Exam 1, Physics 501 University Of Wisconsin, Milwaukee

Nasser M. Abbasi

November 30, 2018

Contents

1 Problem 1 2

2 Problem 2 4

3 Problem 3 7

4 Problem 4 10

5 Problem 5 13

1 Problem 1

Using a well known sum, find a closed for expression for the following series

$$
f(z)=1+2 z+3 z^{2}+4 z^{3}+5 z^{4}+\cdots
$$

Using the ratio test, find for what values of z this series converges.

Solution

Method 1
Assume that the closed form is

$$
(1-z)^{a}=1+2 z+3 z^{2}+4 z^{3}+5 z^{4}+\cdots
$$

For some unknown a. Now a will be solved for. Using Binomial series definition $(1-z)^{a}=$ $1-a z+\frac{(a)(a-1)}{2!} z^{2}-\frac{a(a-1)(a-2)}{3!} z^{3}+\cdots$. in the LHS above gives

$$
1-a z+\frac{a(a-1)}{2!} z^{2}-\frac{a(a-1)(a-2)}{3!} z^{3}+\cdots=1+2 z+3 z^{2}+4 z^{3}+5 z^{4}+\cdots
$$

By comparing coefficients of z in the left side and on the right side shows that $a=-2$ from the coefficient of z term. Verifying this on the coefficient of z^{2} shows it is correct since it gives $\frac{(-2)(-3)}{2}=3$. Therefore

$$
a=-2
$$

The closed form is therefore

$$
\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+4 z^{3}+5 z^{4}+\cdots
$$

Method 2
Starting with Binomial series expansion given by

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+z^{4}+\cdots
$$

Taking derivative w.r.t. z on both sides of the above results in

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{1}{1-z}\right) & =\frac{d}{d z}\left(1+z+z^{2}+z^{3}+z^{4}+\cdots\right) \\
-(1-z)^{-2}(-1) & =0+1+2 z+3 z^{2}+4 z^{3}+\cdots \\
\frac{1}{(1-z)^{2}} & =1+2 z+3 z^{2}+4 z^{3}+\cdots
\end{aligned}
$$

Therefore the closed form expression is

$$
\frac{1}{(1-z)^{2}}=1+2 z+3 z^{2}+4 z^{3}+\cdots
$$

Which is the same as method 1.
The series general term of the series is

$$
1+2 z+3 z^{2}+4 z^{3}+\cdots=\sum_{n=0}^{\infty}(n+1) z^{n}
$$

Applying the ratio test

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+2) z^{n+1}}{(n+1) z^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+2) z}{n+1}\right| \\
& =z \lim _{n \rightarrow \infty}\left|\frac{n+2}{n+1}\right| \\
& =z \lim _{n \rightarrow \infty}\left|\frac{1+\frac{2}{n}}{1+\frac{1}{n}}\right|
\end{aligned}
$$

But $\lim _{n \rightarrow \infty}\left|\frac{1+\frac{2}{n}}{1+\frac{1}{n}}\right|=1$ and the above limit becomes

$$
L=z
$$

By the ratio test, the series converges when $|L|<1$. Therefore $1+2 z+3 z^{2}+4 z^{3}+\cdots$ converges absolutely when $|z|<1$. An absolutely convergent series is also a convergent series. Hence the series converges for $|z|<1$.

2 Problem 2

Find the Laurent series for the function

$$
f(z)=\frac{1}{\left(z^{2}+4\right)^{3}}
$$

About the isolated singular pole $z=2 i$. What is the order of this pole? What is the residue at this pole?

Solution

The poles are at $z^{2}=4$ or $z= \pm 2 i$. The expansion of $f(z)$ is around the isolated pole at $z=2 i$. This pole has order 3. The region where this expansion is valid is inside a disk centered at $2 i$ (but not including the point $z=2 i$ itself) and up to the nearest pole which is located at $-2 i$. Therefore the disk will have radius 4 .

Let

$$
\begin{aligned}
& u=z-2 i \\
& z=u+2 i
\end{aligned}
$$

Substituting this expression for z back in $f(z)$ gives

$$
\begin{align*}
f(z) & =\frac{1}{\left((u+2 i)^{2}+4\right)^{3}} \\
& =\frac{1}{\left(u^{2}-4+4 u i+4\right)^{3}} \\
& =\frac{1}{\left(u^{2}+4 u i\right)^{3}} \\
& =\frac{1}{(u(u+4 i))^{3}} \\
& =\frac{1}{u^{3}} \frac{1}{(u+4 i)^{3}} \\
& =\frac{1}{u^{3}} \frac{1}{\left[4 i\left(\frac{u}{4 i}+1\right)\right]^{3}} \\
& =\frac{1}{u^{3}} \frac{1}{(4 i)^{3}\left(\frac{u}{4 i}+1\right)^{3}} \\
& =\frac{1}{-i 64 u^{3}} \frac{1}{\left(\frac{u}{4 i}+1\right)^{3}} \\
& =\left(\frac{i}{64 u^{3}}\right) \frac{1}{\left(\frac{u}{4 i}+1\right)^{3}} \tag{1}
\end{align*}
$$

Expanding the term $\frac{1}{\left(1+\frac{u}{4 i}\right)^{3}}$ using Binomial series, which is valid for $\left|\frac{u}{4 i}\right|<1$ or $|u|<4$ gives

$$
\begin{align*}
\frac{1}{\left(1+\frac{u}{4 i}\right)^{3}} & =1+(-3) \frac{u}{4 i}+\frac{(-3)(-4)}{2!}\left(\frac{u}{4 i}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{u}{4 i}\right)^{3}+\frac{(-3)(-4)(-5)(-6)}{4!}\left(\frac{u}{4 i}\right)^{4}+\cdots \\
& =1-3 \frac{u}{4 i}+\frac{3 \cdot 4}{2!} \frac{u^{2}}{16 i^{2}}-\frac{3 \cdot 4 \cdot 5}{3!} \frac{u^{3}}{64 i^{3}}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!} \frac{u^{4}}{256 i^{4}}+\cdots \\
& =1+3 i \frac{u}{4}-\frac{3 \cdot 4}{2!} \frac{u^{2}}{16}-\frac{3 \cdot 4 \cdot 5}{3!} \frac{u^{3}}{64(-i)}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!} \frac{u^{4}}{256}+\cdots \\
& =1+3 i \frac{u}{4}-\frac{3 \cdot 4}{2!} \frac{u^{2}}{16}-i \frac{3 \cdot 4 \cdot 5}{3!} \frac{u^{3}}{64}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!} \frac{u^{4}}{256}+\cdots \tag{2}
\end{align*}
$$

Substituting (2) into (1) and simplifying gives

$$
\begin{aligned}
f(z) & =\left(\frac{i}{64 u^{3}}\right)\left(1+3 i \frac{u}{4}-\frac{3 \cdot 4}{2!} \frac{u^{2}}{16}-i \frac{3 \cdot 4 \cdot 5}{3!} \frac{u^{3}}{64}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!} \frac{u^{4}}{256}+\cdots\right) \\
& =\frac{i}{64 u^{3}}+\frac{i}{64 u^{3}}\left(3 i \frac{u}{4}\right)-\frac{i}{64 u^{3}}\left(\frac{3 \cdot 4}{2!} \frac{u^{2}}{16}\right)-\frac{i}{64 u^{3}}\left(i \frac{3 \cdot 4 \cdot 5}{3!} \frac{u^{3}}{64}\right)+\frac{i}{64 u^{3}}\left(\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!} \frac{u^{4}}{256}\right)+\cdots \\
& =\frac{i}{64 u^{3}}-\frac{1}{64 u^{2}} \frac{3}{4}-\frac{i}{64 u}\left(\frac{3 \cdot 4}{2!} \frac{1}{16}\right)+\frac{1}{64}\left(\frac{3 \cdot 4 \cdot 5}{3!} \frac{1}{64}\right)+\frac{i}{64}\left(\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!} \frac{u}{256}\right)+\cdots \\
& =\frac{i}{64 u^{3}}-\frac{3}{256 u^{2}}-i \frac{3}{512} \frac{1}{u}+\frac{5}{2048}+i \frac{15}{16384} u+\cdots
\end{aligned}
$$

Replacing u back by $z-2 i$ in the above results in

$$
\begin{equation*}
f(z)=\frac{i}{64} \frac{1}{(z-2 i)^{3}}-\frac{3}{256} \frac{1}{(z-2 i)^{2}}-\frac{3 i}{512} \frac{1}{(z-2 i)}+\frac{5}{2048}+\frac{15 i}{16384}(z-2 i)+\cdots \tag{3}
\end{equation*}
$$

This expansion is valid for $|z-2 i|<4$. The above shows that the residue is

$$
-\frac{3 i}{512}
$$

Which is the coefficient of the $\frac{1}{(z-2 i)}$ term in (3).

3 Problem 3

Use residues to evaluate the following integral

$$
I=\int_{0}^{\infty} \frac{d x}{x^{4}+6 x^{2}+9}
$$

Solution

The integrand is an even function. Therefore the integral $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+6 x^{2}+9}$ is evaluated instead and then the required integral I will be half the value obtained. The poles of $\frac{1}{x^{4}+6 x^{2}+9}$ are the zeros of the denominator. Factoring the denominator as $\left(x^{2}+3\right)\left(x^{2}+3\right)=0$, shows the roots are $x= \pm i \sqrt{3}$ from the first factor and $x= \pm i \sqrt{3}$ from the second factor.

Since the upper half plane will be used, the pole located there is $+i \sqrt{3}$ and it is of order two. Now that pole locations are known, the following contour is used to evaluate $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+6 x^{2}+9}$ as shown in the plot below

$$
\begin{align*}
\oint_{C} f(z) d z & =\lim _{R \rightarrow \infty} \int_{C} f(z) d z+\lim _{R \rightarrow \infty} \int_{-R}^{+R} f(x) d x \\
& =\lim _{R \rightarrow \infty} \int_{C} \frac{d z}{z^{4}+6 z^{2}+9}+\lim _{R \rightarrow \infty} \int_{-R}^{+R} \frac{d x}{x^{4}+6 x^{2}+9} d x \tag{2}
\end{align*}
$$

Where the integral \int_{-R}^{+R} is Cauchy principal integral. Since the contour C is closed and because $f(z)$ is analytic on and inside C except for the isolated singularity inside at $z=i \sqrt{3}$, then by Cauchy integral formula $\oint_{C} f(z) d z=2 \pi i \sum$ Residue. Where the sum of residues is over all poles inside C. Therefore (2) can becomes

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{d x}{x^{4}+6 x^{2}+9} d x=2 \pi i \sum \text { Residue }-\lim _{R \rightarrow \infty} \int_{C} f(z) d z \tag{3}
\end{equation*}
$$

But

$$
\begin{align*}
\left|\int_{C} f(z) d z\right|_{\max } & \leq M L \\
& =|f(z)|_{\max } \pi R \tag{4}
\end{align*}
$$

Using

$$
|f(z)|_{\max } \leq \frac{1}{\left|z^{2}+3\right|_{\min }\left|z^{2}+3\right|_{\min }}
$$

By inverse triangle inequality $\left|z^{2}+3\right| \geq|z|^{2}-3$. But $|z|=R$ on C, therefore $\left|z^{2}+3\right| \geq R^{2}-3$ and the above can now be written as

$$
|f(z)|_{\max } \leq \frac{1}{\left(R^{2}-3\right)\left(R^{2}-3\right)}
$$

Using the above in (4) gives

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right|_{\max } & \leq \frac{\pi R}{\left(R^{2}-3\right)\left(R^{2}-3\right)} \\
& =\frac{\pi R}{R^{4}-6 R^{2}+9} \\
& =\frac{\frac{\pi}{R}}{R^{2}-6+\frac{9}{R^{2}}}
\end{aligned}
$$

In the limit as $R \rightarrow \infty$ then $\left|\int_{C} f(z) d z\right|_{\max } \rightarrow 0$. Using this result in (3) it simplifies to

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{d x}{x^{4}+6 x^{2}+9} d x=2 \pi i \sum \text { Residue } \tag{5}
\end{equation*}
$$

What is left now is to determine the residue at pole $z_{0}=i \sqrt{3}$ which is of order 2 . This is done using

$$
\text { Residue }\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{d}{d z}\left(\left(z-z_{0}\right)^{2} f(z)\right)
$$

But $z_{0}=i \sqrt{3}$ and the above becomes

$$
\begin{aligned}
\operatorname{Residue}(i \sqrt{3}) & =\lim _{z \rightarrow i \sqrt{3}} \frac{d}{d z}\left((z-i \sqrt{3})^{2} \frac{1}{(z-i \sqrt{3})^{2}(z+i \sqrt{3})^{2}}\right) \\
& =\lim _{z \rightarrow i \sqrt{3}} \frac{d}{d z} \frac{1}{(z+i \sqrt{3})^{2}} \\
& =\lim _{z \rightarrow i \sqrt{3}} \frac{-2}{(z+i \sqrt{3})^{3}} \\
& =\frac{-2}{(i \sqrt{3}+i \sqrt{3})^{3}} \\
& =\frac{-2}{(2 i \sqrt{3})^{3}} \\
& =\frac{-2}{-(8)(3) i \sqrt{3}} \\
& =\frac{1}{12 i \sqrt{3}}
\end{aligned}
$$

Using the above value of the residue in (5) gives

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{d x}{x^{4}+6 x^{2}+9} d x & =2 \pi i\left(\frac{1}{12 i \sqrt{3}}\right) \\
& =\frac{\pi}{6 \sqrt{3}}
\end{aligned}
$$

Therefore the integral $\int_{0}^{\infty} \frac{d x}{x^{4}+6 x^{3}+9}$ is half of the above result which is

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+6 x^{2}+9}=\frac{\pi}{12 \sqrt{3}}
$$

4 Problem 4

Find two approximations for the integral $x>0$

$$
I(x)=\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{x \cos ^{2} \theta} d \theta
$$

One for small x (keeping up to linear order in x) and one for large values of x (keeping only the leading order term).

Solution

The integrand has the form e^{z}. This has a known Taylor series expansion around zero given by

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots
$$

Replacing z by $x \cos ^{2} \theta$ in the above gives

$$
e^{x \cos ^{2} \theta}=1+x \cos ^{2} \theta+\frac{\left(x \cos ^{2} \theta\right)^{2}}{2}+\cdots
$$

The problem is asking to keep linear terms in x. Therefore

$$
e^{x \cos ^{2} \theta} \approx 1+x \cos ^{2} \theta
$$

Replacing the integrand in the original integral by the above approximation gives

$$
\begin{aligned}
I(x) & \approx \frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(1+x \cos ^{2} \theta\right) d \theta \\
& \approx \frac{1}{2 \pi}\left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta+x \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta\right) \\
& \approx \frac{1}{2 \pi}\left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta+x \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}+\frac{1}{2} \cos 2 \theta d \theta\right) \\
& \approx \frac{1}{2 \pi}\left(\pi+x\left(\frac{1}{2} \theta+\frac{1}{2} \frac{\sin 2 \theta}{2}\right)_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\right) \\
& \approx \frac{1}{2 \pi}\left(\pi+\frac{x}{4}(2 \theta+\sin 2 \theta)_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\right) \\
& \approx \frac{1}{2 \pi}\left(\pi+\frac{x}{4}(2 \pi+0)\right) \\
& \approx \frac{1}{2 \pi}\left(\pi+\frac{x}{2} \pi\right) \\
& \approx \frac{1}{2}\left(1+\frac{x}{2}\right)
\end{aligned}
$$

For large value of x, The integrand is written as $e^{f(\theta)}$ where $f(\theta)=x \cos ^{2} \theta$. The value of θ where $f(\theta)$ is maximum is first found. Then solving for θ in

$$
\begin{aligned}
\frac{d}{d \theta} x \cos ^{2} \theta & =0 \\
-2 x \cos \theta \sin \theta & =0
\end{aligned}
$$

Hence solving for θ in

$$
\cos \theta \sin \theta=0
$$

There are two solutions to this. Either $\theta=\frac{\pi}{2}$ or $\theta=0$. To find which is the correct choice, the sign of $\frac{d^{2}}{d \theta^{2}} f(\theta)$ is checked for each choice.

$$
\begin{align*}
\frac{d^{2}}{d \theta^{2}} x \cos ^{2} \theta & =\frac{d}{d \theta}(-2 x \cos \theta \sin \theta) \\
& =-2 x \frac{d}{d \theta}(\cos \theta \sin \theta) \\
& =-2 x(-\sin \theta \sin \theta+\cos \theta \cos \theta) \\
& =-2 x\left(-\sin ^{2} \theta+\cos ^{2} \theta\right) \tag{1}
\end{align*}
$$

Substituting $\theta=\frac{\pi}{2}$ in (1) and using $\cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$ gives

$$
\begin{aligned}
\left.\frac{d^{2}}{d \theta^{2}} x \cos ^{2} \theta\right|_{\theta=\frac{\pi}{2}} & =-2 x(-1) \\
& =2 x
\end{aligned}
$$

Since the problem says that $x>0$ then $\left.\frac{d^{2}}{d \theta^{2}} x \cos ^{2} \theta\right|_{\theta=\frac{\pi}{2}}>0$. Therefore this is a minimum. Using the second choice $\theta=0$, then (1) becomes (after using $\cos (0)=1$ and $\sin (0)=0$)

$$
\left.\frac{d^{2}}{d \theta^{2}} x \cos ^{2} \theta\right|_{\theta=0}=-2 x
$$

And because $x>0$ then $\left.\frac{d^{2}}{d \theta^{2}} x \cos ^{2} \theta\right|_{\theta=0}<0$. Therefore the integrand is maximum at

$$
\theta_{\text {peak }}=0
$$

Now that peak θ is found, then $f(\theta)$ is expanded in Taylor series around $\theta_{\text {peak }}=0$. Since $f(\theta)=x \cos ^{2} \theta$, then

$$
f\left(\theta_{\text {peak }}\right)=x
$$

And $f^{\prime}(\theta)=-2 x \cos \theta \sin \theta$. At $\theta_{\text {peak }}$ this becomes $f^{\prime}\left(\theta_{\text {peak }}\right)=0$. The next term is the quadratic one, given by

$$
\begin{aligned}
f^{\prime \prime}(\theta) & =-2 x \frac{d}{d \theta}(\cos \theta \sin \theta) \\
& =-2 x\left(-\sin ^{2} \theta+\cos ^{2} \theta\right)
\end{aligned}
$$

Evaluating the above at $\theta_{\text {peak }}=0$ gives

$$
f^{\prime \prime}\left(\theta_{\text {peak }}\right)=-2 x
$$

The problem says to keep leading term, so no need for more terms. Therefore the Taylor series expansion of $f(\theta)=x \cos ^{2} \theta$ around $\theta=\theta_{\text {peak }}$ is

$$
\begin{aligned}
x \cos ^{2} \theta & \approx f\left(\theta_{\text {peak }}\right)+f^{\prime}\left(\theta_{\text {peak }}\right) \theta+\frac{1}{2!} f^{\prime \prime}\left(\theta_{\text {peak }}\right) \theta^{2} \\
& =x+0-\frac{2 x}{2!} \theta^{2} \\
& =x-x \theta^{2} \\
& =x\left(1-\theta^{2}\right)
\end{aligned}
$$

The integral now becomes

$$
\begin{aligned}
I(x) & =\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{x\left(1-\theta^{2}\right)} d \theta \\
& \approx \frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{x} e^{-x \theta^{2}} d \theta \\
& =\frac{1}{2 \pi}\left(e^{x} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-x \theta^{2}} d \theta\right)
\end{aligned}
$$

Comparing $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-x \theta^{2}} d \theta$ to the Gaussian integral $\int_{-\infty}^{\infty} e^{-a \theta^{2}} d \theta=\sqrt{\frac{\pi}{x}}$, then the above can be approximated as

$$
I(x)=\frac{e^{x}}{2 \pi} \sqrt{\frac{\pi}{x}}
$$

Summary of result

Small x approximation	$\frac{1}{2}\left(1+\frac{x}{2}\right)$
Large x approximation	$\frac{e^{x}}{2 \pi} \sqrt{\frac{\pi}{x}}$

Note that using the computer, the exact solution is

$$
\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{x \cos ^{2} \theta} d \theta=\frac{1}{2} e^{\frac{x}{2}} \operatorname{BesselI}\left(0, \frac{x}{2}\right)
$$

5 Problem 5

Use the Cauchy-Riemann equations to determine where the function

$$
f(z)=z+\overline{z^{2}}
$$

Is analytic. Evaluate $\oint_{C} f(z) d z$ where contour C is on the unit circle $|z|=1$ in a counterclockwise sense.

Solution

Using $z=x+i y$, the function $f(z)$ becomes

$$
\begin{aligned}
f(z) & =x+i y+\overline{(x+i y)^{2}} \\
& =x+i y+\overline{\left(x^{2}-y^{2}+2 i x y\right)} \\
& =x+i y+\left(x^{2}-y^{2}-2 i x y\right) \\
& =\left(x+x^{2}-y^{2}\right)+i(y-2 x y)
\end{aligned}
$$

Writing $f(z)=u+i v$, and comparing this to the above result shows that

$$
\begin{align*}
& u=x+x^{2}-y^{2} \\
& v=y-2 x y \tag{1}
\end{align*}
$$

Cauchy-Riemann are given by

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{-\partial u}{\partial y} & =\frac{\partial v}{\partial x}
\end{aligned}
$$

Using result in (1), Cauchy-Riemann are checked to see if they are satisfied or not. The first equation above results in

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=1+2 x \\
& \frac{\partial v}{\partial y}=1-2 x
\end{aligned}
$$

Since $f(z)$ is not analytic, Cauchy integral formula can not be used. Instead this can be integrated using parameterization. Let $z=e^{i \theta}$ (No need to use $r e^{i \theta}$ since $r=1$ in this case because it is the unit circle). The function $f(z)$ becomes

$$
\begin{aligned}
f(z) & =e^{i \theta}+\overline{\left(e^{i \theta}\right)^{2}} \\
& =e^{i \theta}+\overline{e^{2 i \theta}} \\
& =e^{i \theta}+e^{-2 i \theta}
\end{aligned}
$$

And because $z=e^{i \theta}$ then $d z=d \theta e^{i \theta}$. The integral now becomes

$$
\begin{aligned}
\oint_{C} f(z) d z & =\int_{0}^{2 \pi}\left(e^{i \theta}+e^{-2 i \theta}\right) e^{i \theta} d \theta \\
& =\int_{0}^{2 \pi}\left(e^{2 i \theta}+e^{-i \theta}\right) d \theta \\
& =\left[\frac{e^{2 i \theta}}{2 i}\right]_{0}^{2 \pi}+\left[\frac{e^{-i \theta}}{-i}\right]_{0}^{2 \pi} \\
& =\frac{1}{2 i}[\cos 2 \theta+i \sin 2 \theta]_{0}^{2 \pi}+i[\cos \theta-i \sin \theta]_{0}^{2 \pi} \\
& =\frac{1}{2 i}[(\cos 4 \pi+i \sin 4 \pi)-(\cos 0+i \sin 0)]+i[(\cos 2 \pi-i \sin 2 \pi)-(\cos 0-i \sin 0)] \\
& =\frac{1}{2 i}[1-1]+i[1-1]
\end{aligned}
$$

Hence

$$
\oint_{C} f(z) d z=0
$$

