HW 6, Physics 501
 Fall 2018
 University Of Wisconsin, Milwaukee

Nasser M. Abbasi

December 1, 2018
Compiled on December 1, 2018 at 11:58am

Contents

1 Problem 1 2

2 Problem 2 6

3 Problem 3 8
3.1 Part 1 . 8
3.2 Part 2 . 9
3.3 Part 3 . 11

1 Problem 1

Consider the equation $x y^{\prime \prime}+(c-x) y^{\prime}-a y=0$. Identify a regular singular point and find two series solutions around this point. Test the solutions for convergence.

Solution

Writing the ODE as

$$
y^{\prime \prime}+A(x) y^{\prime}+B(x) y=0
$$

Where

$$
\begin{aligned}
& A(x)=\frac{(c-x)}{x} \\
& B(x)=\frac{-a}{x}
\end{aligned}
$$

The above shows that $x_{0}=0$ is a singularity point for both $A(x)$ and $B(x)$. Examining $A(x)$ and $B(x)$ to determine what type of singular point it is

$$
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) A(x)=\lim _{x \rightarrow 0} x \frac{(c-x)}{x}=\lim _{x \rightarrow 0}(c-x)=c
$$

Because the limit exists, then $x_{0}=0$ is regular singular point for $A(x)$.

$$
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} B(x)=\lim _{x \rightarrow 0} x^{2}\left(\frac{-a}{x}\right)=\lim _{x \rightarrow 0}(-a x)=0
$$

Because the limit exists, then $x_{0}=0$ is also regular singular point for $B(x)$.
Therefore $x_{0}=0$ is a regular singular point for the ODE.
Assuming the solution is Frobenius series gives

$$
\begin{aligned}
y(x) & =x^{r} \sum_{n=0}^{\infty} C_{n}\left(x-x_{0}\right)^{n} \quad C_{0} \neq 0 \\
& =x^{r} \sum_{n=0}^{\infty} C_{n} x^{n} \\
& =\sum_{n=0}^{\infty} C_{n} x^{n+r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) C_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) C_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above in the original ODE $x y^{\prime \prime}+(c-x) y^{\prime}-a y=0$ gives

$$
\begin{aligned}
x \sum_{n=0}^{\infty}(n+r)(n+r-1) C_{n} x^{n+r-2}+(c-x) \sum_{n=0}^{\infty}(n+r) C_{n} x^{n+r-1}-a \sum_{n=0}^{\infty} C_{n} x^{n+r} & =0 \\
\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r-1}+c \sum_{n=0}^{\infty}(n+r) C_{n} x^{n+r-1}-x \sum_{n=0}^{\infty}(n+r) C_{n} x^{n+r-1}-\sum_{n=0}^{\infty} a C_{n} x^{n+r} & =0 \\
\sum_{n=0}^{\infty}(n+r)(n+r-1) C_{n} x^{n+r-1}+\sum_{n=0}^{\infty} c(n+r) C_{n} x^{n+r-1}-\sum_{n=0}^{\infty}(n+r) C_{n} x^{n+r}-\sum_{n=0}^{\infty} a C_{n} x^{n+r} & =0 \\
\sum_{n=0}^{\infty}((n+r)(n+r-1)+c(n+r)) C_{n} x^{n+r-1}-\sum_{n=0}^{\infty}((n+r)+a) C_{n} x^{n+r} & =0
\end{aligned}
$$

Since all powers of x have to be the same, adjusting indices and exponents gives (where in the second sum above, the outside index n is increased by 1 and n inside the sum is decreased by 1)

$$
\begin{equation*}
\sum_{n=0}^{\infty}((n+r)(n+r-1)+c(n+r)) C_{n} x^{n+r-1}-\sum_{n=1}^{\infty}((n-1+r)+a) C_{n-1} x^{n+r-1}=0 \tag{1}
\end{equation*}
$$

Setting $n=0$ gives the indicial equation, which only comes from the first sum above as the second sum starts from $n=1$.

$$
((r)(r-1)+c r) C_{0}=0
$$

Since $C_{0} \neq 0$ then

$$
\begin{aligned}
(r)(r-1)+c r & =0 \\
r^{2}-r+c r & =0 \\
r(r+c-1) & =0
\end{aligned}
$$

The roots are

$$
\begin{aligned}
& r_{1}=1-c \\
& r_{2}=0
\end{aligned}
$$

Assuming that $r_{2}-r_{1}$ is not an integer, in other words, assuming $1-c$ is not an integer (problem did not say), then In this case, two linearly independent solutions can be constructed directly. The first is associated with $r_{1}=1-c$ and the second is associated with $r_{2}=0$. These solutions are

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} C_{n} x^{n+1-c} \quad C_{0} \neq 0 \\
& y_{2}(x)=\sum_{n=0}^{\infty} D_{n} x^{n} \quad D_{0} \neq 0
\end{aligned}
$$

The coefficients are not the same in each solution. For the first one C_{n} is used and for the second D_{n} is used.

The solution $y_{1}(x)$ associated with $r_{1}=1-c$ is now found. From (1), and replacing r by $1-c$ gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}((n+1-c)(n+1-c-1)+c(n+1-c)) C_{n} x^{n+1-c-1}-\sum_{n=1}^{\infty}((n-1+1-c)+a) C_{n-1} x^{n+1-c-1} & =0 \\
\sum_{n=0}^{\infty}((n+1-c)(n-c)+c(n+1-c)) C_{n} x^{n-c}-\sum_{n=1}^{\infty}((n-c)+a) C_{n-1} x^{n-c} & =0 \\
\sum_{n=0}^{\infty} n(n-c+1) C_{n} x^{n-c}-\sum_{n=1}^{\infty}((n-c)+a) C_{n-1} x^{n-c} & =0
\end{aligned}
$$

For $n>0$ the above gives the recursive relation ($n=0$ is not used, since it was used to find r).
For $n>0$ the last equation above gives

$$
\begin{aligned}
n(n-c+1) C_{n}-((n-c)+a) C_{n-1} & =0 \\
C_{n} & =\frac{((n-c)+a)}{n(n-c+1)} C_{n-1}
\end{aligned}
$$

Few terms are generated to see the pattern. For $n=1$

$$
C_{1}=\frac{(1-c+a)}{1(1-c+1)} C_{0}=\frac{(1-c+a)}{(2-c)} C_{0}
$$

For $n=2$

$$
\begin{aligned}
C_{2} & =\frac{(2-c+a)}{2(2-c+1)} C_{1} \\
& =\frac{(2-c+a)}{2(3-c)} \frac{(1-c+a)}{(2-c)} C_{0}
\end{aligned}
$$

For $n=3$

$$
\begin{aligned}
C_{3} & =\frac{(3-c+a)}{3(3-c+1)} C_{2} \\
& =\frac{(3-c+a)}{3(4-c)} \frac{(2-c+a)}{2(3-c)} \frac{(1-c+a)}{(2-c)} C_{0}
\end{aligned}
$$

And so on. The pattern for general term is

$$
\begin{aligned}
C_{n} & =\frac{((n-c)+a)}{n(n-c+1)} \cdots \frac{(3-c+a)}{3(3-c+1)} \frac{(2-c+a)}{2(2-c+1)} \frac{(1-c+a)}{1(1-c+1)} C_{0} \\
& =\prod_{m=1}^{n} \frac{((m-c)+a)}{m(n-c+1)}
\end{aligned}
$$

Therefore the solution associated with $r_{1}=1-c$ is

$$
\begin{aligned}
y_{1}(x) & =\sum_{n=0}^{\infty} C_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} C_{n} x^{n+1-c} \\
& =C_{0} x^{1-c}+C_{1} x^{2-c}+C_{2} x^{3-c}+\cdots
\end{aligned}
$$

Using results found above, and looking at few terms gives the first solution as
$y_{1}(x)=C_{0} x^{1-c}\left(1+\frac{(1-c+a)}{(2-c)} x+\frac{1}{2} \frac{(2-c+a)}{(3-c)} \frac{(1-c+a)}{(2-c)} x^{2}+\frac{1}{6} \frac{(3-c+a)}{(4-c)} \frac{(2-c+a)}{(3-c)} \frac{(1-c+a)}{(2-c)} x^{3}+\cdots\right)$
The second solution associated with $r_{2}=0$ is now found. As above, using (1) but with D_{n} instead of C_{n} for coefficients and replacing r by zero gives

$$
\sum_{n=0}^{\infty}(n(n-1)+c n) D_{n} x^{n-1}-\sum_{n=1}^{\infty}((n-1)+a) D_{n-1} x^{n-1}=0
$$

For $n>0$ the above gives the recursive relation for the second solution

$$
\begin{aligned}
(n(n-1)+c n) D_{n}-((n-1)+a) D_{n-1} & =0 \\
D_{n} & =\frac{n-1+a}{n(n-1)+c n} D_{n-1} \\
& =\frac{n-1+a}{c n-n+n^{2}} D_{n-1}
\end{aligned}
$$

Few terms are now generated to see the pattern. For $n=1$

$$
D_{1}=\frac{a}{c} D_{0}
$$

For $n=2$

$$
\begin{aligned}
D_{2} & =\frac{1+a}{2 c-2+4} D_{1} \\
& =\frac{1+a}{2(c+1)} \frac{a}{c} D_{0}
\end{aligned}
$$

For $n=3$

$$
\begin{aligned}
D_{3} & =\frac{3-1+a}{3 c-3+9} D_{2} \\
& =\frac{2+a}{3(c+2)} \frac{1+a}{2(c+1)} \frac{a}{c} D_{0}
\end{aligned}
$$

And so on. Hence the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} D_{n} x^{n} \\
& =D_{0}+D_{1} x+D_{2} x^{2}+\cdots
\end{aligned}
$$

Using result found above gives the second solution as

$$
y_{2}(x)=D_{0}\left(1+\frac{a}{c} x+\frac{1}{2} \frac{(1+a) a}{c(c+1)} x^{2}+\frac{1}{6} \frac{a(1+a)(2+a)}{c(c+2)(c+1)} x^{3}+\cdots\right)
$$

The final solution is therefore the sum of the two solutions

$$
\begin{align*}
y(x) & =C_{0} x^{1-c}\left(1+\frac{(1-c+a)}{(2-c)} x+\frac{1}{2} \frac{(2-c+a)}{(3-c)} \frac{(1-c+a)}{(2-c)} x^{2}+\frac{1}{6} \frac{(3-c+a)}{(4-c)} \frac{(2-c+a)}{(3-c)} \frac{(1-c+a)}{(2-c)} x^{3}+\cdots\right) \\
& +D_{0}\left(1+\frac{a}{c} x+\frac{1}{2} \frac{(1+a) a}{c(c+1)} x^{2}+\frac{1}{6} \frac{a(1+a)(2+a)}{c(c+2)(c+1)} x^{3}+\cdots\right) \tag{2}
\end{align*}
$$

Where C_{0}, D_{0} are the two constant of integration.
Testing for convergence. For $y_{1}(x)$ solution, the general term from above was

$$
C_{n} x^{n}=\frac{((n-c)+a)}{n(n-c+1)} C_{n-1} x^{n}
$$

Hence by ratio test

$$
\left.\begin{aligned}
& L=\lim _{n \rightarrow \infty}\left|\frac{C_{n} x^{n}}{C_{n-1} x^{n-1}}\right| \\
&=\lim _{n \rightarrow \infty} \left\lvert\, \frac{((n-c)+a)}{n(n-c+1)} C_{n-1} x^{n}\right. \\
& C_{n-1} x^{n-1}
\end{aligned} \right\rvert\,
$$

Therefore the series $y_{1}(x)$ converges for all x.
Testing for convergence. For $y_{2}(x)$ solution, the general term is

$$
D_{n} x^{n}=\frac{n-1+a}{c n-n+n^{2}} D_{n-1} x^{n}
$$

Hence by ratio test

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{D_{n} x^{n}}{D_{n-1} x^{n-1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\frac{n-1+a}{c n-n+n^{2}} D_{n-1} x^{n}}{D_{n-1} x^{n-1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n-1+a}{c n-n+n^{2}} x\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\frac{n-1+a}{c n-n+n^{2}}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n}-\frac{1}{n^{2}}+\frac{a}{n^{2}}}{\frac{c}{n}-\frac{1}{n}+1}\right| \\
& \left.=|x| \frac{0}{1} \right\rvert\, \\
& =0
\end{aligned}
$$

Therefore the series $y_{2}(x)$ also converges for all x. This means the solution $y(x)=y_{1}(x)+y_{2}(x)$ found in (2) above also converges for all x.

2 Problem 2

The Sturm Liouville equation can be expressed as

$$
L[u(x)]=\lambda \rho(x) u(x)
$$

Where L is given as in class. Show L is Hermitian on the domain $a \leq x \leq b$ with boundary conditions $u(a)=u(b)=0$. Find the orthogonality condition.

Solution

$$
L=-\left(p \frac{d^{2}}{d x^{2}}+p^{\prime} \frac{d}{d x}-q\right)
$$

The operator L is Hermitian if

$$
\int_{a}^{b} \bar{v} L[u] d x=\overline{\int_{a}^{b} \bar{u} L[v] d x}
$$

Where in the above u, v are any two functions defined over the domain that satisfy the boundary conditions given. Starting from the left integral to show it will result in the right integral. Replacing $L[u]$ by $-\left(p \frac{d^{2}}{d x^{2}}+p^{\prime} \frac{d}{d x}-q\right) u$ in the LHS of the above gives

$$
\begin{align*}
-\int_{a}^{b} \bar{v}\left(p \frac{d^{2}}{d x^{2}}+p^{\prime} \frac{d}{d x}-q\right) u d x & =-\int_{a}^{b} \bar{v}\left(p \frac{d^{2} u}{d x^{2}}+p^{\prime} \frac{d u}{d x}-q u\right) d x \\
& =-\int_{a}^{b} \bar{v} p \frac{d^{2} u}{d x^{2}}+\bar{v} p^{\prime} \frac{d u}{d x}-q \bar{v} u d x \\
& =-\overbrace{\int_{a}^{b} p \bar{v} \frac{d^{2} u}{d x^{2}} d x}^{I_{1}}-\int_{a}^{b} \bar{v} p^{\prime} \frac{d u}{d x} d x+\int_{a}^{b} q \bar{v} u d x
\end{align*}
$$

Looking at the first integral above, which is $I_{1}=\int_{a}^{b}(p \bar{v})\left(\frac{d^{2} u}{d x^{2}}\right) d x$. The idea is to integrate this twice to move the second derivative from u to \bar{v}. Applying $\int A d B=A B-\int B d A$, where

$$
\begin{aligned}
A & \equiv p \bar{v} \\
d B & \equiv \frac{d^{2} u}{d x^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
d A & =p \frac{d \bar{v}}{d x}+p^{\prime} \bar{v} \\
B & =\frac{d u}{d x}
\end{aligned}
$$

Therefore the integral I_{1} in (1) becomes

$$
\begin{aligned}
I_{1} & =\int_{a}^{b} p \bar{v} \frac{d^{2}}{d x^{2}} u \\
& =\left[p \bar{v} \frac{d u}{d x}\right]_{a}^{b}-\int_{a}^{b} \frac{d u}{d x}\left(p \frac{d \bar{v}}{d x}+p^{\prime} \bar{v}\right) d x
\end{aligned}
$$

But $\bar{v}(a)=0$ and $\bar{v}(b)=0$, hence the boundary terms above vanish and simplifies to

$$
\begin{align*}
I_{1} & =-\int_{a}^{b} p \frac{d u}{d x} \frac{d \bar{v}}{d x}+p^{\prime} \bar{v} \frac{d u}{d x} d x \\
& =-\int_{a}^{b} p \frac{d u}{d x} \frac{d \bar{v}}{d x} d x-\int_{a}^{b} p^{\prime} \bar{v} \frac{d u}{d x} d x \tag{2}
\end{align*}
$$

Before integrating by parts a second time, putting the result of I_{1} back into (1) first simplifies the result. Substituting (2) into (1) gives

$$
\begin{aligned}
\int_{a}^{b} \bar{v} L[u] d x & =-I_{1}-\int_{a}^{b} \bar{v} p^{\prime} \frac{d u}{d x} d x+\int_{a}^{b} q \bar{v} u d x \\
& =-\overbrace{\left(-\int_{a}^{b} p \frac{d u}{d x} \frac{d \bar{v}}{d x} d x-\int_{a}^{b} p^{\prime} \bar{v} \frac{d u}{d x} d x\right)}^{I_{1}}-\int_{a}^{b} \bar{v} p^{\prime} \frac{d u}{d x} d x+\int_{a}^{b} q \bar{v} u d x \\
& =\int_{a}^{b} p \frac{d u}{d x} \frac{d \bar{v}}{d x} d x+\int_{a}^{b} p^{\prime} \bar{v} \frac{d u}{d x} d x-\int_{a}^{b} \bar{v} p^{\prime} \frac{d u}{d x} d x+\int_{a}^{b} q \bar{v} u d x
\end{aligned}
$$

The second and third terms above cancel and the result becomes

$$
\begin{equation*}
\int_{a}^{b} \bar{v} L[u] d x=\overbrace{\int_{a}^{b} p \frac{d u}{d x} \frac{d \bar{v}}{d x} d x}^{I_{2}}+\int_{a}^{b} q \bar{v} u d x \tag{3}
\end{equation*}
$$

Now integration by parts is applied on the first integral above. Let $I_{2}=\int_{a}^{b} \frac{d u}{d x}\left(p \frac{d \bar{v}}{d x}\right) d x$. Applying $\int A d B=A B-\int B d A$, where

$$
\begin{aligned}
A & \equiv p \frac{d \bar{v}}{d x} \\
d B & \equiv \frac{d u}{d x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
d A & =p \frac{d^{2} \bar{v}}{d x^{2}}+p^{\prime} \frac{d \bar{v}}{d x} \\
B & =u
\end{aligned}
$$

Therefore the integral I_{2} becomes

$$
I_{2}=\left[p \frac{d \bar{v}}{d x} u\right]_{a}^{b}-\int_{a}^{b} u\left(p \frac{d^{2} \bar{v}}{d x^{2}}+p^{\prime} \frac{d \bar{v}}{d x}\right) d x
$$

But $u(a)=0, u(b)=0$, hence the boundary term vanishes and the above simplifies to

$$
I_{2}=-\int_{a}^{b} u\left(p \frac{d^{2} \bar{v}}{d x^{2}}+p^{\prime} \frac{d \bar{v}}{d x}\right) d x
$$

Substituting the above back into (3) gives

$$
\begin{aligned}
\int_{a}^{b} \bar{v} L[u] d x & =-\int_{a}^{b} u\left(p \frac{d^{2} \bar{v}}{d x^{2}}+p^{\prime} \frac{d \bar{v}}{d x}\right) d x+\int_{a}^{b} q \bar{v} u d x \\
& =-\int_{a}^{b} u\left(p \frac{d^{2} \bar{v}}{d x^{2}}+p^{\prime} \frac{d \bar{v}}{d x}-q \bar{v}\right) d x
\end{aligned}
$$

But $-\left(p \frac{d^{2} \bar{v}}{d x^{2}}+p^{\prime} \frac{d \bar{v}}{d x}-q \bar{v}\right)=L[\bar{v}]$ by definition, and the above becomes

$$
\int_{a}^{b} \bar{v} L[u] d x=\int_{a}^{b} u L[\bar{v}] d x
$$

But $\int_{a}^{b} u L[\bar{v}] d x=\overline{\int_{a}^{b} \bar{u} L[v] d x}$, and the above becomes

$$
\int_{a}^{b} \bar{v} L[u] d x=\overline{\int_{a}^{b} \bar{u}(L[v]) d x}
$$

Therefore L is Hermitian.

3 Problem 3

1. For the equation $y^{\prime \prime}+\frac{1-\alpha^{2}}{4 x^{2}} y=0$ show that two solutions are $y_{1}(x)=a_{0} x^{\frac{1+\alpha}{2}}$ and $y_{2}(x)=$ $a_{0} x^{\frac{1-\alpha}{2}}$
2. For $\alpha=0$, the two solutions are not independent. Find a second solution y_{20} by solving $W^{\prime}=0$ (W is the Wronskian).
3. Show that the second solution found in (2) is a limiting case of the two solutions from part (1). That is

$$
y_{20}=\lim _{\alpha \rightarrow 0} \frac{y_{1}-y_{2}}{\alpha}
$$

Solution

3.1 Part 1

The point $x_{0}=0$ is a regular singular point. This is shown as follows.

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} \frac{1-\alpha^{2}}{4 x^{2}} & =\lim _{x \rightarrow 0} x^{2} \frac{1-\alpha^{2}}{4 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1-\alpha^{2}}{4} \\
& =\frac{1-\alpha^{2}}{4}
\end{aligned}
$$

Since the limit exist, then $x_{0}=0$ is a regular singular point. Assuming the solution is a Frobenius series given by

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r} \quad c_{0} \neq 0
$$

Therefore

$$
\begin{aligned}
y^{\prime}(x) & =\sum_{n=0}^{\infty}(n+r) c_{n} x^{n+r-1} \\
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above 2 expressions back into the original ODE gives

$$
\begin{align*}
4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r-2}\right)+\left(1-\alpha^{2}\right)\left(\sum_{n=0}^{\infty} c_{n} x^{n+r}\right) & =0 \\
\sum_{n=0}^{\infty} 4(n+r)(n+r-1) c_{n} x^{n+r}+\left(1-\alpha^{2}\right)\left(\sum_{n=0}^{\infty} c_{n} x^{n+r}\right) & =0 \tag{1}
\end{align*}
$$

Looking at $n=0$ first, in order to obtain the indicial equation gives

$$
\begin{aligned}
4(r)(r-1) c_{0}+\left(1-\alpha^{2}\right) c_{0} & =0 \\
c_{0}\left(4 r^{2}-4 r+\left(1-\alpha^{2}\right)\right) & =0
\end{aligned}
$$

But $c_{0} \neq 0$, therefore

$$
r^{2}-r+\frac{\left(1-\alpha^{2}\right)}{4}=0
$$

The roots are $r=\frac{-b}{2 a} \pm \frac{1}{2 a} \sqrt{b^{2}-4 a c}$, but $a=1, b=-1, c=\frac{\left(1-\alpha^{2}\right)}{4}$, hence the roots are

$$
\begin{aligned}
r & =\frac{1}{2} \pm \frac{1}{2} \sqrt{1-\left(1-\alpha^{2}\right)} \\
& =\frac{1}{2} \pm \frac{1}{2} \sqrt{\alpha^{2}} \\
& =\frac{1}{2} \pm \frac{1}{2} \alpha
\end{aligned}
$$

Hence $r_{1}=\frac{1}{2}(1+\alpha)$ and $r_{2}=\frac{1}{2}(1-\alpha)$. Each one of these roots gives a solution. The difference is

$$
\begin{aligned}
r_{2}-r_{1} & =\frac{1}{2}(1+\alpha)-\frac{1}{2}(1-\alpha) \\
& =\alpha
\end{aligned}
$$

Therefore, to use the same solution form $y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}$ and $y_{2}(x)=\sum_{n=0}^{\infty} d_{n} x^{n+r_{2}}$ for each, it is assumed that α is not an integer. In this case, the recursive relation for $y_{1}(x)$ is found from (1) by using $r=\frac{1}{2} \overline{(1+\alpha)}$ which results in

$$
\sum_{n=0}^{\infty} 4\left(n+\frac{1}{2}(1+\alpha)\right)\left(n+\frac{1}{2}(1+\alpha)-1\right) c_{n} x^{n+\frac{1}{2}(1+\alpha)}+\left(1-\alpha^{2}\right)\left(\sum_{n=0}^{\infty} c_{n} x^{n+\frac{1}{2}(1+\alpha)}\right)=0
$$

For $n>0$ the above becomes

$$
\begin{aligned}
4\left(n+\frac{1}{2}(1+\alpha)\right)\left(n+\frac{1}{2}(1+\alpha)-1\right) c_{n}+\left(1-\alpha^{2}\right) c_{n} & =0 \\
\left(4\left(n+\frac{1}{2}(1+\alpha)\right)\left(n+\frac{1}{2}(1+\alpha)-1\right)+\left(1-\alpha^{2}\right)\right) c_{n} & =0 \\
4 n(n+\alpha) c_{n} & =0
\end{aligned}
$$

The above can be true for all $n>0$ only when $c_{n}=0$ for $n>0$. Therefore the solution is only the term with c_{0}

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}=c_{0} x^{r_{1}}=c_{0} x^{\frac{1}{2}(1+\alpha)}
$$

To find the second solution $y_{2}(x)$, the above is repeated but with

$$
y_{2}(x)=\sum_{n=0}^{\infty} d_{n} x^{n+r_{2}}
$$

Where the constants are not the same and by replacing r in (1) by $r_{2}=\frac{1}{2}(1-\alpha)$. This results in

$$
\sum_{n=0}^{\infty} 4\left(n+\frac{1}{2}(1-\alpha)\right)\left(n+\frac{1}{2}(1-\alpha)-1\right) d_{n} x^{n+\frac{1}{2}(1-\alpha)}+\left(1-\alpha^{2}\right)\left(\sum_{n=0}^{\infty} d_{n} x^{n+\frac{1}{2}(1-\alpha)}\right)=0
$$

For $n>0$

$$
\begin{aligned}
\left(4\left(n+\frac{1}{2}(1-\alpha)\right)\left(n+\frac{1}{2}(1-\alpha)-1\right)+\left(1-\alpha^{2}\right)\right) d_{n} & =0 \\
4 n(n-\alpha) d_{n} & =0
\end{aligned}
$$

The above is true for all $n>0$ only when $c_{n}=0$ for $n>0$. Therefore the solution is just the term with d_{0}

$$
y_{2}(x)=\sum_{n=0}^{\infty} d_{n} x^{n+r_{2}}=d_{0} x^{r_{2}}=d_{0} x^{\frac{1}{2}(1-\alpha)}
$$

Therefore the two solutions are

$$
\begin{aligned}
& y_{1}(x)=c_{0} x^{\frac{1}{2}(1+\alpha)} \\
& y_{2}(x)=d_{0} x^{\frac{1}{2}(1-\alpha)}
\end{aligned}
$$

3.2 Part 2

When $\alpha=0$ then the ODE becomes

$$
4 x^{2} y^{\prime \prime}+y=0
$$

And the two solutions found in part (1) simplify to

$$
\begin{aligned}
& y_{1}(x)=c_{0} \sqrt{x} \\
& y_{2}(x)=d_{0} \sqrt{x}
\end{aligned}
$$

Therefore the two solutions are not linearly independent. Let $y_{20}(x)$ be the second solution. The Wronskian is

$$
W(x)=\left|\begin{array}{ll}
y_{1} & y_{20} \tag{1}\\
y_{1}^{\prime} & y_{20}^{\prime}
\end{array}\right|=y_{1} y_{20}^{\prime}-y_{20} y_{1}^{\prime}
$$

Using Abel's theorem which says that for ODE of form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, the Wronskian is $W(x)=C e^{-\int p(x) d x}$. Applying this to the given ODE above and since $p(x)=0$ then the above becomes

$$
W(x)=C
$$

Where C is constant. For y_{20} to be linearly independent from $y_{1} W(x) \neq 0$. Using $W(x)=C$ in (1) results in the following equation (here it is also assumed that $y_{1} \neq 0$, or $x \neq 0$, because the equation is divided by y_{1})

$$
\begin{aligned}
y_{1} y_{20}^{\prime}-y_{20} y_{1}^{\prime} & =C \\
y_{20}^{\prime}-y_{20} \frac{y_{1}^{\prime}}{y_{1}} & =\frac{C}{y_{1}}
\end{aligned}
$$

Since $y_{1}=\sqrt{x}$ and $y_{1}^{\prime}=\frac{1}{2} \frac{1}{\sqrt{x}}$ the above simplifies to

$$
\begin{align*}
y_{20}^{\prime}-y_{20} \frac{\frac{1}{2} \frac{1}{\sqrt{x}}}{\sqrt{x}} & =\frac{C}{\sqrt{x}} \\
y_{20}^{\prime}-y_{20} \frac{1}{2 x} & =\frac{C}{\sqrt{x}} \tag{2}
\end{align*}
$$

But the above is linear first order ODE of the form $Y^{\prime}+p Y=q$, therefore the standard integrating factor to use is $I=e^{\int p(x) d x}$ which results in

$$
\begin{aligned}
I & =e^{\int \frac{-1}{2 x} d x} \\
& =e^{-\frac{1}{2} \int \frac{1}{x} d x} \\
& =e^{-\frac{1}{2} \ln x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

Multiplying both sides of (2) by this integrating factor, makes the left side of (2) an exact differential

$$
\frac{d}{d x}\left(y_{20} \frac{1}{\sqrt{x}}\right)=\frac{C}{x}
$$

Integrating both sides gives

$$
\begin{aligned}
y_{20} \frac{1}{\sqrt{x}} & =C \int \frac{1}{x} d x+C_{1} \\
y_{20} \frac{1}{\sqrt{x}} & =2 C \ln x+C_{1} \\
y_{20} & =2 C \ln x \sqrt{x}+C_{1} \sqrt{x}
\end{aligned}
$$

Or

$$
\begin{equation*}
y_{20}=C_{1} \ln x \sqrt{x}+C_{2} \sqrt{x} \tag{3}
\end{equation*}
$$

The above is the second solution. Therefore the final solution is

$$
y(x)=C_{0} y_{1}(x)+C_{3} y_{20}(x)
$$

Substituting $y_{1}=\sqrt{x}$ and y_{20} found above and combining the common term \sqrt{x} and renaming constants gives

$$
y(x)=C_{1} \sqrt{x}+C_{2} \ln x \sqrt{x}
$$

Another method to find the second solution
This method is called the reduction of order method. It does not require finding $W(x)$ first. Let the second solution be

$$
\begin{equation*}
y_{20}=Y=v(x) y_{1}(x) \tag{4}
\end{equation*}
$$

Where $v(x)$ is unknown function to be determined, and $y_{1}(x)=\sqrt{x}$ which is the first solution that is already known. Therefore

$$
\begin{aligned}
Y^{\prime} & =v^{\prime} y_{1}+v y_{1}^{\prime} \\
Y^{\prime \prime} & =v^{\prime \prime} y_{1}+v^{\prime} y_{1}^{\prime}+v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime} \\
& =v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}
\end{aligned}
$$

Since Y is a solution to the $\operatorname{ODE} 4 x^{2} y^{\prime \prime}+y=0$, then substituting the above equations back into the ODE $4 x^{2} y^{\prime \prime}+y=0$ gives

$$
\begin{array}{r}
4 x^{2}\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+v y_{1}=0 \\
v^{\prime \prime}\left(4 x^{2} y_{1}\right)+v^{\prime}\left(8 x^{2} y_{1}^{\prime}\right)+v(\overbrace{4 x^{2} y_{1}^{\prime \prime}+y_{1}}^{0})=0
\end{array}
$$

But $4 x^{2} y_{1}^{\prime \prime}+y_{1}=0$ because y_{1} is a solution. The above simplifies to

$$
v^{\prime \prime}\left(4 x^{2} y_{1}\right)+v^{\prime}\left(8 x^{2} y_{1}^{\prime}\right)=0
$$

But $y_{1}=x^{\frac{1}{2}}$, hence $y_{1}^{\prime}=\frac{1}{2} x^{\frac{-1}{2}}$ and the above simplifies to

$$
\begin{aligned}
v^{\prime \prime}\left(4 x^{2} x^{\frac{1}{2}}\right)+v^{\prime}\left(4 x^{2} x^{\frac{-1}{2}}\right) & =0 \\
x^{\frac{5}{2}} v^{\prime \prime}+v^{\prime} x^{\frac{3}{2}} & =0 \\
x v^{\prime \prime}+v^{\prime} & =0 \\
v^{\prime \prime}+\frac{1}{x} v^{\prime} & =0
\end{aligned}
$$

This ODE is now easy to solve because the $v(x)$ term is missing. Let $w=v^{\prime}$ and the above first order ODE $w^{\prime}+\frac{1}{x} w=0$. This is linear in w. Hence using integrating factor $I=e^{\int \frac{1}{x} d z}=x$, this ODE becomes

$$
\begin{aligned}
\frac{d}{x}(w x) & =0 \\
w x & =C \\
w & =\frac{C}{x}
\end{aligned}
$$

Where C is constant of integration. Since $v^{\prime}=w$, then $v^{\prime}=\frac{C_{1}}{x}$. Now $v(x)$ is found by integrating both sides

$$
v=C_{1} \ln x+C_{2}
$$

Therefore the second solution from (4) becomes

$$
\begin{align*}
y_{20} & =C_{1} \ln x y_{1}+C_{2} y_{1} \\
& =C_{1} \sqrt{x} \ln x+C_{2} \sqrt{x} \tag{5}
\end{align*}
$$

Comparing the above to (3), shows it is the same solution. Both methods can be used, but reduction of order method is a more common method and it does not require finding the Wronskian first, although it is not hard to find by using Abel's theorem.

3.3 Part 3

The solutions we found in part (1) are

$$
\begin{aligned}
& y_{1}(x)=C_{1} x^{\frac{1}{2}(1+\alpha)} \\
& y_{2}(x)=C_{2} x^{\frac{1}{2}(1-\alpha)}
\end{aligned}
$$

Therefore

$$
\lim _{\alpha \rightarrow 0} \frac{y_{1}-y_{2}}{\alpha}=\lim _{\alpha \rightarrow 0} \frac{C_{1} x^{\frac{1}{2}(1+\alpha)}-C_{2} x^{\frac{1}{2}(1-\alpha)}}{\alpha}
$$

Applying L'Hopital's

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{y_{1}-y_{2}}{\alpha}=\lim _{\alpha \rightarrow 0} \frac{C_{1} \frac{d}{d \alpha}\left(x^{\frac{1}{2}(1+\alpha)}\right)-C_{2} \frac{d}{d \alpha}\left(x^{\frac{1}{2}(1-\alpha)}\right)}{1} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
\frac{d}{d \alpha}\left(x^{\frac{1}{2}(1+\alpha)}\right) & =\frac{d}{d \alpha} e^{\frac{1}{2}(1+\alpha) \ln x} \\
& =\frac{d}{d \alpha} e^{\left(\frac{1}{2} \ln x+\alpha \ln x\right)} \\
& =\ln x e^{\left(\frac{1}{2} \ln x+\alpha \ln x\right)}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{d}{d \alpha}\left(x^{\frac{1}{2}(1-\alpha)}\right) & =\frac{d}{d \alpha} e^{\frac{1}{2}(1-\alpha) \ln x} \\
& =\frac{d}{d \alpha} e^{\left(\frac{1}{2} \ln x-\alpha \ln x\right)} \\
& =-\ln x e^{\left(\frac{1}{2} \ln x-\alpha \ln x\right)}
\end{aligned}
$$

Therefore (1) becomes

$$
\begin{aligned}
\lim _{\alpha \rightarrow 0} \frac{y_{1}-y_{2}}{\alpha} & =\lim _{\alpha \rightarrow 0} C_{1} \ln x e^{\left(\frac{1}{2} \ln x+\alpha \ln x\right)}+C_{2} \ln x e^{\left(\frac{1}{2} \ln x-\alpha \ln x\right)} \\
& =\ln x\left(\lim _{\alpha \rightarrow 0} C_{1} e^{\left(\frac{1}{2} \ln x+\alpha \ln x\right)}+C_{2} e^{\left(\frac{1}{2} \ln x-\alpha \ln x\right)}\right) \\
& =\ln x\left(C_{1} e^{\frac{1}{2} \ln x}+C_{2} e^{\frac{1}{2} \ln x}\right) \\
& =\ln x\left(C_{1} \sqrt{x}+C_{2} \sqrt{x}\right) \\
& =C \sqrt{x} \ln x
\end{aligned}
$$

The above is the same as (3) found in part (2). Hence

$$
y_{20}(x)=\lim _{\alpha \rightarrow 0} \frac{y_{1}-y_{2}}{\alpha}
$$

Which is what the problem asked to show.

