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2.2.2 Problem 2, section 15.1

Is sequence 𝑧𝑛 = 𝑒
− 𝑛𝜋𝑖

4 bounded? convergent? Find their limit points.

Solution

Sequence is bounded, since each element has modulus 1. It does not converge, since sequence
repeats. 2𝜋 = 𝑛𝜋

4 , hence 𝑛 = 8. So only 8 elements are unique. Each of these is limit point. These

are roots of 8√1.

2.2.3 Problem 6, section 15.1

Is sequence 𝑧𝑛 =
(3+4𝑖)𝑛

𝑛! bounded? convergent? Find their limit points.

Solution

𝑧𝑛 =
�𝑟𝑒𝑖𝜃0�

𝑛

𝑛!

But 𝑟 = 5 and 𝜃0 = arctan � 43�. The above becomes

𝑧𝑛 =
5𝑛𝑒𝑖𝑛𝜃0
𝑛!

=
5𝑛

𝑛!
𝑒𝑖𝑛𝜃0

Since modulus of 𝑒𝑖𝑛𝜃0 = 1, then we just need to look at 5𝑛

𝑛! to see if it is bounded or not. lim𝑛→∞
5𝑛

𝑛! = 0.

So it is bounded. Since 𝑛𝑡ℎ term goes to zero as 𝑛 → ∞ it converges. The terms are 5𝑛

𝑛!
(cos 𝑛𝜃0 + 𝑖 sin 𝑛𝜃0).

It converges to zero, since lim𝑛→∞
5𝑛

𝑛! = 0.

2.2.4 Problem 13, section 15.1

If 𝑧1, 𝑧2,⋯ converges to 𝐿, and �̄�1, �̄�2,⋯ converges to �̄�, show that 𝑧1+ �̄�1, 𝑧2+ �̄�2,⋯ converges to 𝐿+ �̄�

Solution
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This problem seems to be based on the idea that if sequence is convergent to 𝐿, then for any 𝜀 no
matter how small we can find an 𝑛, such that |𝑧𝑛 − 𝐿| < 𝜀. So let us pick

|𝑧𝑛 − 𝐿| <
1
2
𝜀

��̄�𝑛 − �̄�� <
1
2
𝜀

Where in the above, we did the same for the other sequence. Now by triangle inequality |𝐴 + 𝐵| ≤
|𝐴| + |𝐵|, where now we treat 𝐴 as (𝑧𝑛 − 𝐿) and 𝐵 as ��̄�𝑛 − �̄��, we have

�(𝑧𝑛 − 𝐿) + ��̄�𝑛 − �̄��� ≤ |𝑧𝑛 − 𝐿| + ��̄�𝑛 − �̄��

�(𝑧𝑛 + �̄�𝑛) − �𝐿 + �̄��� <
1
2
𝜀 +

1
2
𝜀

The above is �(𝑧𝑛 + �̄�𝑛) − �𝐿 + �̄��� < 𝜀. But this is the definition of a limit. It says that (𝑧𝑛 + �̄�𝑛) has
limit 𝐿 + �̄�, which is what we are asked to show.

2.2.5 Problem 18, section 15.1

Are the following series convergent or divergent? Give a reason. ∑∞
𝑛=0

𝑖𝑛

𝑛2−2𝑖

Solution

The numerator has modulus 1. So we just need to consider ∑∞
𝑛=0

1
�𝑛2−2𝑖�

. Since 1
𝑛2 converges and since

�𝑛2 − 2𝑖� > 𝑛2 (vectors, Argand diagram), then 1
�𝑛2−2𝑖�

< 1
𝑛2 , therefore it converges. We could also use

the ratio test, but this is simpler.

2.2.6 Problem 19, section 15.1

Are the following series convergent or divergent? Give a reason. ∑∞
𝑛=1

1

√𝑛

Solution

Since terms are 1
𝑛𝛼 where |𝛼| < 1, since 𝛼 = 1

2 here. Then we know it is divergent. It series becomes
convergent for 𝛼 > 1. To show this, we can try the ratio test. But this gives the limit of 1, so ratio
test is inconclusive. Using the integral test is best here. (notice that only upper limit is needed
in this test, no need to use lower limit). We can use the integral test because the terms 1

√𝑛
are

monotonically decreasing.

lim
𝑁→∞

�
𝑁 1

𝑥
1
2

𝑑𝑥 = lim
𝑁→∞

�2√𝑥�
𝑁

= lim
𝑁→∞

2√𝑁

= ∞

Hence diverges.

2.2.7 Problem 24, section 15.1

Are the following series convergent or divergent? Give a reason. ∑∞
𝑛=1 𝑛

2 � 𝑖
3
�
𝑛

Solution
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Trying ratio test gives

lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

� = lim
𝑛→∞

�

�

(𝑛 + 1)2

𝑛2
� 𝑖
3
�
𝑛+1

� 𝑖
3
�
𝑛

�

�

= lim
𝑛→∞

�
(𝑛 + 1)2

𝑛2 �
�

�

� 𝑖
3
�
𝑛+1

� 𝑖
3
�
𝑛

�

�

= lim
𝑛→∞

�

�

� 𝑖
3
�
𝑛+1

� 𝑖
3
�
𝑛

�

�

= lim
𝑛→∞

�
𝑖𝑛+13𝑛

𝑖𝑛3𝑛+1 �

= lim
𝑛→∞

�
𝑖
3
�

=
1
3

Since limit is smaller than 1, then converges.

2.2.8 Problem 7, section 15.2

Find center and radius of convergence of series ∑∞
𝑛=0 �

𝑎
𝑏
�
𝑛
𝑧𝑛

Solution

For these type of problem, always compare it to standard form ∑∞
𝑛=0𝐴𝑛 (𝑧 − 𝑧0)

𝑛. Where 𝑧0 is the
center of disk. So we see that here 𝑧0 is the origin. Now to find 𝑅 (the radius of convergence), it is

given by the inverse of 𝐿 = lim𝑛→∞ �
𝐴𝑛+1
𝐴𝑛

�. Therefore we start by finding 𝐿

𝐿 = lim
𝑛→∞

�
�

� 𝑎
𝑏
�
𝑛+1

� 𝑎
𝑏
�
𝑛
�
�

= lim
𝑛→∞

�
𝑎𝑛+1𝑏𝑛

𝑎𝑛𝑏+1 �

= lim
𝑛→∞

�
𝑎
𝑏
�

= �
𝑎
𝑏
�

Hence 𝑅 = � 𝑏𝑎 �

2.2.9 Problem 9, section 15.2

Find center and radius of convergence of series ∑∞
𝑛=0 (𝑛 − 𝑖)

𝑛 𝑧𝑛

Solution

The center is 𝑧0 = 0 by comparing to ∑∞
𝑛=0𝐴𝑛 (𝑧 − 𝑧0)

𝑛. To find 𝐿

𝐿 = lim
𝑛→∞

�
(𝑛 − 𝑖)𝑛+1

(𝑛 − 𝑖)𝑛
�

= 1

Hence 𝑅 = 1.

2.2.10 Problem 11, section 15.2

Find center and radius of convergence of series ∑∞
𝑛=1

(−1)𝑛+1

𝑛 𝑧𝑛

Solution
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The center is 𝑧0 = 0 by comparing to ∑∞
𝑛=0𝐴𝑛 (𝑧 − 𝑧0)

𝑛. To find 𝐿

𝐿 = lim
𝑛→∞

�
�

(−1)𝑛+2

𝑛+2
(−1)𝑛+1

𝑛

�
�

= lim
𝑛→∞

�
(−1)𝑛+2 𝑛

(−1)𝑛 (𝑛 + 2)
�

= lim
𝑛→∞

�
𝑛

(𝑛 + 2)
�

= 1

Hence 𝑅 = 1.

2.2.11 Problem 12, section 15.2

Find center and radius of convergence of series ∑∞
𝑛=1

4𝑛

(1+𝑖)𝑛
(𝑧 − 5)𝑛

Solution

The center is 𝑧0 = 5 by comparing to ∑∞
𝑛=0𝐴𝑛 (𝑧 − 𝑧0)

𝑛. To find 𝐿

𝐿 = lim
𝑛→∞

�

�

4𝑛+1

(1+𝑖)𝑛+1

4𝑛

(1+𝑖)𝑛

�

�

= lim
𝑛→∞

�
4𝑛+1 (1 + 𝑖)𝑛

4𝑛 (1 + 𝑖)𝑛+1
�

= lim
𝑛→∞

�
4 (1 + 𝑖)𝑛

(1 + 𝑖)𝑛+1
�

= lim
𝑛→∞

�
4
1 + 𝑖

�

= lim
𝑛→∞

4
|1 + 𝑖|

= lim
𝑛→∞

4

√2
Hence

𝑅 = √2
4

2.2.12 Problem 18, section 15.2

Find center and radius of convergence of series ∑∞
𝑛=1

(4𝑛)!

2𝑛(𝑛!)4
(𝑧 + 𝜋𝑖)𝑛

Solution
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The center is 𝑧0 = −𝜋𝑖 by comparing to ∑∞
𝑛=0𝐴𝑛 (𝑧 − 𝑧0)

𝑛. To find 𝐿

𝐿 = lim
𝑛→∞

�
�

(4(𝑛+1))!

2(𝑛+1)((𝑛+1)!)4

(4𝑛)!

2𝑛(𝑛!)4

�
�

= lim
𝑛→∞

�
(4(𝑛 + 1))!2𝑛 (𝑛!)4

(4𝑛)!2(𝑛+1) ((𝑛 + 1)!)4
�

=
1
2

lim
𝑛→∞

�
(4(𝑛 + 1))! (𝑛!)4

(4𝑛)! ((𝑛 + 1)!)4
�

=
1
2

lim
𝑛→∞

�
(4𝑛 + 4)! (𝑛!)4

(4𝑛)! ((𝑛 + 1)!)4
�

=
1
2

lim
𝑛→∞

�
(4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1) (4𝑛)! (𝑛!)4

(4𝑛)! ((𝑛 + 1)!)4
�

=
1
2

lim
𝑛→∞

�
(4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1) (𝑛!)4

((𝑛 + 1)!)4
�

=
1
2

lim
𝑛→∞

�
(4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1) (𝑛!)4

((𝑛 + 1) 𝑛!)4
�

=
1
2

lim
𝑛→∞

�
(4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1)

(𝑛 + 1)4
�

=
1
2

lim
𝑛→∞

�
256𝑛4 + 640𝑛3 + 560𝑛2 + 200𝑛 + 24

𝑛4 + 4𝑛3 + 6𝑛2 + 4𝑛 + 1 �

Hence

𝐿 =
1
2

lim
𝑛→∞

�
�
256 + 640 1𝑛 + 560

1
𝑛2 + 200

1
𝑛3 +

24
𝑛4

1 + 4 1𝑛 + 6
1
𝑛2 + 4

1
𝑛3 +

1
𝑛4

�
�

=
1
2
(256)

= 128

Hence

𝑅 =
1
128
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2.2.13 key solution

2.3 HW 3

2.3.1 Problem set
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2.3.2 Problem 1

Consider the power series below. Given the center and find radius of convergence for each.

1.
∞
�
𝑛=1
𝑛 �𝑧 + 𝑖√2�

𝑛

2.
∞
�
𝑛=1

� 𝑎
𝑏
�
𝑛
(𝑧 − 𝑖𝜋)𝑛

3.
∞
�
𝑛=0

(3𝑛)!
2𝑛(𝑛!)3

𝑧𝑛

4.
∞
�
𝑛=0

1
(1+𝑖)𝑛

(𝑧 + 2 − 𝑖)𝑛

Solution
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1) Comparing to form
∞
�
𝑛=1
𝑎𝑛 (𝑧 − 𝑧0)

𝑛 then center is −𝑖√2. Now,

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
(𝑛 + 1)
𝑛

�

= 1

Hence 𝑅 = 1

2) Comparing to form
∞
�
𝑛=1
𝑎𝑛 (𝑧 − 𝑧0)

𝑛 then center is 𝑖𝜋. Now,

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

� 𝑎
𝑏
�
𝑛+1

� 𝑎
𝑏
�
𝑛
�
�

= lim
𝑛→∞

��
𝑎
𝑏
��

=
𝑎
𝑏

Hence 𝑅 = 𝑏
𝑎

3) Comparing
∞
�
𝑛=0

(3𝑛)!
2𝑛(𝑛!)3

𝑧𝑛 to
∞
�
𝑛=1
𝑎𝑛 (𝑧 − 𝑧0)

𝑛 then center is 0. Now

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

(3(𝑛+1))!
2𝑛+1((𝑛+1)!)3

(3𝑛)!
2𝑛(𝑛!)3

�
�

= lim
𝑛→∞

�
(3 (𝑛 + 1))!2𝑛 (𝑛!)3

(3𝑛)!2𝑛+1 ((𝑛 + 1)!)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 3)! (𝑛!)3

(3𝑛)! ((𝑛 + 1)!)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 1) (3𝑛 + 2) (3𝑛 + 1) (3𝑛)! (𝑛!)3

(3𝑛)! ((𝑛 + 1)!)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 1) (3𝑛 + 2) (3𝑛 + 1) (𝑛!)3

((𝑛 + 1)!)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 1) (3𝑛 + 2) (3𝑛 + 1) (𝑛!)3

((𝑛 + 1) 𝑛!)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 1) (3𝑛 + 2) (3𝑛 + 1) (𝑛!)3

(𝑛 + 1)3 (𝑛!)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 1) (3𝑛 + 2) (3𝑛 + 1)

(𝑛 + 1)3
�

=
1
2

lim
𝑛→∞

�
(3𝑛 + 1) (3𝑛 + 2) (3𝑛 + 1)

(𝑛 + 1)3
�

Hence the above becomes

𝐿 =
1
2

lim
𝑛→∞

�
27𝑛3 + 36𝑛2 + 15𝑛 + 2
𝑛3 + 3𝑛2 + 3𝑛 + 1 �

=
1
2

lim
𝑛→∞

�
�
27 + 36 1𝑛 + 15

1
𝑛2 +

2
𝑛3

1 + 3 1𝑛 + 3
1
𝑛2 +

1
𝑛3

�
�

=
27
2
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Hence 𝑅 = 2
27 .

4) Comparing
∞
�
𝑛=0

1
(1+𝑖)𝑛

(𝑧 − (−2 + 𝑖))𝑛 to
∞
�
𝑛=1
𝑎𝑛 (𝑧 − 𝑧0)

𝑛 shows that center is 𝑧0 = −2 + 𝑖. Now

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
(1+𝑖)𝑛+1

1
(1+𝑖)𝑛

�
�

= lim
𝑛→∞

�
(1 + 𝑖)𝑛

(1 + 𝑖)𝑛+1
�

= lim
𝑛→∞

�
1

(1 + 𝑖)
�

= �
1

(1 + 𝑖)
�

=
1

√2

Hence 𝑅 = √2

2.3.3 Problem 2

Find radius of convergence using both 1) 𝑅 = 1
𝐿 where 𝐿 = lim𝑛→∞ �

𝑎𝑛+1
𝑎𝑛
� and 2) the termwise

di�erentiation/integration properties of power series. Do this for

1. ∑∞
𝑛=1

6𝑛

𝑛
(𝑧 − 𝑖)𝑛

2. ∑∞
𝑛=0

3𝑛(𝑛+1)𝑛
5𝑛 𝑧2𝑛

Solution

1) First method. The center is 𝑖. And

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

6𝑛+1

𝑛+1
6𝑛

𝑛

�
�

= lim
𝑛→∞ �

�6𝑛+1� 𝑛
6𝑛 (𝑛 + 1) �

= lim
𝑛→∞

�
6𝑛

(𝑛 + 1)
�

= 6 lim
𝑛→∞

�
𝑛

(𝑛 + 1)
�

= 6

Hence 𝑅 = 1
6 .

Second method: Taking termwise di�erentiation gives

𝑓′ (𝑧) =
∞
�
𝑛=1

6𝑛

𝑛
𝑛 (𝑧 − 𝑖)𝑛−1

= 6
∞
�
𝑛=1

6𝑛−1 (𝑧 − 𝑖)𝑛−1

Changing the indexing gives

𝑓′ (𝑧) = 6
∞
�
𝑛=0

6𝑛 (𝑧 − 𝑖)𝑛

= 6
∞
�
𝑛=0

(6 (𝑧 − 𝑖))𝑛
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Comparing to Binomial series
∞
�
𝑛=0
𝑟𝑛, the above is 6 1

1−𝑟 where 𝑟 = 6 (𝑧 − 𝑖). Hence this converges for

|𝑟| < 1 or |6 (𝑧 − 𝑖)| < 1 or |(𝑧 − 𝑖)| < 1
6 and diverges for |𝑧 − 𝑖| > 1

6 . Since termwise di�erentiated series

has same radius of convergence, then 𝑅 = 1
6 as using first method.

2) First method. Comparing ∑∞
𝑛=0

3𝑛(𝑛+1)𝑛
5𝑛

�𝑧2�
𝑛
to ∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)
𝑛 then center is zero. And

TODO

2.3.4 Problem 3

Show that 1
(1−𝑧)2

= ∑∞
𝑛=0 (𝑛 + 1) 𝑧

𝑛 , using (a) the Cauchy product. (b) By di�erentiating a suitable

series.

Solution (a)

1
(1 − 𝑧)2

=
1

(1 − 𝑧)
1

(1 − 𝑧)

= �1 + 𝑧 + 𝑧2 + 𝑧3 +⋯� �1 + 𝑧 + 𝑧2 + 𝑧3 +⋯�

= �1 + 𝑧 + 𝑧2 + 𝑧3 +⋯� + 𝑧 �1 + 𝑧 + 𝑧2 + 𝑧3 +⋯� + 𝑧2 �1 + 𝑧 + 𝑧2 + 𝑧3 +⋯� +⋯

= �1 + 𝑧 + 𝑧2 + 𝑧3 +⋯� + �𝑧 + 𝑧2 + 𝑧3 +⋯� + �𝑧2 + +𝑧3 + 𝑧4 +⋯� +⋯

= 1 + 2𝑧 + 3𝑧2 + 4𝑧4 +⋯ |𝑧| < 1

But ∑∞
𝑛=0 (𝑛 + 1) 𝑧

𝑛 = 1 + 2𝑧 + 3𝑧2 + 4𝑧4 +⋯. Hence the same.

Solution (b) Observing that

(𝑛 + 1) 𝑧𝑛 =
𝑑
𝑑𝑧
𝑧𝑛+1

Then
∞
�
𝑛=0

(𝑛 + 1) 𝑧𝑛 =
∞
�
𝑛=0

𝑑
𝑑𝑧
𝑧𝑛+1

=
𝑑
𝑑𝑧

∞
�
𝑛=0

𝑧𝑛+1

=
𝑑
𝑑𝑧

∞
�
𝑛=1

𝑧𝑛

=
𝑑
𝑑𝑧
�𝑧 + 𝑧2 + 𝑧3 +⋯�

=
𝑑
𝑑𝑧
�𝑧 �1 + 𝑧 + 𝑧2 +⋯��

=
𝑑
𝑑𝑧
�
𝑧

1 − 𝑧
�

But 𝑑
𝑑𝑧

𝐴(𝑧)
𝐵(𝑧) =

𝐴′𝐵−𝐴𝐵′

𝐵2 , hence the above becomes, where 𝐴 = 𝑧, 𝐵 = 1 − 𝑧

∞
�
𝑛=0

(𝑛 + 1) 𝑧𝑛 =
(1 − 𝑧) − 𝑧 (−1)

(1 − 𝑧)2

=
1 − 𝑧 + 𝑧
(1 − 𝑧)2

=
1

(1 − 𝑧)2

2.3.5 Problem 4

If 𝑓 (𝑧) is an even function, where 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛, show that 𝑎𝑛 = 0 when 𝑛 is odd. And if 𝑓 (𝑧) is
odd function, show that 𝑎𝑛 = 0 when 𝑛 is even.

Solution

If 𝑓 (𝑧) is even, then 𝑓 (−𝑧) = 𝑓 (𝑧). Therefore
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∞
�
𝑛=0

𝑎𝑛 (−𝑧)
𝑛 =

∞
�
𝑛=0

𝑎𝑛𝑧𝑛

𝑎0 − 𝑎1𝑧 + 𝑎2𝑧2 − 𝑎3𝑧3 + 𝑎4𝑧4 −⋯ = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + 𝑎4𝑧4 +⋯

Since power series is unique, then we must have 𝑎1 = −𝑎1 which means 𝑎1 = 0, the same for 𝑎3 = −𝑎3,
which gives 𝑎3 = 0 and so on for all odd 𝑎𝑛.

If 𝑓 (𝑧) is odd, then 𝑓 (−𝑧) = −𝑓 (𝑧). Therefore

∞
�
𝑛=0

𝑎𝑛 (−𝑧)
𝑛 = −

∞
�
𝑛=0

𝑎𝑛𝑧𝑛

𝑎0 − 𝑎1𝑧 + 𝑎2𝑧2 − 𝑎3𝑧3 + 𝑎4𝑧4 −⋯ = − �𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + 𝑎4𝑧4 +⋯�

= −𝑎0 − 𝑎1𝑧 − 𝑎2𝑧2 − 𝑎3𝑧3 − 𝑎4𝑧4 +⋯

Since power series is unique, then we must have 𝑎0 = −𝑎0 which means 𝑎0 = 0, the same for 𝑎2 = −𝑎2,
which gives 𝑎2 = 0 and so on for all even 𝑎𝑛.

2.3.6 Problem 5

Develop the functions below in Maclaurin’s series and determine the radius of convergence 𝑅 for
each. (a) cos �2𝑧2�, (b) 𝑧+2

1−𝑧2

Solution (a)

cos (𝑥) = 1 − 𝑥
2

2!
+
𝑥4

4!
−
𝑥6

6!
+⋯

Replacing 𝑥 = 2𝑧2 gives

cos �2𝑧2� = 1 −
�2𝑧2�

2

2!
+
�2𝑧2�

4

4!
−
�2𝑧2�

6

6!
+⋯

= 1 −
22𝑧4

2!
+
24𝑧8

4!
−
26𝑧12

6!
+⋯

= 1 −
4𝑧4

2!
+
42𝑧8

4!
−
43𝑧12

6!
+⋯

=
∞
�
𝑛=0

(−1)𝑛
4𝑛𝑧2𝑛

(2𝑛)!

=
∞
�
𝑛=0

(−1)𝑛
�4𝑧2�

𝑛

(2𝑛)!
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Hence

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�
�

�4𝑧2�
𝑛+1

(2(𝑛+1))!

�4𝑧2�
𝑛

(2𝑛)!

�
�
�

= lim
𝑛→∞

�
�
�4𝑧2�

𝑛+1
(2𝑛)!

�4𝑧2�
𝑛
(2 (𝑛 + 1))!

�
�

= lim
𝑛→∞

�
4𝑧2 (2𝑛)!
(2𝑛 + 2)! �

= lim
𝑛→∞

�
4𝑧2 (2𝑛)!

(2𝑛 + 2) (2𝑛 + 1) (2𝑛)! �

= lim
𝑛→∞

�
4𝑧2

(2𝑛 + 2) (2𝑛 + 1) �

= lim
𝑛→∞

�
4𝑧2

4𝑛2 + 6𝑛 + 2�

= lim
𝑛→∞

�
�

4
𝑛2 𝑧

2

4 + 6 1𝑛 +
2
𝑛

�
�

= �𝑧2� lim
𝑛→∞

�
0
4
�

= 0

Hence 𝑅 = 1
𝐿 = ∞

(b) 𝑧+2
1−𝑧2 . Apply partial fractions. Obtain two binomial series and combine.

2.3.7 Problem 6

Develop (a) 𝑓 (𝑧) = 1
𝑧 in Taylor series around 𝑧0 = 𝑖. (b) 𝑔 (𝑧) = 𝑒𝑧 around 𝑧0 = 𝑎. What is radius of

convergence?

Solution (a)

𝑓 (𝑧) = 𝑓 (𝑖) + (𝑧 − 𝑖) 𝑓′ (𝑖) +
(𝑧 − 𝑖)2 𝑓′′ (𝑖)

2!
+
(𝑧 − 𝑖)3 𝑓′′′ (𝑖)

3!
+⋯

But 𝑓′ (𝑧) = − 1
𝑧2 , 𝑓

′′ (𝑧) = 2
𝑧3 , 𝑓

′′′ (𝑧) = − (2)(3)
𝑧4
,⋯, hence the above becomes

𝑓 (𝑧) =
1
𝑖
− (𝑧 − 𝑖)

1
𝑖2
+
(𝑧 − 𝑖)2

2!
2
𝑖3
+
(𝑧 − 𝑖)3

3! �−
2 (3)
𝑖4 � +⋯

= −𝑖 + (𝑧 − 𝑖) + 2𝑖
(𝑧 − 𝑖)2

2!
− 2 (3)

(𝑧 − 𝑖)3

3!
+⋯

= −𝑖 + (𝑧 − 𝑖) + 𝑖 (𝑧 − 𝑖)2 − (𝑧 − 𝑖)3 +⋯

=
∞
�
𝑛=0

(−1)𝑛

𝑖𝑛+1
(𝑧 − 𝑖)𝑛

Hence this convergence for |𝑧 − 𝑖| < 1.

Solution (b)

𝑔 (𝑧) = 𝑔 (𝑎) + (𝑧 − 𝑎) 𝑔′ (𝑎) +
(𝑧 − 𝑎)2 𝑔′′ (𝑎)

2!
+
(𝑧 − 𝑎)3 𝑔′′′ (𝑎)

3!
+⋯

But 𝑔′ (𝑧) = 𝑒𝑧, 𝑔′′ (𝑧) = 𝑒𝑧, 𝑔′′′ (𝑧) = 𝑒𝑧,⋯, hence the above becomes
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𝑔 (𝑧) = 𝑒𝑎 + (𝑧 − 𝑎) 𝑒𝑎 +
(𝑧 − 𝑎)2 𝑒𝑎

2!
+
(𝑧 − 𝑎)3 𝑒𝑎

3!
+⋯

= 𝑒𝑎
⎛
⎜⎜⎜⎝1 + (𝑧 − 𝑎) +

(𝑧 − 𝑎)2

2!
+
(𝑧 − 𝑎)3

3!
+⋯

⎞
⎟⎟⎟⎠

= 𝑒𝑎
∞
�
𝑛=0

(𝑧 − 𝑎)𝑛

𝑛!

Where 𝐿 = lim𝑛→∞ �
𝑎𝑛+1
𝑎𝑛
� = lim𝑛→∞ �

1
(𝑛+1)!

1
𝑛!

� = lim𝑛→∞ �
𝑛!

(1+𝑛)! � = lim𝑛→∞
𝑛!

𝑛!(1+𝑛) = lim𝑛→∞
1

1+𝑛 = 0. Hence

𝑅 = 1
𝐿 = ∞. Converges everywhere.

2.3.8 Problem 7

Show that ∑∞
𝑛=0

(𝑛!)2

(2𝑛)!𝑧
𝑛 converges uniformly in |𝑧| ≤ 3

Solution:

To find if it converges uniformly for |𝑧| ≤ 3, we need to find 𝑅, the radius of converges using normal
method, then it 𝑅 > 3, then it will converge uniformly for |𝑧| ≤ 3.

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

((𝑛+1)!)2

(2(𝑛+1))!
(𝑛!)2

(2𝑛)!

�
�

= lim
𝑛→∞

�
((𝑛 + 1)!)2 (2𝑛)!
(𝑛!)2 (2 (𝑛 + 1))!

�

= lim
𝑛→∞

�
((𝑛 + 1) 𝑛!)2 (2𝑛)!
(𝑛!)2 (2 (𝑛 + 1))!

�

= lim
𝑛→∞

�
(𝑛 + 1)2 (2𝑛)!
(2𝑛 + 2)! �

= lim
𝑛→∞

�
(𝑛 + 1)2 (2𝑛)!

(2𝑛 + 2) (2𝑛 + 1) (2𝑛)! �

= lim
𝑛→∞

�
(𝑛 + 1)2

(2𝑛 + 2) (2𝑛 + 1) �

= lim
𝑛→∞

�
𝑛2 + 2𝑛 + 1
4𝑛2 + 6𝑛 + 2�

= lim
𝑛→∞

�
�
1 + 2

𝑛 +
1
𝑛2

4 + 6
𝑛2 +

2
𝑛2

�
�

=
1
4

Hence Radius of convergence 𝑅 = 4. Since 3 < 4, then it converges uniformly for 𝑅 < 3.

2.3.9 Problem 8

Where does ∑∞
𝑛=1 �

𝑛+2
5𝑛−3

�
𝑛
𝑧𝑛 converges uniformly?
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Solution We first find 𝑅. Since the series of the form ∑∞
𝑛=1𝐴

𝑛𝑧𝑛 then it is easier to use

𝐿 = lim
𝑛→∞

1
𝑛√|𝐴𝑛|

= lim
𝑛→∞

1
𝑛√|𝐴𝑛|

= lim
𝑛→∞

1
𝑛

�
�
𝑛 + 2
5𝑛 − 3

�
𝑛

= lim
𝑛→∞

1
𝑛

�
⃓
⃓
⃓
⎷

�
�
1 + 2

𝑛

5 − 3
𝑛

�
�

𝑛

=
1
5

Hence 𝑅 = 5. Therefore it converges uniformly for |𝑧| ≤ 𝑟 < 5

2.3.10 key solution



33



34



35



36



37



38



39



40

2.4 HW 4

2.4.1 problems description
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2.4.2 Problem 1

part a

𝑦′ = − cos 𝑥 + 2𝑎𝑥 + 𝑏
𝑦′′ = sin 𝑥 + 2𝑎
𝑦′′′ = cos 𝑥

Substituting into the ODE 𝑦′′′ = cos 𝑥 shows it satsifies it. Hence this is true for any 𝑎, 𝑏, 𝑐.

part b

Since tan (𝑥 + 𝑐) = sin(𝑥+𝑐)
cos(𝑥+𝑐) then

𝑦′ = 1 + tan2 (𝑥 + 𝑐)

Substituting this into the ode 𝑦′ = 1 + 𝑦2 gives

1 + tan2 (𝑥 + 𝑐) = 1 + tan2 (𝑥 + 𝑐)

Which is true for any 𝑐

2.4.3 Problem 2

see Key.

2.4.4 Problem 3

see Key

2.4.5 Problem 4

(a) Find all solutions to 𝑦𝑦′ + 25𝑥 = 0 (b) 𝑦′ = 𝑘𝑦2 (c) 𝑥𝑦′ = 𝑥 + 𝑦
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Part a

𝑦
𝑑𝑦
𝑑𝑥

= −25𝑥

𝑦𝑑𝑦 = −25𝑥𝑑𝑥
𝑦2

2
= −

25
2
𝑥2 + 𝐶

𝑦2 = −25𝑥2 + 𝐶1

Hence

𝑦 = ±�𝐶1 − 25𝑥2

For real solution, we want 𝐶1 > 25𝑥2.

Part b

1
𝑦2
𝑑𝑦
𝑑𝑥

= 𝑘

1
𝑦2
𝑑𝑦 = 𝑘𝑑𝑥

−1
𝑦
= 𝑘𝑥 + 𝐶

𝑦 =
−1

𝑘𝑥 + 𝐶

Part c

𝑑𝑦
𝑑𝑥

= 1 +
𝑦
𝑥

𝑥 ≠ 0

Let 𝑢 = 𝑦
𝑥 or 𝑦 = 𝑢𝑥. Hence 𝑑𝑦

𝑑𝑥 = 𝑢
′𝑥 + 𝑢 and the above ODE becomes

𝑢′𝑥 + 𝑢 = 1 + 𝑢

𝑢′ =
1
𝑥

𝑑𝑢 =
1
𝑥
𝑑𝑥

𝑢 = ln |𝑥| + 𝐶

Hence

𝑦 = 𝑥 (ln |𝑥| + 𝐶)

2.4.6 Problem 5

(a) Solve the IVP 𝑦′ (𝑥) = 1 + 4𝑦2 with 𝑦 (0) = 0. (b) 𝑦′ = − 𝑥
𝑦 with 𝑦 (1) = √3 (c) 𝑒𝑥𝑦′ = 2 (𝑥 + 1) 𝑦2 with

𝑦 (0) = 1
6

Part a

𝑦′ (𝑥) = 1 + 4𝑦2

𝑑𝑦
1 + 4𝑦2

= 𝑑𝑥

1
2

arctan �2𝑦� = 𝑥 + 𝐶

arctan �2𝑦� = 2𝑥 + 𝐶1

𝑦 =
tan (2𝑥 + 𝐶1)

2

Applying IC gives
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0 =
1
2

tan (𝐶1)

Hence 𝐶1 = 0. Therefore the solution is

𝑦 =
1
2

tan (2𝑥)

Part b

𝑦′ = −
𝑥
𝑦

𝑦𝑑𝑦 = −𝑥𝑑𝑥
1
2
𝑦2 = −

1
2
𝑥2 + 𝐶

𝑦2 = −𝑥2 + 𝐶1

Applying IC gives

3 = −1 + 𝐶1

𝐶1 = 4

Hence solution is

𝑦2 = −𝑥2 + 4

𝑦 = ±√4 − 𝑥2

For real solution 4 − 𝑥2 > 0.

Part c

𝑒𝑥𝑦′ = 2 (𝑥 + 1) 𝑦2

𝑦′

𝑦2
= 2 (𝑥 + 1) 𝑒−𝑥

𝑦−2𝑑𝑦 = 2 (𝑥 + 1) 𝑒−𝑥

−
1
𝑦
= �2 (𝑥 + 1) 𝑒−𝑥𝑑𝑥

= −2 (𝑥 + 2) 𝑒−𝑥 + 𝐶

Hence

𝑦 =
1

2 (𝑥 + 2) 𝑒−𝑥 + 𝐶1

=
1

2𝑥𝑒−𝑥 + 4𝑒−𝑥 + 𝐶1

Applying IC gives

1
6
=

1
4 + 𝐶1

4 + 𝐶1 = 6
𝐶1 = 2

Hence solution is

𝑦 =
1

2𝑥𝑒−𝑥 + 4𝑒−𝑥 + 2
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2.4.7 Key solution
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2.5 HW 5

2.5.1 problems description

2.5.2 problem 1

part a

The ODE to solve is
d
d𝑥𝑦 (𝑥) + 4 𝑦 (𝑥) = 20

with initial conditions 𝑦 (0) = 2.

Trying separable ODE.

In canonical form, the ODE is written as

𝑦′ = 𝐹(𝑥, 𝑦)
= −4 𝑦 + 20

The ODE d𝑦
d𝑥 = −4 𝑦 + 20, is separable. It can be written as

d𝑦
d𝑥 = 𝑓(𝑥)𝑔(𝑦)
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Where 𝑓(𝑥) = 1 and 𝑔(𝑦) = −4 𝑦 + 20. Therefore

d𝑦
d𝑥 = −4 𝑦 + 20

Hence

�−4 𝑦 + 20�
−1

d𝑦 = d𝑥

��−4 𝑦 + 20�
−1

d𝑦 = �d𝑥

−1/2 ln (2) − 1/4 ln ��𝑦 − 5�� = 𝑥 + 𝐶1

Solving for 𝑦 gives

𝑦 = −1/4 e−4 𝑥−4𝐶1 + 5

The solution above can be written as

𝑦 = −1/4𝐶1e−4 𝑥 + 5 (2.1)

Initial conditions are now used to solve for 𝐶1. Substituting 𝑥 = 0 and 𝑦 = 2 in the above solution
gives an equation to solve for the constant of integration.

2 = −1/4𝐶1e0 + 5
= −1/4𝐶1 + 5

Hence

𝐶1 = 12 �e0�
−1

Which is simplified to

𝐶1 = 12

Substituting 𝐶1 found above back in the solution gives

𝑦 (𝑥) = −3 e−4 𝑥 + 5

part b

The ODE to solve is
d
d𝑥𝑦 (𝑥) + 3 𝑦 (𝑥) = sin (𝑥)

with initial conditions 𝑦 (𝜋/2) = 3/10.

Trying Linear ODE.

In canonical form, the ODE is written as

𝑦′ = 𝐹(𝑥, 𝑦)
= −3 𝑦 + sin (𝑥)

The ODE is linear in 𝑦 and has the form

𝑦′ = 𝑦𝑓(𝑥) + 𝑔(𝑥)

Where 𝑓(𝑥) = −3 and 𝑔(𝑥) = sin (𝑥).

Writing the ODE as

𝑦′ − �−3 𝑦� = sin (𝑥)
𝑦′ + 3 𝑦 = sin (𝑥)

Therefore the integrating factor 𝜇 is

𝜇 = 𝑒∫3d𝑥 = e3 𝑥

The ode becomes
d
d𝑥𝜇𝑦 = 𝜇 (sin (𝑥))

d
d𝑥

�𝑦e3 𝑥� = sin (𝑥) e3 𝑥

d �𝑦e3 𝑥� = �sin (𝑥) e3 𝑥�d𝑥
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Integrating both sides gives

𝑦e3 𝑥 = −1/10 cos (𝑥) e3 𝑥 + 3/10 sin (𝑥) e3 𝑥 + 𝐶1

Dividing both sides by the integrating factor 𝜇 = e3 𝑥 results in

𝑦 =
−1/10 cos (𝑥) e3 𝑥 + 3/10 sin (𝑥) e3 𝑥

e3 𝑥 +
𝐶1
e3 𝑥

Simplifying the solution gives

𝑦 = 3/10 sin (𝑥) − 1/10 cos (𝑥) + 𝐶1e−3 𝑥

Initial conditions are now used to solve for 𝐶1. Substituting 𝑥 = 𝜋/2 and 𝑦 = 3/10 in the above
solution gives an equation to solve for the constant of integration.

3/10 = 3/10 sin (𝜋/2) − 1/10 cos (𝜋/2) + 𝐶1e−3/2𝜋

= 3/10 + 𝐶1e−3/2𝜋

Hence

𝐶1 = −1/10
3 sin (𝜋/2) − cos (𝜋/2) − 3

e−3/2𝜋
Which is simplified to

𝐶1 = 0

Substituting 𝐶1 found above back in the solution gives

𝑦 (𝑥) = 3/10 sin (𝑥) − 1/10 cos (𝑥)

part c

The ODE to solve is
d
d𝑥𝑦 (𝑥) − 𝑦 (𝑥)

�1 + 3 𝑥−1� = 𝑥 + 2

with initial conditions 𝑦 (1) = e − 1.

Trying Linear ODE.

In canonical form, the ODE is written as

𝑦′ = 𝐹(𝑥, 𝑦)

=
𝑥2 + 𝑥𝑦 + 2 𝑥 + 3 𝑦

𝑥

The ODE is linear in 𝑦 and has the form

𝑦′ = 𝑦𝑓(𝑥) + 𝑔(𝑥)

Where 𝑓(𝑥) = 𝑥+3
𝑥 and 𝑔(𝑥) = 𝑥2+2 𝑥

𝑥 .

Writing the ODE as

𝑦′ − �
(𝑥 + 3) 𝑦

𝑥 � =
𝑥2 + 2 𝑥

𝑥

𝑦′ −
(𝑥 + 3) 𝑦

𝑥
=
𝑥2 + 2 𝑥

𝑥
Therefore the integrating factor 𝜇 is

𝜇 = 𝑒∫− 𝑥+3
𝑥 d𝑥 = e−𝑥−3 ln(𝑥)

The ode becomes

d
d𝑥𝜇𝑦 = 𝜇 �

𝑥2 + 2 𝑥
𝑥 �

d
d𝑥

�𝑦e−𝑥−3 ln(𝑥)� =
�𝑥2 + 2 𝑥� e−𝑥−3 ln(𝑥)

𝑥

d �𝑦e−𝑥−3 ln(𝑥)� =
⎛
⎜⎜⎜⎜⎝
�𝑥2 + 2 𝑥� e−𝑥−3 ln(𝑥)

𝑥

⎞
⎟⎟⎟⎟⎠d𝑥

Integrating both sides gives

𝑦e−𝑥−3 ln(𝑥) = −e−𝑥−3 ln(𝑥)𝑥 + 𝐶1
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Dividing both sides by the integrating factor 𝜇 = e−𝑥−3 ln(𝑥) results in

𝑦 = −𝑥 +
𝐶1

e−𝑥−3 ln(𝑥)

Simplifying the solution gives

𝑦 = −𝑥 + 𝐶1𝑥3e𝑥

Initial conditions are now used to solve for 𝐶1. Substituting 𝑥 = 1 and 𝑦 = e−1 in the above solution
gives an equation to solve for the constant of integration.

e − 1 = −1 + 𝐶1e
Hence

𝐶1 = 1

Substituting 𝐶1 found above back in the solution gives

𝑦 (𝑥) = −𝑥 + 𝑥3e𝑥

2.5.3 problem 2

The ODE to solve is
d
d𝑥𝑦 (𝑥) + 1/3 𝑦 (𝑥) = 1/3 (1 − 2 𝑥)

�𝑦 (𝑥)�
4

Trying Bernoulli ODE.

In canonical form, the ODE is written as

𝑦′ = 𝐹(𝑥, 𝑦)
= −𝑦/3 − 2/3 𝑦4𝑥 + 1/3 𝑦4

This is a Bernoulli ODE. Comparing the ODE to solve

𝑦′ = −𝑦/3 − 2/3 𝑦4𝑥 + 1/3 𝑦4

With Bernoulli ODE standard form

𝑦′ = 𝑓0(𝑥)𝑦 + 𝑓1(𝑥)𝑦𝑛

Shows that 𝑓0(𝑥) = −1/3 and 𝑓1(𝑥) = −2/3 𝑥 + 1/3 and 𝑛 = 4.

Dividing the ODE by 𝑦4 gives

𝑦′𝑦−4 = −1/3𝑦−3 + −2/3 𝑥 + 1/3 (1)

Let

𝑣 = 𝑦−3 (2)

Taking derivative of (2) w.r.t 𝑥 gives

𝑣′ = −3 𝑦−4𝑦′

𝑦−4 =
𝑣′

−3 𝑦′
(3)

Substituting (3) into (1) gives

𝑣′

(−3)
= (−1/3) 𝑣 + −2/3 𝑥 + 1/3

𝑣′ = (−3) (−1/3) 𝑣 + (−3) (−2/3 𝑥 + 1/3)
= 𝑣 + 2 𝑥 − 1

The above now is a linear ODE in 𝑣(𝑥) which can be easily solved using an integrating factor.

In canonical form, the ODE is written as

𝑣′ = 𝐹(𝑥, 𝑣)
= 𝑣 + 2 𝑥 − 1

The ODE is linear in 𝑣 and has the form

𝑣′ = 𝑣𝑓(𝑥) + 𝑔(𝑥)

Where 𝑓(𝑥) = 1 and 𝑔(𝑥) = 2 𝑥 − 1.
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Writing the ODE as

𝑣′ − (𝑣) = 2 𝑥 − 1
𝑣′ − 𝑣 = 2 𝑥 − 1

Therefore the integrating factor 𝜇 is

𝜇 = 𝑒∫−1d𝑥 = e−𝑥

The ode becomes
d
d𝑥𝜇𝑣 = 𝜇 (2 𝑥 − 1)

d
d𝑥 (𝑣e

−𝑥) = (2 𝑥 − 1) e−𝑥

d (𝑣e−𝑥) = ((2 𝑥 − 1) e−𝑥)d𝑥
Integrating both sides gives

𝑣e−𝑥 = − (2 𝑥 + 1) e−𝑥 + 𝐶1

Dividing both sides by the integrating factor 𝜇 = e−𝑥 results in

𝑣 = −2 𝑥 − 1 +
𝐶1
e−𝑥

Simplifying the solution gives

𝑣 = −2 𝑥 − 1 + 𝐶1e𝑥

Replacing 𝑣 in the above by 𝑦−3 from equation (2), gives the final solution.

𝑦−3 = −2 𝑥 − 1 + 𝐶1e𝑥

Solving for 𝑦 gives

𝑦 =
1

3√−2 𝑥 − 1 + 𝐶1e𝑥

𝑦 = −1/2
1

3√−2 𝑥 − 1 + 𝐶1e𝑥
+

𝑖/2√3
3√−2 𝑥 − 1 + 𝐶1e𝑥

𝑦 = −1/2
1

3√−2 𝑥 − 1 + 𝐶1e𝑥
−

𝑖/2√3
3√−2 𝑥 − 1 + 𝐶1e𝑥

2.5.4 problem 3

The ODE to solve is

𝑚
d
d𝑥𝑣 (𝑥) = 𝑤 − 𝐵 − 𝑘𝑣 (𝑥)

with initial conditions 𝑣 (0) = 0.

Trying separable ODE.

In canonical form, the ODE is written as

𝑣′ = 𝐹(𝑥, 𝑣)

= −
𝑘𝑣 + 𝐵 − 𝑤

𝑚

The ODE d𝑣
d𝑥 = −

𝑘𝑣+𝐵−𝑤
𝑚 , is separable. It can be written as

d𝑣
d𝑥 = 𝑓(𝑥)𝑔(𝑣)

Where 𝑓(𝑥) = 1 and 𝑔(𝑣) = −𝑘𝑣−𝐵+𝑤
𝑚 . Therefore

d𝑣
d𝑥 =

−𝑘𝑣 − 𝐵 + 𝑤
𝑚
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Hence

�
𝑚

−𝑘𝑣 − 𝐵 + 𝑤
�d𝑣 = d𝑥

��
𝑚

−𝑘𝑣 − 𝐵 + 𝑤
�d𝑣 = �d𝑥

−
𝑚 ln (|𝑘𝑣 + 𝐵 − 𝑤|)

𝑘
= 𝑥 + 𝐶1

Solving for 𝑣 gives

𝑣 =
1
𝑘

⎛
⎜⎜⎜⎝−e−

𝑘�𝑥+𝐶1�
𝑚 − 𝐵 + 𝑤

⎞
⎟⎟⎟⎠

Initial conditions are now used to solve for 𝐶1. Substituting 𝑥 = 0 and 𝑣 = 0 in the above solution
gives an equation to solve for the constant of integration.

0 =
1
𝑘 �
−e−

𝑘𝐶1
𝑚 − 𝐵 + 𝑤�

Hence

𝐶1 = −
𝑚 ln (−𝐵 + 𝑤)

𝑘
Substituting 𝐶1 found above back in the solution gives

𝑣 (𝑥) =
1
𝑘 �
−e−

𝑘
𝑚 �𝑥−𝑚 ln(−𝐵+𝑤)

𝑘 �
− 𝐵 + 𝑤�

The solution 1
𝑘 �−e−

𝑘
𝑚 �𝑥−𝑚 ln(−𝐵+𝑤)

𝑘 �
− 𝐵 + 𝑤� can be simplified to

𝑣 (𝑥) =
1
𝑘 �
−e

𝑚 ln(−𝐵+𝑤)−𝑥𝑘
𝑚 − 𝐵 + 𝑤� (2.2)

2.5.5 problem 4

The ODE to solve is
d
d𝑥𝑦 (𝑥) = 𝑥

3 �𝑦 (𝑥) − 𝑥�
2
+
𝑦 (𝑥)
𝑥

Trying Riccati ODE.

In canonical form, the ODE is written as

𝑦′ = 𝐹(𝑥, 𝑦)

=
𝑥6 − 2 𝑥5𝑦 + 𝑥4𝑦2 + 𝑦

𝑥

This is a Riccati ODE. Comparing the ODE to solve

𝑦′ = 𝑥5 − 2 𝑥4𝑦 + 𝑥3𝑦2 +
𝑦
𝑥

With Riccati ODE standard form

𝑦′ = 𝑓0(𝑥) + 𝑓1(𝑥)𝑦 + 𝑓2(𝑥)𝑦2

Shows that 𝑓0(𝑥) = 𝑥5, 𝑓1(𝑥) =
−2 𝑥5+1

𝑥 and 𝑓2(𝑥) = 𝑥3.

Let

𝑦 =
−𝑢′

𝑓2𝑢

=
−𝑢′

𝑢𝑥3
(1)

Using the above substitution in the given ODE results (after some simplification) in a second order
ODE to solve for 𝑢(𝑥) which is

𝑓2𝑢″(𝑥) − �𝑓′2 + 𝑓1𝑓2� 𝑢′(𝑥) + 𝑓22𝑓0𝑢(𝑥) = 0 (2)
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But

𝑓′2 = 3 𝑥2

𝑓1𝑓2 = �−2 𝑥5 + 1� 𝑥2

𝑓22𝑓0 = 𝑥11

Substituting the above terms back in (2) gives

𝑥3
d2

d𝑥2𝑢 (𝑥) −
�3 𝑥2 + �−2 𝑥5 + 1� 𝑥2�

d
d𝑥𝑢 (𝑥) + 𝑥

11𝑢 (𝑥) = 0

Solving the above ODE gives

𝑢 (𝑥) = e−1/5 𝑥5 �𝑥5𝐶2 + 𝐶1�

The above shows that

𝑢′(𝑥) = −𝑥4e−1/5 𝑥5 �𝑥5𝐶2 + 𝐶1 − 5𝐶2�

Hence, using the above in (1) gives the solution

𝑦 (𝑥) =
𝑥 �𝑥5𝐶2 + 𝐶1 − 5𝐶2�

𝑥5𝐶2 + 𝐶1

Dividing both numerator and denominator by 𝐶2 gives, after renaming the constant 𝐶1
𝐶2
= 𝐶0 the

following

𝑦 (𝑥) =
𝑥 �𝑥5 + 𝐶0 − 5�

𝑥5 + 𝐶0



55

2.5.6 Key solution
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2.6 HW 6

2.6.1 problems description
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2.6.2 Key solution



61



62



63



64

2.7 HW 7

2.7.1 problems description
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2.7.2 Key solution
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2.8 HW 8

2.8.1 problems description
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2.8.2 Key solution
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Chapter 3

exams

3.1 �rst exam

3.1.1 Problem 1

Consider the complex exponential function 𝑓 (𝑧) = 𝑒𝑧 = 𝑒𝑥 �cos 𝑦 + 𝑖 sin 𝑦�, where 𝑥 = Re (𝑧) , 𝑦 = Im (𝑧).
Use the Cauchy-Riemann equations to show that 𝑓 (𝑧) is analytic in the whole complex plane ℂ,
and using the definition of the derivative, show that 𝑓′ (𝑧) = 𝑓 (𝑧).

Solution

𝑓 (𝑧) = 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦
Comparing the above to 𝑓 (𝑧) = 𝑢 + 𝑖𝑣, shows that

𝑢 = 𝑒𝑥 cos 𝑦
𝑣 = 𝑒𝑥 sin 𝑦

Cauchy-Riemann equations in Cartesian coordinates are given by

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

(1)

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

(2)

Since 𝜕𝑢
𝜕𝑥 = 𝑒𝑥 cos 𝑦 and 𝜕𝑣

𝜕𝑦 = 𝑒𝑥 cos 𝑦, then (1) is satisfied. Looking at (2), since 𝜕𝑢
𝜕𝑦 = −𝑒𝑥 sin 𝑦 and

𝜕𝑣
𝜕𝑥 = 𝑒

𝑥 sin 𝑦, then (2) is also satisfied.

In addition, since all these partial derivatives are continuous everywhere because the elementary cos, sin, exp
are all continuous everywhere, then 𝑓 (𝑧) = 𝑒𝑧 is entire, or in other words, analytic everywhere.

To show that 𝑓′ (𝑧) = 𝑓 (𝑧), by the definition of derivative, which is

𝑓′ (𝑧) = lim
Δ𝑧→0

𝑓 (𝑧 + Δ𝑧) − 𝑓 (𝑧)
Δ𝑧

And since Δ𝑧 = Δ𝑥 + 𝑖Δ𝑦 and 𝑓 (𝑧) = 𝑢 �𝑥, 𝑦� + 𝑖𝑣 �𝑥, 𝑦� then the above becomes

𝑓′ (𝑧) = lim
Δ𝑥→0
Δ𝑦→0

�𝑢 �𝑥 + Δ𝑥, 𝑦 + Δ𝑦� + 𝑖𝑣 �𝑥 + Δ𝑥, 𝑦 + Δ𝑦�� − �𝑢 �𝑥, 𝑦� + 𝑖𝑣 �𝑥, 𝑦��
Δ𝑥 + 𝑖Δ𝑦

= lim
Δ𝑥→0
Δ𝑦→0

𝑢 �𝑥 + Δ𝑥, 𝑦 + Δ𝑦� − 𝑢 �𝑥, 𝑦�
Δ𝑥 + 𝑖Δ𝑦

+ 𝑖
𝑣 �𝑥 + Δ𝑥, 𝑦 + Δ𝑦� − 𝑣 �𝑥, 𝑦�

Δ𝑥 + 𝑖Δ𝑦

Since 𝑒𝑧 is analytic, then the limit does not depend on the direction, so we can pick any direction
to approach 𝑧. Let us choose a direction such that the approach is on the 𝑥 axis only keeping 𝑦
fixed in order to simplify the above. This implies that now Δ𝑦 = 0. The above simplifies to

𝑓′ (𝑧) = lim
Δ𝑥→0

𝑢 �𝑥 + Δ𝑥, 𝑦� − 𝑢 �𝑥, 𝑦�
Δ𝑥

+ 𝑖
𝑣 �𝑥 + Δ𝑥, 𝑦� − 𝑣 �𝑥, 𝑦�

Δ𝑥

But limΔ𝑥→0
𝑢�𝑥+Δ𝑥,𝑦�−𝑢�𝑥,𝑦�

Δ𝑥 = 𝜕𝑢
𝜕𝑥 and

𝑣�𝑥+Δ𝑥,𝑦�−𝑣�𝑥,𝑦�

Δ𝑥 = 𝜕𝑣
𝜕𝑥 , then the above reduces to

𝑓′ (𝑧) =
𝜕𝑢
𝜕𝑥

+ 𝑖
𝜕𝑣
𝜕𝑥
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From the first part we obtained that 𝜕𝑢
𝜕𝑥 = 𝑒

𝑥 cos 𝑦 and 𝜕𝑣
𝜕𝑥 = 𝑒

𝑥 sin 𝑦. Using these in the above gives

𝑓′ (𝑧) = 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦
= 𝑒𝑥 �cos 𝑦 + 𝑖 sin 𝑦�
= 𝑒𝑥𝑒𝑖𝑦

= 𝑒𝑥+𝑖𝑦

= 𝑒𝑧

Therefore 𝑓′ (𝑧) = 𝑓 (𝑧). QED.

3.1.2 Problem 2

Determine the domain 𝐷 of the 𝑧 values on the complex plane where the complex function, given
by the following series

𝐹 (𝑧) = 𝑧
1
3 + 𝑧

1
7 + 𝑧

1
11 + 𝑧

1
15 +⋯

is well defined. What is the set of values 𝑧 ∈ ℂ, for which it holds that

𝐹′ (𝑧) =
1
3
𝑧
−2
3 +

1
7
𝑧
−6
7 +

1
11
𝑧
−10
11 +

1
15
𝑧
−14
15 +⋯

Solution

𝑧 can be either zero or not zero. When 𝑧 = 0, then clearly 𝐹 (𝑧)|𝑧=0 = 0 from the expression given
for 𝐹 (𝑧) above. So 𝐹 (𝑧) is defined at 𝑧.

When 𝑧 ≠ 0, then each term in the series will now become multivalued since the terms are of the

form 𝑧
1
𝑛 for integer 𝑛. So we need to first make 𝐹 (𝑧) single valued before considering the sum. We

need to decide on which branch cut to use. Writing

𝑧
1
𝑛 = �𝑟𝑒𝑖(𝜃+2𝜋𝑘)�

1
𝑛 𝑘 = 0, 1, 2,⋯ , 𝑛 − 1

= 𝑟
1
𝑛 𝑒

𝑖� 𝜃𝑛+
2𝜋𝑘
𝑛 �

= 𝑟
1
𝑛 �cos �

𝜃
𝑛
+
2𝜋𝑘
𝑛 � + 𝑖 sin �

𝜃
𝑛
+
2𝜋𝑘
𝑛 ��

In order to make the multivalued 𝑧
1
𝑛 function single valued, we select 𝑘 = 0 and limit principal

argument 𝜃 to

−𝜋 < 𝜃 < 𝜋

with 𝑧 ≠ 0 for each term. Hence 𝑧
1
𝑛 simplifies to

𝑧
1
𝑛 = 𝑟

1
𝑛 �cos �

𝜃
𝑛�

+ 𝑖 sin �
𝜃
𝑛��

Where 𝑟 = |𝑧| is the modulus of 𝑧. Now that each term is single valued, we can now look at the sum.
Writing 𝐹 (𝑧) as

𝐹 (𝑧) =
∞
�
𝑛=0

𝑧
1

4𝑛+3

=
∞
�
𝑛=0

𝑟
1

4𝑛+3 𝑒𝑖
𝜃0

4𝑛+3

We start with the preliminarily test to check if the above sum could be converging or not. Since
the magnitude of the complex exponential is unity, we only need to check the modulus. Hence let

𝑎𝑛 = 𝑟
1

4𝑛+3

Now we check if lim𝑛→∞ 𝑎𝑛 = 0 or not. This is a a necessary condition for convergence but not a
su�cient condition.

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑟
1

4𝑛+3

= 1

We see that the limit is not zero. Therefore when 𝑧 ≠ 0, then 𝐹 (𝑧) does not converge. Which means

𝐹 (𝑧) is defined only at 𝑧 = 0

To answer that last part. Since we showed that 𝐹 (𝑧) only defined at one point 𝑧 = 0, then its
derivative is not defined. Because a derivative requires a small neighborhood region around any
point where the derivative to be evaluated due to using the limit as Δ𝑧 → 0 in the definition of
derivative. Since there is no such neighborhood around 𝑧 = 0, then it follows immediately that
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𝐹′ (𝑧) is not defined anywhere

3.1.3 Problem 3

Consider the real function defined by the power series

𝑓 (𝑥) =
∞
�
𝑛=0

(4𝑛)!
(𝑛!)4

�
𝑥
6
�
𝑛

Use the results on complex power series to determine the largest open interval on which 𝑓 (𝑥) is
defined. For what values of 𝑎 < 𝑏 does 𝑓 (𝑥) converges uniformly on [𝑎, 𝑏]?

Solution

Using the ratio test

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�

�

(4(𝑛+1))!
((𝑛+1)!)4

� 𝑥
6
�
𝑛+1

(4𝑛)!
(𝑛!)4

� 𝑥
6
�
𝑛

�

�

Which simplifies to

𝐿 = lim
𝑛→∞ �

(4 (𝑛 + 1))! (𝑛!)4 𝑥
6

(4𝑛)! ((𝑛 + 1)!)4
�

= �
𝑥
6
� lim
𝑛→∞

�
(4 (𝑛 + 1))! (𝑛!)4

(4𝑛)! ((𝑛 + 1)!)4
�

But ((𝑛 + 1)!)4 = ((𝑛 + 1) 𝑛!)4 = (𝑛 + 1)4 (𝑛!)4 and the above simplifies to

𝐿 = �
𝑥
6
� lim
𝑛→∞

�
(4 (𝑛 + 1))!
(4𝑛)! (𝑛 + 1)4

�

But (4 (𝑛 + 1))! = (4𝑛 + 4)! = ((4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1) (4𝑛)!) and the above simplifies to

𝐿 = �
𝑥
6
� lim
𝑛→∞

�
(4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1) (4𝑛)!

(4𝑛)! (𝑛 + 1)4
�

= �
𝑥
6
� lim
𝑛→∞

�
(4𝑛 + 4) (4𝑛 + 3) (4𝑛 + 2) (4𝑛 + 1)

(𝑛 + 1)4
�

Expanding gives

𝐿 = �
𝑥
6
� lim
𝑛→∞

�
256𝑛4 + 640𝑛3 + 560𝑛2 + 200𝑛 + 24

𝑛4 + 4𝑛3 + 6𝑛2 + 4𝑛 + 1 �

Dividing numerator and denominator by 𝑛4 gives

𝐿 = �
𝑥
6
� lim
𝑛→∞

�
�
256 + 640 1𝑛 + 560

1
𝑛2 + 200

1
𝑛3 +

24
𝑛4

1 + 4 1𝑛 + 6
1
𝑛2 + 4

1
𝑛3 +

1
𝑛4

�
�

Now we can take the limit which gives 256. Hence

𝐿 =
256
6
|𝑥|

For convergence, we want |𝐿| < 1, which implies

256
6
|𝑥| < 1

|𝑥| <
6
256

|𝑥| <
3
128

Therefore 𝑓 (𝑥) is defined and absolutely converges for −3
128 < 𝑥 <

3
128 . Therefore by using theorem

1, page 699 in the textbook, we conclude that for uniform convergence we need

|𝑥| ≤ |𝑟| <
3
128

Or

𝑥 ≥ 𝑎 > − 3
128 and 𝑥 ≤ 𝑏 < 3

128
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Hence the series converges uniformly on [𝑎, 𝑏] where

𝑎 > −
3
128

𝑏 <
3
128

3.1.4 Problem 5

Let 𝑓 (𝑧) be given as

𝑓 (𝑧) =
∞
�
𝑛=1

1
𝑛 (𝑛 + 1)

�
𝑧
4
�
𝑛+1

(a) Find the domain 𝐷 on which 𝑓 � 1𝑧 � is analytic. (b) For what 𝑧 values does 𝑔 (𝑧) defined by the

Laurent series

𝑔 (𝑧) =
∞
�
𝑛=1

1
𝑛 (𝑛 + 1) �

1
4𝑧�

𝑛+1

+
∞
�
𝑛=1

𝑛!
𝑛𝑛
𝑧𝑛

Converge?

Solution

part (a)

First we find where 𝑓 (𝑧) converges.

𝑓 (𝑧) =
∞
�
𝑛=1

1
𝑛 (𝑛 + 1)

�
𝑧
4
�
𝑛+1

=
∞
�
𝑛=0

1
(𝑛 + 1) (𝑛 + 2)

�
𝑧
4
�
𝑛+2

= �
𝑧
4
�
2 ∞
�
𝑛=0

1
(𝑛 + 1) (𝑛 + 2)

�
𝑧
4
�
𝑛

= �
𝑧
4
�
2 ∞
�
𝑛=0

1
(𝑛 + 1) (𝑛 + 2) 4𝑛

(𝑧 − 𝑧0)
𝑛

𝑓 (𝑧) converges in a disk centered at 𝑧0 = 0 if the series ∑
∞
𝑛=0

1
(𝑛+1)(𝑛+2)6𝑛 𝑧

𝑛 converges there. Using the
ratio test to find 𝐿 gives

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
(𝑛+2)(𝑛+3)4𝑛+1

1
(𝑛+1)(𝑛+2)4𝑛

�
�

= lim
𝑛→∞

�
(𝑛 + 1) (𝑛 + 2) 4𝑛

(𝑛 + 2) (𝑛 + 3) 4𝑛+1
�

=
1
4

lim
𝑛→∞

�
𝑛2 + 3𝑛 + 2
𝑛2 + 5𝑛 + 6�

=
1
4

lim
𝑛→∞

�
�
1 + 3 1𝑛 + 2

1
𝑛2

1 + 5 1𝑛 +
6
𝑛2

�
�

=
1
4

Since 𝐿 = 1
4 then the radius of convergence 𝑅 = 1

𝐿 or 𝑅 = 4. This means 𝑓 (𝑧) converges inside disk

centered at zero of radius 𝑅 = 4. Therefore 𝑓 � 1𝑧 � converges everywhere outside this disk. Since there

are no other singularities in the function given by 𝑓 � 1𝑧 � = ∑
∞
𝑛=1

1
𝑛(𝑛+1)

� 1
4𝑧
�
𝑛+1

outside disk of radius

4 then it is analytic there everywhere (it is di�erentiable everywhere outside this disk). Therefore,
we conclude this part by saying that

𝑓 �
1
𝑧�
=

∞
�
𝑛=1

1
𝑛 (𝑛 + 1) �

1
4𝑧�

𝑛+1

is analytic outside disk of radius 4.
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Part (b)

𝑔 (𝑧) =
∞
�
𝑛=1

1
𝑛 (𝑛 + 1) �

1
4𝑧�

𝑛+1

+
∞
�
𝑛=1

𝑛!
𝑛𝑛
𝑧𝑛

The first series in the right side above, we found from part (a) where it converges, which is for
|𝑧| > 4. Now we need to find where the second series converges.

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

(𝑛+1)!
(𝑛+1)𝑛+1

𝑛!
𝑛𝑛

�
�

= lim
𝑛→∞

�
(𝑛 + 1)!𝑛𝑛

𝑛! (𝑛 + 1)𝑛+1
�

= lim
𝑛→∞

�
(𝑛 + 1) 𝑛!𝑛𝑛

𝑛! (𝑛 + 1)𝑛+1
�

= lim
𝑛→∞

�
(𝑛 + 1) 𝑛𝑛

(𝑛 + 1)𝑛+1
�

= lim
𝑛→∞

�
(𝑛 + 1) 𝑛𝑛

(𝑛 + 1) (𝑛 + 1)𝑛
�

= lim
𝑛→∞

�
𝑛𝑛

(𝑛 + 1)𝑛
�

=
1
𝑒

Hence the radius of convergence is 𝑅 = 1
𝐿 = 𝑒 ≈ 2.718. This means the second series ∑∞

𝑛=1
𝑛!
𝑛𝑛 𝑧

𝑛

convergence for |𝑧| < 𝑒, or inside disk of radius 𝑅 = 𝑒. But the first series converges outside disk of
radius 4. Therefore, there is no common annulus where both series converge. Therefore

There are no 𝑧 values where 𝑔 (𝑧) converges

3.1.5 Problem 6

Determine the MacLaurin series for the following special functions for 𝑧 ∈ ℝ. The resulting series
defines the functions for complex numbers as well. Give the radius of convergence of the resulting
series. Determine whether any of them is even 𝑓 (−𝑧) = 𝑓 (𝑧) or odd 𝑓 (−𝑧) = 𝑓 (𝑧).

(a) erf (𝑧) = 2

√𝜋
∫𝑧

0
𝑒−𝑡2𝑑𝑡 (b) Si (𝑧) = ∫𝑧

0
sin 𝑡
𝑡 𝑑𝑡

solution

Part (a)

Starting with MacLaurin series for 𝑒𝑥 = ∑∞
𝑛=0

𝑥𝑛

𝑛! = 1+𝑥+
𝑥2

2! +
𝑥3

3! +
𝑥4

4! +⋯, hence 𝑒−𝑡2 series expansion
around zero becomes

𝑒−𝑡2 = 1 + �−𝑡2� +
�−𝑡2�

2

2!
+
�−𝑡2�

3

3!
+
�−𝑡2�

4

43!
+⋯

= 1 − 𝑡2 +
𝑡4

2!
−
𝑡6

3!
+
𝑡8

4!
−⋯

Therefore

erf (𝑧) = 2

√𝜋
�

𝑧

0
𝑒−𝑡2𝑑𝑡

=
2

√𝜋
�

𝑧

0
�1 − 𝑡2 +

𝑡4

2!
−
𝑡6

3!
+
𝑡8

4!
−⋯� 𝑑𝑡

Since exp (𝑥) is analytic everywhere, we can integrate the above term by term, which gives

erf (𝑧) = 2

√𝜋
�𝑡 −

1
3
𝑡3 +

1
5
𝑡5

2!
−
1
7
𝑡7

3!
+
1
9
𝑡9

4!
−⋯�

𝑧

0

=
2

√𝜋
�𝑧 −

1
3
𝑧3 +

1
5
𝑧5

2!
−
1
7
𝑧7

3!
+
1
9
𝑧9

4!
−⋯�
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To find its radius of convergence, we need to first find closed form for the above. The general term
is seen to be

erf (𝑧) = 2

√𝜋

∞
�
𝑛=0

(−1)𝑛 𝑧2𝑛+1

𝑛! (2𝑛 + 1)
Hence

erf (𝑧) = 2

√𝜋
𝑧

∞
�
𝑛=0

(−1)𝑛 𝑧2𝑛

𝑛! (2𝑛 + 1)

=
2

√𝜋
𝑧

∞
�
𝑛=0

(−1)𝑛

𝑛! (2𝑛 + 1)
�𝑧2�

𝑛

Now let 𝑧2 = 𝑠. We now find the radius of convergence 𝑅 for ∑∞
𝑛=0

(−1)𝑛

𝑛!(2𝑛+1) 𝑠
𝑛 and then find √𝑅 to find

radius of convergence for ∑∞
𝑛=0

(−1)𝑛

𝑛!(2𝑛+1)𝑧
2𝑛.

Applying the ratio test to ∑∞
𝑛=0

(−1)𝑛

𝑛!(2𝑛+1) 𝑠
𝑛 to find its 𝐿. Since we are using absolute values, the (−1)𝑛

does not a�ect the result, hence

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
(𝑛+1)!(2𝑛+2)

1
𝑛!(2𝑛+1)

�
�

= lim
𝑛→∞

�
𝑛! (2𝑛 + 1)

(𝑛 + 1)! (2𝑛 + 2)
�

= lim
𝑛→∞

�
𝑛! (2𝑛 + 1)

(𝑛 + 1) 𝑛! (2𝑛 + 2)
�

= lim
𝑛→∞

�
(2𝑛 + 1)

(𝑛 + 1) (2𝑛 + 2)
�

= lim
𝑛→∞

�
2𝑛 + 1

2𝑛2 + 4𝑛 + 2
�

= lim
𝑛→∞

�
�

2
𝑛 +

1
𝑛2

2 + 4
𝑛 +

2
𝑛2

�
�

=
0
2

= 0

Therefore 𝑅 = 1
𝐿 = ∞. But √∞ = ∞. Hence

erf (𝑧) is analytic on the whole complex plane

Now, to find if it is even or odd. Using the above series definition

erf (𝑧) = 2

√𝜋
𝑧

∞
�
𝑛=0

(−1)𝑛 𝑧2𝑛

𝑛! (2𝑛 + 1)

Lets check if it odd. i.e. if 𝑓 (−𝑧) = −𝑓 (𝑧). From above

erf (−𝑧) = 2

√𝜋
(−𝑧)

∞
�
𝑛=0

(−1)𝑛 (−𝑧)2𝑛

𝑛! (2𝑛 + 1)

But (−𝑧)2𝑛 = 𝑧2𝑛 since the exponent is even, and the above simplifies to

erf (−𝑧) = −2

√𝜋
𝑧

∞
�
𝑛=0

(−1)𝑛 𝑧2𝑛

𝑛! (2𝑛 + 1)
(1)

Now lets find −𝑓 (𝑧). From the definition

− erf (𝑧) = −2

√𝜋
𝑧

∞
�
𝑛=0

(−1)𝑛 𝑧2𝑛

𝑛! (2𝑛 + 1)
(2)

Since (1) and (2) are the same, then

erf (𝑧) is odd

Part (b)

Starting with MacLaurin series for

sin (𝑥) =
∞
�
𝑛=0

(−1)𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 = 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+
𝑥9

9!
−⋯
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Hence sin(𝑥)
𝑥 becomes

sin (𝑥)
𝑥

=
1
𝑥 �
𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+
𝑥9

9!
−⋯�

= 1 −
𝑥2

3!
+
𝑥4

5!
−
𝑥6

7!
+
𝑥8

9!
−⋯

Hence

Si (𝑥) = �
𝑧

0
�1 −

𝑡2

3!
+
𝑡4

5!
−
𝑡6

7!
+
𝑡8

9!
−⋯� 𝑑𝑡

Since 1− 𝑥2

3! +
𝑥4

5! −
𝑥6

7! +
𝑥8

9! −⋯ is analytic everywhere, we can integrate the above term by term, which
gives

Si (𝑧) = �𝑡 −
1
3
𝑡3

3!
+
1
5
𝑡5

5!
−
1
7
𝑡7

7!
+
1
9
𝑡9

9!
−⋯�

𝑧

0

= 𝑧 −
1
3
𝑧3

3!
+
1
5
𝑧5

5!
−
1
7
𝑧7

7!
+
1
9
𝑧9

9!
−⋯

In closed form, this can be written as

Si (𝑧) =
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
𝑧2𝑛+1

= 𝑧
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
𝑧2𝑛

= 𝑧
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
�𝑧2�

𝑛

So we need to find radius of convergence 𝑅 for ∑∞
𝑛=0 (−1)

𝑛 1
(2𝑛+1)(2𝑛+1)! 𝑠

𝑛 and then find √𝑅 as we did
in part (a).

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
(2𝑛+2)(2𝑛+2)!

1
(2𝑛+1)(2𝑛+1)!

�
�

= lim
𝑛→∞

�
(2𝑛 + 1) (2𝑛 + 1)!
(2𝑛 + 2) (2𝑛 + 2)!

�

= lim
𝑛→∞

�
(2𝑛 + 1) (2𝑛 + 1)!

(2𝑛 + 2) (2𝑛 + 2) (2𝑛 + 1)!
�

= lim
𝑛→∞

�
(2𝑛 + 1)

(2𝑛 + 2) (2𝑛 + 2)
�

= lim
𝑛→∞

�
2𝑛 + 1

4𝑛2 + 8𝑛 + 4
�

= lim
𝑛→∞

�
�

2
𝑛 +

1
𝑛2

4 + 8
𝑛 +

4
𝑛2

�
�

=
0
4

= 0

Hence 𝑅 = 1
𝐿 = ∞. But √∞ = ∞. Hence

Si (𝑧) is analytic on the whole complex plane

Now, to find if it is even or odd. Using the above series definition

Si (𝑧) = 𝑧
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
𝑧2𝑛

Lets check if it odd. i.e. 𝑓 (−𝑧) = −𝑓 (𝑧). From above

Si (−𝑧) = −𝑧
∞
�
𝑛=1

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
(−𝑧)2𝑛

But (−𝑧)2𝑛 = 𝑧2𝑛 since the exponent is even, so the above becomes

Si (−𝑧) = −𝑧
∞
�
𝑛=1

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
𝑧2𝑛 (1)
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Now lets find what −𝑓 (𝑧) gives

−Si (𝑧) = −𝑧
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛 + 1) (2𝑛 + 1)!
𝑧2𝑛 (2)

Comparing (1,2) we see they are the same. Hence

Si (𝑧) is odd

3.1.6 Problem 7

(a) Determine the Laurent series of the function

𝑓 (𝑧) =
2𝑧 + 6

𝑧2 − 6𝑧 + 5
In the annulus 1 < 𝑧 < 5 and in |𝑧| > 5.

(b) Determine the Taylor series representation of the function

𝑔 (𝑧) = 𝑒−
𝑧2
2

with center 𝑧0 = 0. What is the radius of convergence?

Solution

Part (a)

𝑓 (𝑧) =
2𝑧 + 6

𝑧2 − 6𝑧 + 5

=
2𝑧 + 6

(𝑧 − 5) (𝑧 − 1)

=
𝐴

(𝑧 − 5)
+

𝐵
(𝑧 − 1)

Hence

2𝑧 + 6 = 𝐴 (𝑧 − 1) + 𝐵 (𝑧 − 5)
= 𝑧 (𝐴 + 𝐵) − 𝐴 − 5𝐵

Solving the above two equations for 𝐴,𝐵 gives

2 = 𝐴 + 𝐵
6 = −𝐴 − 5𝐵

First equations gives 𝐴 = 2 − 𝐵. Second equation becomes

6 = − (2 − 𝐵) − 5𝐵
6 = −2 − 4𝐵

𝐵 = −
8
4

= −2

Hence 𝐴 = 4. Therefore (1) becomes

𝑓 (𝑧) =
4

(𝑧 − 5)
−

2
(𝑧 − 1)

(2)

We now see there is a pole at 𝑧 = 5 and at 𝑧 = 1. So there are three regions. The following diagram
shows these three di�erent regions
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1 5
region A

region B

region C

x

y

Three region f(z) can be expanded in.

For region B, which is annulus 1 < 𝑧 < 5, we need to expand 𝑓 (𝑧) = 4
(𝑧−5) −

2
(𝑧−1) . Looking at first part

4
(𝑧 − 5)

=
−4
5 − 𝑧

=
−4

5 �1 − 𝑧
5
�

This can be expanded for � 𝑧5 � < 1 or |𝑧| < 5. Using Binomial series it gives

−4
5 �1 − 𝑧

5
�
=
−4
5 �1 + �

𝑧
5
� + �

𝑧
5
�
2
+ �

𝑧
5
�
3
+⋯�

=
−4
5

∞
�
𝑛=0

�
𝑧
5
�
𝑛

(3)

We now consider the second term in (2), which is 2
(𝑧−1)

2
(𝑧 − 1)

= −
2

1 − 𝑧
This can be expanded only when |𝑧| < 1. But we want |𝑧| > 1, therefore we need to convert it to
negative power. We write

2
(𝑧 − 1)

=
−2

𝑧 � 1𝑧 − 1�

=
2
𝑧

1

�1 − 1
𝑧
�

Now 1

�1− 1
𝑧 �

can be expanded for � 1𝑧 � < 1 or 𝑧 > 1, which puts in region B. Hence the second term can

now be expanded as

2
(𝑧 − 1)

=
2
𝑧

1

�1 − 1
𝑧
�

=
2
𝑧

⎛
⎜⎜⎜⎜⎝1 + �

1
𝑧�
+ �

1
𝑧�

2

+ �
1
𝑧�

3

+⋯
⎞
⎟⎟⎟⎟⎠

=
2
𝑧

∞
�
𝑛=0

�
1
𝑧�

𝑛

=
∞
�
𝑛=0

2
𝑧𝑛+1

(4)

Therefore (3,4) gives us the expansion of 𝑓 (𝑧) valid in region B. Substituting results from (3,4) into
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(2) gives

𝑓 (𝑧) =
4

(𝑧 − 5)
−

2
(𝑧 − 1)

=
−4
5

∞
�
𝑛=0

�
𝑧
5
�
𝑛
−

∞
�
𝑛=0

2
𝑧𝑛+1

=
−4
5 �1 +

𝑧
5
+
𝑧2

52
+⋯� − 2 �

1
𝑧
+
1
𝑧2
+
1
𝑧3
+⋯�

= �−
4
5
−
4𝑧
52
−
4𝑧2

53
+⋯� + �−

2
𝑧
−
2
𝑧2
−
2
𝑧3
+⋯�

The above shows that residue is −2, which is the coe�cient for the 1
𝑧 term.

For region C

This is for |𝑧| > 5 .For the first term in (2), which is 4
(𝑧−5) we write it as

4
(𝑧 − 5)

=
4
𝑧

1

�1 − 5
𝑧
�

We can expand this for � 5𝑧 � < 1 or |𝑧| > 5 which is what we want. Hence it becomes

4
𝑧

1

�1 − 5
𝑧
�
=
4
𝑧

⎛
⎜⎜⎜⎜⎝1 + �

5
𝑧 �
+ �

5
𝑧 �

2

+ �
5
𝑧 �

3

+⋯
⎞
⎟⎟⎟⎟⎠

=
4
𝑧

∞
�
𝑛=0

�
5
𝑧 �

𝑛

= 4
∞
�
𝑛=0

5𝑛

𝑧𝑛+1

For the second in (2), which is 2
(𝑧−1) , we can use the expansion found earlier since it is valid for

|𝑧| > 1, hence also valid for |𝑧| > 5 as well. which is 2
(𝑧−1) = ∑

∞
𝑛=0

2
𝑧𝑛+1

.

Therefore, in region C, the expansion is

𝑓 (𝑧) =
4

(𝑧 − 5)
−

2
(𝑧 − 1)

= 4
∞
�
𝑛=0

5𝑛

𝑧𝑛+1
−

∞
�
𝑛=0

2
𝑧𝑛+1

=
∞
�
𝑛=0

(4) (5𝑛) − 2
𝑧𝑛+1

=
2
𝑧
+
18
𝑧2
+
98
𝑧3
+
498
𝑧4

+⋯

The residue is 2.

Part (b)

𝑔 (𝑧) = 𝑒−
𝑧2
2

Taylor series for 𝑔 (𝑧) expanded around 𝑧0 is given by

𝑔 (𝑧) = 𝑔 (𝑧0) + 𝑔′ (𝑧0) 𝑧 + 𝑔′′ (𝑧0)
𝑧2

2!
+ 𝑔′′′ (𝑧0)

𝑧3

3!
+ 𝑔(4) (𝑧0)

𝑧4

4!
+⋯

But

𝑔 (𝑧0) = 𝑔 (0) = 1

𝑔′ (𝑧0) = −
2𝑧
2
𝑒−

𝑧2
2 �

𝑧=𝑧0=0

= 0
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And

𝑔′′ (𝑧0) =
𝑑
𝑑𝑧 �

−𝑧𝑒−
𝑧2
2 �

𝑧=𝑧0

= �−𝑒−
𝑧2
2 − 𝑧2𝑒−

𝑧2
2 �

𝑧=𝑧0=0

= −1

And

𝑔′′′ (𝑧0) =
𝑑
𝑑𝑧 �

−𝑒−
𝑧2
2 − 𝑧2𝑒−

𝑧2
2 �

𝑧=𝑧0

= �𝑧𝑒−
𝑧2
2 − 2𝑧𝑒−

𝑧2
2 − 𝑧3𝑒−

𝑧2
2 �

𝑧=𝑧0=0

= 0

And

𝑔(4) (𝑧0) =
𝑑
𝑑𝑧 �

𝑧𝑒−
𝑧2
2 − 2𝑧𝑒−

𝑧2
2 − 𝑧3𝑒−

𝑧2
2 �

𝑧=𝑧0

= �𝑒−
𝑧2
2 − 𝑧3𝑒−

𝑧2
2 − 2𝑒−

𝑧2
2 + 2𝑧3𝑒−

𝑧2
2 − 3𝑧2𝑒−

𝑧2
2 + 𝑧4𝑒−

𝑧2
2 �

𝑧=𝑧0=0

= 1

And so on. We can see the sequence pattern as

𝑔 (𝑧) = 𝑔 (𝑧0) + 𝑔′ (𝑧0) 𝑧 + 𝑔′′ (𝑧0)
𝑧2

2!
+ 𝑔′′′ (𝑧0)

𝑧3

3!
+ 𝑔(4) (𝑧0)

𝑧4

4!
+⋯

= 1 + 0 −
𝑧2

2
+ 0 +

𝑧4

4!
+ 0 −

𝑧6

6!
+⋯

= 1 −
𝑧2

2
+
𝑧4

4!
−
𝑧6

6!
+⋯

=
∞
�
𝑛=0

(−1)𝑛
𝑧2𝑛

(2𝑛)!
To find radius of convergence, we write the above as

𝑔 (𝑧) =
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛)!
�𝑧2�

𝑛

=
∞
�
𝑛=0

(−1)𝑛
1

(2𝑛)!
𝑠𝑛 (1)

And find 𝑅 for 𝑠 then take √𝑅. Hence for (1)

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
(2(𝑛+1))!

1
(2𝑛)!

�
�

= lim
𝑛→∞

�
(2𝑛)!

(2 (𝑛 + 1))!
�

= lim
𝑛→∞

�
(2𝑛)!

(2𝑛 + 2)!
�

= lim
𝑛→∞

�
(2𝑛)!

(2𝑛 + 2) (2𝑛 + 1) (2𝑛)!
�

= lim
𝑛→∞

�
1

(2𝑛 + 2) (2𝑛 + 1)
�

= lim
𝑛→∞

�
1

4𝑛2 + 6𝑛 + 2
�

= 0

Hence 𝑅 = 1
𝐿 = ∞. Therefore √𝑅 = ∞. The expansion is valid in the whole complex plane.
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3.1.7 Problem 8

Evaluate the integral below on the curve 𝐶 = 𝐶1 ∪ 𝐶2 where 𝐶1 ∶ 𝑧 (𝑡) = 𝑒𝑖𝜋𝑡, 0 ≤ 𝑡 ≤ 1 and 𝐶2 ∶ 𝑧 (𝑡) =
2𝑡 − 1, 0 ≤ 𝑡 ≤ 1.

∮
𝐶

Re (𝑧) 𝑑𝑧

Solution

The diagram below shows the curves

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Curve C2

Curve C1

∮
𝐶

Re (𝑧) 𝑑𝑧 = �
𝐶1

Re (𝑧 (𝑡)) 𝑧′ (𝑡) 𝑑𝑡 +�
𝐶2

Re (𝑧 (𝑡)) 𝑧′ (𝑡) 𝑑𝑡 (1)

But on 𝐶1, 𝑧 (𝑡) = 𝑒𝑖𝜋𝑡 = cos (𝜋𝑡) + 𝑖 sin (𝜋𝑡), then Re (𝑧 (𝑡)) = cos (𝜋𝑡) and 𝑧′ (𝑡) = 𝑖𝜋𝑒𝑖𝜋𝑡, therefore the
integral on 𝐶1 becomes

�
1

0
cos (𝜋𝑡) 𝑖𝜋𝑒𝑖𝜋𝑡𝑑𝑡 = 𝑖𝜋�

1

0
cos (𝜋𝑡) 𝑒𝑖𝜋𝑡𝑑𝑡

= 𝑖𝜋𝐼 (2)

Where 𝐼 = ∫
1

0
cos (𝜋𝑡) 𝑒𝑖𝜋𝑡𝑑𝑡. We now evaluate 𝐼. Since 𝑒𝑖𝜋𝑡 = cos (𝜋𝑡) + 𝑖 sin (𝜋𝑡), then

𝐼 = �
1

0
cos (𝜋𝑡) cos (𝜋𝑡) 𝑑𝑡 + 𝑖�

1

0
cos (𝜋𝑡) sin (𝜋𝑡) 𝑑𝑡 (3)

But first integral in above is

�
1

0
cos (𝜋𝑡) cos (𝜋𝑡) 𝑑𝑡 = �

1

0
cos2 (𝜋𝑡) 𝑑𝑡

= �
1

0

1
2
+
1
2

cos (2𝜋𝑡) 𝑑𝑡

=
1
2
+
1
2
(sin (2𝜋𝑡))10

=
1
2

And for second integral in (3), and using sin𝐴 cos𝐴 = 1
2 sin (2𝐴), it becomes

�
1

0
cos (𝜋𝑡) sin (𝜋𝑡) 𝑑𝑡 = �

1

0

1
2

sin (2𝜋𝑡) 𝑑𝑡

=
1
2 �

cos (2𝜋𝑡)
2𝜋 �

1

0

=
1
4𝜋

[cos (2𝜋𝑡)]10

=
1
4𝜋

[cos (2𝜋) − 1]

= 0

Therefore integral on 𝐶1 from (2) becomes

�
1

0
cos (𝜋𝑡) 𝑖𝜋𝑒𝑖𝜋𝑡𝑑𝑡 = 𝑖𝜋𝐼

=
𝑖𝜋
2
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Now the second integral on 𝐶2 is found, where 𝑧 (𝑡) = 2𝑡 − 1, and 𝑧′ (𝑡) = 2. Hence

�
1

0
Re (𝑧 (𝑡)) 𝑧′ (𝑡) 𝑑𝑡 = �

1

0
(2𝑡 − 1) 2 𝑑𝑡

= 2 �𝑡2 − 𝑡�
1

0

= 0

Therefore contribution comes only from the integration over 𝐶1 which is

∮
𝐶

Re (𝑧) 𝑑𝑧 = 𝑖𝜋
2

3.1.8 Optional choice Problem 4

MATH 601 Test 1. (Due: Oct 4.)

1. Consider the complex exponential function f(z) = ez = ex(cos y + i sin y), where
x = Re z, y = Im z. Use the Cauchy-Riemann equations to show that f(z) is
analytic in the whole complex plane C, and using the definition of the derivative
show that f ′(z) = f(z).

2. Determine the domain D of z values on the complex plane where the complex
function, given by the following series,

F (z) = z1/3 + z1/7 + z1/11 + z1/15 + ...

is well defined. What is the set of all values z ∈ C, for which it holds that

F ′(z) =
1

3
z−2/3 +

1

7
z−6/7 +

1

11
z−10/11 + ...

3. Consider the real function defined by the power series

f(x) =
∞∑
n=0

(4n)!

(n!)4

(x
6

)n
.

Use the results on complex power series to determine the largest open interval on
which f(x) is defined. For what values of a < b does f(x) converge uniformly on
[a, b]?

4. We refer to an open connected set D ⊂ C as a domain of the complex plane, and if
F (z) is an analytic function on D we call the set

F (D) = {F (z) : z ∈ D}

the analytic transformation of D by F . (E.g.: if the open unit disk centered at 1 is
given as

U1 = {z ∈ C : |z − 1| < 1} ,

and F (z) = z + i, H(z) = iz, then the analytic transformations F (U1) and H(U1)
are a shift by i of U1, and a counterclockwise rotation by 90 degrees – or π/2 radian
– around the origin of U1, respectively.)

a) Consider
U0 = {z ∈ C : |z| < 1} ,

and f1(z) = z+1
1−z . Show that f1(z) is a 1-1 (and analytic) function on U0, and

argue that f1 , also referred to as a Möbius transformation, transforms U0 to
the right half plane, i.e. f1(U

0) = {z ∈ C : Re z > 0} .
b) Write the function

f(z) = e
−i ln

{
[i( z+1

1−z )]
1
2

}

as a composite of 6 analytic functions f(z) = f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(z) and
show that f transforms U0 into an annulus f(U0). [Hint: Determine in order
f1(U

0), f2 ◦ f1(U0),..., f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(U0).]

0 1

i

transformation

c) (Extra credit/fun:) If you have access to a software performing complex arith-
metic (e.g. Matlab), compute the transformation of the ”transformation” text
shaped domain T given inside the unit disk (as black text) on the adjacent
image.

5. Let f(z) be given as

f(z) =
∞∑
n=1

1

n(n+ 1)

(z
4

)n+1

.

a) Find the domain D on which f(1
z
) is analytic.

b) For what z-values does g(z) defined by the Laurent-series

g(z) =
∞∑
n=1

1

n(n+ 1)

(
1

4z

)n+1

+
∞∑
n=1

n!

nn
zn

converge.

6. Determine the McLaurin series of the following special functions for z ∈ R. The
resulting series defines the functions for complex numbers as well. Give the radius
of convergence of the resulting series? Determine whether any of them is even
( f(−z) = f(z) ) or odd ( f(−z) = −f(z) ).

a)

erf(z) =
2√
π

∫ z

0

e−t
2

dt

b)

Si(z) =

∫ z

0

sin t

t
dt

7. a) Determine the Laurent series of the function

f(z) =
2z + 6

z2 − 6z + 5

in the annulus 1 < z < 5 and in |z| > 5.

b) Determine the Taylor series representation of the function

g(z) = e−z
2/2

with center z0 = 0. What is the radius of convergence?

Solution

Part (a)

𝑓1 (𝑧) =
𝑧 + 1
1 − 𝑧

(1)
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The domain 𝑈0 is the unit disk centered at origin. To show 𝑓1 (𝑧) is 1-1 on 𝑈0 means to show that if

𝑓1 (𝑧1) = 𝑓1 (𝑧2) (2)

The this implies that

𝑧1 = 𝑧2
Applying (1,2) to both points gives

𝑓1 (𝑧1) = 𝑓1 (𝑧2)
𝑧1 + 1
1 − 𝑧1

=
𝑧2 + 1
1 − 𝑧2

�𝑥1 + 𝑖𝑦1� + 1

1 − �𝑥1 + 𝑖𝑦1�
=
�𝑥2 + 𝑖𝑦2� + 1

1 − �𝑥2 + 𝑖𝑦2�

��𝑥1 + 𝑖𝑦1� + 1� �1 − �𝑥2 + 𝑖𝑦2�� = �1 − �𝑥1 + 𝑖𝑦1�� ��𝑥2 + 𝑖𝑦2� + 1�

�𝑥1 + 𝑖𝑦1 + 1� �1 − 𝑥2 − 𝑖𝑦2� = �1 − 𝑥1 − 𝑖𝑦1� �𝑥2 + 𝑖𝑦2 + 1�

𝑥1 − 𝑥1𝑥2 − 𝑖𝑥1𝑦2 + 𝑖𝑦1 − 𝑖𝑦1𝑥2 + 𝑦1𝑦2 + 1 − 𝑥2 − 𝑖𝑦2 = 𝑥2 + 𝑖𝑦2 + 1 − 𝑥1𝑥2 − 𝑖𝑦2𝑥1 − 𝑥1 − 𝑖𝑦1𝑥2 + 𝑦1𝑦2 − 𝑖𝑦1
Collecting real and imaginary parts

�𝑥1 − 𝑥1𝑥2 + 𝑦1𝑦2 + 1 − 𝑥2� + 𝑖 �−𝑥1𝑦2 + 𝑦1 − 𝑦1𝑥2 − 𝑦2� = �𝑥2 + 1 − 𝑥1𝑥2 − 𝑥1 + 𝑦1𝑦2� + 𝑖 �𝑦2 − 𝑦2𝑥1 − 𝑦1𝑥2 − 𝑦1�
(3)

If two complex numbers are equal, then the real part and the imaginary part must be equal. Hence
in equation (3), equating real parts gives

𝑥1 − 𝑥1𝑥2 + 𝑦1𝑦2 + 1 − 𝑥2 = 𝑥2 + 1 − 𝑥1𝑥2 − 𝑥1 + 𝑦1𝑦2
𝑥1 − 𝑥2 = 𝑥2 − 𝑥1

2𝑥1 = 2𝑥2
𝑥1 = 𝑥2 (4)

And equating imaginary parts in (3) gives

−𝑥1𝑦2 + 𝑦1 − 𝑦1𝑥2 − 𝑦2 = 𝑦2 − 𝑦2𝑥1 − 𝑦1𝑥2 − 𝑦1
𝑦1 − 𝑦2 = 𝑦2 − 𝑦1

2𝑦1 = 2𝑦2
𝑦1 = 𝑦2 (5)

From (4,5) we see that 𝑧1 = 𝑥1 + 𝑖𝑦1 is the same point as 𝑧2 = 𝑥2 + 𝑖𝑦2. This shows that

𝑓1 (𝑧) is 1-1 on 𝑈0

To show that 𝑓1 (𝑧) is analytic, we see that there is a pole at 𝑧 = 1. But this is outside the disk |𝑧| < 1.
So there is no singularity inside the disk. And since 𝑧+1

𝑧−1 is di�erentiable as many times as we wish,
then it is analytic. We can also apply Cauchy Riemann equations also to verify this, but it is not
needed for this simple function.

The last part is to show that 𝑓1 is a Mobius transformation.

Domain of f(z)

1

Range of f1(z) is <(z) > 0

z

f1(z)

To show this, we apply 𝑓1 (𝑧) to an arbitrary point in the domain |𝑧| < 1 and see if the real part
of 𝑓1 (𝑧) comes out to be always positive or not. Let 𝑧0 be any point inside the disk |𝑧| < 1 where
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𝑧 = 𝑥 + 𝑖𝑦. Hence

𝑓1 (𝑧) =
𝑧 + 1
1 − 𝑧

=
�𝑥 + 𝑖𝑦� + 1

1 − �𝑥 + 𝑖𝑦�

=
(𝑥 + 1) + 𝑖𝑦
(1 − 𝑥) − 𝑖𝑦

Multiplying the numerator and denominator by the complex conjugate of the denominator gives

𝑓1 (𝑧0) =
�(𝑥 + 1) + 𝑖𝑦� �(1 − 𝑥) + 𝑖𝑦�

�(1 − 𝑥) − 𝑖𝑦� �(1 − 𝑥) + 𝑖𝑦�

=
(𝑥 + 1) (1 − 𝑥) + 𝑖𝑦 (𝑥 + 1) + 𝑖𝑦 (1 − 𝑥) − 𝑦2

(1 − 𝑥)2 + 𝑦2

=
(𝑥 + 1) (1 − 𝑥) + 𝑖𝑦𝑥 + 𝑖𝑦 + 𝑖𝑦 − 𝑖𝑦𝑥 − 𝑦2

(1 − 𝑥)2 + 𝑦2

=
�1 − 𝑥2� + 2𝑖𝑦 − 𝑦2

(1 − 𝑥)2 + 𝑦2

=
�1 − 𝑥2� − 𝑦2

(1 − 𝑥)2 + 𝑦2
+ 𝑖

−2𝑦𝑥
(1 − 𝑥)2 + 𝑦2

= 𝑢 + 𝑖𝑣

Hence

𝑢 �𝑥, 𝑦� =
�1 − 𝑥2� − 𝑦2

(1 − 𝑥)2 + 𝑦2

=
1 − �𝑥2 + 𝑦2�

(1 − 𝑥)2 + 𝑦2

=
1 − |𝑧|2

(1 − 𝑥)2 + 𝑦2

We now need to show that 𝑢 �𝑥, 𝑦� is always positive. Now, Since |𝑧| < 1, then |𝑥| < 1 and also �𝑦� < 1.
This shows that the denominator is always positive and can not be zero even when 𝑥 = 0, 𝑦 = 0 in
which case the denominator is 1. The only problem comes when 𝑥 = 1 and 𝑦 = 0 in which case
the mapping goes to infinity. More on this below. But this point is on the boundary itself, and not
inside the disk.

Now, for the numerator, since |𝑧| < 1 then 1 − |𝑧|2 is always positive. Only when |𝑧| = 1 (boundary
points), then will 𝑢 �𝑥, 𝑦� = 0. Therefore we conclude that

Each point inside the disk maps to right side of the complex plane

For example, the center of the disk, 𝑥 = 0, 𝑦 = 0, maps to the right side complex plane, since

𝑓1 �𝑥, 𝑦� =
�1 − 𝑥2� − 𝑦2

(1 − 𝑥)2 + 𝑦2
+ 𝑖

−2𝑦𝑥
(1 − 𝑥)2 + 𝑦2

𝑓1 (0, 0) = 1 + 0𝑖

What about points on the boundary of the disk where |𝑧| = 1? Lets pick the point 𝑥 = 1, 𝑦 = 0, then
we see that

lim
𝑦→0

�𝑥 + 𝑖𝑦� + 1

1 − �𝑥 + 𝑖𝑦�
=
1 + 𝑥
1 − 𝑥

Hence as 𝑥 → 1 it will blow up and it goes to infinity. How about the point 𝑥 = 0, 𝑦 = 1, then this
point maps to

𝑓1 (0, 1) =
1 − 1
1 + 1

+ 𝑖
0

1 + 1
= 0 + 𝑖0

So it maps to origin in the complex plane. The point 𝑥 = −1, 𝑦 = 0 maps to

𝑓1 (−1, 0) = 0 + 𝑖0

All other points on the boundary of disk |𝑧| = 1map to the origin of the complex plane, except for the point
𝑥 = 1, 𝑦 = 0 which maps to infinity.
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Domain of f(z)

1

z

f1(z)

This point maps to ∞

all points on the boundary
of the disk map to origin
of the complex plane

<(z)

=(z)

Transformation given by z+1
1−z

Part (b)

𝑓 (𝑧) = 𝑒−𝑖 ln�𝑖 𝑧+11−𝑧

Since 𝑓1 (𝑧) =
𝑧+1
1−𝑧 , where from part(a), we know it maps all points inside disk |𝑧| < 1 to the right

side of the complex plane. Then the above can be written as

𝑓 (𝑧) = 𝑒−𝑖 ln�𝑖𝑓1(𝑧)

Now let

𝑓2 (𝑧) = 𝑖𝑓1 (𝑧)

The e�ect of this is to rotate each point in the right half plane clockwise by 900. This can be seen
by considering an arbitrary point 𝑧0 = 𝑟𝑒𝑖𝜃, then

𝑖𝑧0 = 𝑒
𝑖𝜋2 �𝑟𝑒𝑖𝜃�

= 𝑟𝑒𝑖�𝜃+
𝜋
2 �

Hence the result of applying 𝑓2 (𝑧) = 𝑖𝑓1 (𝑧) is to rotate the right side plane to the upper half plane
as shown below

z

f1(z) f2(f1(z))

The next step is to apply the square root function. This means

𝑓3 (𝑧) = �𝑓2 �𝑓1 (𝑧)�

What does applying a square root to a point 𝑧0 in the complex plane do? Since 𝑧
1
2 = 𝑒

1
2 (ln|𝑧|+𝑖Arg(𝑧))

where here we used the principal argument of 𝑧, therefore

𝑧
1
2 = 𝑒

1
2 (ln 𝑟+𝑖𝜃)

= 𝑟
1
2 𝑒𝑖

𝜃
2

Hence the e�ect is to take the square root of the module and to reduce the argument by half. Points
inside a unit circle will increase their module and move closer to the inner edge of the unit circle,
and points outside the unit circle will decrease their modulus and move closer to the outside edge
of the unit circle. Points on the unit circle will not change their modulus. But all points will have
their argument halved. The result of this is all points will move and end up in the first quadrant of
the complex plane
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z

f1(z) f2(f1(z))

f3(f2(f1(z)))

The next step is to apply the ln function on the resulting points. Hence

𝑓4 (𝑧) = ln �𝑓3 (𝑧)�

Now we ask, what does ln (𝑧) do to a point 𝑧? Let 𝑧 = 𝑟𝑒𝑖𝜃 then

ln (𝑧) = ln �𝑟𝑒𝑖𝜃�
= ln 𝑟 + ln 𝑒𝑖𝜃

= ln 𝑟 + 𝑖𝜃
This gives a complex variable whose real part is ln |𝑧| and whose imaginary part is the argument
of 𝑧. Since ln |𝑧| is negative for |𝑧| < 1, then all points inside the unit circle will have their real part
move to the negative half plane, and all points outside the unit circle will have their real part in
the right half plane. And all points on the unit circle will have their real part be zero. So all point
on the unit circle will move to the imaginary axis. For example, the point (1, 0) will move to (0, 0)
and the point (0, 1) will move to �0, 𝜋2 �.

As a point is closer to the origin, it will map closer to −∞ in negative half plane, since lim𝑟→0 ln (𝑟)
is −∞.

The imaginary part of each point be the argument of the point 𝑧. Since all points now reside in the
first quadrant as seen in the above diagram, then the imaginary part will extend from 0⋯ 𝜋

2 . The
following diagram just shows the transformation by 𝑓4 (𝑧) for selected points

π
2

1

f4(f3(f2(f1(z))))

The next step is to apply −𝑖 to each point. Hence

𝑓5 (𝑧) = −𝑖𝑓4 (𝑧)

= 𝑒−𝑖
𝜋
2 𝑓4 (𝑧)

Let 𝑧 = 𝑟𝑒𝑖𝜃 = 𝑓4 (𝑧) and the above becomes

𝑓5 (𝑧) = 𝑒
−𝑖 𝜋2 𝑟𝑒𝑖𝜃

= 𝑟𝑒𝑖�𝜃−
𝜋
2 �

So the e�ect of multiplying by −𝑖 is rotate each point clockwise by 900. Hence the whole strip shown
above (𝑓4 (𝑧)), will now rotate by 900 clockwise. The arguments of each new point location will now
be in the range 𝜋

2 ⋯− 𝜋
2 as shown below
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π
2

π
2

1

−i

f5(f4(f3(f2(f1(z)))))

The final step is to apply exp (𝑧) to each point in generated by applying 𝑓5 (𝑧). Let a point be
𝑧 = 𝑥 + 𝑖𝑦, then

𝑓6 (𝑧) = 𝑒𝑥+𝑖𝑦

= 𝑒𝑥𝑒𝑖𝑦

= 𝑒𝑥 �cos 𝑦 + 𝑖 sin 𝑦�
= 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦

Hence the real part of each new point become 𝑒𝑥 cos 𝑦 and imaginary part become 𝑒𝑥 sin 𝑦.

All points on imaginary line, with 𝑥 = 0 will map to cos 𝑦 + 𝑖 sin 𝑦. All point on the 𝑥 axis, where
𝑦 = 0 will map to 𝑒𝑥 + 0𝑖.

All points on the vertical line �𝜋2 , 𝑦� will map to 𝑒
𝜋
2 cos 𝑦 + 𝑖𝑒

𝜋
2 sin 𝑦. To better see the mapping, I

wrote a small program to plot the above transformation. The function samples points from 𝑥 = 0
to 𝑥 = 𝜋

2 and samples points from 𝑦 = −5 to 𝑦 = 5. For each such point �𝑥, 𝑦� it transforms it to

�𝑒𝑥 cos 𝑦, 𝑒𝑥 sin 𝑦�.

The result shows that all points map to concentric rings outside the unit circle as shown in the plot
below

-4

-2

0

2

4

-4 -2 2 4

-4

-2

2

4

Result of applying f6(z). annulus outside unit circle.

Hence the final mapping is to an annulus outside disk on radius 1. The following shows all the
transformation applied on the same diagram.

z

f1(z) f2(z)
π
2

f3(z)

f4(z)

π
2

f5(z)
f6(z)

1
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Part (c)

Using Matlab, the code provided was run after applying the function 𝑓6 �𝑓5 �𝑓4 �𝑓3 �𝑓2 �𝑓1 (𝑧)����� on
it.

close all
load 'TransPoints.mat';
TR=exp(-1i.*log( sqrt( 1i*((COMPLD+1)./(1-COMPLD) ))));
IMtr=imag(TR);
REtr=real(TR);
plot(REtr,IMtr,'k.')
axis equal
title('Math 601, problem 4 result. Nasser M. Abbasi')
grid

The following shows the original image, and the transformed image below it.

-1 0 1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Math 601, problem 4 result. Nasser M. Abbasi

3.2 second exam

3.2.1 Problem 1

Find the equilibria of the following di�erential equation 𝑦′ = 1 − 𝑦2 and determine their stability.
Derive the explicit solution for the initial value problem

𝑦′ (𝑡) = 1 − 𝑦2

𝑦 (0) = −2

Find the finite time interval for which the solution exists.

solution

Before solving the problem, the domain of the solution is determined. The RHS of the ODE

is 𝑓 �𝑡, 𝑦� = 1 − 𝑦2. This is a continuous and real function for all 𝑦. Now 𝜕𝑓
𝜕𝑦 = −2𝑦 shows it is also

continuous and real for all 𝑦. Combining these results shows that there exists a solution and is
unique in some subset of the domain

−∞ < 𝑦 < ∞

The problem is now solved. Since

𝑦′ (𝑡) = 𝑓 �𝑦�

Then the equilibrium points are the solution to 𝑓 �𝑦� = 0 or 1 − 𝑦2 = 0. Therefore there are two
equilibrium points given by

𝑦 = ±1
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The stability type is determined by taking the second derivative and evaluating it at at each
equilibrium point. If the second derivative is negative, then the point is stable equilibrium. If the
second derivative is positive then the point is unstable equilibrium. If the second derivative is zero,
it is a saddle point. Since

𝑦′′ = −2𝑦

Then at 𝑦 = 1, 𝑦′′ < 0 which implies 𝑦 = 1 is stable. At 𝑦 = −1, 𝑦′′ > 0 which implies 𝑦 = −1 is unstable
equilibrium.

The above result was verified by generating the direction field plot for the ODE. It shows that
solution lines are moving away from line 𝑦 = −1, which means it is unstable (A solution that starts
near 𝑦 = −1 will move away from its initial position). The plot also shows solutions that start near
𝑦 = 1 moving towards 𝑦 = 1. Hence 𝑦 = 1 is stable equilibrium. The line in red is the particular
solution trajectory for the initial condition given in the problem.

0.5 1.0 1.5 2.0 2.5 3.0
t

-3

-2

-1

1

2

y(t)
Direction field plot showing the solution trajectory in red

f[t_, y_] := 1 - y^2;
p = StreamPlot[{1, f[t, y]}, {t, 0, 3}, {y, -3, 2},
Frame -> False,
Axes -> True,
AxesLabel -> {"t", "y(t)"},
BaseStyle -> 14,
StreamPoints -> {{{{0, -2}, Red}, Automatic}},
ImageSize -> 400,
PlotLabel -> Style[Text[ "Direction field plot showing the solution trajectory in red"], 12]
]

The ODE is now solved.
𝑑𝑦
𝑑𝑡
= 1 − 𝑦2

𝑑𝑦
1 − 𝑦2

= 𝑑𝑡

Since it is separable, then Integrating both sides results in

�
𝑑𝑦

1 − 𝑦2
= �𝑑𝑡

arctanh �𝑦� = 𝑡 + 𝑐
Hence the solution is

𝑦 (𝑡) = tanh (𝑡 + 𝑐)

But

tanh (𝑧) = 𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
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Therefore the solution can be written as

𝑦 (𝑡) =
𝑒𝑡+𝑐 − 𝑒−𝑡−𝑐

𝑒𝑡+𝑐 + 𝑒−𝑡−𝑐

=
𝑐𝑒𝑡 − 1

𝑐 𝑒
−𝑡

𝑐𝑒𝑡 + 1
𝑐 𝑒

−𝑡

=
𝑐2𝑒𝑡 − 𝑒−𝑡

𝑐2𝑒𝑡 + 𝑒−𝑡

=
𝐶𝑒𝑡 − 𝑒−𝑡

𝐶𝑒𝑡 + 𝑒−𝑡
(1)

Using the initial conditions 𝑦 (0) = −2 the above gives the value of 𝐶

−2 =
𝐶 − 1
𝐶 + 1

−2𝐶 − 2 = 𝐶 − 1
−3𝐶 = 1

𝐶 =
−1
3

Substituting the constant 𝐶 value found above into solution (1) gives

𝑦 (𝑡) =
−1
3 𝑒

𝑡 − 𝑒−𝑡
−1
3 𝑒

𝑡 + 𝑒−𝑡

=
−𝑒𝑡 − 3𝑒−𝑡

−𝑒𝑡 + 3𝑒−𝑡

=
𝑒𝑡 + 3𝑒−𝑡

𝑒𝑡 − 3𝑒−𝑡

By factoring 𝑒−𝑡 the above becomes

𝑦 (𝑡) =
3 + 𝑒2𝑡

−3 + 𝑒2𝑡
To find when the solution stops, means to find the time when solution becomes undefined. This
occurs when the denominator becomes zero (the solution reaches a pole). The denominator of the
solution above becomes zero when

−3 + 𝑒2𝑡 = 0
2𝑡 = ln 3

𝑡 =
1
2

ln 3

Numerically, this is approximately 𝑡 = 0.549 seconds. Here is a plot of the solution showing what
happens when it reaches close to the above 𝑡 value starting from 𝑡 = 0. The plot shows that the
solution diverges to −∞ as the pole is approached from the left and the solution becomes undefined.

0.0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

t (sec)

y(
t)

Showing when solution becomes undefined
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sol = (3 + Exp[2 t])/(-3 + Exp[2 t]);
p = Plot[sol, {t, 0, 0.54}, PlotRange -> All,
Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
PlotStyle -> Red,
FrameLabel -> {{"y(t)", None}%
, {"t (sec)", "Showing when solution becomes undefined"}},
BaseStyle -> 14]

3.2.2 Problem 2

solution

𝑑𝑦
𝑑𝑡
= 𝑡√𝑦

The domain of the solution is first found. Since 𝑓 �𝑡, 𝑦� = 𝑡√𝑦 then this function is real and continuous

for all 𝑡 and for 𝑦 ≥ 0. Since 𝜕𝑓
𝜕𝑦 =

𝑡
2√𝑦

then this is continuous for all 𝑡 and for 𝑦 ≠ 0 (to avoid a pole).

Combining these two results shows a solution exists and unique in some subset of the domain

−∞ < 𝑡 < ∞
𝑦 > 0

The direction field for the above ode is given in the plot below

0.5 1.0 1.5 2.0 2.5 3.0
t

0.5

1.0

1.5

2.0

y(t)
Direction field plot for problem 2



105

f[t_, y_] := t Sqrt[y];
p = StreamPlot[{1, f[t, y]}, {t, 0, 3}, {y, 0, 2},
Frame -> False,
Axes -> True,
AxesLabel -> {"t", "y(t)"},
BaseStyle -> 14,
ImageSize -> 400,
PlotLabel -> Style[Text["Direction field plot for problem 2"], 12]
]

The ODE is now solved.
𝑑𝑦
𝑑𝑡
= 𝑡√𝑦

𝑑𝑦

√𝑦
= 𝑡𝑑𝑡

This is separable. Integrating both sides gives

�𝑦−
1
2 𝑑𝑦 = �𝑡𝑑𝑡

2√𝑦 =
𝑡2

2
+ 𝑐

√𝑦 =
𝑡2

4
+
𝑐
2

Applying initial conditions 𝑦 (1) = 𝑘 the above becomes

√𝑘 =
1
4
+
𝑐
2

𝑐 = 2√𝑘 −
1
2

Hence

√𝑦 =
𝑡2

4
+
�2√𝑘 − 1

2
�

2

=
𝑡2

4
+ √𝑘 −

1
4

(2)

Or

𝑦 (𝑡) = �
𝑡2

4
+ √𝑘 −

1
4�

2

= 𝑘 +
1
2√

𝑘𝑡2 −
1
8
𝑡2 +

1
16
𝑡4 −

1
2√

𝑘 +
1
16

(3)

part (a)

Looking at solutions in (3) shows that 𝑘 > 0 is needed to obtain two real solutions.

part (b)

When 𝑘 = 0 then 𝑦 (1) = 0. But from earlier the domain of the unique solution was found to be

−∞ < 𝑡 < ∞
𝑦 > 0

Therefore the initial condition point where 𝑦 = 0 is outside the above domain. Therefore 𝑘 = 0 will
generate infinite number of solutions because it the initial condition is outside the domain where
the solution have to satisfy in order to be unique.

part (c)

No real solution can be obtained when 𝑘 < 0. This is because when 𝑘 is negative then √𝑘 = 𝑖√|𝑘|
and the solution becomes complex.

part (d)

𝑓 �𝑡, 𝑦� = 𝑡√𝑦

Let 𝑘 = 1. This implies the initial conditions is 𝑦 (1) = 1. This means the initial conditions point
is inside the domain given. Therefore when 𝑘 = 1 then 𝑓 �𝑡, 𝑦1� becomes, using 𝑦1 (𝑡) solution from
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above, the following

𝑓 �𝑡, 𝑦1� = 𝑡√𝑦1

=
𝑡
4�

𝑡4 − 𝑡2 + 8𝑡2 +
1
4
+ 16 − 4

=
𝑡
4�

𝑡4 + 7𝑡2 +
49
4

The above shows that 𝑓 �𝑡, 𝑦1� is continuous and real over the range 0.5 ≤ 𝑡 ≤ 1.5. And
𝜕𝑓�𝑡,𝑦1�

𝜕𝑦1
becomes

𝜕𝑓 �𝑡, 𝑦1�
𝜕𝑦1

=
1
2

𝑡

√𝑦1
Using 𝑘 = 1 in the solution 𝑦1 (𝑡) the above becomes

𝜕𝑓 �𝑡, 𝑦1�
𝜕𝑦1

=
1
2

𝑡
1
4�𝑡

4 + 7𝑡2 + 49
4

=
2𝑡

�𝑡
4 + 7𝑡2 + 49

4

Over the range 0.5 ≤ 𝑡 ≤ 1.5 the denominator above is never zero. Hence there is no pole and

therefore
𝜕𝑓�𝑡,𝑦1�

𝜕𝑦1
is also continuous and real in the range given. This shows that 𝑓 �𝑡, 𝑦� is Lipschitz

continuous inside a rectangular around initial conditions given for the value 𝑘 = 1.

This is not the only 𝑘 value that could be selected. However the problem is asking for one such 𝑘
value.

3.2.3 Problem 3

Solution

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0

Because the coe�cients of the ODE are constants, the solution is found by solving for the roots of
the characteristic equation

𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0

The roots are

𝜆 =
−𝑏
2𝑎

±
1
2𝑎
√𝑏2 − 4𝑎𝑐

Hence the solution is given by linear combination of each solution 𝑒𝜆1𝑡, 𝑒𝜆2𝑡 as

𝑦 (𝑡) = 𝑐1𝑒𝜆1𝑡 + 𝑐2𝑒𝜆2𝑡

= 𝑐1𝑒
−𝑏
2𝑎 𝑡𝑒

√𝑏2−4𝑎𝑐
2𝑎 𝑡 + 𝑐1𝑒

−𝑏
2𝑎 𝑡𝑒

−√𝑏2−4𝑎𝑐
2𝑎 𝑡

= 𝑒
−𝑏
2𝑎 𝑡 �𝑐1𝑒

√𝑏2−4𝑎𝑐
2𝑎 𝑡 + 𝑐2𝑒

−√𝑏2−4𝑎𝑐
2𝑎 𝑡� (1)

The above shows that since 𝑏 > 0 and 𝑎 > 0 then 𝑒
−𝑏
2𝑎 𝑡 will go to zero as 𝑡 → ∞. This shows that all

solutions will eventually go to zero.

When 𝑏 = 0, the solution given by (1) reduces to

𝑦 (𝑡) = 𝑐1𝑒
√−4𝑎𝑐
2𝑎 𝑡 + 𝑐2𝑒

−√−4𝑎𝑐
2𝑎 𝑡

But because 𝑎 > 0 and 𝑐 > 0 then −4𝑎𝑐 is negative and the discriminant √−4𝑎𝑐 becomes complex
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and the above solution becomes

𝑦 (𝑡) = 𝑐1𝑒
2𝑖√𝑎𝑐
2𝑎 𝑡 + 𝑐2𝑒

−2𝑖√𝑎𝑐
2𝑎 𝑡

= 𝑐1𝑒
𝑖�

𝑐
𝑎 𝑡 + 𝑐2𝑒

−𝑖�
𝑐
𝑎 𝑡

= 𝐶1 cos
⎛
⎜⎜⎜⎝
�
𝑐
𝑎
𝑡
⎞
⎟⎟⎟⎠ + 𝐶2 sin

⎛
⎜⎜⎜⎝
�
𝑐
𝑎
𝑡
⎞
⎟⎟⎟⎠

The above shows that the solution never goes to zero as 𝑡 → ∞ as the solution continues to oscillate.
This happened because the damping term 𝑏 was set to zero, so there is no loss of energy in the
system as it moves and therefore once the system is set in motion (by some initial condition away
from rest), the system will continue to vibrate for all time.

To obtain unbounded solution, 𝑏 must be negative while keeping 𝑎 > 0. In this case the solution in
(1) becomes

𝑦 (𝑡) = 𝑒
|𝑏|
2𝑎 𝑡 �𝑐1𝑒

√𝑏2−4𝑎𝑐
2𝑎 𝑡 + 𝑐2𝑒

−√𝑏2−4𝑎𝑐
2𝑎 𝑡�

The above shows that since 𝑏 < 0 then 𝑒
−𝑏
2𝑎 𝑡 = 𝑒

|𝑏|
2𝑎 𝑡 and this will cause the solution to blow up as 𝑡

increases. Negative damping means there is energy being added to the system as it time increases
instead of the normal case where damping causes energy to be lost from the system with time.
This is why the solution becomes unbounded when 𝑏 < 0. In Physical systems the damping term is
always positive.

3.2.4 Problem 4

solution

Analysis of motion

The following diagram shows the initial positions of the four bugs and what happens after Δ𝑡 has
elapsed.
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1

2 3

4
(0, 0)

(0, 2) (1, 2)

(1, 0)

1

2
3

4

Initial conditions at t = 0. Position after some ∆t time

Nasser M. Abbasi. ant 1.ipe. 11/11/2018

The four bugs initially are located at the corners of the rectangle. The width is ℎ = 1 and the
height is 𝐿 = 2. Because each bug moves with the same speed toward the bug adjacent to it (in
clockwise direction), then by symmetry, the four bugs will remain on the corners of a rectangle as
time increases, but the rectangle shrinks and rotates clockwise in time as the bugs spiral towards the
center of the original rectangle where they collide. The following diagram illustrates such motion
after some Δ𝑡 has elapsed.

2

1

x axis

y axis

bug 1

bug 2

bug 3

bug 4

Showing locations of bugs after some ∆t.
Rectangle is rotating clockwise and rotating in
time. (drawing not to scale)

(0, 0)

(0, 2)
(1, 2)

(1, 0)

V1

V2

V3

V4

Nasser M. Abbasi. ant 0.ipe. 11/12/2018

The above shows that at each instance of time, each bug remains at the corner of a scaled down
version of the original rectangle that is rotating. Each bug’s velocity vector is always pointing
straight towards the bug it is chasing. This means that bug’s 1 motion is always at 900 to the path
of bug 2. And bug’s 2 motion is at 900 to the path of bug 3 and so on.

Equations of motion

To obtain the equation of motion for each bug, each bug’s position is considered relative to the
bug it is chasing. Starting with bug’s 1 relative position to bug 2. This is done with the help of the
following diagram
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(x1, y1)

(x2, y2)

2

1

x axis

y axis

bug 1

bug 2

bug 3

bug 4

Showing relative locations of bug 1 and 2 after some ∆t

Nasser M. Abbasi. ant 2.ipe. 11/11/2018

~v1 = v1
~r2−~r1
‖~r2−~r1‖

~r1

~r2

The position vector of bug 1 is �⃗�1 (𝑡) and the position vector of bug 2 is �⃗�2 (𝑡). Therefore

�⃗�1 =
𝑑�⃗�1 (𝑡)
𝑑𝑡

= ��⃗�1� �̂�

Where �̂� is unit vector in the direction from bug 1 to bug 2. Hence the above can be written as

𝑑�⃗�1 (𝑡)
𝑑𝑡

= ��⃗�1�
�⃗�2 (𝑡) − �⃗�1 (𝑡)

∥ �⃗�2 (𝑡) − �⃗�1 (𝑡) ∥
Because ��⃗�1� = 1 meter per seconds, then the above simplifies to

𝑑�⃗�1 (𝑡)
𝑑𝑡

=
�𝑥2 ̂𝚤 + 𝑦2 ̂𝚥� − �𝑥1 ̂𝚤 + 𝑦1 ̂𝚥�

∥ �𝑥2 ̂𝚤 + 𝑦2 ̂𝚥� − �𝑥1 ̂𝚤 + 𝑦1 ̂𝚥� ∥

�
𝑑𝑥1
𝑑𝑡

̂𝚤 +
𝑑𝑦1
𝑑𝑡

̂𝚥� =
𝑥2 − 𝑥1

�(𝑥2 − 𝑥1)
2 + �𝑦2 − 𝑦1�

2
̂𝚤 +

𝑦2 − 𝑦1

�(𝑥2 − 𝑥1)
2 + �𝑦2 − 𝑦1�

2
̂𝚥

Where 𝑥1, 𝑦1 are the coordinates of bug 1 and 𝑥2, 𝑦2 are the coordinates of bug 2. The above gives
the equation of motion for bug 1. Let 𝑥′1 =

𝑑𝑥1
𝑑𝑡 and 𝑦′1 =

𝑑𝑦1
𝑑𝑡 for bug 1 then the following are the two

equations of motion for bug 1 as function of its position and the position of bug 2

𝑥′1 =
𝑥2 − 𝑥1

�(𝑥2 − 𝑥1)
2 + �𝑦2 − 𝑦1�

2

𝑦′1 =
𝑦2 − 𝑦1

�(𝑥2 − 𝑥1)
2 + �𝑦2 − 𝑦1�

2
(3)

The same analysis is now carried out to obtain 𝑥′2 (𝑡) and 𝑦′2 (𝑡) expressions similar to (3) above for
bug 2.
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(x2, y2)

2

1

x axis

y axis

bug 1

bug 2

bug 3

bug 4

Showing relative location of bugs 2 and 3 after some ∆t

(x3, y3)

Nasser M. Abbasi. ant 3.ipe. 11/11/2018

~r2

~r3

~v2 = v2
~r3−~r2
‖~r3−~r2‖

The position vector of bug 2 is �⃗�2 (𝑡) and the position vector of bug 3 is �⃗�3 (𝑡). Therefore �⃗�2 =
𝑑�⃗�2(𝑡)
𝑑𝑡 =

��⃗�2� �̂� where �̂� is unit vector in the direction from bug 2 to bug 3. Hence

𝑑�⃗�2 (𝑡)
𝑑𝑡

= ��⃗�2�
�⃗�3 (𝑡) − �⃗�2 (𝑡)

∥ �⃗�3 (𝑡) − �⃗�2 (𝑡) ∥
Since ��⃗�2� = 1 meter per seconds then

𝑑�⃗�2 (𝑡)
𝑑𝑡

=
�𝑥3 ̂𝚤 + 𝑦2 ̂𝚥� − �𝑥3 ̂𝚤 + 𝑦2 ̂𝚥�

∥ �𝑥3 ̂𝚤 + 𝑦2 ̂𝚥� − �𝑥3 ̂𝚤 + 𝑦2 ̂𝚥� ∥

�
𝑑𝑥2
𝑑𝑡

̂𝚤 +
𝑑𝑦2
𝑑𝑡

̂𝚥� =
𝑥3 − 𝑥2

�(𝑥3 − 𝑥2)
2 + �𝑦3 − 𝑦2�

2
̂𝚤 +

𝑦3 − 𝑦2

�(𝑥3 − 𝑥2)
2 + �𝑦3 − 𝑦2�

2
̂𝚥

Where 𝑥2, 𝑦2 are the coordinates of bug 2 and 𝑥3, 𝑦3 are the coordinates of bug 3. The above gives
the two equations of motion for bug 2. Using 𝑥′2 =

𝑑𝑥2
𝑑𝑡 and 𝑦′2 =

𝑑𝑦2
𝑑𝑡 for bug 2, then the following

gives the two equations of motion for bug 2 as function of its position and the position of bug 3

𝑥′2 =
𝑥3 − 𝑥2

�(𝑥3 − 𝑥2)
2 + �𝑦3 − 𝑦2�

2

𝑦′2 =
𝑦3 − 𝑦2

�(𝑥3 − 𝑥2)
2 + �𝑦3 − 𝑦2�

2
(3)

The same analysis is carried out for bug 3 and bug 4, which results in similar equations. Therefore
the final equations of motions in vector form are

x′ = 𝑓 (x)
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Or
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1 (𝑡) =
𝑥2−𝑥1

�
(𝑥2−𝑥1)

2+�𝑦2−𝑦1�
2

𝑦′1 (𝑡) =
𝑦2−𝑦1

�
(𝑥2−𝑥1)

2+�𝑦2−𝑦1�
2

𝑥′2 (𝑡) =
𝑥3−𝑥2

�
(𝑥3−𝑥2)

2+�𝑦3−𝑦2�
2

𝑦′2 (𝑡) =
𝑦3−𝑦2

�
(𝑥3−𝑥2)

2+�𝑦3−𝑦2�
2

𝑥′3 (𝑡) =
𝑥4−𝑥3

�
(𝑥4−𝑥3)

2+�𝑦4−𝑦3�
2

𝑦′3 (𝑡) =
𝑦4−𝑦3

�
(𝑥4−𝑥3)

2+�𝑦4−𝑦3�
2

𝑥′4 (𝑡) =
𝑥1−𝑥4

�
(𝑥1−𝑥4)

2+�𝑦1−𝑦4�
2

𝑦′4 (𝑡) =
𝑦1−𝑦4

�
(𝑥1−𝑥4)

2+�𝑦1−𝑦4�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

With the initial conditions

x (0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 (0)
𝑦1 (0)
𝑥2 (0)
𝑦2 (0)
𝑥3 (0)
𝑦3 (0)
𝑥4 (0)
𝑦4 (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
2
1
2
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above system of equation can not written as x′ = 𝐴x because the equations of motion are
not linear. These ODE’s have to solved numerically. The following is the result of running the
numerical solution for 1.5 seconds. The code used is listed below. This shows the bugs spiraling
down to the center of the original rectangle as expected.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

x

y

Solution to the 4 bugs on corner problem
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ode1 =x1'[t] == (x2[t] - x1[t])/Sqrt[(x2[t] - x1[t])^2 + (y2[t] - y1[t])^2];
ode2 =y1'[t]== (y2[t] - y1[t])/Sqrt[(x2[t] - x1[t])^2 + (y2[t] - y1[t])^2];
ode3 =x2'[t] == (x3[t] - x2[t])/Sqrt[(x3[t] - x2[t])^2 + (y3[t] - y2[t])^2];
ode4 =y2'[t] == (y3[t] - y2[t])/Sqrt[(x3[t] - x2[t])^2 + (y3[t] - y2[t])^2];
ode5 =x3'[t]== (x4[t] - x3[t])/Sqrt[(x4[t] - x3[t])^2 + (y4[t] - y3[t])^2];
ode6 =y3'[t]== (y4[t] - y3[t])/Sqrt[(x4[t] - x3[t])^2 + (y4[t] - y3[t])^2];
ode7 =x4'[t]== (x1[t] - x4[t])/Sqrt[(x1[t] - x4[t])^2 + (y1[t] - y4[t])^2];
ode8 =y4'[t] == (y1[t] - y4[t])/Sqrt[(x1[t] - x4[t])^2 + (y1[t] - y4[t])^2];
sol = NDSolve[{ode1, ode2, ode3, ode4, ode5, ode6, ode7, ode8, x1[0] == 0,
y1[0] == 0, x2[0] == 0, y2[0] == 2, x3[0] == 1, y3[0] == 2, x4[0] == 1,
y4[0] == 0},
{x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t]}, {t, 0, 1.5}];
p = ParametricPlot[{x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t]}
/. sol,
{t, 0, 1.5}, AxesOrigin -> {0, 0},
GridLines -> Automatic, GridLinesStyle -> LightGray, Frame -> True,
FrameLabel -> {{"y", None}, {"x", "Solution to problem 4"}},
ImageSize -> 350]

This problem was also solved for a square instead of a rectangle. The only change needed was to
modify the initial conditions so as to locate the bugs at corners of unit square as shown below. No
changes are needed in the equations of motion.

x (0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 (0)
𝑦1 (0)
𝑥2 (0)
𝑦2 (0)
𝑥3 (0)
𝑦3 (0)
𝑥4 (0)
𝑦4 (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The time needed to reach the center in this case is one second. The following plot shows the path
generated for the bugs at the corners of the square.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Solution to the 4 bugs on corner problem (square version)

3.2.5 Problem 5

solution
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The system can be written using x′ = 𝐴x as
⎛
⎜⎜⎜⎜⎝
𝑥′ (𝑡)
𝑦′ (𝑡)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−2 −1
2 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥 (𝑡)
𝑦 (𝑡)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥 (1)
𝑦 (1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
4

⎞
⎟⎟⎟⎟⎠

Where 𝐴 =
⎛
⎜⎜⎜⎜⎝
−2 −1
2 −1

⎞
⎟⎟⎟⎟⎠, The eigenvalues of 𝐴 are found using det (𝐴 − 𝜆𝐼) = 0 which gives

�
−2 − 𝜆 −1
2 −1 − 𝜆

� = 0

(−2 − 𝜆) (−1 − 𝜆) + 2 = 0
𝜆2 + 3𝜆 + 4 = 0

The roots of the above characteristic equation are

𝜆 =
−𝑏
2𝑎

±
1
2𝑎
√𝑏2 − 4𝑎𝑐

=
−3
2
±
1
2�

9 − 4 (4)

=
−3
2
±
1
2√

−7

=
−3
2
±
𝑖
2√

7

Therefore the roots are

𝜆1 = −
3
2
− 𝑖√

7
2

𝜆2 = −
3
2
+ 𝑖√

7
2

The above shows that the solution will go to zero for large 𝑡 since the eigenvalues have negative real part.
The system is asymptotically stable. The complex conjugate parts of the eigenvalues give solutions

that will oscillate with frequency √7
2 rad/sec. To obtain the actual solution the eigenvectors are now

found for each eigenvalue. Since the eigenvalues are unique, then there is one eigenvector for each
eigenvalue.

For 𝜆1 = −
3
2 − 𝑖

√7
2

(𝐴 − 𝜆1𝐼)v1 = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 − �− 3
2 − 𝑖

√7
2
� −1

2 −1 − �− 3
2 − 𝑖

√7
2
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Let 𝑣2 = 1. The first equation gives −2 − �− 3
2 − 𝑖

√7
2
� 𝑣1 − 1 = 0 or 𝑣1 = 1

−2−�−
3
2−𝑖

√7
2 �

= 1
1
2 𝑖√7−

1
2

=

−1
2 𝑖√7−

1
2

� 12 𝑖√7−
1
2 ��

1
2 𝑖√7−

1
2 �
=

−1
2 𝑖√7−

1
2

2 = −𝑖√74 − 1
4 . Hence the first eigenvector is

v1 =

⎛
⎜⎜⎜⎜⎜⎝
−𝑖√74 − 1

4
1

⎞
⎟⎟⎟⎟⎟⎠

For 𝜆2 = −
3
2 + 𝑖

√7
2

(𝐴 − 𝜆2𝐼)v1 = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 − �− 3
2 + 𝑖

√7
2
� −1

2 −1 − �− 3
2 + 𝑖

√7
2
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Let 𝑣2 = 1. The first equation gives −2− �− 3
2 + 𝑖

√7
2
� 𝑣1 −1 = 0 or 𝑣1 =

1

−2−�−
3
2+𝑖

√7
2 �

= 1

− 1
2 𝑖√7−

1
2

=
1
2 𝑖√7−

1
2

2 =
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1
4 𝑖√7 −

1
4 . Hence the second eigenvector is

v2 =

⎛
⎜⎜⎜⎜⎜⎝
𝑖√74 − 1

4
1

⎞
⎟⎟⎟⎟⎟⎠

Using the above two linearly independent eigenvectors, the two basis solutions are

x1 = v1𝑒𝜆1𝑡

x2 = v2𝑒𝜆1𝑡

The solution is a linear combination of the above solutions

x = 𝑐1x1 + 𝑐1x2

The solution is converted to real solution by taking the real and imaginary part of one of the basis
solution above. Therefore

x3 = Re (x1)
x4 = Im (x1)

The solution becomes

x = 𝑐3x3 + 𝑐4x4 (1)

But

Re (x1) = Re

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝
−𝑖√74 − 1

4
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑒

𝜆1𝑡

⎤
⎥⎥⎥⎥⎥⎦

= Re

⎛
⎜⎜⎜⎜⎜⎝
−𝑖√74 𝑒

𝜆1𝑡 − 1
4 𝑒

𝜆1𝑡

𝑒𝜆1𝑡

⎞
⎟⎟⎟⎟⎟⎠

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑖√74 𝑒
�−

3
2−𝑖�

7
4 �𝑡 − 1

4 𝑒
�−

3
2−𝑖�

7
4 �𝑡

𝑒
�−

3
2−𝑖�

7
4 �𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝑖√74 𝑒
−3
2 𝑡 �cos�

7
4 𝑡 − 𝑖 sin�

7
4 𝑡� −

1
4 𝑒

−3
2 𝑡 �cos�

7
4 𝑡 − 𝑖 sin�

7
4 𝑡�

𝑒
−3
2 𝑡 �cos�

7
4 𝑡 − 𝑖 sin�

7
4 𝑡�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�

7
16 𝑒

−3
2 𝑡 �−𝑖 cos�

7
4 𝑡 − sin�

7
4 𝑡� −

1
4 𝑒

−3
2 𝑡 �cos�

7
4 𝑡 − 𝑖 sin�

7
4 𝑡�

𝑒
−3
2 𝑡 �cos�

7
4 𝑡 − 𝑖 sin�

7
4 𝑡�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
−3
2 𝑡 �−�

7
16 sin�

7
4 𝑡 −

1
4 cos�

7
4 𝑡� + 𝑖𝑒

−3
2 𝑡 �−�

7
16 cos�

7
4 𝑡 +

1
4 sin�

7
4 𝑡�

𝑒
−3
2 𝑡 cos�

7
4 𝑡 − 𝑖𝑒

−3
2 𝑡 sin�

7
4 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
−3
2 𝑡 �−�

7
16 sin�

7
4 𝑡 −

1
4 cos�

7
4 𝑡�

𝑒
−3
2 𝑡 cos�

7
4 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

And

Im (x1) = Im

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
−3
2 𝑡 �−�

7
16 sin�

7
4 𝑡 −

1
4 cos�

7
4 𝑡� + 𝑖𝑒

−3
2 𝑡 �−�

7
16 cos�

7
4 𝑡 +

1
4 sin�

7
4 𝑡�

𝑒
−3
2 𝑡 cos�

7
4 𝑡 − 𝑖𝑒

−3
2 𝑡 sin�

7
4 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
−3
2 𝑡 �−�

7
16 cos�

7
4 𝑡 +

1
4 sin�

7
4 𝑡�

−𝑒
−3
2 𝑡 sin�

7
4 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Using (2,3) in (1) gives the solution

x = 𝑐3 Re (x1) + 𝑐4 Im (x1)
⎛
⎜⎜⎜⎜⎝
𝑥 (𝑡)
𝑦 (𝑡)

⎞
⎟⎟⎟⎟⎠ = 𝑐3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
−3
2 𝑡 �−�

7
16 sin�

7
4 𝑡 −

1
4 cos�

7
4 𝑡�

𝑒
−3
2 𝑡 cos�

7
4 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
−3
2 𝑡 �−�

7
16 cos�

7
4 𝑡 +

1
4 sin�

7
4 𝑡�

−𝑒
−3
2 𝑡 sin�

7
4 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥 (𝑡)
𝑦 (𝑡)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑐3𝑒
−3
2 𝑡 �−�

7
16 sin�

7
4 𝑡 −

1
4 cos �√7𝑡2 �� + 𝑐4𝑒

−3
2 𝑡 �−√7

4 cos �√7𝑡2 � +
1
4 sin �√7𝑡2 ��

𝑐3𝑒
−3
2 𝑡 cos �√7𝑡2 � − 𝑐4𝑒

−3
2 𝑡 sin �√7𝑡2 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Therefore

𝑥 (𝑡) = 𝑐3𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−
√7
4

sin
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ −

1
4

cos
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ + 𝑐4𝑒

−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−
√7
4

cos
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ +

1
4

sin
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑐3𝑒
−3
2 𝑡 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − 𝑐4𝑒

−3
2 𝑡 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

Or

𝑥 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝𝑐3

⎛
⎜⎜⎜⎜⎝−
√7
4

sin
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ −

1
4

cos
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ + 𝑐4

⎛
⎜⎜⎜⎜⎝−
√7
4

cos
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ +

1
4

sin
⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝𝑐3 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − 𝑐4 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Let 𝐶1 = 𝑐3 and 𝐶2 = −𝑐3, and the above becomes

𝑥 (𝑡) = −
1
4
𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝𝐶1√7 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 𝐶1 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − √7𝐶2 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 𝐶2 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝𝐶1 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 𝐶2 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (4)

Initial conditions are now used to find 𝐶1, 𝐶2. At 𝑡 = 1 the above becomes

2 = −
1
4
𝑒
−3
2

⎛
⎜⎜⎜⎜⎝𝐶1√7 sin

⎛
⎜⎜⎜⎜⎝
√7
2

⎞
⎟⎟⎟⎟⎠ + 𝐶1 cos

⎛
⎜⎜⎜⎜⎝
√7
2

⎞
⎟⎟⎟⎟⎠ − √7𝐶2 cos

⎛
⎜⎜⎜⎜⎝
√7
2

⎞
⎟⎟⎟⎟⎠ + 𝐶2 sin

⎛
⎜⎜⎜⎜⎝
√7
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

4 = 𝑒
−3
2

⎛
⎜⎜⎜⎜⎝𝐶1 cos

⎛
⎜⎜⎜⎜⎝
√7
2

⎞
⎟⎟⎟⎟⎠ + 𝐶2 sin

⎛
⎜⎜⎜⎜⎝
√7
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

In system form the above becomes

⎛
⎜⎜⎜⎜⎝
2
4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1
4 𝑒

−3
2 √7 sin �√72 � −

1
4 𝑒

−3
2 cos �√72 �

1
4 𝑒

−3
2 √7 cos �√72 � −

1
4 𝑒

−3
2 sin �√72 �

𝑒
−3
2 cos �√72 � 𝑒

−3
2 sin �√72 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶1

𝐶2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−0.156 76 −0.01786
0.05 475 0.216 31

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶1

𝐶2

⎞
⎟⎟⎟⎟⎠

Solving for

⎛
⎜⎜⎜⎜⎝
𝐶1

𝐶2

⎞
⎟⎟⎟⎟⎠ by elimination gives

⎛
⎜⎜⎜⎜⎝
𝐶1

𝐶2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−15.307
22.367

⎞
⎟⎟⎟⎟⎠

Using these constants in the the solution (4) results in

𝑥 (𝑡) = −
1
4
𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝(−15.307)√7 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − 15.307 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − √7 (22.367) cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 22.367 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−15.307 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 22.367 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Or

𝑥 (𝑡) = −
1
4
𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−40.499 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − 15.307 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − 59.178 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 22.367 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−15.307 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 22.367 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Simplifying the above using trigonometric relations gives

𝑥 (𝑡) = −
1
4
𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−74.485 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ − 18.132 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−15.307 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 22.367 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Or
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𝑥 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝18.621 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 4.533 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑦 (𝑡) = 𝑒
−3
2 𝑡
⎛
⎜⎜⎜⎜⎝−15.307 cos

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠ + 22.367 sin

⎛
⎜⎜⎜⎜⎝
√7𝑡
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (5)

The above shows that due to the exponentially decaying term in the solution, then

lim
𝑡→∞

⎛
⎜⎜⎜⎜⎝
𝑥 (𝑡)
𝑦 (𝑡)

⎞
⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

The following is a plot of 𝑥 (𝑡) and 𝑦 (𝑡) for 𝑡 from 1 to 5 seconds showing both solutions go to zero

quickly due to the 𝑒
−3
2 𝑡 term.

1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.

-0.5

0.

0.5

1.

1.5

2.

t sec

x(
t)

Solution x(t)

1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.

0.

0.5

1.

1.5

2.

2.5

3.

3.5

4.

t sec

y(
t)

Solution y(t)

ClearAll[t];
myXSol=Exp[-3/2 t](18.621 Cos[Sqrt[7] t/2]+4.533 Sin[Sqrt[7] t/2]);
myYSol=Exp[-3/2 t](-15.307 Cos[Sqrt[7] t/2]+22.367 Sin[Sqrt[7] t/2]);
p1=Plot[myXSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{"x(t)",None},{"t sec","Solution x(t)"}},
PlotStyle->Red,
GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,
FrameTicks->{{Range[-1,2,.5],None},{Range[0,5,.5],None}}];
p2=Plot[myYSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{"y(t)",None},{"t sec","Solution y(t)"}},
PlotStyle->Red,GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,
FrameTicks->{{Range[-1,4,.5],None},{Range[0,5,.5],None}}];
p=Grid[{{p1,p2}}]

3.2.6 Problem 6

Solution

3𝑡2𝑦′′ + 𝑡𝑦′ + 𝑦 = 0

Since the powers on the 𝑡 coe�cients match the order of the derivatives in each term of the ODE,
then this is called the Euler ODE. Its solution can be found by assuming solution has this form
(Using the hint given)

𝑦 (𝑡) = 𝑡𝛼 (1)

Therefore

𝑦′ = 𝛼𝑡𝛼−1

𝑦′′ = 𝛼 (𝛼 − 1) 𝑡𝛼−2
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Substituting these in the original ODE gives the characteristic equation to solve for 𝛼

3𝑡2𝛼 (𝛼 − 1) 𝑡𝛼−2 + 𝑡𝛼𝑡𝛼−1 + 𝑡𝛼 = 0
3𝛼 (𝛼 − 1) 𝑡𝛼 + 𝛼𝑡𝛼 + 𝑡𝛼 = 0
𝑡𝛼 (3𝛼 (𝛼 − 1) + 𝛼 + 1) = 0

Since 𝑡𝛼 ≠ 0 (else this will result in a trivial solution), the characteristic equation is 3𝛼 (𝛼 − 1)+𝛼+1 = 0
or

3𝛼2 − 2𝛼 + 1 = 0

Using the quadratic formula, the roots of the above characteristic equation are

𝛼1 =
1
3
+
1
3
𝑖√2

𝛼2 =
1
3
−
1
3
𝑖√2

The solution is a linear combination of the basis solutions 𝑡𝛼1, 𝑡𝛼2. Hence

𝑦 (𝑡) = 𝑐1𝑡𝛼1 + 𝑐2𝑡𝛼2

= 𝑐1𝑡
� 13+

1
3 𝑖√2� + 𝑐2𝑡

� 13−
1
3 𝑖√2�

= 𝑐1𝑡
1
3 𝑡

1
3 𝑖√2 + 𝑐2𝑡

1
3 𝑡−

1
3 𝑖√2

= 𝑡
1
3 �𝑐1𝑡

1
3 𝑖√2 + 𝑐2𝑡

− 1
3 𝑖√2� (2)

But

𝑡
1
3 𝑖√2 = 𝑒

ln
⎛
⎜⎜⎜⎝𝑡

1
3 𝑖√2

⎞
⎟⎟⎟⎠

= 𝑒
1
3 𝑖√2 ln 𝑡

And

𝑡
−1
3 𝑖√2 = 𝑒

ln
⎛
⎜⎜⎜⎝𝑡

−1
3 𝑖√2

⎞
⎟⎟⎟⎠

= 𝑒
−1
3 𝑖√2 ln 𝑡

Using the above two equations in (2) then the solution (2) becomes

𝑦 (𝑡) = 𝑡
1
3 �𝑐1𝑒

1
3 𝑖√2 ln 𝑡 + 𝑐2𝑒

−1
3 𝑖√2 ln 𝑡�

Using Euler relation the above solution is written using sin and cos to become

𝑦 (𝑡) = 𝑡
1
3 �𝐶1 cos �√2 ln 𝑡

3
� + 𝐶2 sin �√2 ln 𝑡

3
��

3.2.7 Problem 7

Solution

𝑦′1 = 3𝑦1 + 2𝑦2 + 𝑦3
𝑦′2 = −𝑦1 + 3𝑦2 + 2𝑦3
𝑦′3 = 𝑦1 − 3𝑦2 − 2𝑦3
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The system is written using y′ = 𝐴y as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦′1 (𝑡)
𝑦′2 (𝑡)
𝑦′3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1
−1 3 2
1 −3 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 (𝑡)
𝑦2 (𝑡)
𝑦3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1
−1 3 2
1 −3 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. The eigenvalues are found by solving det (𝐴 − 𝐼𝜆) = 0 which gives

�

�

3 − 𝜆 2 1
−1 3 − 𝜆 2
1 −3 −2 − 𝜆

�

�
= 0

𝜆3 − 4𝜆2 + 4𝜆 = 0

�𝜆2 − 4𝜆 + 4� 𝜆 = 0

(𝜆 − 2) (𝜆 − 2) 𝜆 = 0

Hence the eigenvalues are

𝜆1 = 0
𝜆2 = 2

Where 𝜆2 has algebraic multiplicity 2. The eigenvector associated with 𝜆1 = 0 is now found and
then an additional two two linearly independent eigenvectors are needed that are associated with
the second eigenvalue 𝜆2. The eigenvector v1 is found as normally done by solving

(𝐴 − 𝜆1𝐼)v = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 − 𝜆1 2 1
−1 3 − 𝜆1 2
1 −3 −2 − 𝜆1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1
−1 3 2
1 −3 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This gives three equations

3𝑣1 + 2𝑣2 + 𝑣3 = 0
−𝑣1 + 3𝑣2 + 2𝑣3 = 0
𝑣1 − 3𝑣2 − 2𝑣3 = 0

Let 𝑣1 = 1, then the above becomes

2𝑣2 + 𝑣3 = −3
3𝑣2 + 2𝑣3 = 1
−3𝑣2 − 2𝑣3 = −1

The first equation above gives 𝑣2 =
−3−𝑣3

2 . Substituting this in the second equation gives 3 �−3−𝑣32
� +

2𝑣3 = 1, or 𝑣3 = 11. Hence 𝑣2 =
−3−11

2 = −7.

Therefore the eigenvector associated with 𝜆1 = 0 is

v1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−7
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the eigenvalue 𝜆2 = 2, which has algebraic multiplicity 2, it is first checked if it is defective
eigenvalue or a complete one. A complete eigenvalue is one with an algebraic multiplicity 𝑚 and an
geometric multiplicity 𝑚 as well. When this is the case, then 𝑚 linearly independent eigenvectors
associated with the eigenvalue can be found.

However, if the eigenvalue is defective, which means its geometric multiplicity is less than 𝑚, then
it is not possible to find 𝑚 linearly independent eigenvectors from the eigenvalue. In this case the
defective eigenvalue algorithm is used to find the remaining linearly independent eigenvectors. Note
that geometric multiplicity can not be larger than the algebraic multiplicity.

Now a check is made to determine if the eigenvalue 𝜆2 = 2 is defective or complete. The geometric
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multiplicity of an eigenvalue is the dimension of the null-space of the matrix 𝐴 − 𝜆2𝐼 given by

(𝐴 − 𝜆2𝐼) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 − 𝜆2 2 1
−1 3 − 𝜆2 2
1 −3 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
−1 1 2
1 −3 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The null space of the above matrix is now found. By the Rank nullity theorem of linear algebra,
which says

column rank (𝐴) + nullity (𝐴) = dimension (𝐴)

Then the column rank needs to be found as well. This is done by converting the matrix to reduced
row echelon form as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
−1 1 2
1 −3 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2+𝑅1→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
0 3 3
1 −3 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−𝑅1→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
0 3 3
0 −5 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+
5
3𝑅2→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
0 3 3
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=
𝑅2
3
2 𝑅1→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
0 1 2
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is in reduced row echelon form. The number of columns with 1 on the diagonal is the
column rank. The above shows the column rank is 2. Using the rank nullity the dimension of the
null space is now found as follows

nullity (𝐴) = dimension (𝐴) − column rank (𝐴)
= 3 − 2
= 1

Therefore the geometric multiplicity is 1 which is less than the algebraic multiplicity 2. This means
only one eigenvector can be obtained directly from 𝜆2 since this eigenvalue is defective.

The defective eigenvalue method is used next to find the second eigenvector associated with 𝜆2. In
this method the first eigenvector from 𝜆2 is first found as is done normally by solving

(𝐴 − 𝜆2𝐼)v2 = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 − 𝜆2 2 1
−1 3 − 𝜆2 2
1 −3 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
−1 1 2
1 −3 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This gives the three equations

𝑣1 + 2𝑣2 + 𝑣3 = 0
−𝑣1 + 𝑣2 + 2𝑣3 = 0
𝑣1 − 3𝑣2 − 4𝑣3 = 0

Let 𝑣1 = 1, then the above becomes

2𝑣2 + 𝑣3 = −1
𝑣2 + 2𝑣3 = 1

−3𝑣2 − 4𝑣3 = −1

From the first equation 𝑣2 =
−1−𝑣3

2 and from the second equation −1−𝑣3
2 + 2𝑣3 = 1, or 𝑣3 = 1. Hence

𝑣2 =
−1−1
2 = −1. Therefore the first eigenvector associated with 𝜆2 is

v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The second eigenvector associated with 𝜆2 is given by

v3 = 𝑡 v2 + p
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Where p is the solution to

(𝐴 − 𝜆2𝐼)p = v2
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
−1 1 2
1 −3 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1
𝑝2
𝑝3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above gives the equations

𝑝1 + 2𝑝2 + 𝑝3 = 1
−𝑝1 + 𝑝2 + 2𝑝3 = −1
𝑝1 − 3𝑝2 − 4𝑝3 = 1

Let 𝑝1 = 1, and the above becomes

2𝑝2 + 𝑝3 = 0
𝑝2 + 2𝑝3 = −2

−3𝑝2 − 4𝑝3 = 0

The first equation gives 𝑝2 =
𝑝3
2 . Hence the second equation becomes 𝑝3

2 + 2𝑝3 = 0. Therefore 𝑝3 = 0
and therefore 𝑝2 = 0. Which results in

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore the third eigenvector is found from

v3 = 𝑡v2 + p

= 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The three eigenvectors are the following

v1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−7
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,v3 = 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The solution can now be written as

y (𝑡) = 𝑐1𝑒𝜆1𝑡v1 + 𝑐2𝑒𝜆2𝑡v2 + 𝑐3𝑒𝜆2𝑡v3

Since 𝜆1 = 0 and 𝜆2 = 2 then the above becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 (𝑡)
𝑦2 (𝑡)
𝑦3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑐1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−7
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐2𝑒2𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐3𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Which can be simplified to

𝑦1 (𝑡) = 𝑐1 + 𝑐2𝑒2𝑡 + 𝑐3𝑒2𝑡 (𝑡 + 1)
𝑦2 (𝑡) = −7𝑐1 − 𝑐2𝑒2𝑡 − 𝑐3𝑡𝑒2𝑡

𝑦3 (𝑡) = 11𝑐1 + 𝑐2𝑒2𝑡 + 𝑐3𝑡𝑒2𝑡 (1)

To plot these solutions, the following arbitrary initial conditions 𝑦1 (0) = 0, 𝑦2 (0) = 0, 𝑦3 (0) = 1 are
used

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 (0)
𝑦2 (0)
𝑦3 (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 + 𝑐2 + 𝑐3
−7𝑐1 − 𝑐2
11𝑐1 + 𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving, this gives 𝑐1 =
1
4 , 𝑐2 = −

7
4 , 𝑐3 =

3
2 . Therefore the above solution (1) becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 (𝑡)
𝑦2 (𝑡)
𝑦3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 −

7
4 𝑒

2𝑡 + 3
2 𝑒

2𝑡 (𝑡 + 1)
− 7
4 +

7
4 𝑒

2𝑡 − 3
2 𝑡𝑒

2𝑡

11
4 −

7
4 𝑒

2𝑡 + 3
2 𝑡𝑒

2𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The following is a plot of the solution for these initial conditions. The solutions are not stable,
since they grow in time.
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solutions to problem 7

y1(t)

y2(t)

y3(t)

ClearAll[t,y1,y2,y3];
myy1=1/4-7/4 Exp[2 t]+3/2 Exp[2 t](t+1);
myy2=-7/4+7/4 Exp[2 t]-3/2 t Exp[2 t];
myy3=11/4-7/4 Exp[2 t]+3/2 t Exp[2 t];
Plot[{myy1,myy2,myy3},{t,0,2},GridLines->Automatic,GridLinesStyle->LightGray,
ImageSize->300,
AxesLabel->{"t","solutions to problem 7"},
PlotLegends->{"y1(t)","y2(t)","y3(t)"}]

3.2.8 Problem 8

Solution

𝑦 (𝑡) = cos 𝑡 + sin 2𝑡 can not be a solution to 𝑦′′ + 𝑎𝑦′ + 𝑏𝑦 = 0, because both basis solutions (these
are the linearly independent solutions sin and cos) must oscillate with the same frequency. The
frequency of oscillation of a second order system with no forcing function is called the natural
frequency of the system. There is one unique natural frequency for a second order system.

This frequency comes from finding the value of the discriminant of the characteristic equation of
the ODE (since it is constant coe�cient). To illustrate, the general solution of the second order
ODE is found to show that the proposed solution is not possible. The general solution of the above
ODE is

𝑦 (𝑡) = 𝑐1𝑒𝜆1𝑡 + 𝑐2𝑒𝜆2𝑡

Where 𝜆1,2 are the two roots of the corresponding characteristic equation 𝜆2 + 𝑎𝜆 + 𝑏 = 0. These
roots are

𝜆 = −
𝑎
2
± √𝑎2 − 4𝑏

Therefore the roots are

𝜆1 = −
𝑎
2
+ √𝑎2 − 4𝑏

𝜆2 = −
𝑎
2
− √𝑎2 − 4𝑏

The general solution to the given ODE is linear combination of two linearly independent solutions
𝑒𝜆1𝑡, 𝑒𝜆2𝑡, one for each root, which results in

𝑦 (𝑡) = 𝑐1𝑒
�− 𝑎

2+√𝑎
2−4𝑏�𝑡

+ 𝑐2𝑒
�− 𝑎

2−√𝑎
2−4𝑏�𝑡

= 𝑒−
𝑎
2 𝑡 �𝑐1𝑒√𝑎

2−4𝑏𝑡 + 𝑐2𝑒−√𝑎
2−4𝑏𝑡�

𝑐1, 𝑐2 are determined from initial conditions. Since the proposed solution given does not have 𝑒−
𝑎
2 𝑡

in it, then this implies that 𝑎 = 0 (this is the damping term), and since 𝑒−
𝑎
2 𝑡 = 1 then the solution

reduces to

𝑦 (𝑡) = 𝑐1𝑒√−4𝑏𝑡 + 𝑐2𝑒−√−4𝑏𝑡
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Since the proposed solution is made up of trigonometric functions, it must be that 𝑏 > 0 in order
to make −4𝑏 negative and obtain a pair of conjugate complex roots. The solution now becomes

𝑦 (𝑡) = 𝑐1𝑒2𝑖√𝑏𝑡 + 𝑐2𝑒−2𝑖√𝑏𝑡

Expressing this in terms of trigonometric functions using Euler relation results in

𝑦 (𝑡) = 𝑐1 cos �√𝑏𝑡� + 𝑐2 sin �√𝑏𝑡�

The above shows that the solution can not be 𝑦 (𝑡) = cos 𝑡 + sin 2𝑡 since √𝑏 can not equal 1 and 2 at
the same time.

Another way to show that 𝑦 (𝑡) = cos 𝑡+sin 2𝑡 is not be a solution, is to simply substitute this solution
into the ODE and obtain a contradiction as shown below.

Since 𝑦′ = − sin 𝑡 + 2 cos 2𝑡 and 𝑦′′ = − cos 𝑡 − 4 sin 2𝑡, the ODE now becomes

(− cos 𝑡 − 4 sin 2𝑡) + 𝑎 (− sin 𝑡 + 2 cos 2𝑡) + 𝑏 (cos 𝑡 + sin 2𝑡) = 0
(−1 + 𝑏) cos 𝑡 − 𝑎 sin 𝑡 + (−4 + 𝑏) sin 2𝑡 = 0

Because the RHS is zero, this implies that

−1 + 𝑏 = 0
−4 + 𝑏 = 0

−𝑎 = 0

The first equation gives 𝑏 = 1 and the second equation gives 𝑏 = −4 which is not possible.

To obtain an ODE with such a solution, the ODE has to be of order 4. This is to obtain two di�er-
ent natural frequencies (A 4𝑡ℎ order ODE can be written as two separate second order ODE’s). Let
the ODE be

𝑦′′′′ (𝑡) + 𝐴𝑦′′′ (𝑡) + 𝐵𝑦′′ (𝑡) + 𝐶𝑦′ (𝑡) + 𝐷𝑦 (𝑡) = 0 (1)

Given that

𝑦 = cos 𝑡 + sin 2𝑡
𝑦′ = − sin 𝑡 + 2 cos 2𝑡
𝑦′′ = − cos 𝑡 − 4 sin 2𝑡
𝑦′′′ = sin 𝑡 − 8 cos 2𝑡
𝑦′′′′ = cos 𝑡 + 16 sin 2𝑡

Substituting the above into (1) gives

(cos 𝑡 + 16 sin 2𝑡) + 𝐴 (sin 𝑡 − 8 cos 2𝑡) + 𝐵 (− cos 𝑡 − 4 sin 2𝑡) + 𝐶 (− sin 𝑡 + 2 cos 2𝑡) + 𝐷 (cos 𝑡 + sin 2𝑡) = 0
Collecting terms based on the trigonometric function gives

(1 − 𝐵 + 𝐷) cos 𝑡 + (𝐴 − 𝐶) sin 𝑡 + (16 − 4𝐵 + 𝐷) sin 2𝑡 + (−8𝐴 + 2𝐶) cos 2𝑡 = 0
A solution is obtained by setting all the coe�cients above to zero which results in the following
four equations to solve for 𝐴,𝐵, 𝐶,𝐷

1 − 𝐵 + 𝐷 = 0
𝐴 − 𝐶 = 0

16 − 4𝐵 + 𝐷 = 0
−8𝐴 + 2𝐶 = 0

These are solved by elimination. From the second equation 𝐴 = 𝐶. The fourth equation gives
−8𝐶 + 2𝐶 = 0 or 𝐶 = 0. Hence 𝐴 = 0. From first equation 𝐵 = 1 + 𝐷, hence the third equation gives
16 − 4 (1 + 𝐷) + 𝐷 = 0, or 𝐷 = 4 and therefore 𝐵 = 5. The solution is therefore

𝐴 = 0
𝐵 = 5
𝐶 = 0
𝐷 = 4

Using these in (1) gives

𝑦′′′′ (𝑡) + 5𝑦′′ (𝑡) + 4𝑦 (𝑡) = 0 (2)

The proposed solution 𝑦 (𝑡) = cos 𝑡+sin 2𝑡 now satisfies the above ODE. There will be four constants
of integrations (since this is a 4𝑡ℎ order ODE), and therefore two of these constants must be set to
zero using the appropriate initial conditions. To find which constants are needed to set to zero, the
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above ODE is first solved. The characteristic equation of (2) is

𝜆4 + 5𝜆2 + 4 = 0

�𝜆2 + 1� �𝜆2 + 4�

The roots are 𝜆1 = ±𝑖, 𝜆2 = ±2𝑖. Therefore solution to (2) becomes

𝑦 (𝑡) = 𝑐1𝑒𝑖𝑡 + 𝑐2𝑒−𝑖𝑡 + 𝑐3𝑒2𝑖𝑡 + 𝑐4𝑒−2𝑖𝑡

Using Euler relation the above is written in trigonometric functions as

𝑦 (𝑡) = 𝑐1 cos 𝑡 + 𝑐2 sin 𝑡 + 𝑐3 cos 2𝑡 + 𝑐4 sin 2𝑡 (3)

To obtain the proposed solution 𝑦 (𝑡) = cos 𝑡 + sin 2𝑡 implies that the constants must have these
values

𝑐1 = 1
𝑐2 = 0
𝑐3 = 0
𝑐4 = 1

The initial conditions which would lead to these constants having these specific values are now
found as follows. From (3)

𝑦 (0) = 𝑐1 + 𝑐3
Since 𝑦′ (𝑡) = −𝑐1 sin 𝑡 + 𝑐2 cos 𝑡 − 2𝑐3 sin 2𝑡 + 2𝑐4 cos 2𝑡 then

𝑦′ (0) = 𝑐2 + 2𝑐4
And since 𝑦′′ (𝑡) = −𝑐1 cos 𝑡 − 𝑐2 sin 𝑡 − 4𝑐3 cos 2𝑡 − 4𝑐4 sin 2𝑡, then

𝑦′′ (0) = −𝑐1 − 4𝑐3
and finally since 𝑦′′′ (𝑡) = 𝑐1 sin 𝑡 − 𝑐2 cos 𝑡 + 8𝑐3 sin 2𝑡 − 8𝑐4 cos 2𝑡 then

𝑦′′′ (0) = −𝑐2 − 8𝑐4
Since 𝑐1 = 1, 𝑐2 = 0, 𝑐3 = 0, 𝑐4 = 1, then the above initial conditions become

𝑦 (0) = 1
𝑦′ (0) = 2
𝑦′′ (0) = −1
𝑦′′′ (0) = −8

The above initial conditions will now give the solution

𝑦 (𝑡) = cos 𝑡 + sin 2𝑡
For the ODE

𝑦′′′′ (𝑡) + 5𝑦′′ (𝑡) + 4𝑦 (𝑡) = 0

The following is a plot of the solution

5 10 15 20
t (sec)

-1.5

-1.0

-0.5

0.5
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1.5

y(t)
Problem 8 solution



124

Plot[Cos[t] + Sin[2 t], {t, 0, 20}, PlotStyle -> Red,
GridLines -> Automatic, GridLinesStyle -> LightGray,
AxesLabel -> {"t (sec)", "y(t)"},
PlotLabel -> "Problem 8 solution"]

3.3 Third exam

3.3.1 Problem 1

Figure 3.1: Problem 1 Statement

Solution

𝑥′ = 𝑎1𝑥 − 𝑏1𝑥2 − 𝑐1𝑥𝑦
𝑦′ = 𝑎2𝑦 − 𝑏2𝑦2 − 𝑐2𝑥𝑦

Using the values given in the problem, the above equations become

𝑥′ = 60𝑥 − 3𝑥2 − 4𝑥𝑦 (1A)

𝑦′ = 42𝑦 − 3𝑦2 − 2𝑥𝑦 (1B)

Or

𝑥′ = 𝑓 �𝑥, 𝑦�

𝑦′ = 𝑔 �𝑥, 𝑦�

Equilibrium points are found by setting 𝑓 �𝑥, 𝑦� = 0 and 𝑔 �𝑥, 𝑦�. This results in the following two
equations to solve for 𝑥, 𝑦

60𝑥 − 3𝑥2 − 4𝑥𝑦 = 0 (1)

42𝑦 − 3𝑦2 − 2𝑥𝑦 = 0 (2)

The first equation (1A) becomes 𝑥 �60 − 3𝑥 − 4𝑦� = 0 which then gives one solution as

𝑥 = 0 (3)

And 60 − 3𝑥 − 4𝑦 = 0 gives another solution as

𝑥 =
60 − 4𝑦
3

(4)
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The second equation (1B) becomes 𝑦 �42 − 3𝑦 − 2𝑥� = 0 which gives one solution as

𝑦 = 0 (5)

And 42 − 3𝑦 − 2𝑥 = 0 gives another solution as

𝑦 =
42 − 2𝑥
3

(6)

When 𝑥 = 0 then (6) results in 𝑦 = 42
3 = 14.When 𝑥 = 60−4𝑦

3 then (6) results in 𝑦 =
42−2� 60−4𝑦3 �

3 = 8
9𝑦+

2
3 ,

or 𝑦 = 6. Hence in this case 𝑥 = 60−4(6)
3 = 12.

Similarly, when 𝑦 = 0 then from (4) 𝑥 = 60−4(0)
3 = 20. The above shows that there are 4 equilibrium

points. These are

𝑥 = 0, 𝑦 = 0
𝑥 = 0, 𝑦 = 14
𝑥 = 12, 𝑦 = 6
𝑥 = 20, 𝑦 = 0

To determine the type of stability of each equilibrium point, and since this is a nonlinear system,
we must first linearize the system around each equilibrium point in order to determine the Jacobian
matrix.

Once the system is linearized, then the eigenvalues of the Jacobian matrix are found in each case.
From the values of eigenvalues we can then determine if the system is stable or not at each one of
the above four equilibrium points.

The first step is then to linearize 𝑓 �𝑥, 𝑦� and 𝑔 �𝑥, 𝑦� around each of the equilibrium points. If we

assume the equilibrium point is given by 𝑥0, 𝑦0 then expanding 𝑓 �𝑥, 𝑦� in Taylor series around this
point gives

𝑓 �𝑥0 + Δ𝑥, 𝑦0 + Δ𝑦� = 𝑓 �𝑥0, 𝑦0� +
𝜕𝑓 �𝑥, 𝑦�
𝜕𝑥 �

𝑥0,𝑦0

�Δ𝑥 + Δ𝑦� +
𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦 �

𝑥0,𝑦0

�Δ𝑥 + Δ𝑦� +⋯

But 𝑓 �𝑥0, 𝑦0� = 0 since it is what defines an equilibrium point, the above becomes, after ignoring
higher order terms since we are assuming small Δ𝑥,Δ𝑦

𝑓 �𝑥0 + Δ𝑥, 𝑦0 + Δ𝑦� =
𝜕𝑓 �𝑥, 𝑦�
𝜕𝑥 �

𝑥0,𝑦0

�Δ𝑥 + Δ𝑦� +
𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦 �

𝑥0,𝑦0

�Δ𝑥 + Δ𝑦�

Similarly for 𝑔 �𝑥, 𝑦� we obtain the following

𝑔 �𝑥0 + Δ𝑥, 𝑦0 + Δ𝑦� =
𝜕𝑔 �𝑥, 𝑦�
𝜕𝑥 �

𝑥0,𝑦0

�Δ𝑥 + Δ𝑦� +
𝜕𝑔 �𝑥, 𝑦�
𝜕𝑦 �

𝑥0,𝑦0

�Δ𝑥 + Δ𝑦�

Therefore a linearized 𝑓, 𝑔 functions at the equilibrium point become

⎛
⎜⎜⎜⎜⎝
𝑓 �𝑥0 + Δ𝑥, 𝑦0 + Δ𝑦�
𝑔 �𝑥0 + Δ𝑥, 𝑦0 + Δ𝑦�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑥 �𝑥0,𝑦0

𝜕𝑓
𝜕𝑦 �𝑥0,𝑦0

𝜕𝑔
𝜕𝑥 �𝑥0,𝑦0

𝜕𝑔
𝜕𝑦 �𝑥0,𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
Δ𝑥 + Δ𝑦
Δ𝑥 + Δ𝑦

⎞
⎟⎟⎟⎟⎠

Replacing the original nonlinear 𝑓 �𝑥, 𝑦� , 𝑔 �𝑥, 𝑦� by the above linearized (approximation), the system
can now be written as

⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦

𝜕𝑔
𝜕𝑥

𝜕𝑔
𝜕𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑥=𝑥0
𝑦=𝑦0

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

Where

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦

𝜕𝑔
𝜕𝑥

𝜕𝑔
𝜕𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠ is called the the Jacobian 𝐽 matrix. Hence the system now can be written as

�⃗�′ = [𝐽] �⃗�
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Now 𝐽 is determined. From

𝜕𝑓
𝜕𝑥

=
𝜕
𝜕𝑥

�60𝑥 − 3𝑥2 − 4𝑥𝑦� = 60 − 6𝑥 − 4𝑦

𝜕𝑓
𝜕𝑦

=
𝜕
𝜕𝑦

�60𝑥 − 3𝑥2 − 4𝑥𝑦� = −4𝑥

𝜕𝑔
𝜕𝑥

=
𝜕
𝜕𝑥

�42𝑦 − 3𝑦2 − 2𝑥𝑦� = −2𝑦

𝜕𝑔
𝜕𝑦

=
𝜕
𝜕𝑦

�42𝑦 − 3𝑦2 − 2𝑥𝑦� = 42 − 6𝑦 − 2𝑥

The Jacobian matrix becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝
60 − 6𝑥 − 4𝑦 −4𝑥

−2𝑦 42 − 6𝑦 − 2𝑥

⎞
⎟⎟⎟⎟⎠
𝑥=𝑥0,𝑦=𝑦0

And the linearized system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
60 − 6𝑥 − 4𝑦 −4𝑥

−2𝑦 42 − 6𝑦 − 2𝑥

⎞
⎟⎟⎟⎟⎠
𝑥=𝑥0,𝑦=𝑦0

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

Now each equilibrium point is examined using the above linearized system to determine the type
of stability a that point.

case 𝑥0 = 0, 𝑦0 = 0

𝐽 =
⎛
⎜⎜⎜⎜⎝
60 − 6 (0) − 4 (0) −4 (0)

−2 (0) 42 − 6 (0) − 2 (0)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
60 0
0 42

⎞
⎟⎟⎟⎟⎠

Hence the linearized system at this specific equilibrium point is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
60 0
0 42

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

Since 𝐽 is a diagonal matrix, its eigenvalues are the values on the diagonal. Therefore 𝜆1 = 60, 𝜆2 = 42.
Since the eigenvalues are positive, then this equilibrium point is not stable.

case 𝑥0 = 0, 𝑦0 = 14

𝐽 =
⎛
⎜⎜⎜⎜⎝
60 − 6 (0) − 4 (14) −4 (0)

−2 (14) 42 − 6 (14) − 2 (0)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
4 0
−28 −42

⎞
⎟⎟⎟⎟⎠

Therefore linearized system at this specific equilibrium point is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
4 0
−28 −42

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

The eigenvalues can be found by solving �
4 − 𝜆 0
−28 −42 − 𝜆

� = 0 to be 𝜆1 = 4, 𝜆2 = −42. Because one of

the eigenvalues is positive, then this equilibrium point is not stable.

case 𝑥0 = 12, 𝑦0 = 6

𝐽 =
⎛
⎜⎜⎜⎜⎝
60 − 6 (12) − 4 (6) −4 (12)

−2 (6) 42 − 6 (6) − 2 (12)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−36 −48
−12 −18

⎞
⎟⎟⎟⎟⎠

The linearized system at this specific equilibrium point is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−36 −48
−12 −18

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠

The eigenvalues can be found to be 𝜆1 = −52.632, 𝜆2 = −1.368. Since both eigenvalues are now
negative, then this equilibrium point is stable.

case 𝑥0 = 20, 𝑦0 = 0

𝐽 =
⎛
⎜⎜⎜⎜⎝
60 − 6 (20) − 4 (0) −4 (20)

−2 (0) 42 − 6 (0) − 2 (20)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−60 −80
0 2

⎞
⎟⎟⎟⎟⎠

The linearized system at this specific equilibrium point is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−60 −80
0 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠



127

The eigenvalues are 𝜆1 = 2, 𝜆2 = −60. Since one of the eigenvalues is positive, then this equilibrium
point is not stable.

Summary of results obtained so far

equilibrium point eigenvalues type of stability

𝑥 = 0, 𝑦 = 0 𝜆1 = 60, 𝜆2 = 42 not stable (nodal source)

𝑥 = 0, 𝑦 = 14 𝜆1 = 4, 𝜆2 = −42 not stable (Saddle point)

𝑥 = 12, 𝑦 = 6 𝜆1 = −52.632, 𝜆2 = −1.368 stable (Nodal sink)

𝑥 = 20, 𝑦 = 0 𝜆1 = 2, 𝜆2 = −60 not stable (Saddle point)

To verify the above result, the phase plot for the original nonlinear system was plotted on the
computer and the equilibrium points locations highlighted. The plot below agrees with the above
result when looking at direction of arrows around each point. We see that the direction field arrows
are all moving toward the stable point from any location near it. The stable equilibrium point was
colored as green while the unstable ones colored in red.

In[ ]:= ClearAll[x, y];

f1 = 60 x - 3 x^2 - 4 x y;

f2 = 42 y - 3 y^2 - 2 x y;

StreamPlot[{f1, f2}, {x, -5, 25}, {y, -5, 20},

Epilog → {{Red, PointSize[0.03], Point[{{0, 0}, {0, 14}, {20, 0}}]},

{Green, PointSize[.035], Point[{{12, 6}}]}},

PlotLabel → Column[{"Phase plot for problem 1", "Showing location of all equilibrium points"},

Alignment → Center],

BaseStyle → 12,

ImageSize → 400]

Out[ ]=

-5 0 5 10 15 20 25

-5

0

5

10

15

20

Phase plot for problem 1
Showing location of all equilibrium points

Figure 3.2: Phase plot for problem 1

Interpretation of results Since the solution of the linearized system can be written as linear com-

bination of solutions made up of terms that look like 𝑐𝑖𝑒𝜆𝑖𝑡 where 𝑐𝑖 are constants of integration
and 𝜆𝑖 are the eigenvalues found above, then this implies when the real part of the eigenvalue is
positive the solution will increase with time, moving away from the equilibrium point. Similarly, if
the eigenvalue has a negative real part, it means it is a stable solution because solution will decay
with time when perturbed slightly from the equilibrium.

Since this is second order system, there are two eigenvalues. Even if one eigenvalue is stable (i.e.
negative), if the other eigenvalue is positive, then the system is unstable since one part of the
solution will keep growing with time.

In terms of the dynamics of species, it means if the populations 𝑥 = 12 and population 𝑦 = 6, (this
is the stable equilibrium) then these population will remain the same in long term even when one
population becomes a little more or less than the other population. But for all other equilibrium
populations sizes, such as 𝑥 = 20, 𝑦 = 0, then if the population 𝑦 were to change slightly to become
say 𝑦 = 1 (may be by external influence) then this will cause both population to start changing,
moving it away from 𝑥 = 20, 𝑦 = 0 as time increases, hence 𝑥 = 20, 𝑦 = 0 is not stable population
size.

This seems to be sensitive to the parameters 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 given in the problem. It is not easy to give a
more physical reasoning as why some population values is stable while other are not, other than to
also note that all the unstable ones had at least one population at zero.
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3.3.2 Problem 2

Figure 3.3: Problem 2 Statement

Solution

The ODE can be written as

𝑦′′ − 5𝑦′ + 6𝑦 = 4𝑒𝑡 (𝑈 (𝑡) − 𝑈 (𝑡 − 2))

= 4 �𝑒𝑡𝑈 (𝑡) − 𝑒𝑡𝑈 (𝑡 − 2)�

Where 𝑈 (𝑡) is the unit step function. In the following solutions, these Laplace transform relations
obtained from table are used

𝑈 (𝑡) ⇔
1
𝑠

𝑈 (𝑡 − 𝜏) ⇔
1
𝑠
𝑒−𝜏𝑠

𝑒−𝛼𝑡𝑈 (𝑡) ⇔
1

𝑠 + 𝛼
sin (𝜔𝑡) ⇔ 𝜔

𝑠2 + 𝜔2

cos (𝜔𝑡) ⇔ 𝑠
𝑠2 + 𝜔2

Assuming ℒ�𝑦 (𝑡)� = 𝑌 (𝑠), and using the above relations of Laplace transform we find

ℒ�𝑒𝑡𝑈 (𝑡)� =
1

𝑠 − 1

ℒ �𝑒𝑡𝑈 (𝑡 − 2)� =
𝑒−2(𝑠−1)

𝑠 − 1
Now, taking the Laplace transform of the ODE results in

�𝑠2𝑌 (𝑠) − 𝑠𝑦 (0) − 𝑦′ (0)� − 5 �𝑠𝑌 (𝑠) − 𝑦 (0)� + 6𝑌 (𝑠) = 4 �
1

𝑠 − 1
−
𝑒−2(𝑠−1)

𝑠 − 1 �

Using 𝑦 (0) = 1, 𝑦′ (0) = −2 the above simplifies to

�𝑠2𝑌 (𝑠) − 𝑠 + 2� − 5 (𝑠𝑌 (𝑠) − 1) + 6𝑌 (𝑠) =
4

𝑠 − 1
−
4𝑒−2(𝑠−1)

𝑠 − 1

𝑠2𝑌 (𝑠) − 𝑠 + 2 − 5𝑠𝑌 (𝑠) + 5 + 6𝑌 (𝑠) =
4

𝑠 − 1
−
4𝑒−2(𝑠−1)

𝑠 − 1

𝑌(𝑠) �𝑠2 − 5𝑠 + 6� − 𝑠 + 7 =
4

𝑠 − 1
−
4𝑒−2(𝑠−1)

𝑠 − 1

𝑌 (𝑠) �𝑠2 − 5𝑠 + 6� =
4

𝑠 − 1
−
4𝑒−2(𝑠−1)

𝑠 − 1
+ (𝑠 − 7)

But �𝑠2 − 5𝑠 + 6� = (𝑠 − 3) (𝑠 − 2) and the above becomes

𝑌 (𝑠) =
4

(𝑠 − 1) (𝑠 − 3) (𝑠 − 2)
−

4𝑒2𝑒−2𝑠

(𝑠 − 1) (𝑠 − 3) (𝑠 − 2)
+

(𝑠 − 7)
(𝑠 − 3) (𝑠 − 2)

(1)

These are now simplified by partial fractions. The final result is only shown for brevity, since the
process of performing partial fraction is a standard one.

1
(𝑠 − 1) (𝑠 − 3) (𝑠 − 2)

=
1

2 (𝑠 − 3)
−

1
𝑠 − 2

+
1

2 (𝑠 − 1)
And

𝑠 − 7
(𝑠 − 3) (𝑠 − 2)

=
−4
𝑠 − 3

+
5

𝑠 − 2
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Using the above result back in (1) results in

𝑌 (𝑠) =
2

𝑠 − 3
−

4
𝑠 − 2

+
2

𝑠 − 1
− 𝑒2𝑒−2𝑠 �

2
(𝑠 − 3)

−
4

𝑠 − 2
+

2
(𝑠 − 1)�

−
4

𝑠 − 3
+

5
𝑠 − 2

=
−2
𝑠 − 3

+
1

𝑠 − 2
+

2
𝑠 − 1

− 𝑒2 �
2𝑒−2𝑠

(𝑠 − 3)
−
4𝑒−2𝑠

𝑠 − 2
+
2𝑒−2𝑠

(𝑠 − 1)�
(2)

Now we apply the inverse Laplace transform. lookup table is also used for this purpose to obtain

−2ℒ −1 �
1

𝑠 − 3�
= −2𝑒3𝑡

ℒ −1 �
1

𝑠 − 2�
= 𝑒2𝑡

2ℒ −1 �
1

𝑠 − 1�
= 2𝑒𝑡

And

2ℒ −1 �
𝑒−2𝑠

𝑠 − 3�
= 2𝑒3(𝑡−2)𝑈 (𝑡 − 2)

4ℒ −1 �
𝑒−2𝑠

𝑠 − 2�
= 4𝑒2(𝑡−2)𝑈 (𝑡 − 2)

2ℒ −1 �
𝑒−2𝑠

𝑠 − 1�
= 2𝑒(𝑡−2)𝑈 (𝑡 − 2)

Putting all these results back into (2) gives the response in time domain as

𝑦 (𝑡) = −2𝑒3𝑡 + 𝑒2𝑡 + 2𝑒𝑡 − 𝑒2 �2𝑒3(𝑡−2) − 4𝑒2(𝑡−2) + 2𝑒(𝑡−2)�𝑈 (𝑡 − 2)

The above can also be written as

𝑦 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

−2𝑒3𝑡 + 𝑒2𝑡 + 2𝑒𝑡 0 < 𝑡 < 2
−2𝑒3𝑡 + 𝑒2𝑡 + 2𝑒𝑡 − 𝑒2 �2𝑒3𝑡 − 4𝑒2𝑡 + 2𝑒𝑡� 𝑡 ≥ 2

Since the original ODE is not stable (due to damping term −5 negative in the given ODE, the
solution will blow up with time). This is seen by the solution above, where the exponential are all
positive, hence growing with time. The following is a plot of the above solution for up to 𝑡 = 2.2

ClearAll[t];

mySol = -2 ⅇ
3 t

+ ⅇ
2 t

+ 2 ⅇ
t
- ⅇ

2
2 ⅇ

3 t-2
- 4 ⅇ

2 t-2
+ 2 ⅇ

t-2
 UnitStep[t - 2];

Plot[mySol, {t, 0, 2.2},

Frame -> True,

FrameLabel → {{"y(t)", None}, {"t (sec)", "Solution to problem 2"}},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red]

0.0 0.5 1.0 1.5 2.0
-1000

-800

-600

-400

-200

0

t (sec)

y(
t)

Solution to problem 2

Figure 3.4: Plot of solution for problem 2
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3.3.3 Problem 3

Figure 3.5: Problem 3 Statement

Solution

Let 𝑌1 (𝑠) = ℒ �𝑦1 (𝑡)� and let 𝑌2 (𝑠) = ℒ�𝑦2 (𝑡)�. Taking Laplace transform of the two ODE’s gives

𝑠2𝑌1 (𝑠) − 𝑠𝑦1 (0) − 𝑦′1 (0) + 5𝑌1 (𝑠) + 𝑌2 (𝑠) = 0
𝑠2𝑌2 (𝑠) − 𝑠𝑦2 (0) − 𝑦′2 (0) − 2𝑌1 (𝑠) + 2𝑌2 (𝑠) = 0

Substituting the given initial conditions results in

𝑠2𝑌1 − 3𝑠 + 5𝑌1 + 𝑌2 = 0 (1)

𝑠2𝑌2 − 𝑠 − 2𝑌1 + 2𝑌2 = 0 (2)

The above two ODE’s are now solved for 𝑌1 (𝑠) , 𝑌2 (𝑠)

𝑌1 �𝑠2 + 5� + 𝑌2 = 3𝑠

𝑌2 �𝑠2 + 2� − 2𝑌1 = 𝑠

or
⎛
⎜⎜⎜⎜⎝
𝑠2 + 5 1
−2 𝑠2 + 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑌1

𝑌2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3𝑠
𝑠

⎞
⎟⎟⎟⎟⎠

Using Gaussian elimination: Adding � 2
𝑠2+5

� times first row to second row gives
⎛
⎜⎜⎜⎜⎝
𝑠2 + 5 1
0 𝑠2 + 2 + 2

𝑠2+5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑌1

𝑌2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

3𝑠
𝑠 + 6𝑠

𝑠2+5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑠2 + 5 1
0 1

𝑠2+5
�𝑠4 + 7𝑠2 + 12�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑌1

𝑌2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

3𝑠
𝑠

𝑠2+5
�𝑠2 + 11�

⎞
⎟⎟⎟⎟⎠

Back substitution: From last row

𝑌2 (𝑠) =
𝑠

𝑠2+5
�𝑠2 + 11�

1
𝑠2+5

�𝑠4 + 7𝑠2 + 12�

=
𝑠 �𝑠2 + 11�
𝑠4 + 7𝑠2 + 12

=
𝑠 �𝑠2 + 11�

�𝑠2 + 4� �𝑠2 + 3�
(3)

First row gives

�𝑠2 + 5�𝑌1 + 𝑌2 = 3𝑠
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Using 𝑌2 (𝑠) found from (3), the above becomes

�𝑠2 + 5�𝑌1 = 3𝑠 −
𝑠 �𝑠2 + 11�

�𝑠2 + 4� �𝑠2 + 3�

𝑌1 (𝑠) =
3𝑠

�𝑠2 + 5�
−

𝑠 �𝑠2 + 11�

�𝑠2 + 5� �𝑠2 + 4� �𝑠2 + 3�
(4)

To obtain the time domain solution we need to inverse Laplace transform (3,4). Starting with (3),
and applying partial fractions gives

𝑌2 (𝑠) =
𝑠 �𝑠2 + 11�

�𝑠2 + 4� �𝑠2 + 3�
=

8𝑠
3 + 𝑠2

−
7𝑠

4 + 𝑠2
(5)

From tables we see that

8ℒ −1 �
𝑠

3 + 𝑠2 �
= 8 cos �√3𝑡�

7ℒ −1 �
𝑠

4 + 𝑠2 �
= 7 cos (2𝑡)

Hence (5) becomes in time domain as

𝑦2 (𝑡) = 8 cos �√3𝑡� − 7 cos (2𝑡)

Similarly for 𝑌1 (𝑠), from (4) and applying partial fractions

𝑌1 (𝑠) =
3𝑠

�𝑠2 + 5�
−

𝑠 �𝑠2 + 11�

�𝑠2 + 5� �𝑠2 + 4� �𝑠2 + 3�

=
3𝑠

�𝑠2 + 5�
− �

4𝑠
𝑠2 + 3

−
7𝑠

𝑠2 + 4
+

3𝑠
5 + 𝑠2 �

(6)

From inverse Laplace transform table

3ℒ −1

⎡
⎢⎢⎢⎢⎣

𝑠
�𝑠2 + 5�

⎤
⎥⎥⎥⎥⎦ = 3 cos �√5𝑡�

4ℒ −1 �
𝑠

𝑠2 + 3�
= 4 cos �√3𝑡�

7ℒ −1 �
𝑠

𝑠2 + 4�
= 7 cos (2𝑡)

3ℒ −1 �
𝑠

5 + 𝑠2 �
= 3 cos �√5𝑡�

Using these in (6), the solution 𝑦1 (𝑡) becomes

𝑦1 (𝑡) = 3 cos �√5𝑡� − �4 cos �√3𝑡� − 7 cos (2𝑡) + 3 cos �√5𝑡��

= −4 cos �√3𝑡� + 7 cos (2𝑡)

In summary

𝑦1 (𝑡) = −4 cos �√3𝑡� + 7 cos (2𝑡)

𝑦2 (𝑡) = 8 cos �√3𝑡� − 7 cos (2𝑡)

The following is a plot of the solutions for 10 seconds.



132

ClearAll[y1, y2, t]

y1 = -4 Cos 3 t + 7 Cos[2 t];

y2 = 8 Cos 3 t - 7 Cos[2 t];

Plot[{y1, y2}, {t, 0, 10}, Frame → True,

FrameLabel → {{"y1(t),y2(t)", None}, {"t (sec)", "Problem 3 solution"}},

PlotLegends → {"y1(t)", "y2(t)"},

BaseStyle → 14,

GridLines → Automatic,

GridLinesStyle → LightGray]

Out[ ]=
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Figure 3.6: Plot of solution for problem 3

3.3.4 Problem 4

Figure 3.7: Problem 4 Statement

Solution

Part a

Note: In all the following it is assumed that 𝑥 is a vector and that 𝑥 ≠ 0

Let

𝐴 = 𝐴𝑠𝑦 + 𝐴𝑠𝑘 (1)

Where 𝐴𝑠𝑦 is a symmetric matrix, which means 𝐴𝑇
𝑠𝑦 = 𝐴𝑠𝑦 and 𝐴𝑠𝑘 is skew symmetric matrix which

means 𝐴𝑇
𝑠𝑘 = −𝐴𝑠𝑘. Taking the transpose of (1) gives

𝐴𝑇 = �𝐴𝑠𝑦 + 𝐴𝑠𝑘�
𝑇

= 𝐴𝑇
𝑠𝑦 + 𝐴𝑇

𝑠𝑘

= 𝐴𝑠𝑦 − 𝐴𝑠𝑘 (2)

Adding (1)+(2) gives

𝐴 + 𝐴𝑇 = 2𝐴𝑠𝑦

𝐴𝑠𝑦 =
𝐴 + 𝐴𝑇

2
(3)
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Subtracting (2)-(1) gives

𝐴𝑇 − 𝐴 = −2𝐴𝑠𝑘

𝐴𝑠𝑘 =
𝐴 − 𝐴𝑇

2
(4)

Therefore for any 𝐴,

𝐴𝑠𝑦 =
1
2
�𝐴 + 𝐴𝑇� (4A)

𝐴𝑠𝑘 =
1
2
�𝐴 − 𝐴𝑇� (4B)

To show that 𝐴𝑠𝑦 is indeed symmetric, this is done by construction :

𝐴𝑇
𝑠𝑦 =

1
2
�𝐴 + 𝐴𝑇�

𝑇

=
1
2
�𝐴𝑇 + �𝐴𝑇�

𝑇
�

But �𝐴𝑇�
𝑇
= 𝐴, and the above becomes

𝐴𝑇
𝑠𝑦 =

1
2
�𝐴𝑇 + 𝐴�

= 𝐴𝑠𝑦

Therefore 𝐴𝑠𝑦 is indeed symmetric.

To show that 𝐴𝑠𝑘 is skew symmetric matrix :

𝐴𝑇
𝑠𝑘 =

1
2
�𝐴 − 𝐴𝑇�

𝑇

=
1
2
�𝐴𝑇 − �𝐴𝑇�

𝑇
�

=
1
2
�𝐴𝑇 − 𝐴�

= −
1
2
�𝐴 − 𝐴𝑇�

= −𝐴𝑠𝑘

Hence 𝐴𝑠𝑘 is indeed skew symmetric.

Therefore any 𝐴 matrix can be written as 𝐴 = 𝐴𝑠𝑦 + 𝐴𝑠𝑘 where 𝐴𝑠𝑦, 𝐴𝑠𝑘 are given by (4A,4B).

Now we need to show that this is a unique was to write 𝐴. Proof is by contradictions. Let there be

�̃�𝑠𝑦 matrix which is symmetric and �̃�𝑠𝑦 ≠ 𝐴𝑠𝑦 and let there be �̃�𝑠𝑦 matrix which is skew matrix and
�̃�𝑠𝑘 ≠ 𝐴𝑠𝑘. And also let 𝐴 = �̃�𝑠𝑦 + �̃�𝑠𝑦 in addition to 𝐴 = 𝐴𝑠𝑦 + 𝐴𝑠𝑘. Then

𝐴𝑇 = ��̃�𝑠𝑦 + �̃�𝑠𝑘�
𝑇

= �̃�𝑇
𝑠𝑦 + �̃�𝑇

𝑠𝑘

Since �̃�𝑠𝑦 is assumed to be symmetric, then �̃�𝑇
𝑠𝑦 = �̃�𝑠𝑦 and since �̃�𝑠𝑘 is assumed to be skew symmetric,

then �̃�𝑇
𝑠𝑘 = −�̃�𝑠𝑘 and the above becomes

𝐴𝑇 = �̃�𝑠𝑦 − �̃�𝑠𝑘

Therefore
1
2
�𝐴 + 𝐴𝑇� =

1
2
��̃�𝑠𝑦 + �̃�𝑠𝑘 + �̃�𝑠𝑦 − �̃�𝑠𝑘�

= �̃�𝑠𝑦

But from (4A) above, we showed that 1
2
�𝐴 + 𝐴𝑇� = 𝐴𝑠𝑦. Hence

𝐴𝑠𝑦 = �̃�𝑠𝑦

Which is a contradiction to our assumption that �̃�𝑠𝑦 ≠ 𝐴𝑠𝑦. Therefore 𝐴𝑠𝑦 is unique. The same is
done for �̃�𝑠𝑘. From

1
2
�𝐴 − 𝐴𝑇� =

1
2
��̃�𝑠𝑦 + �̃�𝑠𝑘 − ��̃�𝑠𝑦 − �̃�𝑠𝑘��

= �̃�𝑠𝑘

But from (4) above, we showed that 1
2
�𝐴 − 𝐴𝑇� = 𝐴𝑠𝑘. Hence 𝐴𝑠𝑘 = �̃�𝑠𝑘 which is a contradiction.

Therefore there is only way to write 𝐴 as sum of symmetric and skew symmetric way, which is

𝐴 =

𝐴𝑠𝑦

���������𝐴 + 𝐴𝑇

2
+

𝐴𝑠𝑘

�������������1
2
�𝐴 − 𝐴𝑇�
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QED.

Part b

Starting with the forward direction. We need to show that given 𝐴 is positive definite (p.d.) then
this implies 𝐴𝑠𝑦 is also p.d.

From part (a) we found that 𝐴 can be written as 𝐴 = 𝐴𝑠𝑦 + 𝐴𝑠𝑘. Since 𝐴 is now assumed to be p.d.
then this implies

𝑥𝑇𝐴𝑥 > 0

𝑥𝑇 �𝐴𝑠𝑦 + 𝐴𝑠𝑘� 𝑥 > 0

𝑥𝑇𝐴𝑠𝑦𝑥 + 𝑥𝑇𝐴𝑠𝑘𝑥 > 0 (1)

Now we will show that 𝑥𝑇𝐴𝑠𝑘𝑥 = 0 to finish the above proof. First we observe that

�𝑥𝑇𝐴𝑠𝑘𝑥�
𝑇
= (𝐴𝑠𝑘𝑥)

𝑇 𝑥

= 𝑥𝑇𝐴𝑇
𝑠𝑘𝑥

But 𝐴𝑠𝑘 = −𝐴𝑇
𝑠𝑘 by definition of skew symmetric matrix. Therefore the above becomes

�𝑥𝑇𝐴𝑠𝑘𝑥�
𝑇
= − �𝑥𝑇𝐴𝑠𝑘𝑥�

But 𝑥𝑇𝐴𝑠𝑘𝑥 is a single number, say 𝑞. (To be precise, 𝑞 is 1 × 1 matrix. but since it is 1 × 1 we can
treat it as a number, since it is one element). But the transpose of a number (or 1 × 1 matrix) is
itself. Hence the above relation says that

𝑞𝑇 = −𝑞

For a number, this is the same as saying 𝑞 = −𝑞 and this only possible if 𝑞 = 0 or in other words

𝑥𝑇𝐴𝑠𝑘𝑥 = 0 (2)

Using (2) in (1) shows immediately that

𝑥𝑇𝐴𝑠𝑦𝑥 > 0

Therefore 𝐴𝑠𝑦 is positive definite.

Now we need to show the reverse direction. That is, we need to show that if 𝐴𝑠𝑦 is p.d. then this
implies 𝐴 is also p.d.

Since 𝐴𝑠𝑦 is now assumed to be p.d. then we can write

𝑥𝑇𝐴𝑠𝑦𝑥 > 0

But 𝐴 = 𝐴𝑠𝑦 + 𝐴𝑠𝑘 therefore 𝐴𝑠𝑦 = 𝐴 − 𝐴𝑠𝑘 and the above becomes

𝑥𝑇 (𝐴 − 𝐴𝑠𝑘) 𝑥 > 0
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑠𝑘𝑥 > 0

But we showed in (2) that 𝑥𝑇𝐴𝑠𝑘𝑥 = 0. Therefore the above becomes

𝑥𝑇𝐴𝑥 > 0

Which implies that 𝐴 is positive definite, which is what we are asked to show. QED

3.3.5 Problem 5

Figure 3.8: Problem 5 Statement
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Solution

Two vectors �⃗�, �⃗� are orthogonal if their dot product is zero. This is because �⃗� ⋅ �⃗� = ��⃗�� ��⃗�� cos𝜃 where
𝜃 is the inner angle between the two vectors. Since the vectors are orthogonal, then cos 900 = 0 and
therefore �⃗� ⋅ �⃗� = 0. To find which pairs are orthogonal to each others, we compute the inner product
between all possible pairs :

�⃗�1 ⋅ �⃗�2 = −2 + 0 + 0 + 2 = 0
�⃗�1 ⋅ �⃗�3 = 4 + 6 + 0 + 4 = 14
�⃗�1 ⋅ �⃗�4 = −12 + 12 + 0 + 0 = 0
�⃗�2 ⋅ �⃗�3 = −2 + 0 + 3 + 8 = 9
�⃗�2 ⋅ �⃗�4 = 6 + 0 − 6 + 0 = 0
�⃗�3 ⋅ �⃗�4 = −12 + 8 − 2 + 0 = −2

We see from the above that �⃗�1 ⋅ �⃗�2 = 0, �⃗�1 ⋅ �⃗�4 = 0, �⃗�2 ⋅ �⃗�4 = 0. Therefore

𝑆 = ��⃗�1, �⃗�2, �⃗�4�

≡ ��⃗�1, �⃗�2, �⃗�3�

Or

�⃗�1 = (2, 3, 0, 1) (1B)

�⃗�2 = (−1, 0, 3, 2)
�⃗�3 = (−6, 4, −2, 0)

Form an orthogonal set in ℝ4.

Now we need to find the best approximation of �⃗� = �⃗�3 = (2, 2, 1, 4) using the above orthogonal
vectors �⃗�1, �⃗�2, �⃗�3. Using Gram’s theorem, this approximation is

�⃗� = 𝑐1�⃗�1 + 𝑐2�⃗�2 + 𝑐3�⃗�3 (1A)

Where the constants 𝑐𝑖 are found from solving the system
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�⃗�1 ⋅ �⃗�1 �⃗�1 ⋅ �⃗�2 �⃗�1 ⋅ �⃗�3
�⃗�2 ⋅ �⃗�1 �⃗�2 ⋅ �⃗�2 �⃗�2 ⋅ �⃗�3
�⃗�3 ⋅ �⃗�1 �⃗�3 ⋅ �⃗�2 �⃗�3 ⋅ �⃗�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�⃗�1 ⋅ �⃗�
�⃗�2 ⋅ �⃗�
�⃗�3 ⋅ �⃗�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

But since �⃗�𝑖 are all orthogonal to each others then �⃗�𝑖 ⋅ �⃗�𝑗 = 0 for 𝑖 ≠ 𝑗, and �⃗�𝑖 ⋅ �⃗�𝑖 = ‖𝑣𝑖‖
2 and the above

becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��⃗�1�
2 0 0

0 ��⃗�2�
2 0

0 0 ��⃗�3�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�⃗�1 ⋅ �⃗�
�⃗�2 ⋅ �⃗�
�⃗�3 ⋅ �⃗�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

But

�⃗�1 ⋅ �⃗� = (2, 3, 0, 1) ⋅ (2, 2, 1, 4) = 4 + 6 + 4 = 14
�⃗�2 ⋅ �⃗� = (−1, 0, 3, 2) ⋅ (2, 2, 1, 4) = −2 + 3 + 8 = 9
�⃗�3 ⋅ �⃗� = (−6, 4, −2, 0) ⋅ (2, 2, 1, 4) = −12 + 8 − 2 = −6

Hence (1) becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��⃗�1�
2 0 0

0 ��⃗�2�
2 0

0 0 ��⃗�3�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14
9
−6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

Since

��⃗�1�
2 = ‖(2, 3, 0, 1)‖2 = 4 + 9 + 1 = 14

��⃗�2�
2 = ‖(−1, 0, 3, 2)‖2 = 1 + 9 + 4 = 14

��⃗�3�
2 = ‖(−6, 4, −2, 0)‖2 = 36 + 16 + 4 = 56

Then (2) becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14 0 0
0 14 0
0 0 56

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14
9
−6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)
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From the above we see that

𝑐1 = 1

𝑐2 =
9
14

𝑐3 =
−3
28

Hence the best approximation using (1A) becomes

�⃗� = 𝑐1�⃗�1 + 𝑐2�⃗�2 + 𝑐3�⃗�3

= (2, 3, 0, 1) +
9
14
(−1, 0, 3, 2) −

3
28
(−6, 4, −2, 0)

= �2,
18
7
,
15
7
,
16
7 �

Therefore

�⃗� =
1
7
(14, 18, 15, 16)

Now we need to find basis �⃗�1, �⃗�2, �⃗�3, �⃗�4 of orthogonal vectors in ℝ4. We already found that from (1B)
that �⃗�1, �⃗�2, �⃗�3 are three such vectors. So we just need to find another �⃗�4 = [𝑎1, 𝑎2, 𝑎3, 𝑎4] such that it is
orthogonal to the other three, in other words we need to solve

�⃗�1 ⋅ �⃗�4 = 0
�⃗�2 ⋅ �⃗�4 = 0
�⃗�3 ⋅ �⃗�4 = 0

This implies

[2, 3, 0, 1] ⋅ [𝑎1, 𝑎2, 𝑎3, 𝑎4] = 0
[−1, 0, 3, 2] ⋅ [𝑎1, 𝑎2, 𝑎3, 𝑎4] = 0
[−6, 4, −2, 0] ⋅ [𝑎1, 𝑎2, 𝑎3, 𝑎4] = 0

Or

2𝑎1 + 3𝑎2 + 𝑎4 = 0
−𝑎1 + 3𝑎3 + 2𝑎4 = 0
−6𝑎1 + 4𝑎2 − 2𝑎3 = 0

Or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 1
−1 0 3 2
−6 4 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3
𝑎4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This system has three equations and 4 unknowns. Therefore it will have one free parameter giving
an infinite number of solutions. Using Gaussian elimination:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 1
−1 0 3 2
−6 4 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2+
1
2𝑅1→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 1
0 3

2 3 5
2

−6 4 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+3𝑅1→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 1
0 3

2 3 5
2

0 13 −2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−
26
3 𝑅2

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 1
0 3

2 3 5
2

0 0 −28 − 56
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We stop the elimination here since no more elimination is possible. We have now this system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 0 1
0 3

2 3 5
2

0 0 −28 − 56
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3
𝑎4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Back substitution: From last row we obtain the equation

−28𝑎3 −
56
3
𝑎4 = 0

𝑎4 = −
3
2
𝑎3
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The second row gives

3
2
𝑎2 + 3𝑎3 +

5
2
𝑎4 = 0

𝑎2 =
2
3 �
−3𝑎3 −

5
2
𝑎4�

= −2𝑎3 −
5
3
𝑎4

Since 𝑎4 = −
3
2𝑎3 the above becomes

𝑎2 = −2𝑎3 −
5
3 �
−
3
2
𝑎3�

=
1
2
𝑎3

First row gives

2𝑎1 + 3𝑎2 + 𝑎4 = 0

𝑎1 =
1
2
(−3𝑎2 − 𝑎4)

Since 𝑎2 =
1
2𝑎3 and 𝑎4 = −

3
2𝑎3 the above becomes

𝑎1 =
1
2 �
−3 �

1
2
𝑎3� − �−

3
2
𝑎3��

= 0

Therefore the solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3
𝑎4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
1
− 3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑎3

The above means that for any arbitrary 𝑎3 value there is a solution. 𝑎3 is just a scalar which only
stretches or shrinks the vector but does not change its direction (orientation). Therefore the vector
remains orthogonal to all others for any 𝑎3. Let us pick 𝑎3 = 1. Using this �⃗�4 becomes

�⃗�4 = �0,
1
2
, 1, −

3
2�

To verify the result found, we will check that �⃗�4 is indeed orthogonal with the other three vectors :

�⃗�1 ⋅ �⃗�4 = [2, 3, 0, 1] ⋅ �0,
1
2
, 1, −

3
2�
= 0

�⃗�2 ⋅ �⃗�4 = [−1, 0, 3, 2] ⋅ �0,
1
2
, 1, −

3
2�
= 0

�⃗�3 ⋅ �⃗�4 = [−6, 4, −2, 0] ⋅ �0,
1
2
, 1, −

3
2�
= 0

QED.

3.3.6 Problem 6

Figure 3.9: Problem 6 Statement

Solution
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Let

𝐴𝑛×𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑛
𝑎31 𝑎32 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑏 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Part (a)

The first step in Gaussian elimination is to reduce the above matrix to row echelon form :

𝐴𝑛×𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
�̃�2
�̃�3
⋮
�̃�𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Row echelon form has zeros in its the lower left triangle. After this, back substitution starts by
solving for 𝑥𝑛 from the last row, then solving for 𝑥𝑛−1 from the row above the last row and so on
until we reach the first row.

Counting operations for forward pass

The first step is to zero out all entries in first column below 𝑎11 using 𝑎11 as pivot. Next is to zero
out all entries in second column below the (updated) 𝑎22 value and so on.

To zero out an entry, for example 𝑎21, we first need to do one division 𝑎21
𝑎11

= Δ and store this in
memory, then do 𝑎2𝑖 = 𝑎2𝑖 − Δ𝑎1𝑖 for all entries in that row, which means for 𝑖 = 1⋯𝑛. (no need to
count 𝑎21 since we know it will be zero). We have to remember that this is being applied to the 𝑏
vector as well and not just for 𝐴 matrix rows.

Hence we need one division to find Δ, and then 2𝑛 multiplication and addition/subtraction opera-
tions per row. The division is only needed once per row to find the pivot scaling Δ.

Since there are 𝑛 − 1 rows then there are (𝑛 − 1) divisions and (2𝑛) (𝑛 − 1) multiplications/addition to
zero out the first column. After this we have the following system reached

𝐴𝑛×𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 𝑎32 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 𝑎𝑛2 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
�̃�2
�̃�3
⋮
�̃�𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The total cost now is therefore (𝑛 − 1) + (2𝑛) (𝑛 − 1).

We now switch to the second row and use the new value of 𝑎22 as pivot and repeat the same as
above. The only di�erence now is that there are 𝑛 − 2 rows to process and (𝑛 − 2) divisions and
therefore 2 (𝑛 − 1) (𝑛 − 2) multiplications/addition to zero out the second column entries below the
second row. After this we reach the following system

𝐴𝑛×𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
�̃�2
�̃�3
⋮
�̃�𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The total cost of the above is therefore (𝑛 − 2) + 2 (𝑛 − 1) (𝑛 − 2).

We now switch to the third row and use the new value of 𝑎33 as pivot. Now there are now (𝑛 − 3)
divisions and 2 (𝑛 − 2) (𝑛 − 3) multiplications/additions to obtain the following system

𝐴𝑛×𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
�̃�2
�̃�3
⋮
�̃�𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The total cost of the above is therefore (𝑛 − 3) + 2 (𝑛 − 2) (𝑛 − 3) .

And so on until we reach the row before the last row, where there is only one row below it to process.
The cost then is just one division and 2 additions and 2 multiplications. Therefore the number of
total number of multiplication and additions operations for the forward pass is the sum of all the
above operations, which can be written as

row 2

�����������������������������[(𝑛 − 1) + (2𝑛) (𝑛 − 1)] +
row 3

�����������������������������������[(𝑛 − 2) + 2 (𝑛 − 1) (𝑛 − 2)] +⋯ +
last row

�������[1 + 4]

Writing the above as
𝑛−1
�
𝑘=1

(𝑛 − 𝑘) + 2 (𝑛 − 𝑘 + 1) (𝑛 − 𝑘) then we need to calculate this sum using known

formulas for summations. Let this sum be Δ, hence

Δ =
𝑛−1
�
𝑘=1

− 3𝑘 + 2𝑘2 + 3𝑛 − 4𝑘𝑛 + 2𝑛2

= −3
𝑛−1
�
𝑘=1
𝑘 + 2

𝑛−1
�
𝑘=1
𝑘2 + 3

𝑛−1
�
𝑘=1
𝑛 − 4

𝑛−1
�
𝑘=1
𝑘𝑛 + 2

𝑛−1
�
𝑘=1
𝑛2

= −3 �
𝑛 (𝑛 − 1)

2 � + 2 �
𝑛3

3
−
𝑛2

2
+
𝑛
6�
+ 3 �𝑛2 − 𝑛� − 4 �

𝑛2 (𝑛 − 1)
2 � + 2 �𝑛2 (𝑛 − 1)�

=
2
3
𝑛3 +

1
2
𝑛2 −

7
6
𝑛 (1)

The above is the number of operations just for for the forward pass (elimination phase).

For example for matrix of size 3 × 3 the above gives 19 operations, and for matrix of size 4 × 4, it
gives 46 operations and for 5 × 5 it gives 90 operations and so on.

Counting operations for backward pass In back substitution, we start from the end of the elimina-
tion phase above, which will be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

First step is to solve for 𝑥𝑛 by finding 𝑥𝑛 =
𝑏𝑛
𝑎𝑛𝑛

. This requires only one division. Next is to solve for
𝑥𝑛−1 by finding 𝑎𝑛−1,𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1, or

𝑥𝑛−1 =
𝑏𝑛−1 − �𝑎𝑛−1,𝑛� 𝑥𝑛

�𝑎𝑛−1,𝑛−1�

We see that this needs one subtraction, one multiplication and one division, or 3 operations. The
next step is to solve for 𝑥𝑛−2 from

�𝑎𝑛−2,𝑛−2� 𝑥𝑛−2 + �𝑎𝑛−2,𝑛−1� 𝑥𝑛−1 + �𝑎𝑛−2,𝑛� 𝑥𝑛 = 𝑏2
Hence

𝑥𝑛−2 =
𝑏2 − �𝑎𝑛−2,𝑛−1� 𝑥𝑛−1 − �𝑎𝑛−2,𝑛� 𝑥𝑛

�𝑎𝑛−2,𝑛−2�

Therefore we need 2 subtractions, 2 multiplication and one division, or 5 operations. And so on
until we reach the first row to solve for 𝑥1. Therefore the total number of operations can be seen as

1 + 3 + 5 + 7 +⋯

The above can be written as the sum
𝑛−1
�
𝑘=0

(2𝑘 + 1) = 2
𝑛−1
�
𝑘=0

𝑘 +
𝑛−1
�
𝑘=0

1

= 2 �
𝑛 (𝑛 − 1)

2 � + 𝑛

= 𝑛 (𝑛 − 1) + 𝑛
= 𝑛2 − 𝑛 + 𝑛
= 𝑛2 (2)

We see that the cost of the elimination is much greater than the cost of back substitution. One is
𝑂�𝑛3� while the other is 𝑂�𝑛2�.
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From (1,2), the total number of operations for the complete Gaussian elimination process is

Δ =
2
3
𝑛3 +

1
2
𝑛2 −

7
6
𝑛 + 𝑛2

=
2
3
𝑛3 +

3
2
𝑛2 −

7
6
𝑛

For large 𝑛 the above is 𝑂�𝑛3�.

Part (b)

Given a system of equations
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑛
𝑎31 𝑎32 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Cramer method works as follows :

𝑥1 =
|𝐴|
|𝐴1|

𝑥2 =
|𝐴|
|𝐴2|

⋮

𝑥𝑛 =
|𝐴|
|𝐴𝑛|

Where |𝐴| is the determinant of coe�cient matrix 𝐴𝑛×𝑛 and |𝐴𝑖| is determinant of coe�cient matrix
but with the 𝑖𝑡ℎ column replaced by the column vector 𝑏.

An e�cient way to find the determinant is to convert the matrix to row echelon form. In this
form, the matrix is upper triangle. Hence the determinant is the product of all elements along the
diagonal. This is more e�cient than using the matrix cofactor expansion method.

In doing these row operations on the matrix to find |𝐴| the only di�erence from the elimination
steps we did for part(a), is that we have to remember the following rules now during the elimination
process

1. When adding multiple of one row to another row, the determinant is not a�ected.

2. When switching two rows, the determinant is multiplied by −1

3. When multiplying one row by some scalar, the determinant is also multiplied by the same
scalar.

Given the above, let us assume that for each elimination step of a row, we do one multiplication to
account for a possible multiplication by −1 or possible multiplication by a scalar. Since we do not
know if this will happen every time as this clearly depends on the data in the matrix, then this will
be the worst case counting.

This means there is an additional (𝑛 − 1) multiplications to add to the cost of doing the elimination
step to reach row echelon form at the end.

Another small di�erence from part(a), is that now we do not have the 𝑏 vector added during the
forward step.

Therefore, as we did in part(a), the cost to reach this form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 𝑎32 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 𝑎𝑛2 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Is now (𝑛 − 1) + (2 (𝑛 − 1)) (𝑛 − 1). Recalling from part(a) the cost at this stage was (𝑛 − 1) + (2𝑛) (𝑛 − 1)
here. So we changed 2𝑛 to 2 (𝑛 − 1), since there is no 𝑏 vector, hence one less element. And as was
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done in part (a), the cost to reach
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now becomes (𝑛 − 2) + 2 (𝑛 − 2) (𝑛 − 2). Recalling from part(a) the cost at this stage was (𝑛 − 1) +
2 (𝑛 − 1) (𝑛 − 1). So we changed 2 (𝑛 − 1) to 2 (𝑛 − 2), since there is no 𝑏 vector. This continues to
the row before the last as in part (a). Therefore the number of total multiplication and additions
operations for just the forward pass is

row 2

�������������������������������������[(𝑛 − 1) + (2 (𝑛 − 1)) (𝑛 − 1)] +
row 3

�����������������������������������[(𝑛 − 2) + 2 (𝑛 − 2) (𝑛 − 2)] +⋯ +
last row

�������[1 + 2]

Hence the cost to put the matrix in row echelon form is
𝑛−1
�
𝑘=1

(𝑛 − 𝑘) + 2 (𝑛 − 𝑘)2 =
𝑛−1
�
𝑘=1
𝑛 −

𝑛−1
�
𝑘=1
𝑘 + 2

𝑛−1
�
𝑘=1

(𝑛 − 𝑘)2

= 𝑛 (𝑛 − 1) −
𝑛 (𝑛 − 1)

2
+ 2

𝑛 − 3𝑛2 + 2𝑛3

6

=
2
3
𝑛3 −

1
2
𝑛2 −

1
6
𝑛 (1)

The above cost is very close to part(a) elimination phase as expected which was 2
3𝑛

3 + 1
2𝑛

2 − 7
6𝑛.

Current cost is smaller because in part(a) we had the 𝑏 vector there which added more operations,
while here we just operated on 𝐴 itself.

Let us now add the (𝑛 − 1) multiplication we mentioned earlier to the result above. The cost now
becomes

Δ =
2
3
𝑛3 −

1
2
𝑛2 −

1
6
𝑛 + (𝑛 − 1)

=
2
3
𝑛3 −

1
2
𝑛2 +

5
6
𝑛 − 1

We still need to calculate the product of the diagonal elements to find the determinant. For 𝑛 × 𝑛
matrix, this takes 𝑛 − 1 multiplications. Adding these to the above gives

Δ =
2
3
𝑛3 −

1
2
𝑛2 +

5
6
𝑛 − 1 + (𝑛 − 1)

=
2
3
𝑛3 −

1
2
𝑛2 +

11
6
𝑛 − 2

≈
2
3
𝑛3 −

1
2
𝑛2 +

11
6
𝑛

We will use the above as the cost of finding the determinant.

How many times do we need to find determinants? We need to do it one time to find |𝐴| and then 𝑛
more time for each |𝐴𝑖|. Hence (𝑛 + 1) times. This is the main reason why Cramer method becomes
much more costly compared to Gaussian elimination.

The number of operations now becomes

Δ = �
2
3
𝑛3 −

1
2
𝑛2 +

11
6
𝑛� (𝑛 + 1)

=
2
3
𝑛4 +

1
6
𝑛3 +

4
3
𝑛2 +

11
6
𝑛

We also need to add the cost of the final divisions |𝐴|
�𝐴𝑖�

to find each 𝑥𝑖. So we add 𝑛 divisions to the

above, giving the final cost as

Δ =
2
3
𝑛4 +

1
6
𝑛3 +

4
3
𝑛2 +

11
6
𝑛 + 𝑛

=
2
3
𝑛4 +

1
6
𝑛3 +

4
3
𝑛2 +

17
6
𝑛

We see from above, that Cramer rule for large 𝑛 is 𝑂�𝑛4� while Gaussian elimination was 𝑂�𝑛3�.
Hence Gaussian elimination is much more e�cient for large 𝑛.

In summary
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𝑛 cost of Gaussian elimination 2
3𝑛

3 + 3
2𝑛

2 − 7
6𝑛 cost of Cramer 2

3𝑛
4 + 1

6𝑛
3 + 4

3𝑛
2 + 17

6 𝑛
2 5 23
3 19 79
4 46 214
5 90 485
6 155 965
7 245 1743
8 364 2924
9 516 4629
10 705 6995

The following is a graphical illustration of the above

In[ ]:= ge =
2

3
n3 +

3

2
n2 -

7

6
n;

cramer =
2

3
n4 +

1

6
n3 +

4

3
n2 +

17

6
n;

dataGE = Table[{n, ge}, {n, 2, 10}];

dataCramer = Table[{n, cramer}, {n, 2, 10}];

ListLinePlot[{dataCramer, dataGE}, Mesh → Full, PlotRange → All,

MeshStyle → {Red, PointSize@Large}, GridLines → Automatic, GridLinesStyle → LightGray,

PlotLegends → {"Cramer", "G.E."}, AxesLabel → {"n", "cost"}, BaseStyle → 14,

AxesOrigin → {1, 0}, Ticks → {Range[2, 10], Automatic}]

2 3 4 5 6 7 8 9 10
n

1000

2000

3000

4000

5000

6000

7000

cost

Cramer

G.E.

Figure 3.10: Cost of Gaussian elimination vs. Cramer method. Problem 6

3.3.7 Problem 7

Figure 3.11: Problem 7 Statement

Solution
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Part a

The eigenvalues of 𝐴 are found by solving |𝐴 − 𝜆𝐼| = 0 or

�
�
�

1

√5
− 𝜆 0 2

√5
−2

√5
−𝜆 1

√5
0 −1 −𝜆

�
�
�
= 0

�
1

√5
− 𝜆� �

−𝜆 1

√5
−1 −𝜆

� − 0 +
2

√5
�
−2

√5
−𝜆

0 −1
� = 0

�
1

√5
− 𝜆� �𝜆2 +

1

√5
� +

2

√5
�
2

√5
� = 0

1
5
(𝜆 − 1) �−5𝜆 − 5𝜆2 + √5𝜆 − 5� = 0

1
5
(𝜆 − 1) �−5𝜆2 + 𝜆 �√5 − 5� − 5� = 0

(𝜆 − 1) �−5𝜆2 + 𝜆 �√5 − 5� − 5� = 0

Hence 𝜆 = 1. The quadratic formula is used to solve −5𝜆2 + 𝜆 �√5 − 5� − 5 = 0. First it is normalized

5𝜆2 − 𝜆 �√5 − 5� + 5 = 0

𝜆2 − 𝜆 �
1
5√

5 − 1� + 1 = 0

Then 𝜆 = −𝑏
2𝑎 ±

1
2𝑎√𝑏

2 − 4𝑎𝑐 where 𝑏 = − � 15√5 − 1� , 𝑐 = 1, 𝑎 = 1 and the roots are

𝜆 =
� 1
5√5 − 1�

2
±
1
2�

�− �
1
5√

5 − 1��
2

− 4

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2�

�
1
5√

5 − 1�
2

− 4

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2�

1 +
5
25

−
2
5√

5 − 4

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2�

1 +
1
5
−
2
5√

5 − 4

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2�

−
14
5
−
2√5
5

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2�

−14 − 2√5
5

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2
𝑖
�
14 + 2√5

5

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
2
𝑖
�

5 �14 + 2√5�
(5) 5

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
(2) (5)

𝑖�5 �14 + 2√5�

=
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ ±

1
10
𝑖�10√5 + 70

Therefore the roots are

𝜆1 = 1

𝜆2 =
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ +

1
10
𝑖�10√5 + 70

𝜆3 =
⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠ −

1
10
𝑖�10√5 + 70
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Numerically the above becomes

𝜆1 = 1
𝜆2 = −0.276 + 0.961𝑖
𝜆3 = −0.276 − 0.961𝑖

The following plot shows the locations on the complex plane

eigs = {1, -0.276 + 0.961 I, -0.276 - 0.961 I};

eigs = ReIm@eigs;

img = Graphics[{

{FaceForm[White], EdgeForm[Black], Disk[]},

{Red, PointSize[.05], Point[eigs]}

}, ImageSize → 300, Axes → True];

grid = Graphics[{}, GridLines → Automatic, PlotRangePadding → None,

GridLinesStyle → LightGray, ImageSize → ImageDimensions@img];

Overlay[{img, grid}]

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 3.12: Graphical location of eigenvalues for problem 7

To show analytically that the eigenvalues lie on the unit circle means to show that the magnitude
of each complex number is 1. Clearly 𝜆1 already satisfy this condition. We need to check now that
‖𝜆2‖ = 1 and that �𝜆3� = 1

‖𝜆2‖ = �Re (𝜆2)2 + Im (𝜆2)
2

=

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎝
√5
10

−
1
2

⎞
⎟⎟⎟⎠
2

+ �
1
10�

10√5 + 70�
2

=
�
�
3
10
−
1
10√

5� + �
1
10√

5 +
7
10�

=
�
10
10

= 1

Similarly for 𝜆3 since it is the same except for the sign on the complex part (complex conjugate)
which does not a�ect the norm. Therefore all the eigenvalues lie on unit circle in ℂ. QED.

Part b

Let two vectors in the domain of 𝐴 be x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. And let the two vector after the

mapping, which now lie in the range of 𝐴 be ̃x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�1
�̃�2
�̃�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and ̃y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�1
�̃�2
�̃�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Since x ⋅ y = ‖x‖ ‖y‖ cos𝜃 where
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𝜃 is the inner angle between the vectors, and since ̃x ⋅ ̃y = ‖ ̃x‖ ‖ ̃y‖ cos ̃𝜃, then we need to show that

𝜃 = ̃𝜃

~x

~y

Domain of A ~̃x~̃y

θ

θ̃

A~x

A~y

Range of A

Figure 3.13: Linear transformation 𝐴𝑥 preserves angles. Problem 7

Let

𝐴x = ̃x
𝐴y = ̃y

Using the 𝐴 given, then
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√5
0 2

√5
−2

√5
0 1

√5
0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√5
𝑥1 +

2

√5
𝑥3

−2

√5
𝑥1 +

1

√5
𝑥3

−𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

̃x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√5
𝑥1 +

2

√5
𝑥3

−2

√5
𝑥1 +

1

√5
𝑥3

−𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see from the above that

�̃�1 =
1

√5
𝑥1 +

2

√5
𝑥3

�̃�2 =
−2

√5
𝑥1 +

1

√5
𝑥3

�̃�3 = −𝑥2
Similarly

̃y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√5
𝑦1 +

2

√5
𝑦3

1

√5
𝑦1 −

2

√5
𝑦3

−𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see from the above that

�̃�1 =
1

√5
𝑦1 +

2

√5
𝑦3

�̃�2 =
−2

√5
𝑦1 +

1

√5
𝑦3

�̃�3 = −𝑦2
We now need to determine 𝜃 and ̃𝜃 and show they are the same. From the definition above

𝜃 = arccos �
x ⋅ y
‖x‖ ‖y‖�

But x ⋅ y = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 and ‖x‖ = �𝑥
2
1 + 𝑥22 + 𝑥23 and ‖y‖ = �𝑦

2
1 + 𝑦22 + 𝑦23, therefore the above

becomes

𝜃 = arccos

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3

�𝑥
2
1 + 𝑥22 + 𝑥23�𝑦

2
1 + 𝑦22 + 𝑦23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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Similarly, ̃x ⋅ ̃y = �̃�1�̃�1 + �̃�2�̃�2 + �̃�3�̃�3. Using the values of �̃�𝑖, �̃�𝑖 found above the dot product becomes

̃x ⋅ ̃y = �
1

√5
𝑥1 +

2

√5
𝑥3� �

1

√5
𝑦1 +

2

√5
𝑦3� + �

−2

√5
𝑥1 +

1

√5
𝑥3� �

−2

√5
𝑦1 +

1

√5
𝑦3� + (−𝑥2) �−𝑦2�

=
1
5
(𝑥1 + 2𝑥3) �𝑦1 + 2𝑦3� +

1
5
(𝑥3 − 2𝑥1) �𝑦3 − 2𝑦1� + 𝑥2𝑦2

=
1
5
𝑥1𝑦1 +

2
5
𝑥1𝑦3 +

2
5
𝑥3𝑦1 +

4
5
𝑥3𝑦3 +

4
5
𝑥1𝑦1 −

2
5
𝑥1𝑦3 −

2
5
𝑥3𝑦1 +

1
5
𝑥3𝑦3 + 𝑥2𝑦2

Which simplifies to

̃x ⋅ ̃y = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3

And ‖ ̃x‖ = ��̃�
2
1 + �̃�22 + �̃�23. Using the values of �̃�𝑖 found above, this becomes

‖ ̃x‖ =
�
�
1

√5
𝑥1 +

2

√5
𝑥3�

2

+ �
−2

√5
𝑥1 +

1

√5
𝑥3�

2

+ (−𝑥2)
2

=
�
1
5
𝑥21 +

4
5
𝑥1𝑥3 +

4
5
𝑥23 +

4
5
𝑥21 −

4
5
𝑥1𝑥3 +

1
5
𝑥23 + 𝑥22

Which simplifies to

‖ ̃x‖ = �𝑥
2
1 + 𝑥22 + 𝑥23

Similarly, ‖ ̃y‖ = ��̃�
2
1 + �̃�22 + �̃�23 and using the values of �̃�𝑖 found above, then this becomes

‖ ̃y‖ =
�
�
1

√5
𝑦1 +

2

√5
𝑦3�

2

+ �
−2

√5
𝑦1 +

1

√5
𝑦3�

2

+ �−𝑦2�
2

=
�
1
5
𝑦21 +

4
5
𝑦1𝑦3 +

4
5
𝑦23 +

4
5
𝑦21 −

4
5
𝑦1𝑦3 +

1
5
𝑦23 + 𝑦22

Which simplifies to

‖ ̃y‖ = �𝑦
2
1 + 𝑦22 + 𝑦23

Therefore

cos ̃𝜃 =
̃x ⋅ ̃y

‖ ̃x‖ ‖ ̃y‖

̃𝜃 = arccos

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�𝑥
2
1 + 𝑥22 + 𝑥23

�𝑥
2
1 + 𝑥22 + 𝑥23�𝑦

2
1 + 𝑦22 + 𝑦23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

Comparing (1) and (2) shows they are the same. Therefore 𝜃 = ̃𝜃. QED.
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3.3.8 Problem 8

Figure 3.14: Problem 8 Statement

Correction: The set 𝑆 shown above should be

𝑆 = �
1
2𝜋
,
cos 𝑥
𝜋

,
sin 𝑥
𝜋

,
cos 2𝑥
𝜋

,
sin 2𝑥
𝜋

,⋯ ,
cos 5𝑥
𝜋

,
sin 𝑥
𝜋 �

Solution

Two functions 𝑓, 𝑔 are orthogonal on [−𝜋, 𝜋] if ∫
𝜋

−𝜋
𝑓𝑔𝑑𝑥 = 0. To show this for the set of functions

given, we pick 𝑓 = 1
2𝜋 and then for 𝑔 we pick cos𝑚𝑥

𝜋 and then sin𝑚𝑥
𝜋 . i.e.

𝐼1 = �
𝜋

−𝜋

1
2𝜋

cos𝑚𝑥
𝜋

𝑑𝑥

𝐼2 = �
𝜋

−𝜋

1
2𝜋

sin𝑚𝑥
𝜋

𝑑𝑥

For the rest, we have to determine the following 3 cases

𝐼3 = �
𝜋

−𝜋

cos𝑚𝑥
𝜋

cos 𝑛𝑥
𝜋

𝑑𝑥

𝐼4 = �
𝜋

−𝜋

cos𝑚𝑥
𝜋

sin 𝑛𝑥
𝜋

𝑑𝑥

𝐼5 = �
𝜋

−𝜋

sin𝑚𝑥
𝜋

sin 𝑛𝑥
𝜋

𝑑𝑥

These will take care of all possible combination of any two function in the set 𝑆. We could always
replace 𝑚, 𝑛 by a number from 1⋯5 after evaluating the integrals in order to obtain a specific case.
Starting with 𝐼1

𝐼1 =
1
2𝜋2 �

𝜋

−𝜋
cos𝑚𝑥𝑑𝑥

But cos function has period 2𝜋 and therefore the integral above is zero 𝐼1 = 0. This shows that

𝑓 = 1
2𝜋 is orthogonal with all cos𝑚𝑥

𝜋 functions in the set.

𝐼2 =
1
2𝜋2 �

𝜋

−𝜋
sin𝑚𝑥𝑑𝑥
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As above, sin function has period of 2𝜋 and therefore the integral above is zero 𝐼2 = 0. This shows

that 𝑓 = 1
2𝜋 is orthogonal with all sin𝑚𝑥

𝜋 functions in the set.

𝐼3 =
1
𝜋2 �

𝜋

−𝜋
cos𝑚𝑥 cos 𝑛𝑥𝑑𝑥

From tables, using cos𝐴 cos𝐵 = 1
2
(cos (𝐴 − 𝐵) + cos (𝐴 + 𝐵)), then

cos𝑚𝑥 cos 𝑛𝑥 = 1
2
(cos ((𝑚 − 𝑛) 𝑥) + cos ((𝑚 + 𝑛) 𝑥))

And 𝐼3 now becomes

𝐼3 =
1
2𝜋2 �

𝜋

−𝜋
cos ((𝑚 − 𝑛) 𝑥) + cos ((𝑚 + 𝑛) 𝑥) 𝑑𝑥

=
1
2𝜋2 ��

𝜋

−𝜋
cos (𝑚 − 𝑛) 𝑥𝑑𝑥 +�

𝜋

−𝜋
cos ((𝑚 + 𝑛) 𝑥) 𝑑𝑥�

Since the problem is asking us to show orthogonality of di�erent functions in the set, then we
assume 𝑚 ≠ 𝑛, otherwise the integral will have to be handled as special case when 𝑚 = 𝑛 due to the
division.

𝐼3 =
1
2𝜋2 �

1
𝑚 − 𝑛

[sin (𝑚 − 𝑛) 𝑥]𝜋−𝜋 +
1

𝑚 + 𝑛
[sin (𝑚 + 𝑛) 𝑥]𝜋−𝜋�

But since 𝑛,𝑚 are integers, then both terms above are zero since sin (𝑁𝜋) = 0 for integer 𝑁. Hence
𝐼3 = 0. This shows that

cos𝑚𝑥
𝜋 is orthogonal with cos 𝑛𝑥

𝜋 when 𝑚 ≠ 𝑛.

𝐼4 =
1
𝜋2 �

𝜋

−𝜋
sin 𝑛𝑥 cos𝑚𝑥𝑑𝑥

Using sin𝐴 cos𝐵 = 1
2
(sin (𝐴 − 𝐵) + sin (𝐴 + 𝐵)), the above becomes

𝐼4 =
1
2𝜋2 �

𝜋

−𝜋
(sin (𝑛 − 𝑚) 𝑥 + sin (𝑛 + 𝑚) 𝑥) 𝑑𝑥

=
1
2𝜋2 ��

𝜋

−𝜋
sin (𝑛 − 𝑚) 𝑥𝑑𝑥 +�

𝜋

−𝜋
sin (𝑛 + 𝑚) 𝑥𝑑𝑥�

Again, since 𝑛 ≠ 𝑚, then the above becomes

𝐼4 =
1
2𝜋2 �

−1
𝑛 − 𝑚

[cos (𝑛 − 𝑚) 𝑥]𝜋−𝜋 +
−1

𝑛 + 𝑚
[cos (𝑚 + 𝑛) 𝑥]𝜋−𝜋�

=
1
2𝜋2 �

−1
𝑛 − 𝑚

[cos ((𝑛 − 𝑚)𝜋) − cos ((𝑛 − 𝑚) (−𝜋))] + −1
𝑛 + 𝑚

[cos ((𝑛 + 𝑚)𝜋) − cos ((𝑛 + 𝑚) (−𝜋))]�

But cos (−𝑥) = cos (𝑥) and the above becomes

𝐼4 =
1
2𝜋2 �

−1
𝑛 − 𝑚

[cos ((𝑛 − 𝑚)𝜋) − cos ((𝑛 − 𝑚)𝜋)] + −1
𝑛 + 𝑚

[cos ((𝑛 + 𝑚)𝜋) − cos ((𝑛 + 𝑚)𝜋)]�

=
1
2𝜋2 �

−1
𝑛 − 𝑚

[0] +
−1

𝑛 + 𝑚
[0]�

= 0

Hence 𝐼4 = 0. This shows that
sin𝑚𝑥

𝜋 is orthogonal with sin 𝑛𝑥
𝜋 when 𝑚 ≠ 𝑛.

The final integral is

𝐼5 =
1
𝜋2 �

𝜋

−𝜋
sin𝑚𝑥 sin 𝑛𝑥𝑑𝑥

Using sin𝐴 sin𝐵 = 1
2
(cos (𝐴 − 𝐵) − cos (𝐴 + 𝐵)) the above becomes

𝐼5 =
1
2𝜋2 �

𝜋

−𝜋
cos ((𝑚 − 𝑛) 𝑥) − cos ((𝑚 + 𝑛) 𝑥) 𝑑𝑥

=
1
2𝜋2 ��

𝜋

−𝜋
cos ((𝑚 − 𝑛) 𝑥) 𝑑𝑥 −�

𝜋

−𝜋
cos ((𝑚 + 𝑛) 𝑥) 𝑑𝑥�

Case 𝑛 = 𝑚

𝐼5 =
1
2𝜋2 ��

𝜋

−𝜋
𝑑𝑥 −�

𝜋

−𝜋
𝑑𝑥�

= 0

This shows that sin𝑚𝑥
𝜋 is orthogonal with all cos 𝑛𝑥

𝜋 when 𝑚 = 𝑛.
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Case 𝑛 ≠ 𝑚

𝐼5 =
1
2𝜋2 �

1
𝑚 − 𝑛

[sin ((𝑚 − 𝑛) 𝑥)]𝜋−𝜋 −
1

𝑚 + 𝑛
[sin ((𝑚 + 𝑛) 𝑥)]𝜋−𝜋�

But since 𝑛,𝑚 are integers, then both terms above are zero since sin (𝑁𝜋) = 0 for integer 𝑁. Hence
𝐼5 = 0. This shows that

sin𝑚𝑥
𝜋 is orthogonal cos 𝑛𝑥

𝜋 .

The above shows that all the functions in 𝑆 are pairwise orthogonal.

To make the set 𝑆 orthonormal, we need to find weight 𝑘 such that �𝑘𝑓 (𝑥)� = 1 or for functions, this
is the same as

�
�

𝜋

−𝜋
�𝑘𝑓 (𝑥)�

2
𝑑𝑥 = 1

For 𝑓 = 1
2𝜋 , this becomes

�
�

𝜋

−𝜋
�𝑘

1
2𝜋�

2

𝑑𝑥 = 1

𝑘
2𝜋�

�
𝜋

−𝜋
𝑑𝑥 = 1

𝑘
2𝜋√

2𝜋 = 1

𝑘 = √2𝜋

For 𝑓 = cos𝑚𝑥
𝜋

�
�

𝜋

−𝜋
�𝑘

cos𝑚𝑥
𝜋

�
2
𝑑𝑥 = 1

𝑘
𝜋�

�
𝜋

−𝜋
cos2𝑚𝑥𝑑𝑥 = 1

𝑘
𝜋�

�
𝜋

−𝜋

1
2
+
1
2

cos 2𝑚𝑥𝑑𝑥 = 1

𝑘
𝜋�

��
𝜋

−𝜋

1
2
𝑑𝑥 +

1
2 �

𝜋

−𝜋
cos 2𝑚𝑥𝑑𝑥� = 1

𝑘
𝜋

�
⃓
⃓
⃓
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝜋 +

1
2

0

�������������������
�
sin (2𝑚𝑥)
2𝑚 �

𝜋

−𝜋

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1

𝑘
𝜋√

𝜋 = 1

𝑘 = √𝜋

For 𝑓 = sin𝑚𝑥
𝜋

�
�

𝜋

−𝜋
�𝑘

sin𝑚𝑥
𝜋 �

2

𝑑𝑥 = 1

𝑘
𝜋�

�
𝜋

−𝜋
sin2𝑚𝑥𝑑𝑥 = 1

𝑘
𝜋�

�
𝜋

−𝜋

1
2
−
1
2

cos 2𝑚𝑥𝑑𝑥 = 1

𝑘
𝜋�

��
𝜋

−𝜋

1
2
𝑑𝑥 −

1
2 �

𝜋

−𝜋
cos 2𝑚𝑥𝑑𝑥� = 1

𝑘
𝜋

�
⃓
⃓
⃓
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝜋 −

1
2

0

�������������������
�
sin (2𝑚𝑥)
2𝑚 �

𝜋

−𝜋

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1

𝑘
𝜋√

𝜋 = 1

𝑘 = √𝜋
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Therefore the orthonormal set now becomes, after using the weights found above as

�̃� = �√2𝜋
1
2𝜋
,√𝜋

cos 𝑥
𝜋

,√𝜋
sin 𝑥
𝜋

,√𝜋
cos 2𝑥
𝜋

,√𝜋
sin 2𝑥
𝜋

,⋯ ,√𝜋
cos 5𝑥
𝜋

,√𝜋
sin 𝑥
𝜋 �

= �
1

√2𝜋
,
cos 𝑥
√𝜋

,
sin 𝑥
√𝜋

,
cos 2𝑥
√𝜋

,
sin 2𝑥
√𝜋

,⋯ ,
cos 5𝑥
√𝜋

,
sin 𝑥
√𝜋

�

We now need to approximate 𝐻 (𝑥) = 𝜋 − |𝑥| using �̃�. The following is a plot of 𝐻(𝑥) over [−𝜋, 𝜋]

f = Pi - Abs[x];

Plot[f, {x, -Pi, Pi}, Frame -> True, GridLines → Automatic,

GridLinesStyle → LightGray, PlotStyle → Red,

FrameLabel → {{"H(x)", None}, {"x", "Function to approximate"}},

BaseStyle → 12,

FrameTicks → {{Automatic, None}, {{-Pi, -Pi/ 2, 0, Pi/ 2, Pi}, None}}]

-π - π

2
0 π

2
π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

H
(x
)

Function to approximate

Figure 3.15: Function 𝐻(𝑥) to approximate. Problem 8

Counting the number of functions in ̃𝑆, there are 11 of them. Using Gram’s theorem, this approxi-
mation is

𝐻 (𝑥) ≈ 𝑐1𝑆1 + 𝑐2𝑆2 + 𝑐3𝑆3 +⋯ (1)

Where 𝑆1 =
1

√2𝜋
, 𝑆2 =

cos 𝑥
√𝜋

,⋯ , 𝑆10 =
cos 5𝑥
√𝜋

, 𝑆11 =
sin 𝑥

√𝜋
. Hence

𝐻 (𝑥) ≈ 𝑐1
1

√2𝜋
+ 𝑐2

cos 𝑥
√𝜋

+ 𝑐3
sin 𝑥
√𝜋

+ 𝑐4
cos 2𝑥
√𝜋

+ 𝑐5
sin 2𝑥
√𝜋

+⋯+ 𝑐10
cos 5𝑥
√𝜋

+ 𝑐11
sin 5𝑥
√𝜋

where the constants 𝑐𝑖 are found from solving
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨𝑆1, 𝑆1⟩ ⟨𝑆1, 𝑆2⟩ �𝑆1, 𝑆3� ⋯ ⟨𝑆1, 𝑆11⟩
⟨𝑆2, 𝑆1⟩ ⟨𝑆2, 𝑆2⟩ �𝑆2, 𝑆3� ⋯ ⟨𝑆2, 𝑆11⟩
�𝑆3, 𝑆1� �𝑆3, 𝑆2� �𝑆3, 𝑆3� ⋯ �𝑆3, 𝑆11�

⋮ ⋮ ⋮ ⋱ ⋮
⟨𝑆11, 𝑆1⟩ ⟨𝑆11, 𝑆2⟩ �𝑆11, 𝑆3� ⋯ ⟨𝑆11, 𝑆11⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
⋮
𝑐11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨𝑆1, 𝐻 (𝑥)⟩
⟨𝑆2, 𝐻 (𝑥)⟩
�𝑆3, 𝐻 (𝑥)�

⋮
⟨𝑆11, 𝐻 (𝑥)⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

But since �𝑆𝑖, 𝑆𝑗� = 0 for 𝑖 ≠ 𝑗, because we showed above they are orthogonal to each others, and

since 𝑆𝑖 are all normalized now, then ⟨𝑆𝑖, 𝑆𝑖⟩ = ‖𝑆𝑖‖
2 = 1. Hence the above reduces to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
⋮
𝑐11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨𝑆1, 𝐻 (𝑥)⟩
⟨𝑆2, 𝐻 (𝑥)⟩
�𝑆3, 𝐻 (𝑥)�

⋮
⟨𝑆11, 𝐻 (𝑥)⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

So we just need to evaluate ⟨𝑆𝑖, 𝐻 (𝑥)⟩. But we need to do this only for three cases. These are
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� 1

√2𝜋
, 𝐻 (𝑥)� , � cos𝑚𝑥

√𝜋
, 𝐻 (𝑥)� , � sin𝑚𝑥

√𝜋
, 𝐻 (𝑥)� and then set 𝑚 = 1⋯5.

�
1

√2𝜋
,𝐻 (𝑥)� = �

𝜋

−𝜋

1

√2𝜋
𝐻 (𝑥) 𝑑𝑥

=
1

√2𝜋
�

𝜋

−𝜋
𝐻 (𝑥) 𝑑𝑥

=
1

√2𝜋
��

0

−𝜋
(𝜋 + 𝑥) 𝑑𝑥 +�

𝜋

0
(𝜋 − 𝑥) 𝑑𝑥�

=
1

√2𝜋

⎛
⎜⎜⎜⎜⎝�𝜋𝑥 +

𝑥2

2 �
0

−𝜋
+ �𝜋𝑥 −

𝑥2

2 �
𝜋

0

⎞
⎟⎟⎟⎟⎠

=
1

√2𝜋
��0 − �−𝜋2 +

𝜋2

2 ��
+ �𝜋2 −

𝜋2

2 ��

=
1

√2𝜋
��
𝜋2

2 �
+ �𝜋2 −

𝜋2

2 ��

=
1

√2𝜋
𝜋2

=
𝜋

3
2

√2
And

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)� = �
𝜋

−𝜋

cos𝑚𝑥
√𝜋

𝐻 (𝑥) 𝑑𝑥

=
1

√𝜋
��

0

−𝜋
(𝜋 + 𝑥) cos𝑚𝑥𝑑𝑥 +�

𝜋

0
(𝜋 − 𝑥) cos𝑚𝑥𝑑𝑥�

=
1

√𝜋
��

0

−𝜋
𝜋 cos𝑚𝑥 +�

0

−𝜋
𝑥 cos𝑚𝑥𝑑𝑥 +�

𝜋

0
𝜋 cos𝑚𝑥𝑑𝑥 −�

0

−𝜋
𝑥 cos𝑚𝑥𝑑𝑥�

=
1

√𝜋
��

𝜋

−𝜋
𝜋 cos𝑚𝑥 +�

0

−𝜋
𝑥 cos𝑚𝑥𝑑𝑥 −�

0

−𝜋
𝑥 cos𝑚𝑥𝑑𝑥� (3)

∫𝑥 cos𝑚𝑥𝑑𝑥 can be evaluated by integration by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = cos𝑚𝑥 → 𝑑𝑢 = 1, 𝑣 = sin𝑚𝑥
𝑚

hence

�
0

−𝜋
𝑥 cos𝑚𝑥𝑑𝑥 = �𝑥

sin𝑚𝑥
𝑚 �

0

−𝜋
−�

0

−𝜋

sin𝑚𝑥
𝑚

𝑑𝑥

= 0 −
1
𝑚 �

0

−𝜋
sin𝑚𝑥𝑑𝑥

= −
1
𝑚
�−

cos𝑚𝑥
𝑚

�
0

−𝜋

=
1
𝑚2 (1 − cos𝑚𝜋) (4)

And

�
𝜋

0
𝑥 cos𝑚𝑥𝑑𝑥 = �𝑥

sin𝑚𝑥
𝑚 �

𝜋

0
−�

𝜋

0

sin𝑚𝑥
𝑚

𝑑𝑥

= 0 −
1
𝑚 �

𝜋

0
sin𝑚𝑥𝑑𝑥

= −
1
𝑚
�−

cos𝑚𝑥
𝑚

�
𝜋

0

=
1
𝑚2 (cos𝑚𝜋 − 1) (5)

And ∫
𝜋

−𝜋
𝜋 cos𝑚𝑥 = 𝜋∫𝜋

−𝜋
𝜋 cos𝑚𝑥 = 0. Using (4,5) in (3), then

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)� =
1

√𝜋
�
1
𝑚2 (1 − cos𝑚𝜋) − 1

𝑚2 (cos𝑚𝜋 − 1)�

=
1

𝑚2√𝜋
(1 − cos𝑚𝜋 − cos𝑚𝜋 + 1)

=
2 (1 − cos𝑚𝜋)

𝑚2√𝜋
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Hence

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)�
𝑚=1

= �
cos 𝑥
√𝜋

,𝐻 (𝑥)� =
2 (1 − cos𝜋)

√𝜋
=
2 (1 + 1)

√𝜋
=

4

√𝜋

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)�
𝑚=2

= �
cos 2𝑥
√𝜋

,𝐻 (𝑥)� =
2 (1 − cos 2𝜋)

4√𝜋
= 0

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)�
𝑚=3

= �
cos 3𝑥
√𝜋

,𝐻 (𝑥)� =
2 (1 − cos 3𝜋)

9√𝜋
=
2 (1 + 1)
9√𝜋

=
4

9√𝜋

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)�
𝑚=4

= �
cos 4𝑥
√𝜋

,𝐻 (𝑥)� =
2 (1 − cos 4𝜋)

16√𝜋
= 0

�
cos𝑚𝑥
√𝜋

,𝐻 (𝑥)�
𝑚=5

= �
cos 5𝑥
√𝜋

,𝐻 (𝑥)� =
2 (1 − cos 5𝜋)

25√𝜋
=

4
25√𝜋

Similarly (we expect all the following integrals to be zero, this is because we see from above that
𝐻 (𝑥) is an even function and sin is odd, hence the product is an odd function and the integral is
over the period). This is the same as when in doing Fourier series expansion (which is what we
are doing here essentially but using Gram’s theorem instead), all the 𝑏𝑛 terms will be zero when
the function being approximated is even and all the 𝑎𝑛 terms will be zero when the function being
approximation is odd.

But we will go ahead and do the integrals to show that this is indeed the case.

�
sin𝑚𝑥
√𝜋

,𝐻 (𝑥)� = �
𝜋

−𝜋

sin𝑚𝑥
√𝜋

𝐻 (𝑥) 𝑑𝑥

=
1

√𝜋
��

0

−𝜋
(𝜋 + 𝑥) sin𝑚𝑥𝑑𝑥 +�

𝜋

0
(𝜋 − 𝑥) sin𝑚𝑥𝑑𝑥�

=
1

√𝜋
��

0

−𝜋
𝜋 sin𝑚𝑥 +�

0

−𝜋
𝑥 sin𝑚𝑥𝑑𝑥 +�

𝜋

0
𝜋 sin𝑚𝑥𝑑𝑥 −�

0

−𝜋
𝑥 sin𝑚𝑥𝑑𝑥�

=
1

√𝜋
��

𝜋

−𝜋
𝜋 sin𝑚𝑥 +�

0

−𝜋
𝑥 sin𝑚𝑥𝑑𝑥 −�

0

−𝜋
𝑥 sin𝑚𝑥𝑑𝑥� (6)

∫𝑥 sin𝑚𝑥𝑑𝑥 is evaluated by integration by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin𝑚𝑥 → 𝑑𝑢 = 1, 𝑣 = − cos𝑚𝑥
𝑚 hence

�
0

−𝜋
𝑥 sin𝑚𝑥𝑑𝑥 = − 1

𝑚
[𝑥 cos𝑚𝑥]0−𝜋 −�

0

−𝜋

− cos𝑚𝑥
𝑚

𝑑𝑥

= −
1
𝑚
[0 − (−𝜋 cos𝑚𝜋)] + 1

𝑚 �
0

−𝜋
cos𝑚𝑥𝑑𝑥

= −
𝜋
𝑚
[cos𝑚𝜋] + 1

𝑚 �
sin𝑚𝑥
𝑚 �

0

−𝜋

= −
𝜋
𝑚
[cos𝑚𝜋] (7)

And

�
𝜋

0
𝑥 sin𝑚𝑥𝑑𝑥 = − 1

𝑚
[𝑥 cos𝑚𝑥]𝜋0 −�

𝜋

0

− cos𝑚𝑥
𝑚

𝑑𝑥

= −
1
𝑚
[𝜋 cos𝑚𝜋] + 1

𝑚 �
𝜋

0
cos𝑚𝑥𝑑𝑥

= −
𝜋
𝑚
[cos𝑚𝜋] (8)

And ∫
𝜋

−𝜋
𝜋 sin𝑚𝑥 = 0. Using (7,8) in (6), then

�
sin𝑚𝑥
√𝜋

,𝐻 (𝑥)� =
1

√𝜋
�−
𝜋
𝑚
[cos𝑚𝜋] + 𝜋

𝑚
[cos𝑚𝜋]�

= 0

Hence as expected all the inner products now are zero

�
sin𝑚𝑥
√𝜋

,𝐻 (𝑥)�
𝑚

= 0 𝑚 = 1, 2, 3, 4, 5
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Using all the above results in (2) gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6
𝑐7
𝑐8
𝑐9
𝑐10
𝑐11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 1

√2𝜋
, 𝐻 (𝑥)�

� cos 𝑥
√𝜋

, 𝐻 (𝑥)�

� sin 𝑥

√𝜋
, 𝐻 (𝑥)�

� cos 2𝑥
√𝜋

, 𝐻 (𝑥)�

� sin 2𝑥

√𝜋
, 𝐻 (𝑥)�

� cos 3𝑥
√𝜋

, 𝐻 (𝑥)�

� sin 3𝑥

√𝜋
, 𝐻 (𝑥)�

� cos 4𝑥
√𝜋

, 𝐻 (𝑥)�

� sin 4𝑥

√𝜋
, 𝐻 (𝑥)�

� cos 5𝑥
√𝜋

, 𝐻 (𝑥)�

� sin 5𝑥

√𝜋
, 𝐻 (𝑥)�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using the results found above, the above becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6
𝑐7
𝑐8
𝑐9
𝑐10
𝑐11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2
𝜋

3
2

4

√𝜋

0
0
0
4

9√𝜋

0
0
0
4

25√𝜋

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore we see that
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6
𝑐7
𝑐8
𝑐9
𝑐10
𝑐11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

√2
𝜋

3
2

4

√𝜋

0
0
0
4

9√𝜋

0
0
0
4

25√𝜋

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above shows that 𝑐1 =
1

√2
𝜋

3
2 , 𝑐2 =

4

√𝜋
, 𝑐6 =

4
9√𝜋

, 𝑐10 =
4

25√𝜋
and all other 𝑐′𝑠 are zero. Therefore

the best approximation is

𝐻 (𝑥) ≈ 𝑐1
1

√2𝜋
+ 𝑐2

cos 𝑥
√𝜋

+ 𝑐3
sin 𝑥
√𝜋

+ 𝑐4
cos 2𝑥
√𝜋

+ 𝑐5
sin 2𝑥
√𝜋

+⋯+ 𝑐10
cos 5𝑥
√𝜋

+ 𝑐11
sin 5𝑥
√𝜋

=
1

√2
𝜋

3
2
1

√2𝜋
+

4

√𝜋
cos 𝑥
√𝜋

+
4

9√𝜋
cos 3𝑥
√𝜋

+
4

25√𝜋
cos 5𝑥
√𝜋

=
1
2
𝜋 +

4
𝜋

cos 𝑥 + 4
9𝜋

cos 3𝑥 + 4
25𝜋

cos 5𝑥

Or

𝐻 (𝑥) ≈ 1
2𝜋 +

4
𝜋 cos 𝑥 + 4

9𝜋 cos 3𝑥 + 4
25𝜋 cos 5𝑥

To verify the approximation, the above was plotted against the original 𝐻 (𝑥), first using one term
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𝐻1 (𝑥) ≈
1
2𝜋 then using 2 terms 𝐻2 (𝑥) ≈

1
2𝜋+

4
𝜋 cos 𝑥 then using 3 terms 𝐻3 (𝑥) ≈

1
2𝜋+

4
𝜋 cos 𝑥+ 4

9𝜋 cos 3𝑥
and then using all terms 𝐻4 (𝑥) ≈

1
2𝜋+

4
𝜋 cos 𝑥 + 4

9𝜋 cos 3𝑥 + 4
25𝜋 cos 5𝑥. The plot below shows that the

approximation improved as more terms added giving the best approximation when all terms are
added as expected.

ClearAll[x, n];

f = Pi - Abs[x];

approx = 
1

2
π,

4

π
Cos[x],

4

9 π
Cos[3 x],

4

25 π
Cos[5 x];

data = Table[

Plot[{f, Total[approx[[1 ;; n]]]}, {x, -Pi, Pi}, Frame -> True,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue}, FrameLabel → {{"H(x)", None}, {"x", Total[approx[[1 ;; n]]]}},

BaseStyle → 12,

FrameTicks → {{Automatic, None}, {{-Pi, -Pi/ 2, 0, Pi/ 2, Pi}, None}},

ImageSize → 300],

{n, 1, 4}

];

Grid[Partition[data, 2]]
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Figure 3.16: 𝐻(𝑥) approximation final resul. Problem 8t
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