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0.0.1 Problem 1

Problem
Find the Fourier cosine series of

f (x) =

{
x 0 < x ≤ 1
0 1 < x ≤ 2

Take L = 2.
solution
To obtain the Fourier cosine series, the function f (x) is first even extended to −2 < x < 2

with period 2L or 4. Then repeated again with period 2L over the whole x domain. The following
plot shows the original f (x)
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Original f(x) before even extension

The following plot shows then even extended fe (x) over 3 periods for illustrations
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The Fourier cosine series is

f (x) =
a0
2
+

∞∑
n=1

an cos
(nπ
L
x
)

Where

a0 =
1
L

∫ L

−L
f (x)dx

Since extension is even, then the above simplifies to

a0 =
2
L

∫ L

0
f (x)dx

But L = 2, therefore

a0 =

∫ 2

0
f (x)dx =

∫ 1

0
xdx +

∫ 2

1
0dx

=
1
2

(
x2

) 1
0

=
1
2

And

an =
1
L

∫ L

−L
f (x) cos

(nπ
L

)
dx

Since cosine is even, and f (x) extension is even, then the product is even and the above simplifies
to

an =
2
L

∫ L

0
f (x) cos

(nπ
L

)
dx

Since L = 2

an =

∫ 2

0
f (x) cos

(nπ
2

)
dx

=

∫ 1

0
x cos

(nπ
2

)
dx +

∫ 2

1
0 cos

(nπ
2

)
dx

=

∫ 1

0
x cos

(nπ
2

)
dx
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But ∫
x cos (ax)dx =

cosax
a2

+
x sinax

a

Where a = nπ
2 here. Therefore the integral becomes

an =

∫ 1

0
x cos

(nπ
2

)
dx

=

(
cos

( nπ
2 x

)( nπ
2

) 2 +
x sin

( nπ
2 x

)( nπ
2

) ) 1
0

=
cos

( nπ
2

)( nπ
2

) 2 + sin
( nπ

2

)( nπ
2

) −
1( nπ
2

) 2
=

4 cos
( nπ

2

)
(nπ )2

+
2 sin

( nπ
2

)
nπ

−
4

(nπ )2

=
4 cos

( nπ
2

)
+ 2nπ sin

( nπ
2

)
− 4

n2π 2

=
2

n2π 2

(
2 cos

(nπ
2

)
+ nπ sin

(nπ
2

)
− 2

)
Therefore the Fourier series is

f (x) =
1
4
+

∞∑
n=1

2
n2π 2

(
2 cos

(nπ
2

)
+ nπ sin

(nπ
2

)
− 2

)
cos

(nπ
2
x
)

By Fourier convergence theorem, since f (x) and f ′ (x) are piecewise contiguous, the Fourier
series will converge to each point of f (x)where there is no jump discontinuity, and will converge
to the average of f (x) at the point where there is a jump. In this example, it will converge to 1

2 at
the points where is a jump discontinuity There are x = 1, 3, 5, · · · and at x = −1,−3,−5, · · · . At
all other points, Fourier series will converge to f (x). This is a plot of the above Fourier series for
increasing number of terms
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0.0.2 Problem 2

Problem Solve heat PDE ut = 9uxx on 0 < x < π , t > 0 with boundary conditions ux (0, t) =
ux (π , t) = 0 and initial conditions u (x, 0) = f (x) = 5 sin2 x

solution
The solution to the heat PDE with isolated end points is

u (x, t) = A0 +
∞∑
n=1

cne
−λna2t cos

(√
λnx

)
Where λn =

( nπ
L

) 2 for n = 1, 2, 3 · · · . But L = π here. Hence λn = n2 and a = 3. Therefore the
above solution becomes

u (x, t) = A0 +
∞∑
n=1

cne
−9n2t cos (nx) (1)

At t = 0 the above becomes

f (x) = A0 +
∞∑
n=1

cn cos (nx)

5 sin2 x = A0 +
∞∑
n=1

cn cos (nx)

But sin2 x = 1
2 −

1
2 cos (2x), therefore the above becomes

5
2
−
5
2
cos (2x) = A0 +

∞∑
n=1

cn cos (nx)

Hence A0 =
5
2 and c2 = − 5

2 and all other cn = 0. Therefore the solution (1) becomes

u (x, t) =
5
2
−
5
2
e−36t cos (2x)

At steady state when t → ∞, the solution becomes u (x) = 5
2 . The solution u

( π
2 , t

)
becomes

u
(π
2
, t

)
=

5
2
−
5
2
e−36t cos

(
2
π

2

)
=

5
2
−
5
2
e−36t cos (π )

=
5
2
+
5
2
e−36t

=
5
2

(
1 + e−36t

)
0.0.3 Problem 3

Problem
Solve the wave equation ut t = uxx on string, where initial position f (x) = 0 and initial

velocity is д (x) = sin (x) + sin (2x). The string is fixed at both ends.
solution
a = 1 in this problem. Using D’Alembert method

u (x, t) =
1
2
(f (x + at) + f (x − at)) +

1
2

∫ x+at

x−at
д (s)ds
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Where f ,д above are the odd extensions. Since f (x) is zero and a = 1, the above simplifies to

u (x, t) =
1
2

∫ x+t

x−t
д (s)ds

=
1
2

∫ x+t

x−t
sin (s) + sin (2s)ds

=
1
2

(
− cos (s) −

1
2
cos (2s)

) x+t
x−t

= −
1
2

(
cos (s) +

1
2
cos (2s)

) x+t
x−t

= −
1
2

(
cos (x + t) +

1
2
cos (2 (x + t)) − cos (x − t) −

1
2
cos (2 (x − t))

)
= −

1
2
cos (x + t) −

1
4
cos (2 (x + t)) +

1
2
cos (x − t) +

1
4
cos (2 (x − t))

=
1
2
(cos (x − t) − cos (x + t)) +

1
4
(cos (2 (x − t)) − cos (2 (x + t)))

Using Fourier series method. The solution with initial position zero is

u (x, t) =
∞∑
n=1

cn sin
(√

λnat
)
sin

(√
λnx

)
Where λn =

( nπ
L

) 2 with n = 1, 2, 3, · · · . Since L = π and a = 1, the above solution simplifies to

u (x, t) =
∞∑
n=1

cn sin (nt) sin (nx) (1)

To determine cn , the velocity from the above solution is ∂u(x ,t )
∂t =

∑∞
n=1 cnn cos (nt) sin (nx). And

at t = 0, this becomes

f (x) =
∞∑
n=1

ncn sin (nx)

But f (x) = sin (x) + sin (2x). Hence the above becomes

sin (x) + sin (2x) =
∞∑
n=1

ncn sin (nx)

Therefore by inspection c1 = 1 and 2c2 = 1 or c2 = 1
2 . Therefore the solution (1) becomes

u (x, t) = sin (t) sin (x) +
1
2
sin (2t) sin (2x)

Since the Fourier series and the D’Alembert must be the same, then this implies that

sin (t) sin (x)+
1
2
sin (2t) sin (2x) =

1
2
(cos (x − t) − cos (x + t))+

1
4
(cos (2 (x − t)) − cos (2 (x + t)))

This was confirmed on the computer as well. In this problem, it turned out that it is easier to use
the Fourier method, since the initial velocity was given as a Fourier sine series already.
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0.0.4 Problem 4

Problem
Solve Laplace PDEur r + 1

rur +
1
r 2uθθ = 0 inside annulus a < r < b where a > 0. The boundary

conditions is u (a cosθ ,a sinθ ) = 0 and u (b cosθ ,b sinθ ) = f (θ ).
solution
Let u (r , θ ) = R (r )Θ (θ ). Substituting this back into the PDE gives

r 2
R′′

R
+ r

R′

R
+
Θ′′

Θ
= 0

Or
r 2
R′′

R
+ r

R′

R
= −

Θ′′

Θ
= λ

The eigenvalue ODE is

Θ′′ + λΘ = 0

Θ (0) = Θ (2π )

Θ′ (0) = Θ′ (2π )

The solution to the above is known to be

Θn (θ ) = cn cos
(√

λnθ
)
+ kn sin

(√
λnθ

)
(1)

Where λn = n2 and n = 0, 1, 2, 3, · · · . Therefore solution (1) becomes

Θn (θ ) = cn cos (nθ ) + kn sin (nθ ) n = 1, 2, 3, · · · (1A)
Θn (θ ) = c0 n = 0 (1B)

Therefore the solution to the Θn (θ ) ode is

Θn (θ ) =

{
c0 n = 0

cn cos (nθ ) + kn sin (nθ ) n = 1, 2, 3, · · ·

The solution to the R (r ) ode (this is a Euler ODE) will have two solutions, one when λ0 = 0 when
n = 0 and another solution for λn = n2 when n > 0. When eigenvalue is zero, the R (r ) ODE
becomes

r 2
R′′

R
+ r

R′

R
= 0

r 2R′′ + rR′ = 0

rR′′ + R′ = 0

This has the solution
R0 (r ) = A0 ln (r ) + B0 (2)

Applying the boundary conditions r = a to the above gives

0 = A0 ln (a) + B0

B0 = −A0 ln (a)

Therefore (2) becomes

R0 (r ) = A0 ln (r ) −A0 ln (a)

= A0 (ln (r ) − ln (a)) (3)
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The above is only for the zero eigenvalue. When n > 0, the R (r ) ode becomes the Euler ODE

r 2R′′ + rR′ − λnR = 0

r 2R′′ + rR′ − n2R = 0

The solution to this ODE is
Rn (r ) = Anr

n + Dnr
−n (4)

Here the term Dnr
−n does not vanish as the case with the solution to the disk. But using the

boundary condition that u = 0 when r = a, the above ODE at r = a becomes

Rn (a) = 0 = Ana
n + Dna

−n

Dn = −An
an

a−n

= −Ana
2n

Substituting the above back in (4) gives

Rn (r ) = Anr
n −Ana

2nr−n

= An
(
rn − a2nr−n

)
(4A)

Therefore the solution to the R (r ) ode is

Rn (r ) =

{
A0 (ln (r ) − ln (a)) n = 0
An

(
rn − a2nr−n

)
n = 1, 2, 3, · · ·

The fundamental solution is

un (r , θ ) = Rn (r )Θn (θ )

=

zero eigenvalue︷                   ︸︸                   ︷
c0A0 (ln (r ) − ln (a)) +

n>0 eigenvalues︷                                               ︸︸                                               ︷(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ ))

By superposition, the complete solution is

u (r , θ ) = c0A0 (ln (r ) − ln (a)) +
∞∑
n=1

An
(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ ))

Combining c0A0 into c0 and Ancn into cn and Ankn into kn the above simplifies to

u (r , θ ) = c0 (ln (r ) − ln (a)) +
∞∑
n=1

(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ )) (5)

Now the boundary condition at r = b is used to determined c0, cn and kn . At r = b and for
n = 0 case, the above becomes, by orthogonality∫ 2π

0
f (θ )dθ = (2π ) c0 (ln (b) − ln (a))

c0 =
1

2π (ln (b) − ln (a))

∫ 2π

0
f (θ )dθ (6)

And for n > 0, solution (5) becomes

f (θ ) =
∞∑
n=1

(
bn − a2nb−n

)
(cn cos (nθ ) + kn sin (nθ )) (7)
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By orthogonality with cos (nθ ) equation (7) becomes∫ 2π

0
f (θ ) cos (nθ )dθ =

(
bn − a2nb−n

)
cnπ

cn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) cos (nθ )dθ

And by orthogonality with sin (nθ ) equation (4) becomes∫ 2π

0
f (θ ) sin (nθ )dθ =

(
bn − a2nb−n

)
knπ

kn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) sin (nθ )dθ

This completes the solution. Solution (5) becomes

u (r , θ ) =
1
2π

ln (r ) − ln (a)
ln (b) − ln (a)

∫ 2π

0
f (θ )dθ +

∞∑
n=1

(
rn − a2nr−n

)
(cn cos (nθ ) + kn sin (nθ ))

cn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) cos (nθ )dθ

kn =
1

(bn − a2nb−n)π

∫ 2π

0
f (θ ) sin (nθ )dθ
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