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1 Problem 1

Solve the heat equation
ut = 9uxx

For 0 ≤ x ≤ 1, t ≥ 0 with boundary conditions

u (0, t) = 0

u (1, t) = 1

And initial conditions
u (x, 0) = x2

solution
Since the one of the boundary conditions are inhomogeneous, the solution is broken into two

parts. Let the solution be
u (x, t) = w (x, t) +v (x) (1)

Wherew (x, t) is the solution to the PDE with homogeneous boundary conditions and v (x) is a
reference solution which is only required to satisfy the inhomogeneous boundary condition1.

Let v (x) = Ax + B. At x = 0 then v (0) = 0 which gives B = 0. Hence v (x) = Ax . At x = 1,
v (1) = 1 or A = 1. Therefore

v (x) = x

And (1) becomes
u (x, t) = w (x, t) + x (1A)

Where noww (x, t) satisfies the PDE
wt = 9wxx (1B)

For 0 ≤ x ≤ 1, t ≥ 0 but with the following homogeneous boundary conditions

w (0, t) = 0

w (1, t) = 0

And initial conditions given by

w (x, 0) = u (x, 0) −v (x)

= x2 − x (2)

The PDE (1B) is the heat PDE with homogeneous boundary conditions. This was solved before.
It has the solution

w (x, t) =
∞∑
n=1

cne
−λnα 2t sin

(√
λnx

)
Where in this problem α2 = 9 and λn =

( nπ
L

) 2
,n = 1, 2, 3 · · · . But L = 1, therefore the above

solution reduces to
w (x, t) =

∞∑
n=1

cne
−9n2π 2t sin (nπx) (3)

cn is now found from the initial conditions (2). At t = 0 the above becomes

x2 − x =
∞∑
n=1

cn sin (nπx)

Applying orthogonality gives∫ 1

0

(
x2 − x

)
sin (nπx)dx = cn

∫ 1

0
sin2 (nπx)dx

= cn
1
2

Hence

cn = 2
∫ 1

0

(
x2 − x

)
sin (nπx)dx

= 2

(∫ 1

0
x2 sin (nπx) −

∫ 1

0
x sin (nπx)dx

)
(3A)

1w (x, t) is called the transient solution with homogeneous boundary conditions, andv (x) the steady state solution
with the inhomogeneous boundary conditions.
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Applying the following rule based on integration by parts
∫
x2 sin (ax) = 2x sinax

a2 +
(
2
a3 −

x 2

a

)
cosax ,

the first integral above becomes (where a = nπ )∫ 1

0
x2 sin (nπx) =

[
2x sinnπx

(nπ )2
+

(
2

(nπ )3
−

x2

nπ

)
cosnπx

] 1
0

=

[
2 sinnπ

(nπ )2
+

(
2

(nπ )3
−

1
nπ

)
cosnπ −

2

(nπ )3

]
But sinnπ = 0 and cosnπ = (−1)n , therefore the above becomes∫ 1

0
x2 sin (nπx) =

(
2

n3π 3 −
1
nπ

)
(−1)n −

2
n3π 3

=
2 (−1)n

n3π 3 −
(−1)n

nπ
−

2
n3π 3

=
(−1)n+1

nπ
+

2
n3π 3 (−1 + (−1)

n) (3A1)

Applying the following rule based on integration by parts
∫
x sin (ax) = sinax

a2 − x cosax
a , then the

second integral in (3A) becomes (where a = nπ )∫ 1

0
x sin (nπx)dx =

[
sinnπx
n2π 2 −

x cosnπx
nπ

] 1
0

=
sinnπ
n2π 2 −

cosnπ
nπ

=
(−1)n+1

nπ
(3A2)

Substituting (3A1) and (3A2) into (3A) gives

cn = 2

(
(−1)n+1

nπ
+

2
n3π 3 (−1 + (−1)

n) −
(−1)n+1

nπ

)
=

4
n3π 3 (−1 + (−1)

n)

Therefore, the solutionw (x, t) from (3) becomes

w (x, t) =
∞∑
n=1

4
(−1 + (−1)n)

n3π 3 e−9n
2π 2t sin (nπx)

And the solution u (x, t) from (1A) is

u (x, t) = x +
4
π 3

∞∑
n=1

(−1 + (−1)n)
n3

e−9n
2π 2t sin (nπx)

Only few terms are needed to obtain a very good approximation, since the convergence is of
order O

(
1
n3

)
.
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2 Problem 2

Solve the Dirichlet problem uxx +uyy = 0 on the unit disk x2 +y2 ≤ 1 with boundary conditions
u (cosθ, sinθ ) = π 2 − θ 2 and −π < θ ≤ π

solution
This is Laplace PDE on disk. Where a = 1 is the radius and r , θ are polar coordinates. The

Laplacian in polar coordinates is

ur r +
1
r
ur +

1
r 2
uθθ = 0

With boundary conditions on r being

u (a, θ ) = f (θ ) = π 2 − θ 2

u (0, θ ) < ∞

And with standard periodic boundary conditions on θ

u (r ,−π ) = u (r , π )

∂u

∂θ
(r ,−π ) =

∂u

∂θ
(r , π )

This PDE was solved before and the solution to the Laplace PDE inside a disk is known to be

u (r , θ ) = A0 +
∞∑
n=1

rn (cn cosnθ + dn sinnθ ) (1)

With Fourier coefficients given by

A0 =
1
2π

∫ π

−π
f (θ )dθ

cn =
1

πan

∫ π

−π
f (θ ) cos (nθ )dθ

dn =
1

πan

∫ π

−π
f (θ ) sin (nθ )dθ

Since the radius a = 1 in this problem, then the above become

A0 =
1
2π

∫ π

−π
f (θ )dθ

cn =
1
π

∫ π

−π
f (θ ) cos (nθ )dθ

dn =
1
π

∫ π

−π
f (θ ) sin (nθ )dθ

The coefficients are now calculated2.

A0 =
1
2π

∫ π

−π

(
π 2 − θ 2

)
dθ

But
∫π
−π

(
π 2 − θ 2

)
dθ =

∫π
−π π

2dθ −
∫π
−π θ

2dθ = 2π 3 −

[
θ 3

3

] π
−π
= 2π 3 − 1

3

[
π 3 + π 3

]
= 2π 3 − 2

3π
3 =

4
3π

3. Therefore

A0 =
1
2π

(
4
3
π 3

)
=

2π 2

3

And

cn =
1
π

∫ π

−π
f (θ ) cos (nθ )dθ

=
1
π

∫ π

−π

(
π 2 − θ 2

)
cos (nθ )dθ

= π

∫ π

−π
cos (nθ )dθ −

1
π

∫ π

−π
θ 2 cos (nθ )dθ

2It is important to use integration limit −π · · · π and not 0 · · · 2π .

5



But
∫π
−π cos (nθ )dθ = 0 and by integration by parts as was done earlier

∫π
−π θ

2 cos (nθ )dθ =
4(−1)nπ

n2 , hence the above simplifies to

cn = −
4 (−1)n

n2

And

dn =
1
π

∫ π

−π
f (θ ) sin (nθ )dθ

=
1
π

∫ π

−π

(
π 2 − θ 2

)
sin (nθ )dθ

= π

∫ π

−π
sin (nθ )dθ −

1
π

∫ π

−π
θ 2 sin (nθ )dθ

But
∫π
−π sin (nθ )dθ = 0, and by integration by parts as was done earlier,

∫π
−π θ

2 sin (nθ )dθ = 0,
hence

dn = 0

Using the value of A0, cn,dn found above the solution (1) becomes

u (r , θ ) = A0 +
∞∑
n=1

rn (cn cosnθ + dn sinnθ )

=
2π 2

3
− 4

∞∑
n=1

(−1)n

n2
rn cosnθ
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3 Problem 3

Solve the inhomogeneous wave equation

ut t = uxx + x sin t

For 0 ≤ x ≤ 1, t ≥ 0 with boundary conditions

u (0, t) = 0

u (1, t) = 0

And initial conditions

u (x, 0) = 0

ut (x, 0) = 0

solution
Since the inhomogeneity is in the PDE itself (rather than in the boundary conditions), then

the method of eigenfunction expansion is used to obtain the solution. Let the solution be

u (x, t) =
∞∑
n=1

bn (t)Φn (x) (1)

Where Φn (x) are the eigenfunctions of the spatial eigenvalue ODE problem that comes from
solving the homogeneous wave equation with the given homogeneous boundary conditions,
which is ut t = uxx . This wave PDE with the given homogeneous boundary conditions was solved
before using separation of variables. The eigenfunctions were found to be

Φn (x) = sin
(√

λnx
)

n = 1, 2, 3, · · ·

With eigenvalues

λn =
(nπ
L

) 2
n = 1, 2, 3, · · ·

But L = 1 here, therefore
λn = n

2π 2 n = 1, 2, 3, · · ·

Now that the eigenvalues and eigenfunctions are found, equation (1) is substituted back into the
PDE resulting in

∞∑
n=1

b ′′n (t)Φn (x) =
∞∑
n=1

bn (t)Φ
′′
n (x) + x sin t

Since x sin t is a piecewise continuous function in x , it can be represented using the same eigen-
functions3 and the above equation becomes

∞∑
n=1

b ′′n (t)Φn (x) =
∞∑
n=1

bn (t)Φ
′′
n (x) +

∞∑
n=1

γn (t)Φn (x)

Since Φ′′
n (x) = −λnΦn (x), which comes from the eigenvalue ODE, the above simplifies to

∞∑
n=1

b ′′n (t)Φn (x) =
∞∑
n=1

−bn (t) λnΦn (x) +
∞∑
n=1

γn (t)Φn (x)

b ′′n (t) + bn (t) λn = γn (t) (2)

To solve the above ODE for bn (t), γn (t) needs to be found first. Using

x sin t =
∞∑
n=1

γn (t)Φn (x)

Applying orthogonality gives

sin (t)
∫ 1

0
xΦn (x)dx = γn (t)

∫ 1

0
Φ2
n (x)dx

Since Φn (x) = sin
(√

λnx
)
, then

∫1
0
Φ2
n (x)dx =

1
2 and the above reduces to

sin (t)
∫ 1

0
x sin (nπx)dx =

1
2
γn (t)

3This is the same as saying the eigenfunctions are complete.
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But
∫1
0
x sin (nπx)dx = (−1)n+1

nπ by integration by part as was done before, and the above becomes

(−1)n+1

nπ
sin (t) =

1
2
γn (t)

γn (t) = 2
(−1)n+1

nπ
sin (t)

Using the above back in (2), ODE (2) now becomes

b ′′n (t) + bn (t)n
2π 2 = 2

(−1)n+1

nπ
sin (t) (3)

This is a second order, inhomogeneous, linear, with constant coefficients ODE. The solution is
the sum of the homogeneous and particular solutions (the subscript n is removed for now from
bn (t), to simplify the notations, then added back after the solution is obtained). Let the solution
to (3) be

b (t) = bh (t) + bp (t)

The homogeneous solution is seen to be (since n2π 2 is always positive)

bh (t) = A cos (nπt) + B sin (nπt)

To find the particular solution, the method of undetermined coefficients is used. let

bp (t) = C cos (t) + D sin (t) (4)

Hence b ′p = −C sin (t) + D cos (t) ,b ′′p = −C cos (t) − D sin (t). Substituting these into (3) gives

−C cos (t) − D sin (t) + (C cos (t) + D sin (t))n2π 2 = 2
(−1)n+1

nπ
sin (t)

cos (t)
[
−C +Cn2π 2] + sin (t) [−D + Dn2π 2] = 2

(−1)n+1

nπ
sin (t)

Therefore, by comparing coefficients

−C +Cn2π 2 = 0

C
(
n2π 2 − 1

)
= 0

C = 0

And

−D + Dn2π 2 = 2
(−1)n+1

nπ

D
(
n2π 2 − 1

)
= 2

(−1)n+1

nπ

D = 2
(−1)n+1

nπ (n2π 2 − 1)

Hence the particular solution (4) is

bp (t) = C cos (t) + D sin (t)

= 2
(−1)n+1

nπ (n2π 2 − 1)
sin (t)

Now that the particular solution is found, the final solution to (3) becomes

bn (t) = An cos (nπt) + Bn sin (nπt) − 2
(−1)n

nπ (n2π 2 − 1)
sin (t) (4)

Using the above in the solution (1) gives

u (x, t) =
∞∑
n=1

bn (t)Φn (x)

=
∞∑
n=1

(
An cos (nπt) + Bn sin (nπt) − 2

(−1)n

nπ (n2π 2 − 1)
sin (t)

)
sin (nπx)

An,Bn are found from initial conditions. At t = 0 the above simplifies to

0 =
∞∑
n=1

An sin (nπx)
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Therefore An = 0 and the solution above reduces to

u (x, t) =
∞∑
n=1

(
Bn sin (nπt) − 2

(−1)n

nπ (n2π 2 − 1)
sin (t)

)
sin (nπx) (5)

Taking time derivative gives

ut (x, t) =
∞∑
n=1

(
Bnnπ cos (nπt) − 2

(−1)n

nπ (n2π 2 − 1)
cos (t)

)
sin (nπx)

At t = 0 the above simplifies to

0 =
∞∑
n=1

(
Bnnπ − 2

(−1)n

nπ (n2π 2 − 1)

)
sin (nπx)

Since this is valid for each n, then
(
Bnnπ − 2 (−1)n

nπ (n2π 2−1)

)
= 0 or

Bn = 2
(−1)n

n2π 2 (n2π 2 − 1)

Using the above in (5), the final solution becomes

u (x, t) =
∞∑
n=1

2

(
(−1)n

n2π 2 (n2π 2 − 1)
sin (nπt) −

(−1)n

nπ (n2π 2 − 1)
sin (t)

)
sin (nπx)

= 2
∞∑
n=1

(−1)n

nπ (n2π 2 − 1)

(
sin (nπt)

nπ
− sin (t)

)
sin (nπx)
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4 Problem 4

Solve the wave equation

ut t = uxx + uyy

On the unit disk x2 + y2 ≤ 1 with with boundary conditions

u (x,y) = 0 if x2 + y2 = 1

And initial conditions

u (x,y, 0) = 0

ut (x,y, 0) =

{
1

πϵ 2 if
√
x2 + y2 ≤ ϵ

0 otherwise

Where 0 < ϵ < 1. Hint: The formula d
dx (x J1 (x)) = x J0 (x) may be used. Extra credit: Plot the

solution u (r , t) for ϵ = 1
2 , t = 1 and t = 2.

solution
The PDE and initial and boundary conditions are converted to polar coordinates to become

ut t = ur r +
1
r
ur +

1
r 2
uθθ (1)

On the unit disk with radius 1. The boundary conditions are

u (1, θ, t) = 0

u (0, θ, t) < ∞

Where u (0, θ, t) < ∞ means the solution is bounded at center of disk r = 0. The boundary
conditions on θ are the standard periodic boundary conditions

u (r ,−π , t) = u (r , π , t)

uθ (r ,−π , t) = uθ (r , π , t)

And initial conditions are4

u (r , θ, 0) = 0

ut (r , θ, 0) =

{ 1
πϵ 2 if r ≤ ϵ

0 otherwise

The above PDE is solved by separation of variables. Let u (r , θ , t) = T (t)R (r )Θ (θ ). Substituting
this in the PDE (1) gives

T ′′RΘ = R′′TΘ +
1
r
R′TΘ +

1
r 2
Θ′′RT

Dividing by RTΘ
T ′′

T
=

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2

Where λ is the first separation variable. This results in two equations

T ′′

T
= −λ2 (1)

R′′

R
+
1
r

R′

R
+

1
r 2

Θ′′

Θ
= −λ2 (2)

The time ODE (1) is
T ′′ + λ2T = 0 (1A)

Multiplying (2) by r 2 and rearranging

r 2
R′′

R
+ r

R′

R
+ r 2λ2 = −

Θ′′

Θ
= µ2

Where µ is the second separation constant. This gives the R ODE as

r 2R′′ + rR′ +
(
r 2λ2 − µ2

)
R = 0 (3)

And the Θ ODE as
Θ′′ + µ2Θ = 0 (4)

4The original r2 ≤ ϵ was changed to r ≤ ϵ
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The eigenvalues for (4) determine the Bessel equation (3) order. Therefore (4) needs to be solved
first to determined the order. The ODE boundary conditions for (4) are periodic

Θ (−π ) = Θ (π )

Θ′ (−π ) = Θ′ (π )

case µ = 0. This leads to solution

Θ = c1θ + c2

Θ′ = c1

First BC gives

−c1π + c2 = c1π + c2

c1 = 0

And since second BC Θ′ = c1, this implies Θ (θ ) is constant. So µ = 0 is an eigenvalue, with
Θ0 (θ ) = 1 being the eigenfunction.

Case µ > 0The solution to (4) becomes

Θ (θ ) = A cos (µθ ) + B sin (µθ )

To satisfy the periodic boundary conditions, µ must be an integer, and since µ > 0, then µ = n
for n = 1, 2, 3, · · · . Therefore

Θ0 (θ ) = 1 n = 0 (5A)
Θn (θ ) = An cosnθ + Bn sinnθ n = 1, 2, 3, · · · (5B)

The above solution can be combined to one

Θn (θ ) = An cosnθ + Bn sinnθ n = 0, 1, 2, · · · (5)

Because when n = 0 the above solution gives Θ0 (θ ) = A0 which is the constant eigenfunction.
Now that µ is found, Bessel ODE (3) can be solved.

r 2R′′ (r ) + rR′ (r ) +
(
r 2λ2 − n2

)
R (r ) = 0 n = 0, 1, 2, 3, · · · (5C)
R (1) = 0

R (0) < ∞

λ = 0 is not a possible eigenvalue. This can be shown as follows. When λ = 0 equation (5C)
becomes the Euler ODE

r 2R′′ (r ) + rR′ (r ) + n2R (r ) = 0 n = 0, 1, 2, 3, · · ·

Now, when n = 0, then the ODE becomes r 2R′′ (r ) + rR′ (r ) = 0 whose solution is R (r ) =
c1 + c2 ln (r ). Since solution is bounded at r = 0, then R (r ) = c1. And since R (1) = 0 then c1 = 0
also, leading to trivial solution. When n > 0, the ODE becomes r 2R′′ (r ) + rR′ (r ) + n2R (r ) = 0
whose solution is R (r ) = c1r

n + c2
1
rn . Since solution is bounded at r = 0, then c2 = 0 and the

solution now becomes R (r ) = c1r
n . Using BC R (1) = 0 gives c1 = 0 leading again to trivial

solution. This shows that λ = 0 is not eigenvalue.
Now that λ is is shown not to be zero, the Bessel ODE (5C) is solved . The first step is to

convert the ODE to a Bessel ODE in the classical form in order to use the standard solution. Let
t = λr , then R′ (r ) = R′ (t) λ and R′′ (r ) = R′′ (t) λ2. ODE (5C) becomes

t2

λ2
λ2R′′ (t) +

t

λ
λR′ (t) +

(
t2

λ2
λ2 − n2

)
R (t) = 0

t2R′′ (t) + tR′ (t) +
(
t2 − n2

)
R (t) = 0

This is now in standard Bessel ODE form. This is of order n, where n is n = 0, 1, 2, 3, · · · . Since
the order is integer, then the solution is given by

Rn (t) = Cn Jn (t) + DnYn (t)

Where Jn (t) is the Bessel function of order n and Yn (t) is the Bessel function of second kind of
order n. In terms of r the above solution becomes

Rn (r ) = Cn Jn (λr ) + DnYn (λr )

Because the solution is bounded at r = 0 and since Yn (0) blows up, then Dn = 0. The above
solution simplifies to

Rn (r ) = Cn Jn (λr )
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Applying the second boundary conditions, when r = 1 then

0 = Cn Jn (λ)

For non-trivial solution Jn (λ) = 0. Hence λ are the positive zeros of Jn (z). Let the positive zeros
of Jn (z) be jnm . Form = 1, 2, 3, · · · . Therefore

λnm = jnm n = 0, 1, 2, · · · ,m = 1, 2, 3, · · ·

This means that jnm is themth eigenvalue for the nth order Bessel function Jn (z). So there are
two indices to handle in this problem. The order of the Bessel function is determined from the
Θn (θ ) eigenvalues, and then once this order n is fixed, the second eigenvalue λnm is determined
from the zeros of the Bessel function Jn (z). Hence the Rnm (r ) solution is

Rnm (r ) = Cnm Jn (λnmr ) n = 0, 1, 2, 3, · · · ,m = 1, 2, 3, · · ·

Now that λnm is known, the time ODE (1) can be solved

T ′′
nm + λ

2
nmTnm = 0

Tnm = Anm cos (λnmt) + Bnm sin (λnmt) n = 0, 1, 2, 3, · · · ,m = 1, 2, 3, · · ·

The fundamental solution is therefore

unm (r , θ, t) = Θn (θ )Tnm (t)Rnm (r )

The complete solution is the superposition of the fundamental solutions given by

u (r , θ , t) =
∞∑
n=0

∞∑
m=1

Θn (θ )Tnm (t)Rnm (r )

=
∞∑
n=0

∞∑
m=1

(An cosnθ + Bn sinnθ ) {Anm cos (λnmt) + Bnm sin (λnmt)}Cnm Jn (λnmr )

The above can now be written as

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

An cosnθ ((Anm cos (λnmt) + Bnm sin (λnmt))Cnm Jn (λnmr ))

+
∞∑
n=1

∞∑
m=1

Bn sinnθ ((Anm cos (λnmt) + Bnm sin (λnmt))Cnm Jn (λnmr ))

Or

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

An cosnθAnm cos (λnmt)Cnm Jn (λnmr )

+
∞∑
n=0

∞∑
m=1

An cosnθBnm sin (λnmt)Cnm Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

Bn sinnθAnm cos (λnmt)Cnm Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

Bn sinnθBnm sin (λnmt)Cnm Jn (λnmr ) (6)

Constants are now merged and renamed as follows in order to simplify the rest of the solution.
Let

AnAnmCnm = Ānm

AnBnmCnm = B̄nm

BnAnmCnm = C̄nm

BnBnmCnm = D̄nm

Equation (6) can now be written as

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

Ānm cos (nθ ) cos (λnmt) Jn (λnmr )

+
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) sin (λnmt) Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

C̄nm sin (nθ ) cos (λnmt) Jn (λnmr )

+
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) sin (λnmt) Jn (λnmr ) (7)
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Initial conditions are used to determine the 4 new constants above. Using initial condition at
t = 0,u (r , θ , 0) = 0 the above equation becomes

0 =
∞∑
n=0

∞∑
m=1

Ānm cos (nθ ) Jn (λnmr ) +
∞∑
n=1

∞∑
m=1

C̄nm sin (nθ ) Jn (λnmr )

Applying orthogonality on cos (nθ ) and sin (nθ ) in turn shows that Ānm = 0 and C̄nm = 0.
Therefore the solution (7) reduces to the following two sums only

u (r , θ, t) =
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) sin (λnmt) Jn (λnmr ) +
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) sin (λnmt) Jn (λnmr )

(8)
Taking time derivative gives

ut (r , θ, t) =
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) λnm cos (λnmt) Jn (λnmr )+
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) λnm cos (λnmt) Jn (λnmr )

Applying the second initial condition at t = 0 gives
∞∑
n=0

∞∑
m=1

B̄nm cos (nθ ) λnm Jn (λnmr ) +
∞∑
n=1

∞∑
m=1

D̄nm sin (nθ ) λnm Jn (λnmr ) =

{ 1
πϵ 2 if r ≤ ϵ

0 otherwise
(9)

Case n = 0 (9) becomes
∞∑

m=1
B̄0mλ0m J0 (λ0mr ) =

{ 1
πϵ 2 if r ≤ ϵ

0 otherwise

Applying orthogonality on J0 (λ0mr ) results in

B̄0mλ0m

∫ 1

0
r J 20 (λ0mr )dr =

1
πϵ2

∫ ϵ

0
r J0 (λ0mr )dr

B̄0m =
1

πϵ2λ0m

∫ϵ
0
r J0 (λ0mr )dr∫1

0
r J 20 (λ0mr )dr

(9A)

Case n > 1 Applying orthogonality on cos (nθ ) , equation (9) becomes

∞∑
m=1

B̄nm

(∫ π

−π
cos2 (nθ )dθ

)
λnm Jn (λnmr ) =

{ 1
πϵ 2

∫π
−π cos (nθ )dθ if r 2 ≤ ϵ

0 otherwise
∞∑

m=1
πB̄nmλnm Jn (λnmr ) =

{
0 if r 2 ≤ ϵ
0 otherwise

Hence B̄nm = 0 for all n > 0.
The same is now done to find D̄nm . Applying orthogonality on sin (nθ ) , equation (9) becomes

∞∑
m=1

D̄nm

(∫ π

−π
sin2 (nθ )dθ

)
λnm Jn (λnmr ) =

{ 1
πϵ 2

∫π
−π sin (nθ )dθ if r 2 ≤ ϵ

0 otherwise
∞∑

m=1
D̄nm

(∫ π

−π
sin2 (nθ )dθ

)
λnm Jn (λnmr ) =

{
0 if r 2 ≤ ϵ
0 otherwise

Hence all D̄nm = 0 for all n > 0.
Therefore the solution (8) reduces to only using n = 0,m = 1, 2, 3, · · · . The solution can now

be written as
u (r , θ , t) =

∞∑
m=1

B̄0m sin (λ0mt) J0 (λ0mr ) (10)

Where B̄0m =
1

πϵ 2λ0m

∫ϵ
0 r J0(λ0mr )dr∫1
0 r J

2
0 (λ0mr )dr

And λ0m are all the positive zeros of J0 (z),m = 1, 2, 3, · · · .

B̄0m is now simplified more. Considering first the numerator of B̄0m which is
∫ϵ
0
r J0 (λ0mr )dr .

The hint given says that
d

dr
(r J1 (r )) = r J0 (r )

This is the same as saying

r J1 (r ) =

∫
r J0 (r )dr (10A)

However the integral in B̄0m is
∫
r J0 (λ0mr )dr and not

∫
r J0 (r )dr . To transform it so that the hint

can be used, let λ0mr = r̄ , then dr
dr̄ =

1
λ0m

ordr = dr̄
λ0m

. Now
∫
r J0 (λ0mr )dr becomes

∫
r̄

λ0m
J0 (r̄ )

dr̄
λ0m

or 1
λ20m

∫
r̄ J0 (r̄ )dr̄ and now the hint (10A) can be used on this integral giving

1

λ20m

(∫
r̄ J0 (r̄ )dr̄

)
=

1

λ20m
(r̄ J1 (r̄ ))

13



Replacing r̄ back by λ0mr , gives the result needed

1

λ20m
(r̄ J1 (r̄ )) =

1

λ20m
(λ0mr J1 (λ0mr ))

=
1

λ0m
r J1 (λ0mr )

Now the limits are applied, using the fundamental theory of calculus∫ ϵ

0
r J0 (λ0mr )dr =

1
λ0m

[r J1 (λ0mr )]
ϵ
0

=
ϵ

λ0m
J1 (λ0mϵ) (10B)

This completes finding the numerator integral in B̄0m .The denominator integral in B̄0m is
∫1
0
r J 20 (λ0mr )dr .

This was found in HW4, from problem 3, which is∫ 1

0
r J 20 (λ0mr )dr =

1
2

[
J ′0 (λ0m)

] 2
But J ′0 (λ0m) = −J1 (λ0m), hence the above becomes∫ 1

0
r J 20 (λ0mr )dr =

1
2
J 21 (λ0m) (10C)

Applying (10B) and (10C), B̄0m simplifies to the following expression

B̄0m =
1

πϵ2λ0m

ϵ
λ0m

J1 (λ0mϵ)

1
2 J

2
1 (λ0m)

=
2

πϵλ20m

J1 (λ0mϵ)

J 21 (λ0m)

Therefore the final solution becomes

u (r , θ , t) =
∞∑

m=1
B̄0m sin (λ0mt) J0 (λ0mr )

u (r , θ , t) =
2
πϵ

∞∑
m=1

1

λ20m

J1 (λ0mϵ)

J 21 (λ0m)
J0 (λ0mr ) sin (λ0mt) (11)
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Plotting. When ϵ = 1
2 , the above solution (11) becomes

u (r , θ , t) =
4
π

∞∑
m=1

1

λ20m

J1
( 1
2λ0m

)
J 21 (λ0m)

J0 (λ0mr ) sin (λ0mt) (11A)

This is the 3D plot at t = 1 second

Out[ ]=

time 101

time = 1.

This is the 3D plot at t = 2 seconds

Out[ ]=

time 201

time = 2.
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5 Problem 5

Find the radial eigenfunctions and corresponding eigenvalues of the Laplace operator on the unit
ball subject to Dirichlet boundary conditions. A radial eigenfunction is one which depends only
on r =

√
x2 + y2 + z2. That is, solve

uxx + uyy + uzz + λ
2u = 0

Where u (x,y, z) = R (r ) with boundary conditions u (x,y, z) = 0 when x2 + y2 + z2 = 1.
Hint: The substitution rR (r ) = R̄ (r ) is useful.
solution
This is Helmholtz PDE ∇2u + λ2u = 0 in 3D. (Steady state of the wave equation, or standing

waves).
The following spherical coordinates system are used 5

x

y

z
(r, θ, φ)

φ

θ

r

The Laplace operator in 3D using spherical coordinates (r , θ,ϕ) is given by

∇2u =
1
r 2
∂

∂r

(
r 2
∂u

∂r

)
+

1
r 2 sinθ

∂

∂θ

(
sinθ

∂u

∂θ

)
+

1

r 2 sin2 θ

∂2u

∂ϕ2

Therefore ∇2u + λ2u = 0 becomes

1
r 2
∂

∂r

(
r 2
∂u

∂r

)
+

1
r 2 sinθ

∂

∂θ

(
sinθ

∂u

∂θ

)
+

1

r 2 sin2 θ

∂2u

∂ϕ2 + λ
2u = 0

The problem says that u (x,y, z) = R (r ). This implies that solution depends only on r . This means
there is no dependency on θ nor on ϕ. In this case, the PDE above simplifies to an ODE in r only.

1
r 2

d

dr

(
r 2
du

dr

)
+ λ2u = 0

d

dr

(
r 2
du

dr

)
+ λ2r 2u = 0

r 2
d2u

dr 2
+ 2r

du

dr
+ λ2r 2u = 0

And since u (r , θ,ϕ) ≡ R (r ), then the above can be written as

r 2R′′ (r ) + 2rR′ (r ) + λ2r 2R (r ) = 0 (1)

With the boundary conditions R (1) = 0. Now the eigenvalue will be found.
case λ = 0
The ODE (1) becomes r 2R′′ + 2rR′ = 0. Let R′ (r ) = v (r ), and the ODE becomes v ′ + 2

rv = 0.
The integrating factor is e

∫
2
r dr = e2 ln |r | = r 2. d

dr

(
r 2v

)
= 0 or v = c1

r 2 . Therefore R′ (r ) = c1
r 2 .

Integrating again gives
R (r ) = c2 −

c1
r

At R (1) = 0, the above becomes

0 = c2 − c1

c2 = c1

5Image obtained from Wikepedia
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Hence the solution becomes
R (r ) = c1

(
1 −

1
r

)
The solution must be bounded as r → 0, therefore only choice is c1 = 0, leading to trivial solution.
Therefore λ = 0 is not eigenvalue.

Case λ , 0 6

The ODE is
r 2R′′ (r ) + 2rR′ (r ) + λ2r 2R (r ) = 0

Using standard transformation t = λr , then R′ (r ) = λR′ (t) and R′′ (r ) = λ2R′′ (t). The above ODE
becomes

λ2r 2R′′ (t) + 2λrR′ (t) + λ2r 2R (t) = 0

t2R′′ (t) + 2tR′ (t) + t2R (t) = 0 (2)

This looks like a Bessel ODE of zero order, except Bessel ODE is t2R′′ (t)+tR′ (t)+t2R (t) = 0.The
difference is (2) has 2t instead of t . To convert it to Bessel ODE, there is another transformation
in the dependent variable to achieve this. Let R (t) = Z (t )

√
t
, then

R′ (t) =
Z ′ (t)
√
t

−
1
2
Z (t)

1

t
3
2

(3)

R′′ (t) =
Z ′′ (t)
√
t

−
1
2
Z ′ (t)

1

t
3
2

−
1
2
Z ′ (t)

1

t
3
2

−
1
2

(
−
3
2

)
Z (t)

1

t
5
2

(4)

=
Z ′′ (t)
√
t

− Z ′ (t)
1

t
3
2

+
3
4
Z (t)

1

t
5
2

Substituting (3,4) back in (2) gives

t2
(
Z ′′ (t)
√
t

− Z ′ (t)
1

t
3
2

+
3
4
Z (t)

1

t
5
2

)
+ 2t

(
Z ′ (t)
√
t

−
1
2
Z (t)

1

t
3
2

)
+ t2

Z (t)
√
t
= 0

Multiplying by
√
t gives

t2
(
Z ′′ (t) − Z ′ (t)

1
t
+
3
4
Z (t)

1
t2

)
+ 2t

(
Z ′ (t) −

1
2
Z (t)

1
t

)
+ t2Z (t) = 0(

t2Z ′′ (t) − tZ ′ (t) +
3
4
Z (t)

)
+ (2tZ ′ (t) − Z (t)) + t2Z (t) = 0

t2Z ′′ (t) + tZ ′ (t) +
3
4
Z (t) − Z (t) + t2Z (t) = 0

t2Z ′′ (t) + tZ ′ (t) +

(
3
4
− 1 + t2

)
Z (t) = 0

t2Z ′′ (t) + tZ ′ (t) +

(
t2 −

1
4

)
Z (t) = 0

Or
t2Z ′′ (t) + tZ ′ (t) +

(
t2 −

1
4

)
Z (t) = 0

This is now in standard Bessel ODE form. To find the order, comparing it to t2Z ′′ (t) + tZ ′ (t) +(
t2 − n2

)
Z (t) = 0 shows that n2 = 1

4 , hence the order is
1
2 . (the negative root, give Bessel function

that blow up at zero. Therefore only 1
2 root is used as the order. The solution of the above Bessel

ODE is known to be
Z (t) = c1 J 1

2
(t) + c2Y 1

2
(t)

From above, R (t) = Z (t )
√
t
.Therefore the solution now becomes

R (t) = c1
J 1
2
(t)

√
t
+ c2

Y 1
2
(t)

√
t

And converting back to R (r ) finally gives the radial solution as

R (r ) = c1
J 1
2
(λr )

√
λr
+ c2

Y 1
2
(λr )

√
λr

Since the solution is bounded at r = 0, then c2 = 0 and the solution simplifies to

R (r ) = c1
J 1
2
(λr )

√
λr

(5)

6I am assuming λ is real eigenvalue. Not complex.
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Using R (1) = 0 gives

0 = c1
J 1
2
(λ)

√
λ

For non-trivial solution then
J 1
2
(λ) = 0

Hence λ are the positive zeros of J 1
2
(λ).These are the eigenvalues.The zeros of J 1

2
(λ) are multiple of π .

Hence the first zero is π , the second zero is 2π and so on.

λn = nπ n = 1, 2, 3, · · ·

Therefore, the eigenfunctions (5) becomes

Rn (r ) =

√
1

nπr
J 1
2
(nπr ) n = 1, 2, 3, · · · (6)

These are also called spherical Bessel functions, since half integer order.There is a known relation
between spherical Bessel functions and circular trigonometric functions which says

J 1
2
(x) =

√
2
πx

sin (x)

Using the above, the eigenfunctions (6) can also be written as

Rn (r ) =

√
2
π 3

sin (nπr )
nr

n = 1, 2, 3, · · ·

Note that

lim
r→0

√
2
π 3

sin (nπr )
nr

=

√
2
π

= 0.797885

For all n. Below is a plot of the first 6 eigenfunctions
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Radial solution R(r) for the eigenvalue 4π
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Radial solution R(r) for the eigenvalue 5π

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

r

R
(r
)
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5.1 References

In working on this exam, I have used a number of references such as Wikepidia, Wolfram Math-
world and the NIST Digital Library of Mathematical Functions.
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