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1 Problem 1

Using a well known sum, find a closed for expression for the following series

f (z) = 1 + 2z + 3z2 + 4z3 + 5z4 + · · ·

Using the ratio test, find for what values of z this series converges.

Solution

Method 1

Assume that the closed form is

(1 − z)a = 1 + 2z + 3z2 + 4z3 + 5z4 + · · ·

For some unknown a. Now a will be solved for. Using Binomial series definition (1 − z)a =

1 − az + (a)(a−1)
2! z2 − a(a−1)(a−2)

3! z3 + · · · . in the LHS above gives

1 − az +
a (a − 1)

2!
z2 −

a (a − 1) (a − 2)
3!

z3 + · · · = 1 + 2z + 3z2 + 4z3 + 5z4 + · · ·

By comparing coefficients of z in the left side and on the right side shows that a = −2 from
the coefficient of z term. Verifying this on the coefficient of z2 shows it is correct since it gives
(−2)(−3)

2 = 3. Therefore
a = −2

The closed form is therefore
1

(1 − z)2
= 1 + 2z + 3z2 + 4z3 + 5z4 + · · ·

Method 2

Starting with Binomial series expansion given by
1

1 − z
= 1 + z + z2 + z3 + z4 + · · ·

Taking derivative w.r.t. z on both sides of the above results in

d

dz

(
1

1 − z

)
=

d

dz

(
1 + z + z2 + z3 + z4 + · · ·

)
− (1 − z)−2 (−1) = 0 + 1 + 2z + 3z2 + 4z3 + · · ·

1

(1 − z)2
= 1 + 2z + 3z2 + 4z3 + · · ·

Therefore the closed form expression is
1

(1 − z)2
= 1 + 2z + 3z2 + 4z3 + · · ·

Which is the same as method 1.

The series general term of the series is

1 + 2z + 3z2 + 4z3 + · · · =
∞∑
n=0

(n + 1) zn

Applying the ratio test

L = lim
n→∞

����an+1an

����
= lim

n→∞

���� (n + 2) zn+1(n + 1) zn

����
= lim

n→∞

���� (n + 2) zn + 1

����
= z lim

n→∞

����n + 2n + 1

����
= z lim

n→∞

�����1 + 2
n

1 + 1
n

�����
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But limn→∞

���1+ 2
n

1+ 1
n

��� = 1 and the above limit becomes

L = z

By the ratio test, the series converges when |L| < 1. Therefore 1+2z+3z2+4z3+ · · · converges
absolutely when |z | < 1. An absolutely convergent series is also a convergent series. Hence
the series converges for |z | < 1.
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2 Problem 2

Find the Laurent series for the function

f (z) =
1

(z2 + 4)3

About the isolated singular pole z = 2i . What is the order of this pole? What is the residue at
this pole?

Solution

The poles are at z2 = 4 or z = ±2i . The expansion of f (z) is around the isolated pole at z = 2i .
This pole has order 3. The region where this expansion is valid is inside a disk centered at 2i
(but not including the point z = 2i itself) and up to the nearest pole which is located at −2i .
Therefore the disk will have radius 4.

2i

−2i

R = 4

Region where Laurent series
expansion around z = 2i is valid

<z

=z

Let

u = z − 2i

z = u + 2i

Substituting this expression for z back in f (z) gives

f (z) =
1(

(u + 2i)2 + 4
) 3

=
1

(u2 − 4 + 4ui + 4)3

=
1

(u2 + 4ui)3

=
1

(u (u + 4i))3

=
1
u3

1

(u + 4i)3

=
1
u3

1[
4i

( u
4i + 1

) ] 3
=

1
u3

1

(4i)3
( u
4i + 1

) 3
=

1
−i64u3

1( u
4i + 1

) 3
=

(
i

64u3

)
1( u

4i + 1
) 3 (1)
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Expanding the term 1(
1+ u

4i
) 3 using Binomial series, which is valid for

�� u
4i

�� < 1 or |u | < 4 gives

1(
1 + u

4i

) 3 = 1 + (−3)
u

4i
+
(−3) (−4)

2!

( u
4i

) 2
+
(−3) (−4) (−5)

3!

( u
4i

) 3
+
(−3) (−4) (−5) (−6)

4!

( u
4i

) 4
+ · · ·

= 1 − 3
u

4i
+
3 · 4
2!

u2

16i2
−
3 · 4 · 5

3!
u3

64i3
+
3 · 4 · 5 · 6

4!
u4

256i4
+ · · ·

= 1 + 3i
u

4
−
3 · 4
2!

u2

16
−
3 · 4 · 5

3!
u3

64 (−i)
+
3 · 4 · 5 · 6

4!
u4

256
+ · · ·

= 1 + 3i
u

4
−
3 · 4
2!

u2

16
− i

3 · 4 · 5
3!

u3

64
+
3 · 4 · 5 · 6

4!
u4

256
+ · · · (2)

Substituting (2) into (1) and simplifying gives

f (z) =

(
i

64u3

) (
1 + 3i

u

4
−
3 · 4
2!

u2

16
− i

3 · 4 · 5
3!

u3

64
+
3 · 4 · 5 · 6

4!
u4

256
+ · · ·

)
=

i

64u3
+

i

64u3

(
3i
u

4

)
−

i

64u3

(
3 · 4
2!

u2

16

)
−

i

64u3

(
i
3 · 4 · 5

3!
u3

64

)
+

i

64u3

(
3 · 4 · 5 · 6

4!
u4

256

)
+ · · ·

=
i

64u3
−

1
64u2

3
4
−

i

64u

(
3 · 4
2!

1
16

)
+

1
64

(
3 · 4 · 5

3!
1
64

)
+

i

64

(
3 · 4 · 5 · 6

4!
u

256

)
+ · · ·

=
i

64u3
−

3
256u2

− i
3
512

1
u
+

5
2048

+ i
15

16 384
u + · · ·

Replacing u back by z − 2i in the above results in

f (z) =
i

64
1

(z − 2i)3
−

3
256

1

(z − 2i)2
−

3i
512

1
(z − 2i)

+
5

2048
+

15i
16 384

(z − 2i) + · · · (3)

This expansion is valid for |z − 2i | < 4. The above shows that the residue is

− 3i
512

Which is the coefficient of the 1
(z−2i) term in (3).
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3 Problem 3

Use residues to evaluate the following integral

I =

∫∞

0

dx

x4 + 6x2 + 9

Solution

The integrand is an even function. Therefore the integral
∫∞
−∞

dx
x4+6x2+9 is evaluated instead and

then the required integral I will be half the value obtained. The poles of 1
x4+6x2+9 are the zeros

of the denominator. Factoring the denominator as
(
x2 + 3

) (
x2 + 3

)
= 0, shows the roots are

x = ±i
√
3 from the first factor and x = ±i

√
3 from the second factor.

Since the upper half plane will be used, the pole located there is +i
√
3 and it is of order two.

Now that pole locations are known, the following contour is used to evaluate
∫∞
−∞

dx
x4+6x2+9 as

shown in the plot below

−R +R

R

CR

<z

=z

i
√
3

pole of order 2

∮
C

f (z)dz = lim
R→∞

∫
C
f (z)dz + lim

R→∞

∫ +R
−R

f (x)dx

= lim
R→∞

∫
C

dz

z4 + 6z2 + 9
+ lim

R→∞

∫ +R
−R

dx

x4 + 6x2 + 9
dx (2)

Where the integral
∫+R
−R

is Cauchy principal integral. Since the contourC is closed and because
f (z) is analytic on and inside C except for the isolated singularity inside at z = i

√
3, then

by Cauchy integral formula
∮
C

f (z)dz = 2πi
∑
Residue. Where the sum of residues is over all

poles inside C . Therefore (2) can becomes∫ +∞
−∞

dx

x4 + 6x2 + 9
dx = 2πi

∑
Residue− lim

R→∞

∫
C
f (z)dz (3)

But ����∫
C
f (z)dz

����
max

≤ ML

= | f (z)|max πR (4)

Using
| f (z)|max ≤

1
|z2 + 3|min |z

2 + 3|min

By inverse triangle inequality
��z2 + 3�� ≥ |z |2 − 3. But |z | = R on C , therefore

��z2 + 3�� ≥ R2 − 3
and the above can now be written as

| f (z)|max ≤
1

(R2 − 3) (R2 − 3)
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Using the above in (4) gives ����∫
C
f (z)dz

����
max

≤
πR

(R2 − 3) (R2 − 3)

=
πR

R4 − 6R2 + 9

=

π
R

R2 − 6 + 9
R2

In the limit as R → ∞ then
���∫C f (z)dz

���
max

→ 0. Using this result in (3) it simplifies to∫ +∞
−∞

dx

x4 + 6x2 + 9
dx = 2πi

∑
Residue (5)

What is left now is to determine the residue at pole z0 = i
√
3 which is of order 2. This is done

using

Residue (z0) = lim
z→z0

d

dz

(
(z − z0)

2 f (z)
)

But z0 = i
√
3 and the above becomes

Residue
(
i
√
3
)
= lim

z→i
√
3

d

dz

©­­«
(
z − i

√
3
) 2 1(

z − i
√
3
) 2 (

z + i
√
3
) 2 ª®®¬

= lim
z→i

√
3

d

dz

1(
z + i

√
3
) 2

= lim
z→i

√
3

−2(
z + i

√
3
) 3

=
−2(

i
√
3 + i

√
3
) 3

=
−2(

2i
√
3
) 3

=
−2

− (8) (3) i
√
3

=
1

12i
√
3

Using the above value of the residue in (5) gives∫ +∞
−∞

dx

x4 + 6x2 + 9
dx = 2πi

(
1

12i
√
3

)
=

π

6
√
3

Therefore the integral
∫∞
0

dx
x4+6x3+9 is half of the above result which is∫∞

0

dx

x4 + 6x2 + 9
=

π

12
√
3
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4 Problem 4

Find two approximations for the integral x > 0

I (x) =
1
2π

∫ π
2

− π
2

ex cos
2 θdθ

One for small x (keeping up to linear order in x) and one for large values of x (keeping only
the leading order term).

Solution

The integrand has the form ez . This has a known Taylor series expansion around zero given by

ez = 1 + z +
z2

2!
+ · · ·

Replacing z by x cos2 θ in the above gives

ex cos
2 θ = 1 + x cos2 θ +

(
x cos2 θ

) 2
2

+ · · ·

The problem is asking to keep linear terms in x . Therefore

ex cos
2 θ ≈ 1 + x cos2 θ

Replacing the integrand in the original integral by the above approximation gives

I (x) ≈
1
2π

∫ π
2

− π
2

(
1 + x cos2 θ

)
dθ

≈
1
2π

(∫ π
2

− π
2

dθ + x

∫ π
2

− π
2

cos2 θdθ

)
≈

1
2π

(∫ π
2

− π
2

dθ + x

∫ π
2

− π
2

1
2
+
1
2
cos 2θdθ

)
≈

1
2π

(
π + x

(
1
2
θ +

1
2
sin 2θ
2

) π
2

− π
2

)
≈

1
2π

(
π +

x

4
(2θ + sin 2θ )

π
2

− π
2

)
≈

1
2π

(
π +

x

4
(2π + 0)

)
≈

1
2π

(
π +

x

2
π
)

≈
1
2

(
1 +

x

2

)
For large value of x , The integrand is written as e f (θ ) where f (θ ) = x cos2 θ . The value of θ
where f (θ ) is maximum is first found. Then solving for θ in

d

dθ
x cos2 θ = 0

−2x cosθ sinθ = 0

Hence solving for θ in
cosθ sinθ = 0

There are two solutions to this. Either θ = π
2 or θ = 0. To find which is the correct choice, the

sign of d2

dθ 2
f (θ ) is checked for each choice.

d2

dθ 2
x cos2 θ =

d

dθ
(−2x cosθ sinθ )

= −2x
d

dθ
(cosθ sinθ )

= −2x (− sinθ sinθ + cosθ cosθ )

= −2x
(
− sin2 θ + cos2 θ

)
(1)
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Substituting θ = π
2 in (1) and using cos

( π
2

)
= 0 and sin

( π
2

)
= 1 gives

d2

dθ 2
x cos2 θ

����
θ= π

2

= −2x (−1)

= 2x

Since the problem says that x > 0 then d2

dθ 2
x cos2 θ

���
θ= π

2

> 0. Therefore this is a minimum. Using

the second choice θ = 0, then (1) becomes (after using cos (0) = 1 and sin (0) = 0)

d2

dθ 2
x cos2 θ

����
θ=0
= −2x

And because x > 0 then d2

dθ 2
x cos2 θ

���
θ=0
< 0. Therefore the integrand is maximum at

θpeak = 0

Now that peak θ is found, then f (θ ) is expanded in Taylor series around θpeak = 0. Since
f (θ ) = x cos2 θ , then

f
(
θpeak

)
= x

And f ′ (θ ) = −2x cosθ sinθ . Atθpeak this becomes f ′
(
θpeak

)
= 0.The next term is the quadratic

one, given by

f ′′ (θ ) = −2x
d

dθ
(cosθ sinθ )

= −2x
(
− sin2 θ + cos2 θ

)
Evaluating the above at θpeak = 0 gives

f ′′
(
θpeak

)
= −2x

The problem says to keep leading term, so no need for more terms. Therefore the Taylor series
expansion of f (θ ) = x cos2 θ around θ = θpeak is

x cos2 θ ≈ f
(
θpeak

)
+ f ′

(
θpeak

)
θ +

1
2!
f ′′

(
θpeak

)
θ 2

= x + 0 −
2x
2!
θ 2

= x − xθ 2

= x
(
1 − θ 2

)
The integral now becomes

I (x) =
1
2π

∫ π
2

− π
2

ex
(
1−θ 2

)
dθ

≈
1
2π

∫ π
2

− π
2

exe−xθ
2
dθ

=
1
2π

(
ex

∫ π
2

− π
2

e−xθ
2
dθ

)
Comparing

∫ π
2

− π
2
e−xθ

2
dθ to the Gaussian integral

∫∞
−∞

e−aθ
2
dθ =

√
π
x , then the above can be

approximated as

I (x) =
ex

2π

√
π

x

Summary of result

Small x approximation 1
2

(
1 + x

2

)
Large x approximation ex

2π

√
π
x

Note that using the computer, the exact solution is

1
2π

∫ π
2

− π
2

ex cos
2 θdθ =

1
2
e
x
2 BesselI

(
0,
x

2

)
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5 Problem 5

Use the Cauchy-Riemann equations to determine where the function

f (z) = z + z2

Is analytic. Evaluate
∮
C

f (z)dz where contour C is on the unit circle |z | = 1 in a counterclock-

wise sense.

Solution

Using z = x + iy, the function f (z) becomes

f (z) = x + iy + (x + iy)2

= x + iy + (x2 − y2 + 2ixy)

= x + iy +
(
x2 − y2 − 2ixy

)
=

(
x + x2 − y2

)
+ i (y − 2xy)

Writing f (z) = u + iv , and comparing this to the above result shows that

u = x + x2 − y2

v = y − 2xy (1)

Cauchy-Riemann are given by

∂u

∂x
=
∂v

∂y

−∂u

∂y
=
∂v

∂x

Using result in (1), Cauchy-Riemann are checked to see if they are satisfied or not. The first
equation above results in

∂u

∂x
= 1 + 2x

∂v

∂y
= 1 − 2x

Therefore ∂u∂x ,
∂v
∂y . This shows that f (z) is not analytic for all x,y.

Since f (z) is not analytic, Cauchy integral formula can not be used. Instead this can be inte-
grated using parameterization. Let z = eiθ (No need to use reiθ since r = 1 in this case because
it is the unit circle). The function f (z) becomes

f (z) = eiθ +
(
eiθ

) 2
= eiθ + e2iθ

= eiθ + e−2iθ

And because z = eiθ then dz = dθeiθ . The integral now becomes∮
C

f (z)dz =

∫ 2π

0

(
eiθ + e−2iθ

)
eiθdθ

=

∫ 2π

0

(
e2iθ + e−iθ

)
dθ

=

[
e2iθ

2i

] 2π
0
+

[
e−iθ

−i

] 2π
0

=
1
2i

[cos 2θ + i sin 2θ ]2π0 + i [cosθ − i sinθ ]2π0

=
1
2i

[(cos 4π + i sin 4π ) − (cos 0 + i sin 0)] + i [(cos 2π − i sin 2π ) − (cos 0 − i sin 0)]

=
1
2i

[1 − 1] + i [1 − 1]



11

Hence ∮
C

f (z)dz = 0
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