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1 Problem 1

Solve the heat equation
Ur = Uy

For 0 < x < 1,t > 0 with boundary conditions

u(0,t)=0

u(l,t) =1
And initial conditions

u(x,0) = x?

solution
Since the one of the boundary conditions are inhomogeneous, the solution is broken into two
parts. Let the solution be
u(x,t) =wi(x,t)+o(x) (1)

Where w (x, t) is the solution to the PDE with homogeneous boundary conditions and v (x) is a
reference solution which is only required to satisfy the inhomogeneous boundary conditiorﬂ

Let v (x) = Ax + B. At x = 0 then v (0) = 0 which gives B = 0. Hence v (x) = Ax. At x = 1,
v (1) = 1 or A = 1. Therefore

v(x)=x
And (1) becomes
u(x,t)=w(xt)+x (1A)
Where now w (x, t) satisfies the PDE
Wi = W,y (1B)

For 0 < x < 1,t > 0 but with the following homogeneous boundary conditions

w(0,£)=0
w(l,t)=0

And initial conditions given by

w(x,0)=u(x,0)—v(x)

=x?—x (2)

The PDE (1B) is the heat PDE with homogeneous boundary conditions. This was solved before.
It has the solution

w(x,t) = i cne_)["“zt sin (\/Zx)
n=1

Where in this problem > =9and 1, = (%)2 ,n=1223---.But L = 1, therefore the above
solution reduces to -
w(x,t) = Z cne_g"z”zt sin (nx) (3)
n=1

¢, is now found from the initial conditions (2). At t = 0 the above becomes

0o

x?—x= Z ¢y sin (nzx)
n=1

Applying orthogonality gives
1

Jl (x* = x) sin (nzx) dx = CnJ sin? (nrx) dx

0 0

Hence

1
cp = ZJ (x2 — x) sin (n7x) dx

0

=2 (Jl x? sin (n7x) — Ll x sin (nrx) dx) (3A)

0

Ly (x, t) is called the transient solution with homogeneous boundary conditions, and v (x) the steady state solution
with the inhomogeneous boundary conditions.



Applying the following rule based on integration by parts f x¢ sin (ax) = 2"“M+ ( % - %2) cos ax,
the first integral above becomes (where a = nr)
. 2x sinnmx 2 x* !
x°sin (nrx) = — + 5 — —— | cosnxx
0 (nr) (nr)> nrm 0
2sinnm 2 1 2
= —+ 5 — —— | cosnm - 3
(nm) (nm)”  nm (nm)
But sinnz = 0 and cos nr = (—1)", therefore the above becomes
. _ (2 _ "
L x“ sin (nrx) (n37r3 ) (-1)" - n3ﬂr3
_2(=p" (—1)" 2
- 3l nmr n3x3
-1 n+l
= 1) + (3A1)
nr

Applying the following rule based on integration by parts Jx sin (ax) = M — *224% then the
second integral in (3A) becomes (where a = ns)

o sinnrx xcosnmx |’
x sin (nzx)dx =  —
0 ném nmw 0
_sinnmr  cosnxw
T n2x2 nr
-1 n+1
= (-1) (3A2)
nir
Substituting (3A1) and (3A2) into (3A) gives
(_1)n+1 2 (_1)n+1
\ =2 ) e
ni n3r ni

Therefore, the solution w (x, t) from (3) becomes
1+ (-1
w(x, t)—Z4( ( ) _9”’”sm(mrx)

And the solution u (x, t) from (1A) is

(=1+(=1)") _gp2,2;
3Z+—9

u(x,t) =x+ sin (nmx)

Only few terms are needed to obtain a very good approximation, since the convergence is of
order O % ).
n



2 Problem 2

Solve the Dirichlet problem uy + yy = 0 on the unit disk x* + y* < 1 with boundary conditions
u(cosf,sinf)=n>-0*’and -1 <0 <nx

solution

This is Laplace PDE on disk. Where a = 1 is the radius and r, 8 are polar coordinates. The
Laplacian in polar coordinates is

1 1
Urr + —Ur + —Uge = 0
r r

With boundary conditions on r being

u(a,0) = f(6) = n* - 6
u(0,0) < o

And with standard periodic boundary conditions on 6
u(r’_ﬂ:) = u(r’”)
ou ou
%(r’_”) - %(r’”)

This PDE was solved before and the solution to the Laplace PDE inside a disk is known to be

u(r,0) =Ay + Z r" (¢, cosnf + d, sin nb) (1)

n=1

With Fourier coefficients given by

=" roya

27
Ch = — f(0)cos(nd)do
ma® J_,
1 T
dpn = — j f(0)sin(nb)do
ma® J_,

Since the radius a = 1 in this problem, then the above become

1 T
Ay = — 0)do
025 | 1O

cp = 1 J” f(6) cos (nd)do
T J-n

d, =~ J” £(0) sin (n6) do
T J-r

The coefficients are now calculated?]

Av=— | (x2-0%) a0

Y -z

But fir” (712 - 92) do = firﬂ m2do - fir 02d6 = 273 — [%3] " =231 [71'3 + 7r3] =273 — %71'3 =

=7
%ﬂ3. Therefore

- 57
Ag=—|-n
2 \3
22
3
And
1 T
Cp = —J f(6)cos(nd)do
T J-n
1 JT
= —J (71'2 - 92) cos (nd) dé

T 1 T
= ﬂj cos (nf)do — —I 6° cos (nf) do
T

=TT

21t is important to use integration limit —z - - - 7 and not 0 - - - 271.



But Iit cos(nf)df = 0 and by integration by parts as was done earlier I:r 62 cos (nf)do =

4(_;#, hence the above simplifies to

4"

Cp =

n2

And

d, =+ J” £(0)sin (n9) d6
TJ-n

= lj (m* — 6%) sin (n6) dO

/. =7

V. 1 T
= J sin (n0)df — — J 6? sin (n0) d@
T

-7 -7

But fir sin (nf) d6 = 0, and by integration by parts as was done earlier, IZ{ 62 sin (n0) do = o,
hence
dp =0

Using the value of Ay, ¢,, d, found above the solution (1) becomes

u(r,0) =Ap+ Z r" (¢, cos nf + d, sin nf)
n=1

272 @ (-1)"
=——4Z( 2) r" cosnf
3 = n



3 Problem 3

Solve the inhomogeneous wave equation
U = Uyyx + x8iNt

For 0 < x < 1,t > 0 with boundary conditions

u(0,t)=0
u(1,t)=0
And initial conditions
u(x,0)=0
u; (x,0) =0

solution
Since the inhomogeneity is in the PDE itself (rather than in the boundary conditions), then
the method of eigenfunction expansion is used to obtain the solution. Let the solution be

u(x, ) = D by (1) @p (x) (1)
n=1

Where @, (x) are the eigenfunctions of the spatial eigenvalue ODE problem that comes from
solving the homogeneous wave equation with the given homogeneous boundary conditions,
which is 4;; = uy. This wave PDE with the given homogeneous boundary conditions was solved
before using separation of variables. The eigenfunctions were found to be

@n(x)=sin(\/Zx) n=123,---

With eigenvalues

nm\ 2
/1,,2(—) n=123---
L
But L = 1 here, therefore
Ap = nn? n=1273,---

Now that the eigenvalues and eigenfunctions are found, equation (1) is substituted back into the
PDE resulting in

i b)) (t) @, (x) = i by (t) @) (x) + x sin ¢
n=1 n=1

Since x sin t is a piecewise continuous function in x, it can be represented using the same eigen-
functionsff] and the above equation becomes

Z by (1) @y (x) = Z bn (t) @ (x) + Z ¥n (£) @ (x)
n=1 n=1 n=1
Since @/ (x) = —1,P, (x), which comes from the eigenvalue ODE, the above simplifies to
Dby ()@ (x) = D7 =bn (£) An@n (x) + D yn (1) O (x)
n=1 n=1 n=1
b;;, () +bp () Ap = Yn (1) ()

To solve the above ODE for b, (t), y, (t) needs to be found first. Using
xsint = Z Yn () @y (x)
n=1
Applying orthogonality gives
1 1
sin (t) J x®, (x)dx =y, (t)J @2 (x) dx
0 0

Since @, (x) = sin (\/Ex) then I; % (x)dx = % and the above reduces to

sin (t) J‘Ol x sin (n7x) dx = %yn (t)

3This is the same as saying the eigenfunctions are complete.



n+1
But fol x sin (nrx)dx = % by integration by part as was done before, and the above becomes

D™ ey = e
n+1
(0 =270

Using the above back in (2), ODE (2) now becomes

-1 n+1
b (t) + by (t)n*r* = 2( )

sin (t) 3)

This is a second order, inhomogeneous, linear, with constant coefficients ODE. The solution is
the sum of the homogeneous and particular solutions (the subscript n is removed for now from
by, (1), to simplify the notations, then added back after the solution is obtained). Let the solution
to (3) be

b(t) = bn (t) + by (1)

272 is always positive)

The homogeneous solution is seen to be (since n
by, (t) = Acos(nrt) + Bsin (nrt)
To find the particular solution, the method of undetermined coeflicients is used. let
b, (t) = Ccos(t) + Dsin (t) (4)
Hence b, = —=Cssin(t) + Dcos(t), b, = —=C cos(t) — D sin (t). Substituting these into (3) gives
. . 2 2 _ (D"
—Ccos(t) — Dsin(t) + (Ccos(t) + Dsin(t))n°“n* = ZT sin (1)

(_ n+l1

cos (t) [—C + annz] + sin (t) [—D + Dnan] =2 sin (1)

Therefore, by comparing coefficients

—-C+Cn*r® =0
C(n’r*-1) =0
C =

And

-1 n+l
LD

nit
(_1)n+1

ni

(_1)n+1
nr (n?m? - 1)

—D + Dn?n? =

D (n’r*-1) =2

D=

Hence the particular solution (4) is

b, (t) = Ccos (t) + Dsin(t)

_ (_1)n+1 )
= z—n” T sin (t)

Now that the particular solution is found, the final solution to (3) becomes

D"

b, (t) = A, cos(nnt) + B, sin (nnt) - 2———————
nm (n?r? —1)

sin (t) 4)
Using the above in the solution (1) gives

u(x,t) = i by (t) @p (x)
(=1"

e ) S (0 sin ()

= Z (An cos (nxt) + By, sin (nnt) — 2
n=1
Ap, By, are found from initial conditions. At ¢ = 0 the above simplifies to

0= Z A, sin (nrx)
n=1

8



Therefore A,, = 0 and the solution above reduces to

u(x,t) = i (Bn sin (nzt) — 2#;)2”1) sin (t)) sin (nzx)
n=1 -

Taking time derivative gives

uy (x,t) = g (Bnmr cos (nxt) — 2#;):_1) cos (t)) sin (nzx)

At t = 0 the above simplifies to

0= i (Bnmr - ZL) sin (nx)

—~ nr (n2m2 - 1)

Since this is valid for each n, then (B,,mr - ZL) =0or

nm(n?m?-1)

s, GV
T T n2a? (n2n? - 1)

Using the above in (5), the final solution becomes

u(x,t) = i 2 (L sin (nxt) — i sin (t)) sin (nmrx)

=\ n?n?(n’n? - 1) nr (n?r? —1)

_, i (-1)" (sin (nmt)

nmx (n?r? —1) wr sin (t)) sin (nzx)

n=1



4 Problem 4

Solve the wave equation

Upr = Uxx T+ uyy
On the unit disk x* + y? < 1 with with boundary conditions
— o2 2
u(x,y)=0 ifx*+y° =1

And initial conditions

u(x,y,0)=0
1 3 2 2 <
U (x,y,0) = 7€ if \/x? + y. <e
0 otherwise

Where 0 < ¢ < 1. Hint: The formula % (xJ1 (x)) = xJo (x) may be used. Extra credit: Plot the
solution u (r, t) for € = %,t =landt = 2.

solution

The PDE and initial and boundary conditions are converted to polar coordinates to become

1 1
Ury = Upr + ;ur + r_2u99 (1)

On the unit disk with radius 1. The boundary conditions are

u(1,0,t)=0
u(0,0,t) < o

Where u (0,0,t) < oo means the solution is bounded at center of disk » = 0. The boundary
conditions on 6 are the standard periodic boundary conditions

u(r,—mt)=u(r,m1t)

Up (ra -7, t) = Ug (r’ T, t)

And initial conditions are]

u(r,0,0)=0
1 .
— ifr<e
0,0) = e =
u (r,0,0) { 0 otherwise

The above PDE is solved by separation of variables. Let u(r,0,t) = T (t) R(r) © (8). Substituting
this in the PDE (1) gives

1 1
T”RO = R"TO + —R'TO + O"RT
r r
Dividing by RT©
T// R/I 1R/ 1 @// 9
_:_+_—+——=—/‘l
T R rR r2e
Where A is the first separation variable. This results in two equations

T/I
— =-)° 1
- 1)

RII 1R/ 1 @/I
— e — = — = )2 (2)

R rR rte

The time ODE (1) is

T” + *T =0 (1A)

Multiplying (2) by r? and rearranging

R// RI @//
2 212 2
— +r—+rl=—-—=

"RTTRTT o *

Where p is the second separation constant. This gives the R ODE as
r*R" +rR + (r*A> =’ ) R=0 3)

And the © ODE as
Q" +1*@ =0 (4)

“The original r? < e was changed tor < ¢

10



The eigenvalues for (4) determine the Bessel equation (3) order. Therefore (4) needs to be solved
first to determined the order. The ODE boundary conditions for (4) are periodic

O(-m)=0(n)
0 (-r)=0"(x)

case p = 0. This leads to solution

0= 019 + Co
@l =C
First BC gives
—C1IT+C =C1T+C
Cc1 = 0

And since second BC ©” = ¢, this implies © (0) is constant. So p = 0 is an eigenvalue, with
0y (0) = 1 being the eigenfunction.
Case p > 0 The solution to (4) becomes

© (0) = Acos (u60) + Bsin (ud)

To satisfy the periodic boundary conditions, p must be an integer, and since y > 0, then y = n
forn=1,2,3,---. Therefore

0,(0)=1 n=20 (54)
0, (0) = A, cosnd + B, sinnd n=12.3,--- (5B)

The above solution can be combined to one
0, (0) = A, cosnd + B, sin nd n=0,1,2-- (5)

Because when n = 0 the above solution gives @, () = A, which is the constant eigenfunction.
Now that p is found, Bessel ODE (3) can be solved.

r*R”(r) +rR (r) + (r*A* = n®) R(r) = 0 n=0123,-- 6O
R(1)=0
R(0) < o0

A = 0 is not a possible eigenvalue. This can be shown as follows. When A = 0 equation (5C)
becomes the Euler ODE

PRI (1) + R (N +nR(D=0  n=01,23- -

Now, when n = 0, then the ODE becomes r?R” (r) + rR’(r) = 0 whose solution is R(r) =
¢1 + ¢z In (r). Since solution is bounded at r = 0, then R (r) = ¢;. And since R(1) = 0 thenc¢; = 0
also, leading to trivial solution. When n > 0, the ODE becomes r*R” (r) + rR’ (r) + n?R(r) = 0
whose solution is R(r) = ¢;r" + czrln. Since solution is bounded at r = 0, then ¢, = 0 and the
solution now becomes R(r) = ¢;r". Using BC R(1) = 0 gives ¢; = 0 leading again to trivial
solution. This shows that A = 0 is not eigenvalue.

Now that A is is shown not to be zero, the Bessel ODE (5C) is solved . The first step is to
convert the ODE to a Bessel ODE in the classical form in order to use the standard solution. Let
t = Ar,then R’ (r) = R’ (t) A and R” (r) = R” (t) A%. ODE (5C) becomes

C Ry e SR 0+ [onr - ) Ry = 0
- — —A“—n =
A2 A A2
t’R” (t) +tR (t) + (t* —n®) R(t) =0
This is now in standard Bessel ODE form. This is of order n, where nisn = 0,1,2,3, - - -. Since
the order is integer, then the solution is given by

Ry (t) = CnJn (t) + DY, (1)

Where J, (t) is the Bessel function of order n and Y,, (¢) is the Bessel function of second kind of
order n. In terms of r the above solution becomes

Ry (r) =CnJn (Ar) +DnY, (/17‘)

Because the solution is bounded at r = 0 and since Y, (0) blows up, then D, = 0. The above
solution simplifies to
Ry (r) = CpJy (Ar)
11



Applying the second boundary conditions, when r = 1 then
0==Culn (A)

For non-trivial solution J, (1) = 0. Hence A are the positive zeros of J, (z). Let the positive zeros
of J, (z) be jum.Form = 1,2,3, - - -. Therefore

Anm:]nm n=091’2"”’m=192a3"“

This means that j,, is the m*" eigenvalue for the n*" order Bessel function J, (z). So there are
two indices to handle in this problem. The order of the Bessel function is determined from the
0, (0) eigenvalues, and then once this order n is fixed, the second eigenvalue A,,, is determined
from the zeros of the Bessel function J, (z). Hence the R, (r) solution is

an(r) = Cnm]n(/lnmr) n= 0’13293’.” ’m = 1’273,”'
Now that A,,, is known, the time ODE (1) can be solved

T + A2 Tym =0
Tom = Aum cos (Apmt) + Bupm sin (A mt) n=0123--,m=1,273,---

The fundamental solution is therefore
unm (r’ 9’ t) = ®n (9) Tnm (t) an (r)

The complete solution is the superposition of the fundamental solutions given by

u(r,0,t) 0, (0) Tpm () Rum (1)

(A, cosnf + B, sinnf) {Anm cos (Anmt) + Bum sin (Aumt)} ComJn (Anmr)

M 1M
M i1

1

I

f=]
3
I

n

The above can now be written as

u (r 0, t Z Ay cos nf ((Anm Cos (Anmt) + Bum sin (Anmt)) CrumJn (Anmr))

1

M 1

Z By, sinnf ((Anm Ccos (Anmt) + Bppm sin (Anmt)) CnmJn (Anmr))

m=1

+
ﬂ

n

u(r,0,t) = A, cosnBA,y, cos (Anmt) ComJn (Anmr)

Mg

S
Il
(=)
Mz ilMe ilM2 3]s

S
I
o

Ap cos n0Bym, sin (Aymt) CumJn (Anmr)

M

B, sinnfA,n, cos (Anmt) ComJn (Anm?)

+

M 31

+

B, sin n0By,, sin (A,mt) ComJn (Anmr) (6)
1

3
I}
3
I

Constants are now merged and renamed as follows in order to simplify the rest of the solution.
Let

AnAnmCrm = Anm
AnBnmCnm = Bum
BnAnmCrm = Com
BuBumCnm = Dnm

Equation (6) can now be written as

u(r,0,t) = Apm cos (n0) cos (Anmt) Jn Anm?)

YT
M5 305 305 21

Bnm cos (ne) sin (Anmt) Jn (Anmr)

+

+

NSERINE

Dy sin (n0) sin (Anmt) Jn (Anmr) (7)

+
3
[I§
3
[I§

12



Initial conditions are used to determine the 4 new constants above. Using initial condition at
t =0,u(r,0,0) = 0 the above equation becomes

0= i i Anm Cos (ne)]n (Anmr) + i i C_nm sin (n@) Jn (Anmr)
n=0 m=1 n=1 m=1

Applying orthogonality on cos (nf) and sin (nf) in turn shows that A,,, = 0 and Cp,, = 0.
Therefore the solution (7) reduces to the following two sums only

u(r,0,t) = i i Bum cos (n0) sin (Aumt) Jo Anmr) + i i Dy sin (n0) sin (Anmt) Jn Anmr)

n=0 m=1 n=1m=1
(8)

Taking time derivative gives

Ut (0. = 5 S B €08 (10) Ass €05 ) T Gl 1S S Do Sin (160) Ao €08 Cla) o Ghpr)

n=0 m=1 n=1 m=1

Applying the second initial condition at ¢ = 0 gives

o o O > . LZ ifr<e
HZ:;) % Bum cos (n0) ApmJn (Aumr) + nZ:; % Dym sin (n0) ApmJn (Anmr) = { 5 otherwise
9)
Case n = 0 (9) becomes
[ 1 .
_ | = ifr<e

; BomAomJo (Aomr) = { 5 otherwise

Applying orthogonality on Jy (Ao, 1) results in
_ 1 1 €
BomAom J‘ rJ¢ Aomr) dr = — J rJo (Aomr) dr
0 e Jo
_ 1 Jy 7o (Aomr) dr
o= 0T (94)
7€ dom [ rJE (Aomr) dr
Case n > 1 Applying orthogonality on cos (nf), equation (9) becomes
00 T 1 (T 02
> Bum (f cos” (n) de) DI o) = { 7er [ cosn0)dd i1 < €
= o 0 otherwise
= 0 ifr<e
mZ:l TBumAnmJn (Anmr) = { 0 otherwise

Hence B,,,,, = 0 for all n > 0.
The same is now done to find D,,,,. Applying orthogonality on sin (n6), equation (9) becomes

[e] T 1 T . . 2
> Dam (J sin’ (n@)de) X (Anmr>={ 7er [Lpsin(@0)do - ifr" < €

m=1 - 0 otherwise
S 75 T ] 0 ifr’ <e
33 0w ([ s 0010) punse o= { § - 5

Hence all D,,,,, = 0 for all n > 0.
Therefore the solution (8) reduces to only using n = 0,m = 1,2, 3, - - -. The solution can now
be written as

w(r.0.0)= > By sin (homt) Jo (omr) (10)

m=1
= < rJo(Aomr)dr
Wh B - 1 IO r
€re Dom €2 om J.ol r]oz(/l()mr)dr
Bom is now simplified more. Considering first the numerator of By, which is Lf rJo (Aomr)dr.
The hint given says that

And Ag,, are all the positive zeros of Jy (z), m = 1,2,3,- - -.

d
o (rJi(r) =rJo(r)
r
This is the same as saying

' (r) = ero (r)dr (104)

However the integral in By, is J rJo (Aomr) dr and not J rJo (r) dr. To transform it so that the hint
can be used, let Ag,,r = 7, then % = ﬁ ordr = Ado_fn' Now I rJo (Aomr) dr becomes I ﬁ]o (7) /fé—fm

or AZL J 7 Jo (7) d7 and now the hint (10A) can be used on this integral giving
om

» (j o (7) df) S 10)
om om

13



Replacing 7 back by A7, gives the result needed

1 1
@ (FJ1 (7)) = E (AomrJi (Aomr))
1
= mrﬁ (Aomr)

Now the limits are applied, using the fundamental theory of calculus

J rJo (Aomr)dr = % [r]1 (AOmr)]S
0 om

= Aifl (Aome) (10B)
om

This completes finding the numerator integral in By,,. The denominator integral in By, is fol rJ¢ (Aomr) dr.
This was found in HW4, from problem 3, which is

1
1
J rJi Gomr)dr = 2 [J; Gom)]
0

But J; (Aom) = —J1 (Aom), hence the above becomes

1
|| 78 Gonr) dr = 2 Gan) (100)
0

Applying (10B) and (10C), By, simplifies to the following expression

1 7J1(Aome)
n€®Aom 3 JE (Adom)
__2 ] (Adome)

medl  JE (Aom)

BOm =

Therefore the final solution becomes

u (r, 0, t) = Z BOm sin ()LOmt) Jo (AOmr)
m=1

u(r’ 9’ t) — % i L]l (AOme)

24722 o) Jo (Aomr) sin (Agmt) (11)

14



Plotting. When € = %, the above solution (11) becomes

(11A)

0 1
u(r.6.1) = = > L i (ghon) Jo Qomr) sin (Aomt)

A(z)m ]12 (AOm)

=1

This is the 3D plot at t = 1 second

This is the 3D plot at t = 2 seconds

15



5 Problem 5

Find the radial eigenfunctions and corresponding eigenvalues of the Laplace operator on the unit
ball subject to Dirichlet boundary conditions. A radial eigenfunction is one which depends only

onr = 4/x? + y? + z2. That is, solve

Uxx + Uyy + Uzz +Au=0

Where u (x, y, z) = R (r) with boundary conditions u (x, y, z) = 0 when x? + y? + z% = 1.

Hint: The substitution 7R (r) = R (r) is useful.

solution

This is Helmholtz PDE V2u + A%u = 0 in 3D. (Steady state of the wave equation, or standing
waves).

The following spherical coordinates system are usedE]

¥
AN
R
&

VES

SIS

The Laplace operator in 3D using spherical coordinates (r, 8, ¢) is given by

V2 —lﬁ za_u +;i i ea_u +;@
“Erar\T o r2sin6 a0\ 99 r2 sin? 0 0¢?

Therefore V?u + 2*u = 0 becomes

r2or\ or r2sin 90 00 r2 sin? 6 0¢p? -

The problem says that u (x, y, z) = R(r). This implies that solution depends only on r. This means
there is no dependency on € nor on ¢. In this case, the PDE above simplifies to an ODE in r only.

1d [ ,du
——[FP=]+Xu=0
r2dr (r dr) A
d d
o (rzd_’:) + A% =0
d? d
rz—d’z + Zrd—T: +A%r*%u=0

And since u (r, 0, ) = R(r), then the above can be written as
r*R"” (r) + 2rR’ (r) + A*r*R(r) = 0 (1)

With the boundary conditions R (1) = 0. Now the eigenvalue will be found.
case A =0
The ODE (1) becomes r?R” + 2rR’ = 0. Let R’ (r) = v (r), and the ODE becomes v’ + %v =0.

: : : 2dr _ 2In|r| _ 2 d (2 — _ o ’ _ a
The integrating factor is el 79" = e2lnlrl = 2, 4 (r’v) = 0orv = 3. Therefore R’ (r) = 5.

Integrating again gives

R(r)=c,— 2
-

At R(1) = 0, the above becomes

0202—01

Cr = (1

>Image obtained from Wikepedia
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Hence the solution becomes
1
R(r)=¢ (1 - —)
-

The solution must be bounded as r — 0, therefore only choice is ¢; = 0, leading to trivial solution.
Therefore A = 0 is not eigenvalue.

Case A # OE]
The ODE is

r*R"” (r) + 2rR’ (r) + A*r*R(r) = 0
Using standard transformation t = Ar, then R’ (r) = AR’ (t) and R” (r) = A*R” (t). The above ODE
becomes
A2P2R” (1) + 2ArR’ () + A*r*R(t) = 0
t*R” (t) + 2tR’ (1) + t*R(t) = 0 (2)
This looks like a Bessel ODE of zero order, except Bessel ODE is t?R” (t)+tR’ (t)+t*R(t) = 0. The

difference is (2) has 2t instead of ¢. To convert it to Bessel ODE, there is another transformation

in the dependent variable to achieve this. Let R(t) = %, then

Z'(t) 1 1

R(0)=== - 520~ )
2 W 101 1113 L
R'()= == =32 (05 =32 (0 Z(Z)Za)tg @)
_2T0_n L3,
Y Z(t)t%+4z(t)t§
Substituting (3,4) back in (2) gives
(2w, 1 3 1 zZ’M 1 i) 2 Z (1) _
t(—\/? Z(t)t3+4z(t)t3)+2t(\/? ZZ(t)t% H\/Z 0

Multiplying by Vi gives
2 (z" 1) -2’ (t)% + ZZ(t) tlz) ot (z’ (t) - %Z(t) %) L 2Z(1) =0
(ﬂz” (t) =12’ (t) + Zzu)) + QL2 (E) = Z (1) + £2Z () = 0
127" (1) +tZ' (1) + ZZ(t) —-ZM+t*Z(@t)=0
22Z" () +tZ' (t) + (Z -1+ tz) Z({t) =0

t2Z7 () +tZ (t) + (tz - 41—1) Z({t) =0

22Z7 () +tZ' (t) + (t2 - ‘11) Z({t) =0

This is now in standard Bessel ODE form. To find the order, comparing it to t2Z” (t) + tZ’ (t) +
(t* = n?) Z (t) = 0 shows that n? = i, hence the order is % (the negative root, give Bessel function
that blow up at zero. Therefore only % root is used as the order. The solution of the above Bessel
ODE is known to be

Z(0) = ey (0 + ¥, ()

From above, R (t) = %i) Therefore the solution now becomes

@) Y1)
R(t) = ci—2— +cy—

Vi Vi

And converting back to R () finally gives the radial solution as

Ji (Ar) Y: (Ar)
R(r)=c - + 02

N

Since the solution is bounded at r = 0, then ¢; = 0 and the solution simplifies to

T am assuming 2 is real eigenvalue. Not complex.
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Using R (1) = 0 gives
Ji )

Vi

0=C1

For non-trivial solution then
Ji(A)=0

Hence A are the positive zeros of | 1 (4). These are the eigenvalues. The zeros of | 1 (4) are multiple of .

Hence the first zero is 7, the second zero is 27 and so on.
Ap =nm n=123,---

Therefore, the eigenfunctions (5) becomes

Rn(r):,/mlrr]% (nnr) n=123,--- (©)

These are also called spherical Bessel functions, since half integer order. There is a known relation
between spherical Bessel functions and circular trigonometric functions which says

Jy @) = | sin (@)

Using the above, the eigenfunctions (6) can also be written as

/ 2 sin(nzr
Rn(r): _3¥ n:1,2,3,"'
/s nr
. 2 sin (nxr) 2
hmw/—S— =4/—
r—0 \ 1 nr T

Note that

= 0.797885
For all n. Below is a plot of the first 6 eigenfunctions
Radial solution R(r) for the eigenvalue 7t Radial solution R(r) for the eigenvalue 2 it
0.8 q 0.8
0.6 ] 0.6
~ 04 ~ 04
4 0.2 4 0.2
0.0 0.0
-0.2 -0.2
010 012 014 016 0‘,8 110 0‘,0 012 014 016 018 1‘,0
r r
Radial solution R(r) for the eigenvalue 3 5t Radial solution R(r) for the eigenvalue 4 5t
0.8 ] 0.8
0.6 ] 0.6
~ 04 o~ 04
4 0.2 1 4 0.2
0.0 0.0
0.2 \-/ ] 0.2 \/
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r r
Radial solution R(r) for the eigenvalue 5 it Radial solution R(r) for the eigenvalue 6 it
0.8 1 0.8
0.6 ] 0.6
~ 04 ~ 04
4 0.2 | © 0.2
0.0 TN 0.0 VARN
wrl N L
0‘0 0‘2 0‘4 0.6 0.8 110 0.0 0.2 0.4 0.6 0.8 1.0

5.1 References

In working on this exam, I have used a number of references such as Wikepidia, Wolfram Math-
world and the NIST Digital Library of Mathematical Functions.
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