HW 7, Physics 501 Fall 2018
 University Of Wisconsin, Milwaukee

Nasser M. Abbasi

Contents

1 Problem 1 2
1.1 Part 1 2
1.2 Part 2 3
1.3 Part 3 3
1.4 Part 4 4
1.5 Part 5 5
2 Problem 2 8
2.1 Part (a) 8
$2.2 \quad$ Part (b) 9

1 Problem 1

Exercise 1: Consider Hermite's differential equation valid for $(-\infty<x<\infty)$:

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}+2 n y=0 \tag{1}
\end{equation*}
$$

i) Assume the existence of a generating function $g(x, t)=\sum_{n=0}^{\infty} H_{n}(x) t^{n} / n$!. Differentiate $g(x, t)$ with respect to x and use the recurrence relation $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$ to develop a first order differential equation for $g(x, t)$.
ii) Integrate this equation with respect to x holding t fixed.
iii) Use the relationships $H_{2 n}(0)=(-1)^{n}(2 n)!/ n$! and $H_{2 n+1}(0)=0$ to evaluate $g(0, t)$ and show $g(x, t)=\exp \left(-t^{2}+2 t x\right)$.
iv) Use the generating function to find the recurrence relation $H_{n+1}(x)=2 x H_{n}(x)-$ $2 n H_{n-1}(x)$.
v) By integrating the product $e^{-x^{2}} g(x, s) g(x, t)$ over all x, show

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=2^{n} n!\sqrt{\pi} \delta_{n m} \tag{2}
\end{equation*}
$$

Figure 1: Problem statement

Solution

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0 \quad-\infty<x<\infty
$$

1.1 Part 1

$$
g(x, t)=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}
$$

Differentiating w.r.t x, and assuming term by term differentiation is allowed, gives

$$
\frac{\partial g(x, t)}{\partial x}=\sum_{n=0}^{\infty} H_{n}^{\prime}(x) \frac{t^{n}}{n!}
$$

Using $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$ in the above results in

$$
\frac{\partial g(x, t)}{\partial x}=\sum_{n=0}^{\infty} 2 n H_{n-1}(x) \frac{t^{n}}{n!}
$$

But for $n=0$, the first term is zero, so the sum can start from 1 and give the same result

$$
\frac{\partial g(x, t)}{\partial x}=\sum_{n=1}^{\infty} 2 n H_{n-1}(x) \frac{t^{n}}{n!}
$$

Now, decreasing the summation index by 1 and increasing the n inside the sum by 1 gives

$$
\begin{aligned}
\frac{\partial g(x, t)}{\partial x} & =\sum_{n=0}^{\infty} 2(n+1) H_{n}(x) \frac{t^{n+1}}{(n+1)!} \\
& =\sum_{n=0}^{\infty} 2(n+1) H_{n}(x) \frac{t^{n+1}}{(n+1) n!} \\
& =\sum_{n=0}^{\infty} 2 H_{n}(x) \frac{t^{n+1}}{n!} \\
& =\sum_{n=0}^{\infty} 2 t\left(H_{n}(x) \frac{t^{n}}{n!}\right) \\
& =2 t \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}
\end{aligned}
$$

But $\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}=g(x, t)$ and the above reduces to

$$
\frac{\partial g(x, t)}{\partial x}=2 t g(x, t)
$$

The problem says it is supposed to be a first order differential equation and not a first order partial differential equation. Therefore, by assuming x to be a fixed parameter instead of another independent variable, the above can now be written as

$$
\frac{d}{d x} g(x, t)-2 \operatorname{tg}(x, t)=0
$$

1.2 Part 2

From the solution found in part (1)

$$
\begin{aligned}
& \frac{\frac{d}{d x} g(x, t)}{g(x, t)}=2 t \\
& \frac{d g(x, t)}{g(x, t)}=2 t d x
\end{aligned}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{d g(x, t)}{g(x, t)} & =\int 2 t d x \\
\ln |g(x, t)| & =2 t x+C \\
g(x, t) & =e^{2 t x+C} \\
g(x, t) & =C_{1} e^{2 t x}
\end{aligned}
$$

Where $C_{1}=e^{C}$ a new constant. Let $g(0, t)=g_{0}$ then the above shows that $C_{1}=g_{0}$ and the above can now be written as

$$
g(x, t)=g(0, t) e^{2 t x}
$$

1.3 Part 3

Using the given definition of $g(x, t)=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}$ and when $x=0$ then

$$
\begin{aligned}
g(0, t) & =\sum_{n=0}^{\infty} H_{n}(0) \frac{t^{n}}{n!} \\
& =H_{0}(0)+H_{1}(0)+\sum_{n=2}^{\infty} H_{n}(0) \frac{t^{n}}{n!}
\end{aligned}
$$

But $H_{0}(x)=1$, hence $H_{0}(0)=1$ and $H_{1}(x)=2 x$, hence $H_{1}(0)=0$ and the above becomes

$$
g(0, t)=1+\sum_{n=2}^{\infty} H_{n}(0) \frac{t^{n}}{n!}
$$

For the remaining series, it can be written as sum of even and odd terms

$$
g(0, t)=1+\sum_{n=2,4,6, \ldots}^{\infty} H_{n}(0) \frac{t^{n}}{n!}+\sum_{n=3,5,7, \cdots}^{\infty} H_{n}(0) \frac{t^{n}}{n!}
$$

Or, equivalently

$$
g(0, t)=1+\sum_{n=1,2,3, \cdots}^{\infty} H_{2 n}(0) \frac{t^{2 n}}{(2 n)!}+\sum_{n=1,2,3, \cdots}^{\infty} H_{2 n+1}(0) \frac{t^{2 n+1}}{(2 n+1)!}
$$

But using the hint given that $H_{2 n+1}(0)=0$ and $H_{2 n}(0)=\frac{(-1)^{n}(2 n)!}{n!}$ the above simplifies to

$$
\begin{aligned}
g(0, t) & =1+\sum_{n=1,2,3, \cdots}^{\infty} \frac{(-1)^{n}(2 n)!}{n!} \frac{t^{2 n}}{(2 n)!} \\
& =1+\sum_{n=1,2,3, \cdots}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}
\end{aligned}
$$

But since $(-1)^{n} \frac{t^{2 n}}{n!}=1$ when $n=0$, then the above sum can be made to start as zero and it simplifies to

$$
g(0, t)=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}
$$

Therefore the solution $g(x, t)=g(0, t) e^{t x}$ found in part (2) becomes

$$
\begin{equation*}
g(x, t)=\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}\right) e^{2 t x} \tag{1}
\end{equation*}
$$

Now the sum $\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}=1-t^{2}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\cdots$ and comparing this sum to standard series of $e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$, then this shows that when $z=-t^{2}$ and series for $e^{-t^{2}}$ becomes

$$
\begin{aligned}
e^{-t^{2}} & =1+\left(-t^{2}\right)+\frac{\left(-t^{2}\right)^{2}}{2!}+\frac{\left(-t^{2}\right)^{3}}{3!}+\frac{\left(-t^{2}\right)^{4}}{4!} \cdots \\
& =1-t^{2}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\frac{t^{8}}{4!} \cdots
\end{aligned}
$$

Hence

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}=e^{-t^{2}}
$$

Substituting this into (1) gives

$$
\begin{aligned}
g(x, t) & =e^{-t^{2}} e^{2 t x} \\
& =e^{2 t x-t^{2}}
\end{aligned}
$$

1.4 Part 4

Since $g(x, t)=e^{2 t x-t^{2}}$ from part (3), then

$$
\begin{aligned}
\frac{\partial}{\partial t} g(x, t) & =(2 x-2 t) e^{2 t x-t^{2}} \\
& =(2 x-2 t) g(x, t)
\end{aligned}
$$

But $g(x, t)=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}$, therefore the above can be written as

$$
\begin{align*}
\frac{\partial}{\partial t} g(x, t) & =(2 x-2 t) \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!} \\
& =2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 t \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!} \\
& =2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n+1}}{n!} \\
& =2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 \sum_{n=1}^{\infty} H_{n-1}(x) \frac{t^{n}}{(n-1)!} \\
& =2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 \sum_{n=1}^{\infty} n H_{n-1}(x) \frac{t^{n}}{n(n-1)!} \\
& =2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 \sum_{n=1}^{\infty} n H_{n-1}(x) \frac{t^{n}}{n!} \tag{1}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\frac{\partial}{\partial t} g(x, t) & =\frac{\partial}{\partial t} \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} n H_{n}(x) \frac{t^{n-1}}{n!}
\end{aligned}
$$

Since at $n=0$ the sum is zero, then it can be started from $n=1$ without changing the result

$$
\begin{align*}
\frac{\partial}{\partial t} g(x, t) & =\sum_{n=1}^{\infty} n H_{n}(x) \frac{t^{n-1}}{n!} \\
& =\sum_{n=0}^{\infty}(n+1) H_{n+1}(x) \frac{t^{n}}{(n+1)!} \\
& =\sum_{n=0}^{\infty}(n+1) H_{n+1}(x) \frac{t^{n}}{(n+1) n!} \\
& =\sum_{n=0}^{\infty} H_{n+1}(x) \frac{t^{n}}{n!} \tag{2}
\end{align*}
$$

Equating (1) and (2) gives

$$
\sum_{n=0}^{\infty} H_{n+1}(x) \frac{t^{n}}{n!}=2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 \sum_{n=1}^{\infty} n H_{n-1}(x) \frac{t^{n}}{n!}
$$

But $\sum_{n=1}^{\infty} n H_{n-1}(x) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} n H_{n-1}(x) \frac{t^{n}}{n!}$ because at $n=0$ it is zero, so it does not affect the result to start the sum from zero, and now the above can be written as

$$
\sum_{n=0}^{\infty} H_{n+1}(x) \frac{t^{n}}{n!}=2 x \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}-2 \sum_{n=0}^{\infty} n H_{n-1}(x) \frac{t^{n}}{n!}
$$

Now since all the sums start from $n=0$ then the above means the same as

$$
H_{n+1}(x) \frac{t^{n}}{n!}=2 x H_{n}(x) \frac{t^{n}}{n!}-2 n H_{n-1}(x) \frac{t^{n}}{n!}
$$

Canceling $\frac{t^{n}}{n!}$ from each term gives

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)
$$

Which is the result required to show.

1.5 Part 5

The problem is asking to show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=\left\{\begin{array}{cc}
0 & n \neq m \\
2^{n} n!\sqrt{\pi} & n=m
\end{array}\right.
$$

The first part below will show the case for $n \neq m$ and the second part part will show the case for $n=m$
case $n \neq m$ This is shown by using the differential equation directly. I found this method easier and more direct. Before starting, the ODE $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$ is rewritten as

$$
\begin{equation*}
e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} y^{\prime}\right)+2 n y=0 \tag{1}
\end{equation*}
$$

The above form is exactly the same as the original ODE as can be seen by expanding it. Now, Let $H_{n}(x)$ be one solution to (1) and let $H_{m}(x)$ be another solution to (1) which results in the following two ODE's

$$
\begin{align*}
e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)+2 n H_{n} & =0 \tag{1A}\\
e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right)+2 m H_{m} & =0 \tag{2A}
\end{align*}
$$

Multiplying (1A) by H_{m} and (2A) by H_{n} and subtracting gives

$$
\begin{align*}
H_{m}\left(e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)+2 n H_{n}\right)-H_{n}\left(e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right)+2 m H_{m}\right) & =0 \\
\left(H_{m} e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)+2 n H_{n} H_{m}\right)-\left(H_{n} e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right)+2 m H_{n} H_{m}\right) & =0 \\
H_{m} e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)-H_{n} e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right)+2(n-m) H_{n} H_{m} & =0 \\
H_{m} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)-H_{n} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right)+2(n-m) H_{n} H_{m} e^{-x^{2}} & =0 \tag{3}
\end{align*}
$$

But

$$
H_{m} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)=\frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime} H_{m}\right)-e^{-x^{2}} H_{n}^{\prime} H_{m}^{\prime}
$$

And

$$
H_{n} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right)=\frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime} H_{n}\right)-e^{-x^{2}} H_{m}^{\prime} H_{n}^{\prime}
$$

Therefore

$$
\begin{aligned}
H_{m} \frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime}\right)-H_{n} \frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime}\right) & =\left(\frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime} H_{m}\right)-e^{-x^{2}} H_{n}^{\prime} H_{m}^{\prime}\right)-\left(\frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime} H_{n}\right)-e^{-x^{2}} H_{m}^{\prime} H_{n}^{\prime}\right) \\
& =\frac{d}{d x}\left(e^{-x^{2}} H_{n}^{\prime} H_{m}\right)-\frac{d}{d x}\left(e^{-x^{2}} H_{m}^{\prime} H_{n}\right) \\
& =\frac{d}{d x}\left(e^{-x^{2}}\left(H_{n}^{\prime} H_{m}-H_{m}^{\prime} H_{n}\right)\right)
\end{aligned}
$$

Substituting the above relation back into (3) gives

$$
\frac{d}{d x}\left(e^{-x^{2}}\left(H_{n}^{\prime} H_{m}-H_{m}^{\prime} H_{n}\right)\right)+2(n-m) H_{n} H_{m} e^{-x^{2}}=0
$$

Integrating gives

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d}{d x}\left(e^{-x^{2}}\left(H_{n}^{\prime} H_{m}-H_{m}^{\prime} H_{n}\right)\right) d x+\int_{-\infty}^{\infty} 2(n-m) H_{n} H_{m} e^{-x^{2}} d x & =0 \\
\int_{-\infty}^{\infty} d\left(e^{-x^{2}}\left(H_{n}^{\prime} H_{m}-H_{m}^{\prime} H_{n}\right)\right)+2(n-m) \int_{-\infty}^{\infty} H_{n} H_{m} e^{-x^{2}} d x & =0 \\
{\left[e^{-x^{2}}\left(H_{n}^{\prime} H_{m}-H_{m}^{\prime} H_{n}\right)\right]_{-\infty}^{\infty}+2(n-m) \int_{-\infty}^{\infty} H_{n} H_{m} e^{-x^{2}} d x } & =0
\end{aligned}
$$

But $\lim _{x \rightarrow \pm \infty} e^{-x^{2}} \rightarrow 0$ so the first term above vanishes and the above becomes

$$
2(n-m) \int_{-\infty}^{\infty} H_{n} H_{m} e^{-x^{2}} d x=0
$$

Since this is the case where $n \neq m$ then the above shows that

$$
\int_{-\infty}^{\infty} H_{n} H_{m} e^{-x^{2}} d x=0 \quad n \neq m
$$

Now the case $n=m$ is proofed. When $H_{n}=H_{m}$ then the integral becomes $\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x$. Using the known Rodrigues formula for Hermite polynomials, given by

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

Then applying the above the above to one of the $H_{n}(x)$ in the integral $\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x$, gives

$$
\begin{aligned}
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x & =\int_{-\infty}^{\infty}\left((-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}\right) H_{n} e^{-x^{2}} d x \\
& =(-1)^{n} \int_{-\infty}^{\infty}\left(\frac{d^{n}}{d x^{n}} e^{-x^{2}}\right) H_{n} d x
\end{aligned}
$$

Now integration by parts is carried out. $\int u d v=u v-\int v d u$. Let $u=H_{n}$ and let $d v=\frac{d^{n}}{d x^{n}} e^{-x^{2}}$, therefore $d u=H_{n}^{\prime}(x)=2 n H_{n-1}(x)$ and $v=\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}$, therefore

$$
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x=(-1)^{n}\left(\left[H_{n}(x) \frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty}\left(\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right) 2 n H_{n-1}(x) d x\right)
$$

But $\left[H_{n}(x) \frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right]_{-\infty}^{\infty} \rightarrow 0$ as $x \rightarrow \pm \infty$ because each derivative of $\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}$ produces a term with $e^{-x^{2}}$ which vanishes at both ends of the real line. Hence the above integral now becomes

$$
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x=(-1)^{n}\left(-2 n \int_{-\infty}^{\infty}\left(\frac{d^{n-1}}{d x^{n-1}} e^{-x^{2}}\right) H_{n-1}(x) d x\right)
$$

Now the process is repeated, doing one more integration by parts. This results in

$$
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x=(-1)^{n}\left(-2 n\left(-2(n-1) \int_{-\infty}^{\infty}\left(\frac{d^{n-2}}{d x^{n-2}} e^{-x^{2}}\right) H_{n-2}(x) d x\right)\right)
$$

And again

$$
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x=(-1)^{n}\left(-2 n\left(-2(n-1)\left(-2(n-2) \int_{-\infty}^{\infty}\left(\frac{d^{n-3}}{d x^{n-3}} e^{-x^{2}}\right) H_{n-3}(x) d x\right)\right)\right)
$$

This process continues n times. After n integrations by parts, the above becomes

$$
\begin{aligned}
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x & =(-1)^{n}\left(-2 n\left(-2(n-1)\left(-2(n-2)\left(\cdots\left(\int_{-\infty}^{\infty} e^{-x^{2}} H_{0}(x) d x\right)\right)\right)\right)\right) \\
& =(-1)^{n}(-2)^{n} n!\int_{-\infty}^{\infty} e^{-x^{2}} H_{0}(x) d x \\
& =2^{n} n!\int_{-\infty}^{\infty} e^{-x^{2}} H_{0}(x) d x
\end{aligned}
$$

But $H_{0}(x)=1$, therefore the above becomes

$$
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x=2^{n} n!\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

But

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-x^{2}} & =2 \int_{0}^{\infty} e^{-x^{2}} \\
& =2 \frac{\sqrt{\pi}}{2} \\
& =\sqrt{\pi}
\end{aligned}
$$

Therefore

$$
\int_{-\infty}^{\infty} H_{n} H_{n} e^{-x^{2}} d x=2^{n} n!\sqrt{\pi}
$$

This completes the case for $n=m$. Hence

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=\left\{\begin{array}{cc}
0 & n \neq m \\
2^{n} n!\sqrt{\pi} & n=m
\end{array}\right.
$$

Which is what the problem asked to show.

2 Problem 2

Exercise 2: a) Consider the differential equation for $0<r<\infty$

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-\frac{n^{2}}{r^{2}}\right) y(r)=0 \tag{3}
\end{equation*}
$$

where $n=0,1,2,3, \ldots$ Find two independent solutions, one which vanishes as $r \rightarrow 0$ and the other that vanishes as $r \rightarrow \infty$. Hint let $x=\ln r$.
b) Given the result of part a), find the solution to the differential equation

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-\frac{n^{2}}{r^{2}}\right) y(r)=\frac{1}{r} \delta\left(r-r^{\prime}\right) \tag{4}
\end{equation*}
$$

with the boundary condition that the solution vanishes as $r \rightarrow 0$ and $r \rightarrow \infty$.

Figure 2: Problem statement

Solution

2.1 Part (a)

$$
y^{\prime \prime}(r)+\frac{1}{r} y^{\prime}(r)-\frac{n^{2}}{r^{2}} y(r)=0 \quad 0<r<\infty
$$

Or

$$
r^{2} y^{\prime \prime}(r)+r y^{\prime}(r)-n^{2} y(r)=0
$$

case $n=0$
The ode becomes $r^{2} y^{\prime \prime}(r)+r y^{\prime}(r)=0$. Let $z=y^{\prime}$ and it becomes $r^{2} z^{\prime}(r)+r z(r)=0$ or $z^{\prime}(r)+\frac{1}{r} z(r)=0$. This is linear in $z(r)$. Integrating factor is $I=e^{\int \frac{1}{r} d r}=r$. Multiplying the ode by I it becomes exact differential $\frac{d}{d r}(z r)=0$ or $d(z r)=0$, hence $z=\frac{c_{1}}{r}$ where c_{1} is constant of integration. Therefore

$$
y^{\prime}(r)=\frac{c_{1}}{r}
$$

Integrating again gives

$$
y(r)=\frac{c_{1}}{\ln r}+c_{2}
$$

Since $\lim _{r \rightarrow 0}$ the solution is bounded, then c_{1} must be zero. Therefore $0=c_{2}$ and this implies $c_{2}=0$ also. Therefore when $n=0$ the solution is

$$
y(r)=0
$$

Case $n \neq 0$
Since powers of r is the same as order of derivative in each term, this is an Euler ODE. It is solved by assuming $y=r^{\alpha}$. Hence $y^{\prime}=\alpha r^{\alpha-1}, y^{\prime \prime}=\alpha(\alpha-1) r^{\alpha-2}$. Substituting these into the above ODE gives

$$
\begin{aligned}
r^{2} \alpha(\alpha-1) r^{\alpha-2}+r \alpha r^{\alpha-1}-n^{2} r^{\alpha} & =0 \\
\alpha(\alpha-1) r^{\alpha}+\alpha r^{\alpha}-n^{2} r^{\alpha} & =0 \\
r^{\alpha}\left(\alpha(\alpha-1)+\alpha-n^{2}\right) & =0
\end{aligned}
$$

Assuming non-trivial solution $r^{\alpha} \neq 0$, then the indicial equation is

$$
\begin{aligned}
\alpha(\alpha-1)+\alpha-n^{2} & =0 \\
\alpha^{2} & =n^{2} \\
\alpha & = \pm n
\end{aligned}
$$

Hence one solution is

$$
y_{1}(r)=r^{n}
$$

And second solution is

$$
y_{2}(r)=r^{-n}
$$

And the general solution is linear combination of these solutions

$$
y(r)=c_{1} r^{n}+c_{2} r^{-n}
$$

The above shows that $\lim _{r \rightarrow 0} y_{1}(r)=0$ and $\lim _{r \rightarrow \infty} y_{2}(r)=0$.

2.2 Part (b)

Short version of the solution

To simplify the notations, r_{0} is used instead of r^{\prime} in all the following.

$$
y^{\prime \prime}(r)+\frac{1}{r} y^{\prime}(r)-\frac{n^{2}}{r^{2}} y(r)=\frac{1}{r} \delta\left(r-r_{0}\right) \quad 0<r<\infty
$$

Multiplying both sides by r the above becomes

$$
\begin{equation*}
r y^{\prime \prime}(r)+y^{\prime}(r)-\frac{n^{2}}{r} y(r)=\delta\left(r-r_{0}\right) \tag{1}
\end{equation*}
$$

But the two solutions ${ }^{1}$ to the homogeneous ODE $r y^{\prime \prime}(r)+y^{\prime}(r)-\frac{n^{2}}{r} y(r)=0$ were found in part (a). These are

$$
\begin{align*}
& y_{1}(r)=r^{n} \tag{1A}\\
& y_{2}(r)=r^{-n}
\end{align*}
$$

The Green function is the solution to

$$
\begin{align*}
r G\left(r, r_{0}\right)+G\left(r, r_{0}\right)-\frac{n^{2}}{r} G\left(r, r_{0}\right) & =\delta\left(r-r_{0}\right) \tag{1B}\\
\lim _{r \rightarrow 0} G\left(r, r_{0}\right) & =0 \\
\lim _{r \rightarrow \infty} G\left(r, r_{0}\right) & =0
\end{align*}
$$

Which is given by (Using class notes, Lecture December 5, 2018) as

$$
G\left(r, r_{0}\right)=\frac{1}{C}\left\{\begin{array}{lc}
y_{1}(r) y_{2}\left(r_{0}\right) & 0<r<r_{0} \tag{2}\\
y_{1}\left(r_{0}\right) y_{2}(r) & r_{0}<r<\infty
\end{array}\right.
$$

Note, I used $\frac{+1}{C}$ and not $\frac{-1}{C}$ as in class notes, since I am using $L=-\left(\left(p y^{\prime}\right)^{\prime}-q y\right)$ as the operator and not $L=+\left(\left(p y^{\prime}\right)^{\prime}+q y\right)$. Now C is given by

$$
C=p\left(r_{0}\right)\left(y_{1}\left(r_{0}\right) y_{2}^{\prime}\left(r_{0}\right)-y_{1}^{\prime}\left(r_{0}\right) y_{2}\left(r_{0}\right)\right)
$$

Where from (1A) we see that

$$
\begin{aligned}
& y_{1}\left(r_{0}\right)=r_{0}^{n} \\
& y_{2}^{\prime}\left(r_{0}\right)=-n r_{0}^{-n-1} \\
& y_{1}^{\prime}\left(r_{0}\right)=n r_{0}^{n-1} \\
& y_{2}\left(r_{0}\right)=r_{0}^{-n}
\end{aligned}
$$

Therefore C becomes

$$
\begin{aligned}
C & =p\left(r_{0}\right)\left(-n r_{0}^{-n-1} r_{0}^{n}-n r_{0}^{n-1} r_{0}^{-n}\right) \\
& =2 n r_{0}^{-1} p\left(r_{0}\right)
\end{aligned}
$$

[^0]We just need now to find $p\left(r_{0}\right)$. This comes from Sturm Liouville form. We need to convert the ODE $r^{2} y^{\prime \prime}(r)+r y^{\prime}(r)-n^{2} y(r)=0$ to Sturm Liouville. Writing this ODE as $a y^{\prime \prime}+b y^{\prime}+(c+\lambda) y=$ 0 where $a=r^{2}, b=r, c=0, \lambda=-n^{2}$, therefore

$$
\begin{aligned}
& p=e^{\int \frac{b}{a} d r}=e^{\int \frac{r}{r^{2}} d r}=r \\
& q=-p \frac{c}{a}=0 \\
& \rho=\frac{p}{a}=\frac{r}{r^{2}}=\frac{1}{r}
\end{aligned}
$$

Hence the SL form is $\left(p y^{\prime}\right)^{\prime}-q y+\lambda \rho y=0$. Hence the SL form is $\left(p y^{\prime}\right)^{\prime}-q y+\lambda \rho y=0$ or

$$
\begin{equation*}
\left(r y^{\prime}\right)^{\prime}-\frac{1}{r} n^{2} y=0 \tag{2A}
\end{equation*}
$$

Hence the operator is $L[y]=-\left(\frac{d}{d r}\left(r \frac{d}{d r}\right)\right)$ [y] and in standard form it becomes $L[y]+\frac{1}{r} n^{2} y=0$.
The above shows that $p\left(r_{0}\right)=r_{0}$. Therefore

$$
C=2 n
$$

Hence Green function is now found from (2) as, for $n \neq 0$

$$
G\left(r, r_{0}\right)=\frac{1}{2 n}\left\{\begin{array}{lc}
r^{n} r_{0}^{-n} & 0<r<r_{0} \\
r_{0}^{n} r^{-n} & r_{0}<r<\infty
\end{array}\right.
$$

Since $f(r)$ in the original ODE is zero, there is nothing to convolve with. i.e. $y(r)=\int_{0}^{\infty} G\left(r, r_{0}\right) f\left(r_{0}\right) d r_{0}$ here is not needed since there is no $f(r)$. Therefore the above is the final solution.

Extended solution

This solution shows derivation of (2) above. It can be considered as an appendix. The Green function is the solution to

$$
\begin{align*}
r G\left(r, r_{0}\right)+G\left(r, r_{0}\right)-\frac{n^{2}}{r} G\left(r, r_{0}\right) & =\delta\left(r-r_{0}\right) \tag{1B}\\
\lim _{r \rightarrow 0} G\left(r, r_{0}\right) & =0 \\
\lim _{r \rightarrow \infty} G\left(r, r_{0}\right) & =0
\end{align*}
$$

In (1B), r_{0} is the location of the impulse and r is the location of the observed response due to this impulse. The solution to the above ODE is now broken to two regions

$$
G\left(r, r_{0}\right)=\left\{\begin{array}{cc}
A_{1} y_{1}(r)+A_{2} y_{2}(r) & 0<r<r_{0} \tag{2}\\
B_{1} y_{1}(r)+B_{1} y_{2}(r) & r_{0}<r<\infty
\end{array}\right.
$$

Where $y_{1}(r), y_{2}(r)$ are the solution to $r y^{\prime \prime}(r)+y^{\prime}(r)-\frac{n^{2}}{r} y(r)=0$ and these were found in part (a) to be $y_{1}(r)=r^{n}, y_{2}(r)=r^{-n}$ and $A_{1}, A_{2}, B_{1}, B_{2}$ needs to be determined. Hence (2) becomes

$$
G\left(r, r_{0}\right)=\left\{\begin{array}{cc}
A_{1} r^{n}+A_{2} r^{-n} & 0<r<r_{0} \tag{3}\\
B_{1} r^{n}+B_{2} r^{-n} & r_{0}<r<\infty
\end{array}\right.
$$

The left boundary condition $\lim _{r \rightarrow 0} G\left(r, r_{0}\right)=0$ implies $A_{2}=0$ and the right boundary condition $\lim _{r \rightarrow \infty} G\left(r, r_{0}\right)=0$ implies $B_{1}=0$. This is needed to keep the solution bounded. Hence (3) simplifies to

$$
G\left(r, r_{0}\right)=\left\{\begin{array}{cc}
A_{1} r^{n} & 0<r<r_{0} \tag{4}\\
B_{2} r^{-n} & r_{0}<r<\infty
\end{array}\right.
$$

To determine the remaining two constants A_{1}, B_{2}, two additional conditions are needed. The first is that $G\left(r, r_{0}\right)$ is continuous at $r=r_{0}$ which implies

$$
\begin{equation*}
A_{1} r_{0}^{n}=B_{2} r_{0}^{-n} \tag{5}
\end{equation*}
$$

The second condition is the jump in the derivative of $G\left(r, r_{0}\right)$ given by

$$
\left.\frac{d}{d r} G\left(r, r_{0}\right)\right|_{r>r_{0}}-\left.\frac{d}{d r} G\left(r, r_{0}\right)\right|_{r<r_{0}}=\frac{-1}{p\left(r_{0}\right)}
$$

Where $p\left(r_{0}\right)$ comes from the Sturm Liouville form of the homogeneous ODE. This was found above as $p\left(r_{0}\right)=r_{0}$. Hence the above condition becomes

$$
\left.\frac{d}{d r} G\left(r, r_{0}\right)\right|_{r>r_{0}}-\left.\frac{d}{d r} G\left(r, r_{0}\right)\right|_{r<r_{0}}=\frac{-1}{r_{0}}
$$

Equation (4) shows that $\left.\frac{d}{d r} G\left(r, r_{0}\right)\right|_{r>r_{0}}=-n B_{2} r_{0}^{-n-1}$ and that $\left.\frac{d}{d r} G\left(r, r_{0}\right)\right|_{r<r_{0}}=n A_{1} r_{0}^{n-1}$. Using these in the above gives the second equation needed

$$
\begin{equation*}
-n B_{2} r_{0}^{-n-1}-n A_{1} r_{0}^{n-1}=\frac{-1}{r_{0}} \tag{6}
\end{equation*}
$$

Solving (5,6) for $A_{1}, B_{1}:$ From (5) $A_{1}=B_{2} r_{0}^{-2 n}$. Substituting this in (6) gives

$$
\begin{aligned}
-n B_{2} r_{0}^{-n-1}-n\left(B_{2} r_{0}^{-2 n}\right) r^{n-1} & =\frac{-1}{r_{0}} \\
-n B_{2} r^{-n-1}-n B_{2} r^{-n-1} & =\frac{-1}{r_{0}} \\
-2 n B_{2} r_{0}^{-n-1} & =-r_{0}^{-1} \\
B_{2} & =\frac{-r_{0}^{-1}}{-2 n r_{0}^{-n-1}} \\
& =\frac{1}{2 n} r_{0}^{n}
\end{aligned}
$$

But since $A_{1}=B_{2} r_{0}^{-2 n}$, then

$$
\begin{aligned}
A_{1} & =\frac{1}{2 n} r_{0}^{n} r_{0}^{-2 n} \\
& =\frac{1}{2 n} r_{0}^{-n}
\end{aligned}
$$

Therefore the solution (4), which is the Green function, becomes, for $n \neq 0$

$$
G\left(r, r_{0}\right)=\left\{\begin{array}{lc}
\frac{1}{2 n} r_{0}^{-n} r^{n} & 0<r<r_{0} \tag{7}\\
\frac{1}{2 n} r_{0}^{n} r^{-n} & r_{0}<r<\infty
\end{array}\right.
$$

[^0]: ${ }^{1}$ All the following is for $n \neq 0$, since for $n=0$, only trivial solution exist

