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0.0.1 Problem 1

Problem
Find the Fourier cosine series of

X 0<x<1

f(x):{o 1<x<2

Take L = 2.

solution

To obtain the Fourier cosine series, the function f (x) is first even extended to -2 < x < 2
with period 2L or 4. Then repeated again with period 2L over the whole x domain. The following
plot shows the original f (x)

Original f(x) before even extension
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The following plot shows then even extended f. (x) over 3 periods for illustrations
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even f(x) extension

(x)

The Fourier cosine series is

(x)——0 i cos( )

Where
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Since extension is even, then the above simplifies to
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But L = 2, therefore
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And

I f(x)cos( )dx

Since cosine is even, and f (x) extension is even, then the product is even and the above simplifies
to

2 (* nr
I L f (x) cos (T) dx
Since L = 2
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Where a = = here. Therefore the integral becomes
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Therefore the Fourier series is

(59

f(x)= 411 + Z nzzﬂz (Zcos (r%”) + ns sin (%T) - 2) cos (%Tx)

n=1

By Fourier convergence theorem, since f (x) and f”’ (x) are piecewise contiguous, the Fourier
series will converge to each point of f (x) where there is no jump discontinuity, and will converge
to the average of f (x) at the point where there is a jump. In this example, it will converge to % at
the points where is a jump discontinuity There are x = 1,3,5, -+ and at x = —1,-3,-5,---. At
all other points, Fourier series will converge to f (x). This is a plot of the above Fourier series for
increasing number of terms
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0.0.2 Problem 2

Problem Solve heat PDE u; = 9u,x on 0 < x < s,¢t > 0 with boundary conditions u, (0,t) =
uy (m,t) = 0 and initial conditions u (x, 0) = f (x) = 5sin®x

solution

The solution to the heat PDE with isolated end points is

u(x,t) = A+ 2 cne_l"“zt cos (\M,,x)
n=1

Where A, = (%)2 forn =1,2,3---. But L = 7 here. Hence A,, = n? and a = 3. Therefore the
above solution becomes

u(x,t)=Ag + Z cne_gnzt cos (nx) (1)
n=1
At t = 0 the above becomes
fx)=A¢+ Z cp cos (nx)
n=1
5sinx = Ag + Z cp cos (nx)
n=1

cos (2x), therefore the above becomes

in2 = 1_1
But sin X=35-3

5 5 >
— ——cos(2x) = Ay + ¢y, cos (nx
> — > cos (2x) = Ao + 3 ¢ cos (nx)

n=1

Hence Ay = % and ¢y = —g and all other ¢, = 0. Therefore the solution (1) becomes

5
u(x,t)=-— Ee_%t cos (2x)
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At steady state when t — oo, the solution becomes u (x) = % The solution u (%, t) becomes

5 T
e 3% cos (2—)
2

e 3% cos ()

gl G
|
(K& 0 CY RSB Y

-36¢

+
o

I
|
—_—
—
4+

e—36t)

0.0.3 Problem 3

Problem

Solve the wave equation u;; = uy, on string, where initial position f (x) = 0 and initial
velocity is g (x) = sin (x) + sin (2x). The string is fixed at both ends.

solution

a = 1 in this problem. Using D’Alembert method

x+at

U (x.t) = %(f(x+at)+f(x—at))+%J g(s)ds

x—at
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Where f, g above are the odd extensions. Since f (x) is zero and a = 1, the above simplifies to

rX+1

g(s)ds
o

sin (s) + sin (2s) ds
x—t

—cos(s) — % cos (23))

N[—= N|—= DN

u(x,t)

e

[

x+t

x—t
x+t

—% (cos (s) + % cos (23))

x—t

—% (cos(x+t)+%cos(Z(x+t))—cos(x—t)—%cos(Z(x—t))

—%cos(x+t)—icos(z(x+t))+%cos(x—t)+icos(2(x—t))

% (cos(x—t)—cos(x+1)) + }1 (cos(2(x —t)) —cos(2(x +1)))

Using Fourier series method. The solution with initial position zero is

u(x,t) = i:; cp sin (\/Zat) sin (\/Ex)

Where A, = (%) ? with n = 1,2,3,---.Since L = 7 and a = 1, the above solution simplifies to
(o]
u(x,t) = Z ¢y, sin (nt) sin (nx) (1)
n=1
To determine cj,, the velocity from the above solution is a”g;’t) = X cpncos (nt) sin (nx). And

at t = 0, this becomes

f(x)= i ne, sin (nx)
n=1

But f (x) = sin (x) + sin (2x). Hence the above becomes

sin (x) + sin (2x) = Z ney, sin (nx)
n=1

Therefore by inspection ¢; = 1 and 2¢; = 1 or¢c; = % Therefore the solution (1) becomes
. . 1. .
u(x,t) = sin (¢) sin (x) + 5 sin (2t) sin (2x)
Since the Fourier series and the D’Alembert must be the same, then this implies that
. : 1. : 1 1
sin (t) sin (x)+5 sin (2t) sin (2x) = 5 (cos(x —t) — cos (x + t))+£—1 (cos(2(x —t)) — cos (2 (x + 1))

This was confirmed on the computer as well. In this problem, it turned out that it is easier to use
the Fourier method, since the initial velocity was given as a Fourier sine series already.



0.0.4 Problem 4

Problem

Solve Laplace PDE u,, + %ur + %u(;g = 0 inside annulus a < r < b where a > 0. The boundary
conditions is u (acos 8, asin @) = 0 and u (b cos 6, b sin 0) = f (6).

solution

Let u (r,0) = R(r) © (8). Substituting this back into the PDE gives

r‘—+r—+-—=0
R R ©
Or 4 R’ @’/
rP—tr—=—-—=21
R R ©
The eigenvalue ODE is
0" +10=0
©(0) =0(2r)

e’ (0) =0’ (2n)
The solution to the above is known to be

0, (0) = ¢, cos (\/ZG’) + kp, sin (\/A—nO) (1)

Where A, = n?andn =0,1,2,3,---. Therefore solution (1) becomes

0, (0) = ¢, cos (nh) + k,, sin (nb) n=123,--- (1A)
0, (0) =cy n=0 (1B)

Therefore the solution to the @, (6) ode is

Co n=20

On (0) = { ¢, cos (nb) + ky, sin (n0) n=123,---

The solution to the R (r) ode (this is a Euler ODE) will have two solutions, one when Ay = 0 when
n = 0 and another solution for A, = n> when n > 0. When eigenvalue is zero, the R (r) ODE
becomes

2R// Rl
r‘'—+r—=20
R R
PR’ +rR' =0
rR"+R =0
This has the solution
Ro(r):Aoln(r)+Bo (2)

Applying the boundary conditions r = a to the above gives

0= Aoln(a) + By
B() = —Ag In (a)

Therefore (2) becomes

Ro(r) =A¢In(r) — Agln(a)
= Ay (In(r) — In(a)) 3)

6



The above is only for the zero eigenvalue. When n > 0, the R (r) ode becomes the Euler ODE
r’R"+rR - 2,R=0
r’R” +rR = n*R =0

The solution to this ODE is
R,(r)=A,r" + D,r " 4)

Here the term D,r™" does not vanish as the case with the solution to the disk. But using the
boundary condition that u = 0 when r = a, the above ODE at r = a becomes

R,(a)=0=A,a" + Dpa™

an

n:

= -A,a""
Substituting the above back in (4) gives

Ry (r) = Apr™ — Apa®'r™"
= A, (r" - aznr_") (4A)

Therefore the solution to the R (r) ode is

| Aog(In(r) —In(a)) n=0
Rn(r)—{ A(;(r — a®rn) n=1,273,---

The fundamental solution is

Uy (r,0) =R, (r) 0, (0)

zero eigenvalue n>0 eigenvalues

= coAg (In(r) = In(a)) + (r" = a®"r™") (c, cos (nf) + ky, sin (nd))

By superposition, the complete solution is
u(r,0) = cAg (In(r) — In(a)) + Z Ap (r" = a®"r™") (cy cos (n0) + ky sin (n0))
n=1

Combining ¢yAy into ¢y and A, ¢, into ¢, and A, k, into k, the above simplifies to

(o)

u(r,0) =cy(In(r) —In(a)) + Z (r" = a®"r™") (cn cos (nf) + k, sin (nd)) (5)

n=1

Now the boundary condition at r = b is used to determined cy, ¢, and k,. At r = b and for
n = 0 case, the above becomes, by orthogonality

2

£(0)do = (27) o (In (b) — In (a))

1

0

© = 2 (n(b) - In(a) Jo R ©
And for n > 0, solution (5) becomes
) = i —@®"b™") (c, cos (nf) + ky, sin (nd)) (7)

n=1
7



By orthogonality with cos (nf) equation (7) becomes
2

f(0)cos (n6)do = (b" = a®"b™") cpr

0

Cp = __r JZH f(6) cos (nd)do

(bn _ aan—n)n- 0
And by orthogonality with sin (nf) equation (4) becomes

2

f(6)sin(nf)do = (b" — aznb_”) knr

1 2 .
kn = (b”—az—”b_”)ﬂ' J; f(@) sin (n@) do

This completes the solution. Solution (5) becomes

u(r,0) = %% 02” f(6)do + i (r" - aznr_") (¢, cos (nd) + k, sin (nd))
n=1
1 2
Ch = m JO f (9) COS (n9) do
k, = ! " £(6) sin (n) do

b" —a2rb—) 1 J,
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