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1 Problem 1

Consider the equation xy′′ + (c − x)y′ − ay = 0. Identify a regular singular point and find two
series solutions around this point. Test the solutions for convergence.

Solution

Writing the ODE as
y′′ +A (x)y′ + B (x)y = 0

Where

A (x) =
(c − x)

x

B (x) =
−a

x

The above shows that x0 = 0 is a singularity point for both A (x) and B (x). Examining A (x)
and B (x) to determine what type of singular point it is

lim
x→x0

(x − x0)A (x) = lim
x→0

x
(c − x)

x
= lim

x→0
(c − x) = c

Because the limit exists, then x0 = 0 is regular singular point for A (x) .

lim
x→x0

(x − x0)
2 B (x) = lim

x→0
x2

(
−a

x

)
= lim

x→0
(−ax) = 0

Because the limit exists, then x0 = 0 is also regular singular point for B (x).

Therefore x0 = 0 is a regular singular point for the ODE.

Assuming the solution is Frobenius series gives

y (x) = xr
∞∑
n=0

Cn (x − x0)
n C0 , 0

= xr
∞∑
n=0

Cnx
n

=
∞∑
n=0

Cnx
n+r

Therefore

y′ =
∞∑
n=0

(n + r )Cnx
n+r−1

y′′ =
∞∑
n=0

(n + r ) (n + r − 1)Cnx
n+r−2
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Substituting the above in the original ODE xy′′ + (c − x)y′ − ay = 0 gives

x
∞∑
n=0

(n + r ) (n + r − 1)Cnx
n+r−2 + (c − x)

∞∑
n=0

(n + r )Cnx
n+r−1 − a

∞∑
n=0

Cnx
n+r = 0

∞∑
n=0

(n + r ) (n + r − 1) cnx
n+r−1 + c

∞∑
n=0

(n + r )Cnx
n+r−1 − x

∞∑
n=0

(n + r )Cnx
n+r−1 −

∞∑
n=0

aCnx
n+r = 0

∞∑
n=0

(n + r ) (n + r − 1)Cnx
n+r−1 +

∞∑
n=0

c (n + r )Cnx
n+r−1 −

∞∑
n=0

(n + r )Cnx
n+r −

∞∑
n=0

aCnx
n+r = 0

∞∑
n=0

((n + r ) (n + r − 1) + c (n + r ))Cnx
n+r−1 −

∞∑
n=0

((n + r ) + a)Cnx
n+r = 0

Since all powers of x have to be the same, adjusting indices and exponents gives (where in the
second sum above, the outside index n is increased by 1 and n inside the sum is decreased by 1)

∞∑
n=0

((n + r ) (n + r − 1) + c (n + r ))Cnx
n+r−1 −

∞∑
n=1

((n − 1 + r ) + a)Cn−1x
n+r−1 = 0 (1)

Setting n = 0 gives the indicial equation, which only comes from the first sum above as the
second sum starts from n = 1.

((r ) (r − 1) + cr )C0 = 0

Since C0 , 0 then

(r ) (r − 1) + cr = 0

r 2 − r + cr = 0

r (r + c − 1) = 0

The roots are

r1 = 1 − c

r2 = 0

Assuming that r2−r1 is not an integer, in other words, assuming 1−c is not an integer (problem
did not say), then In this case, two linearly independent solutions can be constructed directly.
The first is associated with r1 = 1 − c and the second is associated with r2 = 0. These solutions
are

y1 (x) =
∞∑
n=0

Cnx
n+1−c C0 , 0

y2 (x) =
∞∑
n=0

Dnx
n D0 , 0

The coefficients are not the same in each solution. For the first oneCn is used and for the second
Dn is used.
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The solution y1 (x) associated with r1 = 1 − c is now found. From (1), and replacing r by 1 − c
gives
∞∑
n=0

((n + 1 − c) (n + 1 − c − 1) + c (n + 1 − c))Cnx
n+1−c−1 −

∞∑
n=1

((n − 1 + 1 − c) + a)Cn−1x
n+1−c−1 = 0

∞∑
n=0

((n + 1 − c) (n − c) + c (n + 1 − c))Cnx
n−c −

∞∑
n=1

((n − c) + a)Cn−1x
n−c = 0

∞∑
n=0

n (n − c + 1)Cnx
n−c −

∞∑
n=1

((n − c) + a)Cn−1x
n−c = 0

For n > 0 the above gives the recursive relation (n = 0 is not used, since it was used to find r ).
For n > 0 the last equation above gives

n (n − c + 1)Cn − ((n − c) + a)Cn−1 = 0

Cn =
((n − c) + a)

n (n − c + 1)
Cn−1

Few terms are generated to see the pattern. For n = 1

C1 =
(1 − c + a)

1 (1 − c + 1)
C0 =

(1 − c + a)

(2 − c)
C0

For n = 2

C2 =
(2 − c + a)

2 (2 − c + 1)
C1

=
(2 − c + a)

2 (3 − c)

(1 − c + a)

(2 − c)
C0

For n = 3

C3 =
(3 − c + a)

3 (3 − c + 1)
C2

=
(3 − c + a)

3 (4 − c)

(2 − c + a)

2 (3 − c)

(1 − c + a)

(2 − c)
C0

And so on. The pattern for general term is

Cn =
((n − c) + a)

n (n − c + 1)
· · ·

(3 − c + a)

3 (3 − c + 1)
(2 − c + a)

2 (2 − c + 1)
(1 − c + a)

1 (1 − c + 1)
C0

=
n∏

m=1

((m − c) + a)

m (n − c + 1)

Therefore the solution associated with r1 = 1 − c is

y1 (x) =
∞∑
n=0

Cnx
n+r

=
∞∑
n=0

Cnx
n+1−c

= C0x
1−c +C1x

2−c +C2x
3−c + · · ·
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Using results found above, and looking at few terms gives the first solution as

y1 (x) = C0x
1−c

(
1 +

(1 − c + a)

(2 − c)
x +

1
2
(2 − c + a)

(3 − c)

(1 − c + a)

(2 − c)
x2 +

1
6
(3 − c + a)

(4 − c)

(2 − c + a)

(3 − c)

(1 − c + a)

(2 − c)
x3 + · · ·

)
The second solution associated with r2 = 0 is now found. As above, using (1) but with Dn

instead of Cn for coefficients and replacing r by zero gives
∞∑
n=0

(n (n − 1) + cn)Dnx
n−1 −

∞∑
n=1

((n − 1) + a)Dn−1x
n−1 = 0

For n > 0 the above gives the recursive relation for the second solution

(n (n − 1) + cn)Dn − ((n − 1) + a)Dn−1 = 0

Dn =
n − 1 + a

n (n − 1) + cn
Dn−1

=
n − 1 + a
cn − n + n2

Dn−1

Few terms are now generated to see the pattern. For n = 1

D1 =
a

c
D0

For n = 2

D2 =
1 + a

2c − 2 + 4
D1

=
1 + a

2 (c + 1)
a

c
D0

For n = 3

D3 =
3 − 1 + a
3c − 3 + 9

D2

=
2 + a

3 (c + 2)
1 + a

2 (c + 1)
a

c
D0

And so on. Hence the solution y2 (x) is

y2 (x) =
∞∑
n=0

Dnx
n

= D0 + D1x + D2x
2 + · · ·

Using result found above gives the second solution as

y2 (x) = D0

(
1 +

a

c
x +

1
2
(1 + a)a
c (c + 1)

x2 +
1
6
a (1 + a) (2 + a)
c (c + 2) (c + 1)

x3 + · · ·

)
The final solution is therefore the sum of the two solutions

y (x) = C0x
1−c

(
1 +

(1 − c + a)

(2 − c)
x +

1
2
(2 − c + a)

(3 − c)

(1 − c + a)

(2 − c)
x2 +

1
6
(3 − c + a)

(4 − c)

(2 − c + a)

(3 − c)

(1 − c + a)

(2 − c)
x3 + · · ·

)
(2)

+ D0

(
1 +

a

c
x +

1
2
(1 + a)a
c (c + 1)

x2 +
1
6
a (1 + a) (2 + a)
c (c + 2) (c + 1)

x3 + · · ·

)



6

Where C0,D0 are the two constant of integration.

Testing for convergence. For y1 (x) solution, the general term from above was

Cnx
n =

((n − c) + a)

n (n − c + 1)
Cn−1x

n

Hence by ratio test

L = lim
n→∞

���� Cnx
n

Cn−1xn−1

����
= lim

n→∞

������
((n−c)+a)
n(n−c+1)Cn−1x

n

Cn−1xn−1

������
= lim

n→∞

���� ((n − c) + a)x

(n (n − c + 1))

����
= |x | lim

n→∞

��� n − c + a

n2 − nc + n

���
= |x | lim

n→∞

����� 1n − c
n2
+ a

n2

1 − c
n +

1
n

�����
= |x |

����01 ����
= 0

Therefore the series y1 (x) converges for all x .

Testing for convergence. For y2 (x) solution, the general term is

Dnx
n =

n − 1 + a
cn − n + n2

Dn−1x
n

Hence by ratio test

L = lim
n→∞

���� Dnx
n

Dn−1xn−1

����
= lim

n→∞

����� n−1+a
cn−n+n2

Dn−1x
n

Dn−1xn−1

�����
= lim

n→∞

���� n − 1 + a
cn − n + n2

x

����
= |x | lim

n→∞

���� n − 1 + a
cn − n + n2

����
= |x | lim

n→∞

����� 1n − 1
n2
+ a

n2

c
n − 1

n + 1

�����
= |x |

����01 ����
= 0

Therefore the seriesy2 (x) also converges for all x . This means the solutiony (x) = y1 (x)+y2 (x)
found in (2) above also converges for all x .
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2 Problem 2

The Sturm Liouville equation can be expressed as

L [u (x)] = λρ (x)u (x)

Where L is given as in class. Show L is Hermitian on the domain a ≤ x ≤ b with boundary
conditions u (a) = u (b) = 0. Find the orthogonality condition.

Solution

L = −

(
p
d2

dx2
+ p′

d

dx
− q

)
The operator L is Hermitian if ∫b

a
v̄L [u]dx =

∫b

a
ūL [v]dx

Where in the aboveu,v are any two functions defined over the domain that satisfy the boundary
conditions given. Starting from the left integral to show it will result in the right integral.
Replacing L [u] by −

(
p d2

dx2
+ p′ ddx − q

)
u in the LHS of the above gives

−

∫b

a
v̄

(
p
d2

dx2
+ p′

d

dx
− q

)
u dx = −

∫b

a
v̄

(
p
d2u

dx2
+ p′

du

dx
− qu

)
dx

= −

∫b

a
v̄p

d2u

dx2
+ v̄p′

du

dx
− qv̄u dx

= −

I1︷         ︸︸         ︷∫b

a
pv̄

d2u

dx2
dx −

∫b

a
v̄p′

du

dx
dx +

∫b

a
qv̄u dx (1)

Looking at the first integral above, which is I1 =
∫b
a
(pv̄)

(
d2u
dx2

)
dx . The idea is to integrate this

twice to move the second derivative from u to v̄ . Applying
∫
AdB = AB −

∫
BdA, where

A ≡ pv̄

dB ≡
d2u

dx2

Hence

dA = p
dv̄

dx
+ p′v̄

B =
du

dx
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Therefore the integral I1 in (1) becomes

I1 =

∫b

a
pv̄

d2

dx2
u

=

[
pv̄

du

dx

] b
a

−

∫b

a

du

dx

(
p
dv̄

dx
+ p′v̄

)
dx

But v̄ (a) = 0 and v̄ (b) = 0, hence the boundary terms above vanish and simplifies to

I1 = −

∫b

a
p
du

dx

dv̄

dx
+ p′v̄

du

dx
dx

= −

∫b

a
p
du

dx

dv̄

dx
dx −

∫b

a
p′v̄

du

dx
dx (2)

Before integrating by parts a second time, putting the result of I1 back into (1) first simplifies
the result. Substituting (2) into (1) gives∫b

a
v̄L [u]dx = −I1 −

∫b

a
v̄p′

du

dx
dx +

∫b

a
qv̄u dx

= −

I1︷                                      ︸︸                                      ︷(
−

∫b

a
p
du

dx

dv̄

dx
dx −

∫b

a
p′v̄

du

dx
dx

)
−

∫b

a
v̄p′

du

dx
dx +

∫b

a
qv̄u dx

=

∫b

a
p
du

dx

dv̄

dx
dx +

∫b

a
p′v̄

du

dx
dx −

∫b

a
v̄p′

du

dx
dx +

∫b

a
qv̄u dx

The second and third terms above cancel and the result becomes

∫b

a
v̄L [u]dx =

I2︷          ︸︸          ︷∫b

a
p
du

dx

dv̄

dx
dx +

∫b

a
qv̄u dx (3)

Now integration by parts is applied on the first integral above. Let I2 =
∫b
a

du
dx

(
p dv̄
dx

)
dx . Apply-

ing
∫
AdB = AB −

∫
BdA, where

A ≡ p
dv̄

dx

dB ≡
du

dx

Hence

dA = p
d2v̄

dx2
+ p′

dv̄

dx
B = u

Therefore the integral I2 becomes

I2 =

[
p
dv̄

dx
u

] b
a

−

∫b

a
u

(
p
d2v̄

dx2
+ p′

dv̄

dx

)
dx
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But u (a) = 0,u (b) = 0, hence the boundary term vanishes and the above simplifies to

I2 = −

∫b

a
u

(
p
d2v̄

dx2
+ p′

dv̄

dx

)
dx

Substituting the above back into (3) gives∫b

a
v̄L [u]dx = −

∫b

a
u

(
p
d2v̄

dx2
+ p′

dv̄

dx

)
dx +

∫b

a
qv̄u dx

= −

∫b

a
u

(
p
d2v̄

dx2
+ p′

dv̄

dx
− qv̄

)
dx

But −
(
p d2v̄
dx2
+ p′dv̄dx − qv̄

)
= L [v̄] by definition, and the above becomes∫b

a
v̄L [u]dx =

∫b

a
uL [v̄]dx

But
∫b
a
uL [v̄]dx =

∫b
a
ūL [v]dx , and the above becomes∫b

a
v̄L [u]dx =

∫b

a
ū (L [v])dx

Therefore L is Hermitian.
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3 Problem 3

1. For the equation y′′+ 1−α2

4x2 y = 0 show that two solutions are y1 (x) = a0x
1+α
2 and y2 (x) =

a0x
1−α
2

2. For α = 0, the two solutions are not independent. Find a second solution y20 by solving
W ′ = 0 (W is the Wronskian).

3. Show that the second solution found in (2) is a limiting case of the two solutions from
part (1). That is

y20 = lim
α→0

y1 − y2
α

Solution

3.1 Part 1

The point x0 = 0 is a regular singular point. This is shown as follows.

lim
x→x0

(x − x0)
2 1 − α2

4x2
= lim

x→0
x2

1 − α2

4x2

= lim
x→0

1 − α2

4

=
1 − α2

4

Since the limit exist, then x0 = 0 is a regular singular point. Assuming the solution is a Frobe-
nius series given by

y (x) =
∞∑
n=0

cnx
n+r c0 , 0

Therefore

y′ (x) =
∞∑
n=0

(n + r ) cnx
n+r−1

y′′ (x) =
∞∑
n=0

(n + r ) (n + r − 1) cnx
n+r−2

Substituting the above 2 expressions back into the original ODE gives

4x2
(

∞∑
n=0

(n + r ) (n + r − 1) cnx
n+r−2

)
+
(
1 − α2) ( ∞∑

n=0
cnx

n+r

)
= 0

∞∑
n=0

4 (n + r ) (n + r − 1) cnx
n+r +

(
1 − α2) ( ∞∑

n=0
cnx

n+r

)
= 0 (1)
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Looking at n = 0 first, in order to obtain the indicial equation gives

4 (r ) (r − 1) c0 +
(
1 − α2) c0 = 0

c0
(
4r 2 − 4r +

(
1 − α2) ) = 0

But c0 , 0, therefore

r 2 − r +

(
1 − α2)

4
= 0

The roots are r = −b
2a ± 1

2a

√
b2 − 4ac , but a = 1,b = −1, c =

(
1−α2)
4 , hence the roots are

r =
1
2
±
1
2

√
1 − (1 − α2)

=
1
2
±
1
2

√
α2

=
1
2
±
1
2
α

Hence r1 = 1
2 (1 + α) and r2 =

1
2 (1 − α). Each one of these roots gives a solution. The difference

is

r2 − r1 =
1
2
(1 + α) −

1
2
(1 − α)

= α

Therefore, to use the same solution form y1 (x) =
∑∞

n=0 cnx
n+r1 and y2 (x) =

∑∞
n=0 dnx

n+r2 for
each, it is assumed that α is not an integer. In this case, the recursive relation fory1 (x) is found
from (1) by using r = 1

2 (1 + α) which results in

∞∑
n=0

4

(
n +

1
2
(1 + α)

) (
n +

1
2
(1 + α) − 1

)
cnx

n+ 1
2 (1+α) +

(
1 − α2) ( ∞∑

n=0
cnx

n+ 1
2 (1+α)

)
= 0

For n > 0 the above becomes

4

(
n +

1
2
(1 + α)

) (
n +

1
2
(1 + α) − 1

)
cn +

(
1 − α2) cn = 0(

4

(
n +

1
2
(1 + α)

) (
n +

1
2
(1 + α) − 1

)
+
(
1 − α2) ) cn = 0

4n (n + α) cn = 0

The above can be true for all n > 0 only when cn = 0 for n > 0. Therefore the solution is only
the term with c0

y1 (x) =
∞∑
n=0

cnx
n+r1 = c0x

r1 = c0x
1
2 (1+α)

To find the second solution y2 (x), the above is repeated but with

y2 (x) =
∞∑
n=0

dnx
n+r2
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Where the constants are not the same and by replacing r in (1) by r2 = 1
2 (1 − α). This results in

∞∑
n=0

4

(
n +

1
2
(1 − α)

) (
n +

1
2
(1 − α) − 1

)
dnx

n+ 1
2 (1−α) +

(
1 − α2) ( ∞∑

n=0
dnx

n+ 1
2 (1−α)

)
= 0

For n > 0 (
4

(
n +

1
2
(1 − α)

) (
n +

1
2
(1 − α) − 1

)
+
(
1 − α2) ) dn = 0

4n (n − α)dn = 0

The above is true for all n > 0 only when cn = 0 for n > 0. Therefore the solution is just the
term with d0

y2 (x) =
∞∑
n=0

dnx
n+r2 = d0x

r2 = d0x
1
2 (1−α)

Therefore the two solutions are

y1 (x) = c0x
1
2 (1+α)

y2 (x) = d0x
1
2 (1−α)

3.2 Part 2

When α = 0 then the ODE becomes

4x2y′′ + y = 0

And the two solutions found in part (1) simplify to

y1 (x) = c0
√
x

y2 (x) = d0
√
x

Therefore the two solutions are not linearly independent. Let y20 (x) be the second solution.
The Wronskian is

W (x) =

�����y1 y20

y′1 y′20

����� = y1y′20 − y20y
′
1 (1)

Using Abel’s theoremwhich says that for ODE of formy′′+p (x)y′+q (x)y = 0, theWronskian
isW (x) = Ce−

∫
p(x)dx . Applying this to the given ODE above and since p (x) = 0 then the above

becomes
W (x) = C

WhereC is constant. For y20 to be linearly independent from y1W (x) , 0. UsingW (x) = C in
(1) results in the following equation (here it is also assumed that y1 , 0, or x , 0, because the
equation is divided by y1)

y1y
′
20 − y20y

′
1 = C

y′20 − y20
y′1
y1
=

C

y1
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Since y1 =
√
x and y′1 =

1
2

1√
x
the above simplifies to

y′20 − y20

1
2

1√
x

√
x
=

C
√
x

y′20 − y20
1
2x
=

C
√
x

(2)

But the above is linear first order ODE of the formY ′+pY = q, therefore the standard integrating
factor to use is I = e

∫
p(x)dx which results in

I = e
∫

−1
2x dx

= e−
1
2

∫
1
x dx

= e−
1
2 lnx

=
1
√
x

Multiplying both sides of (2) by this integrating factor, makes the left side of (2) an exact
differential

d

dx

(
y20

1
√
x

)
=
C

x

Integrating both sides gives

y20
1
√
x
= C

∫
1
x
dx +C1

y20
1
√
x
= 2C lnx +C1

y20 = 2C lnx
√
x +C1

√
x

Or
y20 = C1 lnx

√
x +C2

√
x (3)

The above is the second solution. Therefore the final solution is

y (x) = C0y1 (x) +C3y20 (x)

Substituting y1 =
√
x and y20 found above and combining the common term

√
x and renaming

constants gives
y (x) = C1

√
x +C2 lnx

√
x

Another method to find the second solution

This method is called the reduction of order method. It does not require findingW (x) first. Let
the second solution be

y20 = Y = v (x)y1 (x) (4)
Where v (x) is unknown function to be determined, and y1 (x) =

√
x which is the first solution

that is already known. Therefore

Y ′ = v′y1 +vy
′
1

Y ′′ = v′′y1 +v
′y′1 +v

′y′1 +vy
′′
1

= v′′y1 + 2v
′y′1 +vy

′′
1
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Since Y is a solution to the ODE 4x2y′′ + y = 0, then substituting the above equations back
into the ODE 4x2y′′ + y = 0 gives

4x2
(
v′′y1 + 2v

′y′1 +vy
′′
1

)
+vy1 = 0

v′′
(
4x2y1

)
+v′

(
8x2y′1

)
+v

©«
0︷       ︸︸       ︷

4x2y′′1 + y1
ª®®®¬ = 0

But 4x2y′′1 + y1 = 0 because y1 is a solution. The above simplifies to

v′′
(
4x2y1

)
+v′

(
8x2y′1

)
= 0

But y1 = x
1
2 , hence y′1 =

1
2x

−1
2 and the above simplifies to

v′′
(
4x2x

1
2

)
+v′

(
4x2x

−1
2

)
= 0

x
5
2v′′ +v′x

3
2 = 0

xv′′ +v′ = 0

v′′ +
1
x
v′ = 0

This ODE is now easy to solve because the v (x) term is missing. Letw = v′ and the above first
order ODEw′ + 1

xw = 0. This is linear inw . Hence using integrating factor I = e
∫

1
x dz = x , this

ODE becomes
d

x
(wx) = 0

wx = C

w =
C

x

WhereC is constant of integration. Sincev′ = w , thenv′ =
C1
x . Nowv (x) is found by integrating

both sides
v = C1 lnx +C2

Therefore the second solution from (4) becomes

y20 = C1 lnxy1 +C2y1

= C1
√
x lnx +C2

√
x (5)

Comparing the above to (3), shows it is the same solution. Both methods can be used, but
reduction of order method is a more common method and it does not require finding the
Wronskian first, although it is not hard to find by using Abel’s theorem.

3.3 Part 3

The solutions we found in part (1) are

y1 (x) = C1x
1
2 (1+α)

y2 (x) = C2x
1
2 (1−α)
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Therefore

lim
α→0

y1 − y2
α

= lim
α→0

C1x
1
2 (1+α) −C2x

1
2 (1−α)

α

Applying L’Hopital’s

lim
α→0

y1 − y2
α

= lim
α→0

C1
d
dα

(
x

1
2 (1+α)

)
−C2

d
dα

(
x

1
2 (1−α)

)
1

(1)

But

d

dα

(
x

1
2 (1+α)

)
=

d

dα
e

1
2 (1+α) lnx

=
d

dα
e
( 1
2 lnx+α lnx

)
= lnxe

( 1
2 lnx+α lnx

)
And

d

dα

(
x

1
2 (1−α)

)
=

d

dα
e

1
2 (1−α) lnx

=
d

dα
e
( 1
2 lnx−α lnx

)
= − lnxe

( 1
2 lnx−α lnx

)
Therefore (1) becomes

lim
α→0

y1 − y2
α

= lim
α→0

C1 lnxe
( 1
2 lnx+α lnx

)
+C2 lnxe

( 1
2 lnx−α lnx

)
= lnx

(
lim
α→0

C1e
( 1
2 lnx+α lnx

)
+C2e

( 1
2 lnx−α lnx

) )
= lnx

(
C1e

1
2 lnx +C2e

1
2 lnx

)
= lnx

(
C1

√
x +C2

√
x
)

= C
√
x lnx

The above is the same as (3) found in part (2). Hence

y20 (x) = lim
α→0

y1 − y2
α

Which is what the problem asked to show.


	Problem 1
	Problem 2
	Problem 3
	Part 1
	Part 2
	Part 3


