\frac{1}{2} \int_{x-a t}^{x+a t} g(s) d s
$$

Where f, g above are the odd extensions. Since $f(x)$ is zero and $a=1$, the above simplifies to

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \int_{x-t}^{x+t} g(s) d s \\
& =\frac{1}{2} \int_{x-t}^{x+t} \sin (s)+\sin (2 s) d s \\
& =\frac{1}{2}\left(-\cos (s)-\frac{1}{2} \cos (2 s)\right)_{x-t}^{x+t} \\
& =-\frac{1}{2}\left(\cos (s)+\frac{1}{2} \cos (2 s)\right)_{x-t}^{x+t} \\
& =-\frac{1}{2}\left(\cos (x+t)+\frac{1}{2} \cos (2(x+t))-\cos (x-t)-\frac{1}{2} \cos (2(x-t))\right) \\
& =-\frac{1}{2} \cos (x+t)-\frac{1}{4} \cos (2(x+t))+\frac{1}{2} \cos (x-t)+\frac{1}{4} \cos (2(x-t)) \\
& =\frac{1}{2}(\cos (x-t)-\cos (x+t))+\frac{1}{4}(\cos (2(x-t))-\cos (2(x+t)))
\end{aligned}
$$

Using Fourier series method. The solution with initial position zero is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\sqrt{\lambda_{n}} a t\right) \sin \left(\sqrt{\lambda_{n}} x\right)
$$

Where $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ with $n=1,2,3, \cdots$. Since $L=\pi$ and $a=1$, the above solution simplifies to

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n t) \sin (n x) \tag{1}
\end{equation*}
$$

To determine c_{n}, the velocity from the above solution is $\frac{\partial u(x, t)}{\partial t}=\sum_{n=1}^{\infty} c_{n} n \cos (n t) \sin (n x)$. And at $t=0$, this becomes

$$
f(x)=\sum_{n=1}^{\infty} n c_{n} \sin (n x)
$$

But $f(x)=\sin (x)+\sin (2 x)$. Hence the above becomes

$$
\sin (x)+\sin (2 x)=\sum_{n=1}^{\infty} n c_{n} \sin (n x)
$$

Therefore by inspection $c_{1}=1$ and $2 c_{2}=1$ or $c_{2}=\frac{1}{2}$. Therefore the solution (1) becomes

$$
u(x, t)=\sin (t) \sin (x)+\frac{1}{2} \sin (2 t) \sin (2 x)
$$

Since the Fourier series and the D'Alembert must be the same, then this implies that
$\sin (t) \sin (x)+\frac{1}{2} \sin (2 t) \sin (2 x)=\frac{1}{2}(\cos (x-t)-\cos (x+t))+\frac{1}{4}(\cos (2(x-t))-\cos (2(x+t)))$
This was confirmed on the computer as well. In this problem, it turned out that it is easier to use the Fourier method, since the initial velocity was given as a Fourier sine series already.

0.0.4 Problem 4

Problem

Solve Laplace PDE $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ inside annulus $a<r<b$ where $a>0$. The boundary conditions is $u(a \cos \theta, a \sin \theta)=0$ and $u(b \cos \theta, b \sin \theta)=f(\theta)$.
solution
$\overline{\text { Let } u(r, \theta)}=R(r) \Theta(\theta)$. Substituting this back into the PDE gives

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

Or

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=-\frac{\Theta^{\prime \prime}}{\Theta}=\lambda
$$

The eigenvalue ODE is

$$
\begin{aligned}
\Theta^{\prime \prime}+\lambda \Theta & =0 \\
\Theta(0) & =\Theta(2 \pi) \\
\Theta^{\prime}(0) & =\Theta^{\prime}(2 \pi)
\end{aligned}
$$

The solution to the above is known to be

$$
\begin{equation*}
\Theta_{n}(\theta)=c_{n} \cos \left(\sqrt{\lambda_{n}} \theta\right)+k_{n} \sin \left(\sqrt{\lambda_{n}} \theta\right) \tag{1}
\end{equation*}
$$

Where $\lambda_{n}=n^{2}$ and $n=0,1,2,3, \cdots$. Therefore solution (1) becomes

$$
\begin{align*}
& \Theta_{n}(\theta)=c_{n} \cos (n \theta)+k_{n} \sin (n \theta) \quad n=1,2,3, \cdots \tag{1A}\\
& \Theta_{n}(\theta)=c_{0} \quad n=0 \tag{1B}
\end{align*}
$$

Therefore the solution to the $\Theta_{n}(\theta)$ ode is

$$
\Theta_{n}(\theta)=\left\{\begin{array}{cc}
c_{0} & n=0 \\
c_{n} \cos (n \theta)+k_{n} \sin (n \theta) & n=1,2,3, \cdots
\end{array}\right.
$$

The solution to the $R(r)$ ode (this is a Euler ODE) will have two solutions, one when $\lambda_{0}=0$ when $n=0$ and another solution for $\lambda_{n}=n^{2}$ when $n>0$. When eigenvalue is zero, the $R(r)$ ODE becomes

$$
\begin{aligned}
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R} & =0 \\
r^{2} R^{\prime \prime}+r R^{\prime} & =0 \\
r R^{\prime \prime}+R^{\prime} & =0
\end{aligned}
$$

This has the solution

$$
\begin{equation*}
R_{0}(r)=A_{0} \ln (r)+B_{0} \tag{2}
\end{equation*}
$$

Applying the boundary conditions $r=a$ to the above gives

$$
\begin{aligned}
0 & =A_{0} \ln (a)+B_{0} \\
B_{0} & =-A_{0} \ln (a)
\end{aligned}
$$

Therefore (2) becomes

$$
\begin{align*}
R_{0}(r) & =A_{0} \ln (r)-A_{0} \ln (a) \\
& =A_{0}(\ln (r)-\ln (a)) \tag{3}
\end{align*}
$$

The above is only for the zero eigenvalue. When $n>0$, the $R(r)$ ode becomes the Euler ODE

$$
\begin{aligned}
& r^{2} R^{\prime \prime}+r R^{\prime}-\lambda_{n} R=0 \\
& r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0
\end{aligned}
$$

The solution to this ODE is

$$
\begin{equation*}
R_{n}(r)=A_{n} r^{n}+D_{n} r^{-n} \tag{4}
\end{equation*}
$$

Here the term $D_{n} r^{-n}$ does not vanish as the case with the solution to the disk. But using the boundary condition that $u=0$ when $r=a$, the above ODE at $r=a$ becomes

$$
\begin{aligned}
R_{n}(a) & =0=A_{n} a^{n}+D_{n} a^{-n} \\
D_{n} & =-A_{n} \frac{a^{n}}{a^{-n}} \\
& =-A_{n} a^{2 n}
\end{aligned}
$$

Substituting the above back in (4) gives

$$
\begin{align*}
R_{n}(r) & =A_{n} r^{n}-A_{n} a^{2 n} r^{-n} \\
& =A_{n}\left(r^{n}-a^{2 n} r^{-n}\right) \tag{4~A}
\end{align*}
$$

Therefore the solution to the $R(r)$ ode is

$$
R_{n}(r)=\left\{\begin{array}{lc}
A_{0}(\ln (r)-\ln (a)) & n=0 \\
A_{n}\left(r^{n}-a^{2 n} r^{-n}\right) & n=1,2,3, \cdots
\end{array}\right.
$$

The fundamental solution is

$$
\begin{aligned}
u_{n}(r, \theta) & =R_{n}(r) \Theta_{n}(\theta) \\
& =\overbrace{c_{0} A_{0}(\ln (r)-\ln (a))}^{\text {zero eigenvalue }}+\overbrace{\left(r^{n}-a^{2 n} r^{-n}\right)\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right)}^{n>0 \text { eigenvalues }}
\end{aligned}
$$

By superposition, the complete solution is

$$
u(r, \theta)=c_{0} A_{0}(\ln (r)-\ln (a))+\sum_{n=1}^{\infty} A_{n}\left(r^{n}-a^{2 n} r^{-n}\right)\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right)
$$

Combining $c_{0} A_{0}$ into c_{0} and $A_{n} c_{n}$ into c_{n} and $A_{n} k_{n}$ into k_{n} the above simplifies to

$$
\begin{equation*}
u(r, \theta)=c_{0}(\ln (r)-\ln (a))+\sum_{n=1}^{\infty}\left(r^{n}-a^{2 n} r^{-n}\right)\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right) \tag{5}
\end{equation*}
$$

Now the boundary condition at $r=b$ is used to determined c_{0}, c_{n} and k_{n}. At $r=b$ and for $\underline{n=0}$ case, the above becomes, by orthogonality

$$
\begin{align*}
\int_{0}^{2 \pi} f(\theta) d \theta & =(2 \pi) c_{0}(\ln (b)-\ln (a)) \\
c_{0} & =\frac{1}{2 \pi(\ln (b)-\ln (a))} \int_{0}^{2 \pi} f(\theta) d \theta \tag{6}
\end{align*}
$$

And for $n>0$, solution (5) becomes

$$
\begin{equation*}
f(\theta)=\sum_{n=1}^{\infty}\left(b^{n}-a^{2 n} b^{-n}\right)\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right) \tag{7}
\end{equation*}
$$

By orthogonality with $\cos (n \theta)$ equation (7) becomes

$$
\begin{aligned}
\int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta & =\left(b^{n}-a^{2 n} b^{-n}\right) c_{n} \pi \\
c_{n} & =\frac{1}{\left(b^{n}-a^{2 n} b^{-n}\right) \pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta
\end{aligned}
$$

And by orthogonality with $\sin (n \theta)$ equation (4) becomes

$$
\begin{aligned}
\int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta & =\left(b^{n}-a^{2 n} b^{-n}\right) k_{n} \pi \\
k_{n} & =\frac{1}{\left(b^{n}-a^{2 n} b^{-n}\right) \pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

This completes the solution. Solution (5) becomes

$$
\begin{aligned}
u(r, \theta) & =\frac{1}{2 \pi} \frac{\ln (r)-\ln (a)}{\ln (b)-\ln (a)} \int_{0}^{2 \pi} f(\theta) d \theta+\sum_{n=1}^{\infty}\left(r^{n}-a^{2 n} r^{-n}\right)\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right) \\
c_{n} & =\frac{1}{\left(b^{n}-a^{2 n} b^{-n}\right) \pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \\
k_{n} & =\frac{1}{\left(b^{n}-a^{2 n} b^{-n}\right) \pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

