HW 2, Physics 501
 Fall 2018
 University Of Wisconsin, Milwaukee

Nasser M. Abbasi
November 22, $2018 \quad$ Compiled on November 22, 2018 at 2:02am

Contents

1 Problem 1 2
1.1 Part 1 . 2
1.2 Part 2 . 2

2 Problem 2 4
2.1 Part (1) . 4
2.2 Part (2) . 5

3 Problem 3 6
3.1 Part (1) . 6
3.2 Part (2) . 7

4 Problem 4 9

5 Problem 5 11

1 Problem 1

Find all possible values for (put into $x+i y$ form)

1. $\log (1+\sqrt{3} i)$
2. $(1+\sqrt{3} i)^{2 i}$

Answer

1.1 Part 1

Let $z=x+i y$, where here $x=1, y=3$, then $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{1+3}=2$ and $\arg (z)=\theta_{0}=$ $\arctan \left(\frac{y}{x}\right)=\arctan \left(\frac{\sqrt{3}}{1}\right)=\frac{\pi}{6}=60^{\circ}$. The function $\log (z)$ is infinitely multi-valued, given by

$$
\begin{equation*}
\log (z)=\ln |z|+i\left(\theta_{0}+2 n \pi\right) \quad n=0, \pm 1, \pm 2, \cdots \tag{1}
\end{equation*}
$$

Where θ_{0} is the principal argument, which is 60^{0} in this example, which is when $n=0$. This is done to make $\log (z)$ single valued. This makes the argument of z restricted to $-\pi<\theta_{0}<\pi$. This makes the negative real axis the branch cut, including the origin. To find all values, we simply use (1) for all possible n values other than $n=0$. Each different n values gives different branch cut. This gives, where $\ln |z|=\ln (2)$ in all cases, the following

$$
\begin{array}{rlrl}
\log (z) & =\ln (2)+i\left(\frac{\pi}{3}\right) & n=0 \\
& =\ln (2)+i\left(\frac{\pi}{3}+2 \pi\right) & & n=1 \\
& =\ln (2)+i\left(\frac{\pi}{3}-2 \pi\right) & & n=-1 \\
& =\ln (2)+i\left(\frac{\pi}{3}+4 \pi\right) & & n=2 \\
& =\ln (2)+i\left(\frac{\pi}{3}-4 \pi\right) & & n=-2
\end{array}
$$

Or

$$
\begin{aligned}
\log (z) & =0.693+1.047 i \\
& =0.693+7.330 i \\
& =0.693-5.236 i \\
& =0.693+13.614 i \\
& =0.693-11.519 i
\end{aligned}
$$

$$
\vdots
$$

These are in $(x+i y)$ form. There are infinite number of values. Picking a specific branch cuts (i.e. specific n value), picks one of these values. The principal value is one associated with $n=0$.

1.2 Part 2

Let $z=1+i \sqrt{3}$, hence

$$
\begin{aligned}
f(z) & =z^{2 i} \\
& =\exp (2 i \log (z)) \\
& =\exp \left(2 i\left(\ln |z|+i\left(\theta_{0}+2 n \pi\right)\right)\right) \quad n=0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

Where in this example, as in first part, $\ln |z|=\ln (2)=0.693$ and principal argument is $\theta_{0}=\frac{\pi}{3}=60^{\circ}$. Hence the above becomes

$$
\begin{aligned}
f(z) & =\exp \left(2 i\left(\ln (2)+i\left(\frac{\pi}{3}+2 n \pi\right)\right)\right) \\
& =\exp \left(2 i \ln (2)-\left(\frac{2 \pi}{3}+4 n \pi\right)\right) \\
& =\exp \left(i \ln 4-\left(\frac{2 \pi}{3}+4 n \pi\right)\right) \\
& =\exp (i \ln 4) \exp \left(-\left(\frac{2 \pi}{3}+4 n \pi\right)\right) \\
& =e^{-\left(\frac{2 \pi}{3}+4 n \pi\right)}(\cos (\ln 4)+i \sin (\ln 4)) \\
& =e^{-\left(\frac{2 \pi}{3}+4 n \pi\right)} \cos (\ln 4)+i e^{-\left(\frac{2 \pi}{3}+4 n \pi\right)} \sin (\ln 4)
\end{aligned}
$$

Which is now in the form of $x+i y$. First few values are

$$
\begin{array}{rlrl}
f(z) & =e^{-\left(\frac{2 \pi}{3}\right)} \cos (\ln 4)+i e^{-\left(\frac{2 \pi}{3}\right)} \sin (\ln 4) & n=0 \\
& =e^{-\left(\frac{2 \pi}{3}+4 \pi\right)} \cos (\ln 4)+i e^{-\left(\frac{2 \pi}{3}+4 \pi\right)} \sin (\ln 4) & & n=1 \\
& =e^{-\left(\frac{2 \pi}{3}-4 \pi\right)} \cos (\ln 4)+i e^{-\left(\frac{2 \pi}{3}-4 \pi\right)} \sin (\ln 4) & & n=-1 \\
& =e^{-\left(\frac{2 \pi}{3}+8 \pi\right)} \cos (\ln 4)+i e^{-\left(\frac{2 \pi}{3}+8 \pi\right)} \sin (\ln 4) & & n=2 \\
& =e^{-\left(\frac{2 \pi}{3}-8 \pi\right)} \cos (\ln 4)+i e^{-\left(\frac{2 \pi}{3}-8 \pi\right)} \sin (\ln 4) & & n=-2
\end{array}
$$

Or

$$
\begin{aligned}
f(z) & =0.0226+i 0.121 \\
& =7.878 \times 10^{-8}+i 4.222 \times 10^{-7} \\
& =6478+i 34713 \\
& =2.748 \times 10^{-13}+i 1.472 \times 10^{-12} \\
& =1.858 \times 10^{9}+i 9.954 \times 10^{9} \\
& \vdots
\end{aligned}
$$

2 Problem 2

Given that $u(x, y)=3 x^{2} y-y^{3}$ find $v(x, y)$ such that $f(z)$ is analytic. Do the same for $u(x, y)=$ $\frac{y}{x^{2}+y^{2}}$

Solution

2.1 Part (1)

$u(x, y)=3 x^{2} y-y^{3}$. The function $f(z)$ is analytic if it satisfies Cauchy-Riemann equations

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \tag{1}\\
-\frac{\partial u}{\partial y} & =\frac{\partial v}{\partial x} \tag{2}
\end{align*}
$$

Applying the first equation gives

$$
6 x y=\frac{\partial v}{\partial y}
$$

Hence, solving for v by integrating, gives

$$
\begin{equation*}
v(x, y)=3 x y^{2}+f(x) \tag{3}
\end{equation*}
$$

Is the solution to (3) where $f(x)$ is the constant of integration since it is a partial differential equation. We now use equation (2) to find $f(x)$. From (2)

$$
\begin{aligned}
-\left(3 x^{2}-3 y^{2}\right) & =\frac{\partial v}{\partial x} \\
-3 x^{2}+3 y^{2} & =\frac{\partial v}{\partial x}
\end{aligned}
$$

But (3) gives $\frac{\partial v}{\partial x}=3 y^{2}+f^{\prime}(x)$, hence the above becomes

$$
\begin{aligned}
-3 x^{2}+3 y^{2} & =3 y^{2}+f^{\prime}(x) \\
f^{\prime}(x) & =-3 x^{2}+3 y^{2}-3 y^{2} \\
& =-3 x^{2}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
f(x) & =\int-3 x^{2} d x \\
& =-x^{3}+C
\end{aligned}
$$

Therefore, (3) becomes

$$
v(x, y)=3 x y^{2}+f(x)
$$

Or

$$
v(x, y)=3 x y^{2}-x^{3}+C
$$

Where C is arbitrary constant. To verify, we apply CR again. Equation (1) now gives

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
6 x y & =6 y x
\end{aligned}
$$

Verified. Equation (2) gives

$$
\begin{aligned}
-\frac{\partial u}{\partial y} & =\frac{\partial v}{\partial x} \\
-3 x^{2}+3 y^{2} & =-3 x^{2}+3 y^{2}
\end{aligned}
$$

Verified.

2.2 Part (2)

$u(x, y)=\frac{y}{x^{2}+y^{2}}$. The function $f(z)$ is analytic if it satisfies Cauchy-Riemann equations

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \tag{1}\\
-\frac{\partial u}{\partial y} & =\frac{\partial v}{\partial x} \tag{2}
\end{align*}
$$

Applying the first equation gives

$$
-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial v}{\partial y}
$$

Hence, solving for v by integrating, gives

$$
\begin{align*}
v & =-2 x \int \frac{y}{\left(x^{2}+y^{2}\right)^{2}} d y \\
& =\frac{x}{x^{2}+y^{2}}+f(x) \tag{3}
\end{align*}
$$

Is the solution to (3) where $f(x)$ is the constant of integration since it is a partial differential equation. equation (2) gives

$$
-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial v}{\partial x}
$$

But (3) gives $\frac{\partial v}{\partial x}=\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+f^{\prime}(x)$, hence the above becomes

$$
\begin{aligned}
-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & =\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+f^{\prime}(x) \\
f^{\prime}(x) & =-\frac{2}{x^{2}+y^{2}}+\frac{2\left(y^{2}+x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-\frac{2}{x^{2}+y^{2}}+\frac{2}{\left(x^{2}+y^{2}\right)} \\
& =0
\end{aligned}
$$

Hence

$$
f(x)=C
$$

where C is arbitrary constant. Therefore, (3) becomes

$$
v(x, y)=\frac{x}{x^{2}+y^{2}}+C
$$

To verify, CR is applied again. Equation (1) now gives

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} & =\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Hence verified. Equation (2) gives

$$
\begin{aligned}
-\frac{\partial u}{\partial y} & =\frac{\partial v}{\partial x} \\
-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & =\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{-\left(x^{2}+y^{2}\right)+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & =\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Verified.

3 Problem 3

Evaluate the integral (i) $\oint_{C}|z|^{2} d z$ and (ii) $\oint_{C} \frac{1}{z^{2}} d z$ along two contours. These contours are

1. Line segment with initial point 1 and fixed point i
2. Arc of unit circle with $\operatorname{Im}(z) \geq 0$ with initial point 1 and final point i

Solution

3.1 Part (1)

Figure 1: Integration path

First integral We start by finding the parameterization. For line segments that starts at (x_{0}, y_{0}) and ends at $\left(x_{1}, y_{1}\right)$, the parametrization is given by

$$
\begin{aligned}
& x(t)=(1-t) x_{0}+t x_{1} \\
& y(t)=(1-t) y_{0}+t y_{1}
\end{aligned}
$$

For $0 \leq t \leq 1$. Hence for $z=x+i y$, it becomes $z(t)=x(t)+i y(t)$. In this case, $x_{0}=1, y_{0}=$ $0, x_{1}=0, y_{1}=1$, therefore

$$
\begin{aligned}
& x(t)=(1-t) \\
& y(t)=t
\end{aligned}
$$

Using these, $z(t)$ is found from

$$
\begin{aligned}
z(t) & =x(t)+i y(t) \\
& =(1-t)+i t
\end{aligned}
$$

And

$$
z^{\prime}(t)=-1+i
$$

Since $|z|^{2}=x^{2}+y^{2}$, then in terms of t it becomes

$$
|z(t)|^{2}=(1-t)^{2}+t^{2}
$$

Hence the line integral now becomes

$$
\begin{aligned}
\int_{C}|z|^{2} d z & =\int_{0}^{1}|z(t)|^{2} z^{\prime}(t) d t \\
& =\int_{0}^{1}\left((1-t)^{2}+t^{2}\right)(-1+i) d t \\
& =(-1+i) \int_{0}^{1}(1-t)^{2}+t^{2} d t \\
& =(-1+i) \int_{0}^{1} 1+t^{2}-2 t+t^{2} d t \\
& =(-1+i) \int_{0}^{1} 1+2 t^{2}-2 t d t \\
& =(-1+i)\left(\int_{0}^{1} d t+\int_{0}^{1} 2 t^{2} d t-\int_{0}^{1} 2 t d t\right) \\
& =(-1+i)\left((t)_{0}^{1}+2\left(\frac{t^{3}}{3}\right)_{0}^{1}-2\left(\frac{t^{2}}{2}\right)_{0}^{1}\right) \\
& =(-1+i)\left(1+\frac{2}{3}-2\left(\frac{1}{2}\right)\right)
\end{aligned}
$$

Hence

$$
\int_{C}|z|^{2} d z=\frac{2}{3}(i-1)
$$

second integral
Using the same parameterization above. But here the integrand is

$$
\frac{1}{z^{2}}=\frac{1}{((1-t)+i t)^{2}}
$$

Hence the integral becomes

$$
\begin{aligned}
\int_{C} \frac{1}{z^{2}} d z & =\int_{0}^{1} \frac{1}{((1-t)+i t)^{2}} z^{\prime}(t) d t \\
& =(i-1) \int_{0}^{1} \frac{1}{((1-t)+i t)^{2}} d t \\
& =(i-1)(-i)
\end{aligned}
$$

Hence

$$
\int_{C} \frac{1}{z^{2}} d z=1+i
$$

3.2 Part (2)

Figure 2: Integration path

First integral Let $z=r e^{i \theta}$ then $\frac{d z}{d \theta}=r i e^{i \theta}$. When $z=1$ then $\theta=0$. When $z=i$ then $\theta=\frac{\pi}{2}$, hence we can parameterize the contour integral using θ and it becomes

$$
\begin{aligned}
\int_{C}|z|^{2} d z & =\int_{0}^{\frac{\pi}{2}} r^{2}\left(r i e^{i \theta}\right) d \theta \\
& =i r^{3} \int_{0}^{\frac{\pi}{2}} e^{i \theta} d \theta \\
& =i r^{3}\left[\frac{e^{i \theta}}{i}\right]_{0}^{\frac{\pi}{2}} \\
& =r^{3}\left[e^{i \theta}\right]_{0}^{\frac{\pi}{2}} \\
& =r^{3}\left[e^{i \frac{\pi}{2}}-e^{0}\right] \\
& =r^{3}[i-1]
\end{aligned}
$$

But $r=1$, therefore the above becomes

$$
\int_{C}|z|^{2} d z=i-1
$$

second integral
Using the same parameterization above. But here the integrand now

$$
\frac{1}{z^{2}}=\frac{1}{r^{2} e^{i 2 \theta}}
$$

Therefore

$$
\begin{aligned}
\int_{C} \frac{1}{z^{2}} d z & =\int_{0}^{\frac{\pi}{2}} \frac{1}{r^{2} e^{i 2 \theta}}\left(r i e^{i \theta}\right) d \theta \\
& =\frac{i}{r} \int_{0}^{\frac{\pi}{2}} e^{-i \theta} d \theta \\
& =\frac{i}{r}\left(\frac{e^{-i \theta}}{-i}\right)_{0}^{\frac{\pi}{2}} \\
& =\frac{-1}{r}\left(e^{-i \theta}\right)_{0}^{\frac{\pi}{2}} \\
& =\frac{-1}{r}\left(e^{-i \frac{\pi}{2}}-1\right) \\
& =\frac{-1}{r}(-i-1)
\end{aligned}
$$

But $r=1$, hence

$$
\int_{C} \frac{1}{z^{2}} d z=1+i
$$

4 Problem 4

Use the Cauchy integral formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

To evaluate

$$
\oint_{C} \frac{1}{(z+1)(z+2)} d z
$$

Where C is the circular contour $|z+1|=R$ with $R<1$. Note that if $R>1$ then a different result is found. Why can't the Cauchy integral formula above be used for $R>1$?

Solution

The disk $|z+1|=R$ is centered at $z=-1$ with $R<1$. The function

$$
g(z)=\frac{1}{(z+1)(z+2)}
$$

has pole at $z=-1$ and at $z=-2$.

Figure 3: Showing location of pole

In the Cauchy integral formula, the function $f(z)$ is analytic on C and inside C. Hence, to use Cauchy integral formula, we need to convert $g(z)=\frac{1}{(z+1)(z+2)}$ to look like $\frac{f(z)}{z-z_{0}}$ where $f(z)$ is analytic inside C. This is done as follows

$$
\begin{aligned}
\frac{1}{(z+1)(z+2)} & =\frac{\frac{1}{(z+2)}}{z-(-1)} \\
& =\frac{f(z)}{z-(-1)}
\end{aligned}
$$

Where now $f(z)=\frac{1}{(z+2)}$. This has pole at $z=-2$. Since this pole is outside C then $f(z)$ is analytic on and inside C and can be used for the purpose of using Cauchy integral formula, which now can be written as

$$
\begin{aligned}
\oint_{C} \frac{1}{(z+1)(z+2)} d z & =\oint_{C} \frac{\frac{1}{(z+2)}}{z-(-1)} d z \\
& =\oint_{C} \frac{f(z)}{z-(-1)} d z \\
& =(2 \pi i) f(-1)
\end{aligned}
$$

Therefore, we just need to evaluate $f(-1)$ which is seen as 1 . Hence

$$
\begin{equation*}
\oint_{C} \frac{1}{(z+1)(z+2)} d z=2 \pi i \tag{1}
\end{equation*}
$$

To verify, we can solve this again using the residue theorem

$$
\oint_{C} g(z) d z=2 \pi i(\text { sum of residues of } g(z) \text { inside } C)
$$

But $g(z)=\frac{1}{(z+1)(z+2)}$ has only one pole inside C, which is at $z=-1$. Therefore the above becomes

$$
\begin{equation*}
\oint_{C} \frac{1}{(z+1)(z+2)}=2 \pi i(\text { residue of } g(z) \text { at }-1) \tag{2}
\end{equation*}
$$

To find residue at -1 , we can use one of the short cuts to do that. Where we write $\frac{1}{(z+1)(z+2)}=\frac{\Phi(z)}{z+1}$ where $\Phi(z)$ is analytic at $z=-1$ and $\Phi(-1) \neq 0$. Therefore we see that $\Phi(z)=\frac{1}{z+2}$. Hence residue of $\frac{1}{(z+1)(z+2)}=\Phi\left(z_{0}\right)=\frac{1}{(-1)+2}=1$. Equation (2) becomes

$$
\oint_{C} \frac{1}{(z+1)(z+2)}=2 \pi i
$$

Which is same result obtained in (1) by using Cauchy integral formula directly.
To answer last part, when $R>1$, then now both poles $z=-1$ and $=-2$, are inside C. Therefore, we can't split $\frac{1}{(z+1)(z+2)}$ into one part that is analytic (the $f(z)$ in the above), in order to obtain expression $\frac{f(z)}{z-z_{0}}$ in order to apply Cauchy integral formula directly. Therefore when $R>1$ we should use

$$
\oint_{C} g(z) d z=2 \pi i(\text { sum of residues of } g(z) \text { inside } C)
$$

5 Problem 5

Evaluate the integral

$$
\oint_{C} e^{z^{2}}\left(\frac{1}{z^{2}}-\frac{1}{z^{3}}\right) d z
$$

Where he contour is the unit circle around origin (counter clockwise direction).

Solution

$$
\begin{aligned}
\oint_{C} e^{z^{2}}\left(\frac{1}{z^{2}}-\frac{1}{z^{3}}\right) d z & =\oint_{C} e^{z^{2}}\left(\frac{z-1}{z^{3}}\right) d z \\
& =\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z
\end{aligned}
$$

Where $z_{0}=0$ and where

$$
f(z)=e^{z^{2}}(z-1)
$$

But $f(z)$ is analytic on C and inside, since $e^{z^{2}}$ is analytic everywhere and $z-1$ has no poles. Hence we can use Cauchy integral formula for pole of higher order given by

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)
$$

Where $\underline{n=2}$ in this case. Therefore, since $z_{0}=0$ the above reduces to

$$
\begin{equation*}
\oint_{C} \frac{f(z)}{z^{3}} d z=\frac{2 \pi i}{2} f^{\prime \prime}(0) \tag{1}
\end{equation*}
$$

Now we just need to find $f^{\prime \prime}(z)$ and evaluate the result at $z_{0}=0$

$$
\begin{aligned}
f^{\prime}(z) & =2 z e^{z^{2}}(z-1)+e^{z^{2}} \\
f^{\prime \prime}(z) & =2 e^{z^{2}}(z-1)+2 z\left(2 z e^{z^{2}}(z-1)+e^{z^{2}}\right)+2 z e^{z^{2}}
\end{aligned}
$$

Hence

$$
f^{\prime \prime}(0)=-2
$$

Therefore (1) becomes

$$
\begin{equation*}
\oint_{C} \frac{e^{z^{2}}(z-1)}{z^{3}} d z=-2 \pi i \tag{2}
\end{equation*}
$$

To verify, we will do the same integration by converting it to line integration using parameterization on θ. Let $z(\theta)=r e^{i \theta}$, but $r=1$, therefore $z(\theta)=e^{i \theta}, d z=i e^{i \theta} d \theta$. Therefore the integral becomes

$$
\begin{aligned}
\oint_{C} e^{z^{2}}\left(\frac{z-1}{z^{3}}\right) d z & =\int_{0}^{2 \pi} e^{e^{2 i \theta}}\left(\frac{e^{i \theta}-1}{e^{3 i \theta}}\right) i e^{i \theta} d \theta \\
& =i \int_{0}^{2 \pi} e^{e^{2 i \theta}}\left(\frac{e^{i \theta}-1}{e^{2 i \theta}}\right) d \theta
\end{aligned}
$$

This is a hard integral to solve by hand. Using computer algebra software, it also gave $-2 \pi i$. This verified the result. Clearly using the Cauchy integral formula to solve this problem was much simpler that using parameterization.

