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1 Problem 1

Exercise 1: Consider Hermite’s differential equation valid for (—oo < z < 00):

y" —2zy +2ny =0 (1)

i) Assume the existence of a generating function g(x,t) = Y% H,(x)t" /n!. Differen-
tiate g(x,t) with respect to = and use the recurrence relation H)(z) = 2nH,_1(x)to
develop a first order differential equation for g(z,t).

il) Integrate this equation with respect to x holding ¢ fixed.

iii) Use the relationships Hz,(0) = (—1)™(2n)!/n! and Hay11(0) = 0 to evaluate g(0,t)
and show g(z,t) = exp(—t2 + 2tz).

iv) Use the generating function to find the recurrence relation H,.1(z) = 2zH,(z) —
2nHy_1(x).

v) By integrating the product ¢ *"g(z, s)g(x,t) over all z, show

/oo e_m2Hm(x)Hn(m)dx = 2"n!\/Tpm. (2)

-0

Figure 1: Problem statement
Solution

y" —2xy +2ny =0 —00 <X <00
1.1 Part1

gle 0= D H ()
n=0

Differentiating w.r.t x, and assuming term by term differentiation is allowed, gives
dg(x,t) t"
B0 Sl
n!

n=0

Using H, (x) = 2nH,_; (x) in the above results in
Hg (x, 1) &

= 2nH, 1 (x) —
Ox % n—1 ( )

But for n = 0, the first term is zero, so the sum can start from 1 and give the same result

ag (x t) i ann 1 (X)

Now, decreasing the summation index by 1 and increasing the n inside the sum by 1 gives

M = iz(n+1)H (x)( iﬂl)'

n+1

2(n+ 1)Hn(X)m
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2H, (x) —
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But X7 Hy (x) ;—’: = g (x, t) and the above reduces to

dg (x, 1)
0x
The problem says it is supposed to be a first order differential equation and not a first order
partial differential equation. Therefore, by assuming x to be a fixed parameter instead of another
independent variable, the above can now be written as

= 2tg (x,t)

d
—g(x,t) = 2tg(x,1) = 0
dx

1.2 Part2

From the solution found in part (1)

Lg(x,1)
T 7 op
g(x,t)
dg(x.1) _ ordy
g(x,t)

Integrating both sides gives

d t
J g (x, ):Jthx
g(x,t)
In|g(x,t)] =2tx+C
g(x’ t) — eth+C

g (x’ t) = Cleth

Where C; = e€ a new constant. Let g (0,t) = g then the above shows that C; = gy and the
above can now be written as

g(x,t) = g(0,1) ™

1.3 Part3
Using the given definition of g (x, t) = X7 | Hy (x) ;—r: and when x = 0 then
) tn
g(0,t) = > Ha(0) —
n=0 n

= Hy (0) + H (0) + 3 Hy (0

n=2

But Hy (x) = 1, hence Hy (0) = 1 and H; (x) = 2x, hence H; (0) = 0 and the above becomes

(o) tn
g(0,1) =1+ > Hy (0) =
n=2 n:

For the remaining series, it can be written as sum of even and odd terms

g0, =1+ > Hn(o)g+ > H,,(o);—r;

n=2,4,6,- : n=3,5,7,--

Or, equivalently

s tzn © t2n+l
g(0,t)=1+ Hap (0) — + Hopss (0) ————
nzé " (2n)! ,,zgg " (2n +1)!

But using the hint given that Hy,1 (0) = 0 and H;, (0) = % the above simplifies to

= (<) (2n)! 2

g(0,t) =1+
2 Tm
—_— — n —
=1+ >, (-1 —

n=1,2,3,--



But since (—1)" t:—? = 1 when n = 0, then the above sum can be made to start as zero and it

simplifies to
2n

[oe) nt
g(o’t):nzz:;(_l) —

Therefore the solution g (x, t) = g (0, t) e"* found in part (2) becomes

x,t) = 1) — | e** 1
g1 (20 (-1 = ) )
Now the sum > n=0 (- 1 =1-t*+ ; - g—(; + - -+ and comparing this sum to standard series
ofe*=1+2z+ g + 5 + - -+, then this shows that when z = —t? and series for et becomes
2 3 4
—t? —t? —t?
e_t2:1+(—t2)+( )+( )+( )
2! 3! 4!
, tt t®
=1-t 4 ———+—
2 31 4l
Hence
> p2n 2
Syt -e
n=0 n!
Substituting this into (1) gives
glxt)=e"e™
_ pltx—t?

1.4 Part4
Since g (x,t) = e2*t* from part (3), then

0 2
59 (x,t) = (2x — 2t) 2%

=(2x-2t)g(x,t)

But g (x,t) = X7 Hy (x) 7> therefore the above can be written as
0 ge,t) = (2x— 20) S Ho () =
—qg(x,t) = (2x — L (x) —
6tg v n!
00 tn 0o tn
= ZXTEEQIIH(X);E'—'Ztggé}{n(X);ﬁ

o0 tn
= ZxZ H, (x) -
n=0 '

(n 1)'
= in H, (x) % -2 Z nH, 1 (x)
n=0 : n=1

:zxiHn(xf——zZHn L)
n=0

n (n -1)!
=2x > Hy(x) = =2 > nHy (x) (1)
= n! — n!
On the other hand,
a o
5.9 (1) Z;‘

n—l

_9
ot

= 2 nH
n=0



Since at n = 0 the sum is zero, then it can be started from n = 1 without changing the result

g = > nHy (o)

tn—l

n!

n
(n+1)

tn
(n+1)n!

(n+1) Hpsy (x)

(T’l + 1)I_In+1 (X)

e () ®
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Equating (1) and (2) gives
o) tn o) tn o0 tn
ZOHn+1 (x) prie 2x Z()Hn (x) Yl 2 Z} nHy,1 (x) 0
h= n= n=

But X7 nHy 1 (x) ;—’: = 2o nHyq (x) ;—I: because at n = 0 it is zero, so it does not affect the
result to start the sum from zero, and now the above can be written as

o i ) i ) i
ZOHn+1 (x) prie 2x ZOHn (x) Tl 2 Z(; nHy,1 (x) 0
n= n= n=

Now since all the sums start from n = 0 then the above means the same as
tn n n

t t
Hps1 (x) = = 2xH, (x) — = 2nH,— (x) —
n! n! n!
Canceling Z—r: from each term gives
Hpy1 (x) = 2xHp (x) — 2nHy-1 (x)
Which is the result required to show.

1.5 Part5

The problem is asking to show that

© 2 0 n#m
“H,, (x) Hy (x) dx =
| e o 0 dx {W s

The first part below will show the case for n # m and the second part part will show the case
forn=m

case n # m This is shown by using the differential equation directly. I found this method easier
and more direct. Before starting, the ODE y” — 2xy’ + 2ny = 0 is rewritten as

e d (e_xzy') +2ny =0 (1)
dx

The above form is exactly the same as the original ODE as can be seen by expanding it. Now,

Let H, (x) be one solution to (1) and let Hy, (x) be another solution to (1) which results in the

following two ODE’s

e

x? d —x% 1
e* — (e Hn) +2nH, =0 (1A)
dx
x? d —x2 71
e o (e Hm) + 2mH,, = 0 (2A)
Multiplying (1A) by H,, and (2A) by H, and subtracting gives
2 d 2o, > d a2y
H, (ex o (e x Hn) + 2an) - H, (ex o (e x Hm) + 2mHm) =0
e (e_sz’) v onHH, | - (He L (e—sz/ ) +2mH,H, | =0
m dx n n m n dx m n m
x% d —x% 1y x% d —x% 1y
H,e* — (e Hn) - H,e*¥ — (e Hm) +2(n—-m)H,H, =0
dx dx
d d
Hyp— (e—sz,;) — Hy— (e_sz,'n) +2(n - m) HyHpe ™ =0 (3)
dx dx



But J J
Hy (e7Hy) = — (e HyHp) = e HyH,
And
d ( e, d ( _e2._, O B
H— (e Hm) = (e HmHn) — e 'H H
Therefore

2

dx

x
d

(7" HyHy ) d (7 Hyp )
= —-—1¢€ m|] — 5 \¢€ n
dx " dx "
d - 4 /
= (7 (HyHn ~ H,,H,) )
Substituting the above relation back into (3) gives

d
. (e_x2 (H,Hp — H;an)) +2(n—m) H,,Hme_"2 =0
x

Integrating gives

oo

J di (e_x2 (H,Hp, — H,'an)) dx + J 2(n—m) H,,Hme_xzdx =0
o dx

—00

J d (e (HyHy — HyHy) ) +2(n - m)J HyHpe ™ dx = 0

[e‘x2 (HyHp — H,’an)] +2(n- m)J HyHpe ™ dx =0

But limy 400 e™" — 0 so the first term above vanishes and the above becomes
2(n—m) f HyHpe ™ dx =0
Since this is the case where n # m then the above shows that

J H,,Hme_xzdx =0 n+m

Now the case n = m is proofed. When H,, = H,, then the integral becomes I:o H,,H,,e‘xzdx.
Using the known Rodrigues formula for Hermite polynomials, given by
2 dn 2

Hn — _1n X X
() = (-1 e e

Then applying the above the above to one of the H, (x) in the integral ffooo H,He™ dx, gives

(o) (89 dn
J Hane_xzdx = J ((—1)” e e_xz) Hne_xzdx

dx"
-t Lo (dine_xz) el

Now integration by parts is carried out. Judv =uv — Jvdu. Let u = H, and let dv =
therefore du = H) (x) = 2nH,_; (x) and v = "

dxn—l

an _x2
dxn e >

2
e *", therefore

o0 2 dn! 2 © 0 dn! 2
J H,H,e ™ dx = (-1)" ([Hn (x) We_x ] - J ( _x ) 2nH,_1 (x) dx)
—c0 X —00

e
—eo \dxn1

n-1 2] . . n-1 .2
But [Hn (x) %e‘x ] — 0 asx — +oo because each derivative of %e *" produces a term
—00

with e which vanishes at both ends of the real line. Hence the above integral now becomes

JOO H,,Hne_xzdx =(-1)" (—Zn jm ( ar e_xz) H, 1 (x) dx)

dxn—l

L (e_x H,;) —Hn% (e_sz,'n) - (% (e—sz,;Hm) - e—sz;H;n) - (di (e_sz,’an) - e—sz;nH,g)



Now the process is repeated, doing one more integration by parts. This results in

0 2 0 dn_z 2
J H,Hpe™ dx = (-1)" (—Zn (—2 (n— 1)I (dx”_z e ™ ) Hy— (x) dx))

And again

0 2 & dn3 2
J H,H,e ™ dx = (-1)" (—Zn (—2 (n—1) (—2 (n- 2)‘[ ( = ) H, 3 (x) dx) ))

dxn—3 €

This process continues n times. After n integrations by parts, the above becomes

Jm H,Hye ™ dx = (—=1)" (—Zn (—Z(n -1 (—Z(n ~2) ( - (Jm e ™ Hy (x) dx)))))
= (=1)"(=2)"n! r e Hy (x) dx

oo

=2"n! J e_szO (x)dx

But Hj (x) = 1, therefore the above becomes

J Hane_xzdx = 2”n!f e dx
But
Jw e =2 JOO e
—00 0
_, V7
2
=\
Therefore

J Hane_xzdx =2"n\\r1
This completes the case for n = m. Hence

0 n+m
2"\t n=m

—00

jm e ™ H,, (x) Hy, (x) dx = {

Which is what the problem asked to show.



2 Problem 2

Exercise 2: a) Consider the differential equation for 0 < r < 0o

(d_2+ 1d_m’y o
dr? " rdr r2>y(r> N (3)

where n = 0,1,2,3,... Find two independent solutions, one which vanishes as r — 0 and
the other that vanishes as r — oco. Hint let z = Inr.

b) Given the result of part a), find the solution to the differential equation

@ 1d n? 1 ]
(w-k;a—r—z)y(r)— ;5(7’—7") (4)

with the boundary condition that the solution vanishes as r — 0 and r — oo.

Figure 2: Problem statement

Solution

2.1 Part(a)

y”(r)+1y'(r)—n—2y(r):0 0<r<oo
r ré
Or
r’y" (r)+ry () —n’y(r) =0

casen =20

The ode becomes r’y” (r) + ry’ (r) = 0. Let z = y’ and it becomes r?z’ (r) + rz(r) = 0 or
Z(r)+ %z (r) = 0. This is linear in z (r). Integrating factor is I = el rdr = p. Multiplying the ode
by I it becomes exact differential % (zr) = 0 or d (zr) = 0, hence z = < where c; is constant of
integration. Therefore

fy O
y ()=~
Integrating again gives

_ 4
y(r) = Inr + C2

Since lim,_,( the solution is bounded, then ¢; must be zero. Therefore 0 = ¢, and this implies
¢ = 0 also. Therefore when n = 0 the solution is

y(r)=0

Casen #0

Since powers of r is the same as order of derivative in each term, this is an Euler ODE. It is
solved by assuming y = r*. Hence v’ = ar®"!,y” = a (a — 1) r*~2. Substituting these into the
above ODE gives

rla(a—1)r%2% +rar®?! — n*r®

=0
ala—Dr%+ar® —n’r*=0
r®(a(@—1)+a—-n®) =0
Assuming non-trivial solution r* # 0, then the indicial equation is

a(@a—1)+a-n*=0
a? = n?

a==n



Hence one solution is

yi(r)=r"
And second solution is

y2(r)=r""

And the general solution is linear combination of these solutions
y(r)=cir" +cor™"

The above shows that lim,_,o y; (r) = 0 and lim, o y, (r) = 0.

2.2 Part (b)

Short version of the solution

To simplify the notations, ry is used instead of r in all the following.

Y 1, n® 1
y(r)+;y(r)—;y(r)=;5(r—ro) 0<r<oo

Multiplying both sides by r the above becomes

n?
ry" (N 4y () = —y(r) =5(r—r)

(1)

But the two solution to the homogeneous ODE ry” (r) + y' (r) — "TZy (r) = 0 were found in

part (a). These are

y(r)=r" (1A)
ya(r)=r"
The Green function is the solution to
n?
rG(r,ro) + G(r,r)) = —G(r,ro) = 6(r — ro) (1B)
r
limG(r,rg) =0
r—0
lim G(r,rg) =0
r—oo
Which is given by (Using class notes, Lecture December 5, 2018) as
1 0<r<
Glrr = 5§ V10wl O<r<n ®
Clyi(r)y2(r) ro<r<o
Note, I used %1 and not %1 as in class notes, since  am using L = — ((py’)’ — qy) as the operator

and not L = + ((py’)’ + qy). Now C is given by

C = p(r0) (y1 (r0) y5 (r0) = 13 (r0) y2 (ro))

Where from (1A) we see that

Y1 (ro) = r(’}
Yy (ro) = —nry"~
y; (ro) = nrg_1

Ya (o) =ry"

1

Therefore C becomes

C =p(ry) (—nrO_"_lrg - nrg_lro_”)

= 2nr0_1p (ro)

1All the following is for n # 0, since for n = 0, only trivial solution exist
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We just need now to find p (r9). This comes from Sturm Liouville form. We need to convert the
ODE r?y” (r)+ry’ (r)—n?y (r) = 0 to Sturm Liouville. Writing this ODE as ay” +by’+(c + 1)y =
0 where a =r%,b =r,c = 0,1 = —n?, therefore

p:ef%dr:efr%dr:r

— C_O
1=7P, =

Hence the SL form is (py’)’ — qy + Apy = 0. Hence the SL form is (py’)’ — qy + Apy = 0 or
N
(ry) = —n’y =0 (24)

Hence the operatoris L [y] = — (% (r%) ) [y] and in standard form it becomes L [y] + %nzy =0.
The above shows that p (ry) = ry. Therefore
C=2n

Hence Green function is now found from (2) as, for n # 0

1 rity 0<r<r
_ 0
G(r9r0)__ n.—n
2n | rgr ro <r < oo

Since f (r) in the original ODE is zero, there is nothing to convolve with.i.e.y (r) = L(;o G (r,r) f (ro)dro
here is not needed since there is no f (r). Therefore the above is the final solution.

Extended solution

This solution shows derivation of (2) above. It can be considered as an appendix. The Green
function is the solution to

rG(r,ro) + G(r,rg) — HTZG (r,ro) =6(r—ro) (1B)

lirr(l) G(r,r9) =0

lim G(r,rg) =0
r—oo

In (1B), ry is the location of the impulse and r is the location of the observed response due to
this impulse. The solution to the above ODE is now broken to two regions

Ary; (r) + Azys (1) 0<r<r

(2)
Biy1 (r) + Biyo (r)  ro<r <o

G(r,ry) = {

Where v, (1), y, (r) are the solution to ry” (r)+ vy’ (r) — ”TZy (r) = 0 and these were found in part
(a) tobe y; (r) = r",y2 (r) = r " and Ay, Ay, By, Bz needs to be determined. Hence (2) becomes

Air + Apr™" 0<r<r

G(r,ro) = { 3)

Blr” +Bzr_” ro <r <oo

The left boundary condition lim,_,g G(r,rg) = 0 implies A, = 0 and the right boundary
condition lim,_,o, G(r,r9) = 0 implies B; = 0. This is needed to keep the solution bounded.
Hence (3) simplifies to

Art 0<r<mn
G(r,rg) = 4
(r.ro) {Bzr‘” ro <r < oo )

To determine the remaining two constants Aj, B, two additional conditions are needed. The
first is that G (r, ry) is continuous at r = ry which implies

All"g :Bzro_" (5)
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The second condition is the jump in the derivative of G (r, ry) given by

_ -1
r<ry P (rO)

d
- EG (r’ rO)

d
;G (r’ rO)

r>ro

Where p (ry) comes from the Sturm Liouville form of the homogeneous ODE. This was found
above as p (rg) = ry. Hence the above condition becomes

d -1
- —G(r,r)

d
—G
(T’, Vo) dr

dr

r>r r<ro 0

Equation (4) shows that %G (r, r0)|r>r
these in the above gives the second equation needed

= —nByry™ ! and that %G (r,ro)|._. = nA;ri~!. Using

r<rp

-1
—nBory" ! —nAr} T = — (6)
0

Solving (5,6) for Ay, By: From (5) A; = Bory 2n_Substituting this in (6) gives

. _ _ -1
—nByry™ ' —n (Bzry 2”) e p—
ro
—n-1 ne1_ T~
—nByr — nByr = —
ro
—2nByry" = -1yt
_ro_l
Bz = -n—1
—2nr,
1 n
=—T,
2n
But since A; = Ber_Z”, then
1 _
Ay = —rgr, 2n
2n
1 -n
=—T,
2n

Therefore the solution (4), which is the Green function, becomes, for n # 0

lo_”r” 0<r<r

G(r.r) = { mh T )

ro <r <oo
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