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Chapter 1

Introduction

1.0.1 syllabus

UWM Math 601-001 Fall 2018 Syllabus
TR 9:30-10:45 am - EMS E170
ADVANCED ENGINEERING MATHEMATICS I

[
.

Instructor: Dr. Istvan Lauko

Office number: EMS E441

Office phone: (414) 229-4920

Office hours: TR 10:50-12:10 or by appointment
E-mail address: iglauko@uwm.edu

.

Recommended Text: E. Kreyszig: Advanced Engineering Mathematics, 10th Edition, John
Wiley and Sons;
Instructor's lecture notes

Material covered:
Selected sections from Text: Chapters 1-4, 6-8, 13-15 & 21.

Important dates:
Last day to drop without a "W' grade: Oct 1.
Last day to drop the course: November 1

Prerequisites: JR ST; MATH 234(P) OR ELECENG 234(P); OR GRAD ST.

Grading:

Test 1: 30%

Test 2: 30%

Final exam: 40%

Test dates:

Test 1: October 4.

Test 2: November 8.

Final exam: December 20, 7:30-9:30 am in EMS E170.

All students are expected to take the examinations at the announced time. No make-up test will be
given.

(
.

.

Homework: Homework will be assigned regularly but not collected.

Syllabus Addenda

To comply with a Higher Learning Commission requirement, the course syllabus will provide
information on the investment of time by an average student to achieve the learning goals of the
course.

The amount of time that an average student should expect to spend on this class is as follows:

34 hours Time in the classroom (face to face instruction)

80 hours Time completing Assignments

30 hours Time for preparation and study for and work on Tests and Exams.
Total number of hours: 144.






Chapter 2

HWs

21 HW1

2.1.1 Problem set

-PROBLEM-SET 13— ——

) (Powers of i) Show that i2 = —1, i3 = —i, i* = 1,

=i cand Ui=—i 1i?=~1,1¢=i---

2. (Rotation) Multiplication by i is geometrically a
counterclockwise rotation through /2 (90°). Verify
this by graphing z and iz and.the angle of rotation for
z2=2+2i,z=-1—15i,z=4 — 3i.

3. (Division) Verify the calculation in (7).

4. (Multiplication) If the product of two complex numbers
is zero, show that at least one factor must be zero.

5. Show that z = x + iy is puré imaginary if and only
ifz = —z

6. (Laws for conjugates) Verify (9) for z; = 24 + 10i,
Zg = 4 + 6L

COMPLEX ARITHMETIC

Letz; = 2 + 3i and z, = 4 — 5i. Showing the details
of your work, find (in the form x + iy):

@(SZl + 3z75)? 8. 7,7,

9. Re (1/z,2) Re (z5%), (Re z3)?
2/2n, (21/22)

11. ZZ/ZI

13, (4z; — 12)2
15. (z; + z2)/(zy — 22)

Let z = x + iy. Find:
16. Im z3, (Im 2)3

17. Re (1/2)

18. Im [(1 + i)%2?]

19. Re (1/z%)

14. zy/z, Zl/-Z-]_

@(Laws of addition and multiplication) Derive the
following laws for complex numbers from the
corresponding laws for real numbers.
21+ Za = 25 + 21, 2122 = 2221 (Commutative laws)
(21 + 22) t 23 = 71 + (22 + 23),
(Associative laws)
(z122)23 = 21(2223)
21(za + 23) = 7425 + 7123 (Distributive law)
0+z=2z+0=g¢g

z+(-2) =(-2) tz=0, z-1=1z



612 CHAP. 13 Complex Numbers and Functions

| Poblev scd 9%

by

L]z —3—2i =%

4'_"3i
37 £ 7i

4(cosim = isindm)
. 12(cos 37 + i sin3m)

PROBEEM-SET 13-3——

CURVES AND REGIONS OF
PRACTICAL INTEREST

Find and sketch or graph the sets in the complex plane given

= i 2 + 3
T @ 5+ 4i
PRINCIPAL ARGUMENT
Determine the principal value of the argument.
9. -1 — i 10. =20 + i; =20 — i
12, —#?
14. (1 + )2
15. (9 + 9i)®

16-20| CONVERSION TO x + iy

Represent in the form x + iy and graph it in the complex
plane.

16 cos 277 + isin(xim) 17. 3(cos 0.2 + i sin 0.2)

19. cos (—1) + isin(—1)

ROOTS

Find and graph all roots in the complex plane.

21. V=i (22) V1
23, W \/334—4;
25. V-1

26. TEAM PROJECT. Square Root. (a) Show (hal
w = Vz has the values

]
— + J—
=\r [cos ) i sin 2]

\/;[cos (-g + 11-) + isin (—‘29- + 'n'):'

= _Wl.

(18) wq

(b) Obtain from (18) the often more practical formula

(19) Vz=%[Vi(lz +2 + signy)iV3 |z +x)

Gnsl-1+4i=ss
N

33.0<]z—-1|<1
Im z?
7. |z 4+ 1] =

9. Rez=Imz

'- Sl

T

_ALC'.

where signy = 1 ify Z 0, signy = —1ify < M
and all square roots of positive numbers are 5 cﬂ‘
with positive sign. Hint: Use (10) in App. A3,] "'ﬂlh?
x = 6/2. 4
(c) Find the square roots of 4i, 16 — 30;, 31‘1;1”‘
9 -+ 8V/7i by both (18) and (19) and comment o th{:
work involved.

(d) Do some further examples of your own and prl
a method of checking your results.

EQUATIONS

Solve and graph all solutions, showing the details:

27. 2% — (8 — 5i)z + 40 — 20i = 0 (Use (19),)

28. z% + (5 — 14i)z% — (24 + 10i) = 0

29, 822 — (36 — 6i)z + 42 — 11i =0

30. z* + 16 = 0. Then use the solutions to factor z* + 1g
into quadratic factors with real coefficients.

YRR ERN T R AR

b

31. CAS PROJECT. Roots of Unity and Their Graph_q
Write a program for calculating these roots and for|
graphing them as points on the unit circle. Apply the:
programtoz™ = 1 withn =2,3, - -, 10. Then extcn’fi
the program to one for arbltrary roots, using an ldgﬂ
near the end of the text, and apply the program mg

BROYEAL

examples of your choice.

INEQUALITIES AND AN EQUATION
Verify or prove as indicated.

32. (Re and Im) Prove |Re z| = |z|, [Im 2| = |2].
33. (Parallelogram equality) Prove

21 + 2of* + |z — 2f* = 2(22f* + |zl

PRTBURT TP TR Sy | T

Explain the name.
34. (Triangle inequality) Verify (6) forz, = 4 + 7i,
=5+ 2i.
(Triangle inequality) Prove (6).

4, —m<Rez<m

6. Rez > —1

|Arg z| € im

10. Re (1/2) < 1

=2
lz — 1]



1. Using the Cauchy-Riemann equations, show that e” is
entire.

|e*], where z equals:

Values of ¢, Compute & in the form u + iv and

203 + mi 3.1+ 2i

4. V2 - Lui 5. 7mif2
6. (11 iym 7. 0.8 — 5i
8. 9mil2

Real and Imaginary Parts, Find Re and Im of:
9. g2 10. &’
11. & @ etz

Polar Form. Write in polar form:

a3 Vi 4.1 +i
15. V2 , 3 + 4
17. -9 b

4
18-21| Equations. Find all solutions and graph some of ";'“I
them in the complex plane. ;|

. VL

| red® 1= 19. & = —2 ﬁ
20) ¢* = 0 @e‘=4—3i |

22. TEAM PROJECT. Further Properties of the |

Exponential Function. (a) Analyticity. Show that ¢ |
is entire. What about e1/2? ¢*? e*(cos ky + i sin ky)? |
(Use the Cauchy-Riemann equations.) |
(b) Special values. Find all z such that (i) e® is real,
(i) [e7?] < 1, (iii) &f = &. '
(¢) Harmonic function. Show that
u = e"¥ cos (x*/2 — y?2) is harmonic and find a
conjugate.
(d) Uniqueness. It is interesting that f(z) = e” is
uniquely determined by the two propertes
f(x + i0) = e®and f'(z) = f(z), where f is assumed
to be entire. Prove this using the Cauchy-Riemann
equations.



3. coshz =-coshi#'cos’y; +i'sintix siny’

sinh z = sinh x cos y + i cosh x sin y.

10

E

*FR OBEEM—SET13=6———

Er 1. Prove that cosz, sinz, coshz, sinhz are entite 14, sinh (4 — 3i) 15. cosh (4 — 67i)

g functions.

'i; . 2. Verify by differentiation that Re cos z and Im sin z are 16. (Real and imaginary parts) Show that

pe harmonic. .

B Retanz = =it

E 3-6)/ FORMULAS FOR HYPERBOLIC FUNCTIONS cos® x + sinh®y °

3 Show that sinh y cosh y
Imtanz =

cos? x + sinh®y

17-21| Equations. Find all solutions of the following
equations.

4. cosh (z; + zz) = coshz, coshz, + sinhz, sinhzy 17. coshz = 0 18. sinz = 100
] U : 19, cosz = 2i 20. coshz = —1
sinh (2; + 23) = sinh z;'gosh 2o + cosh z; sinh zp. 21. sinhz = 0

5. cosh?z — sinh®z = 1
6. cosh? z + sinh® z = cosh 2z

7-15| Function Values. Compule (in the form u + iv)

22. Find all z for which (a) cos z, (b) sin z has real values.

23-25| Equations
definitions, prove;

and Inequalities. Using the

cos z is even, cos(—z) = cosz, and sinz is odd,

sm (1 + )

10 cos 3t

7. cos (1 + i)
9. sin 5i, cos Si

sin (—z) = —sinz.

24. |sinh y| = |cos z| = cosh y, [sinh y| = |sin 2] = cosh}y.
Conclude that the complex cosine and sine are not
bounded in the whole complex plane.

1(sin (z4 + z9) + sin (z; — 22)]

11. cosh (—2 + 3i), cos (—3 — 2i)
12. —i sinh (—7 + 2i), sin (2 + i)
13. cosh 2n + V)wi,n=1,2, -

25. sin z; COS Zp =

PROBEEM SET-13.7 -

1-9| Principal Value Ln z. Find Ln z when z equals: 12. Ine 13, In (—6)

1. —-10 2.2+ 2i In (4 + 3i) 15. In(—e™%)

2-2 4, -5+0.1i 16. In (%%

5. -3 -4 6. —100

7. 0.6 + 08" 8. —ei 17. Show that the set of values of In (%) differs from the
9. 1—; set of values of 2 In i.

18. Inz = (2 — 3D

20. Inz=¢— mi .Inz=

Equations. Solve for z:

(.lnz—OS + 0.7

2 + }mi

10-16| All Values of Inz. Find all values and graph
some of them in the complex plane.

10. In1 11. In(—1)
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General Powers. Showing the details of your
work, find the principal value of:

22. %% (2i)¢ 31 J4 3
24, (1 — i)+ (14 )t
26. (—1)~% 27. Y2

28. (3 — 43

How can you find the answer to Prob. 24 from the
answer to Prob. 257

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
w = arcsin z is the relation such that sinw = z. The
inverse cosine w = arccos z is the relation such that
cos w = z. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using sinw = (&' — e~*)/(2i) and
similar representations of cos w, etc., show that

(a) arccosz = —iln(z + \/zrl)
(b) arcsinz = —iIn(iz + V1 - 2%
(¢) arccoshz =In(z + \/zz——l)
(d) arcsinhz =In(z + Vz2+ 1)

i i+z
(e) arctanz = — In -
2 Ii—z
1 1+z

(f) arctanh z = 2 In e
(g) Show that w = arcsin z is infinitely many-valued,
and if w; is one of these values, the others are of the
foormw; * 2nmrand w — wy * 2pm,n=0,1, ..
(The principal value of w = u + v = arcsing is
defined to be the value for which —@/2 = u = /2
fv=0and —7/2 <u<a/2ifv<0)
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. »® < [P ww‘?é = L} 4 L cui
f y = 7 \ ; {7 /
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HW 2

Problem set

1-16

Are the following sequences 23, 2o, * * * , Zy, * - - bounded?
Convergent? Find their limit points. (Show the details of

SEQUENCES

f‘”%\ ) - \n

your work.) o /s 452 nz( z )

Lzy=(1"+i2" {2z, =" L

3z, = (D™ + Q) 4 7z, =1+ )"

Bz, =Ln(@2 + )" {63z, = (3 + 4i)"n! 25. What is the difference between (7) and just statin
7. z,, = sin (nm/d) + i™ %5 2, = [(1 + 3)V/10]" s alzal < 12

9. = (0.9 + 0.1/)%™ 10. z, = (5 +5)™" 26. Tlustrate Theorem 2 by an example of your choice.
11. Tllustrate Theorem 1 by an example of your own. 27. For what n do we obtain the term of greatest absolu

12. (Uniqueness of limit) Show that if a sequence
s converges, its limit is unique.

13 é(Addltlon) If z4, zo, * - - converges with the limit / and
g,.;‘ 23, ol e converges with the limit *, show that
71 + 21%, 29 + 2%, - - - converges with the i ok 7Y,
(Multiplication) Show that under the assumptions of
Prob. 13 the sequence zyz:*, z922®, * + - converges
with the limit 17*.

(Boundedness) Show that a complex sequence is
bounded if and only if the two corresponding sequences
of the real parts and of the imaginary parts are bounded.

16-24| SERIES

Are the following series convergent or divergent? (Give a
T€ason.)

14.

15.

(10 — 15)™ 151)n 11 + 2§21

@n + 1!

162

n=0 n=0

28.

29.

30.

value of the series in Example 47 About how big is
First guess, then calculate it by the Stirling formula
Sec. 24.4.

Give another example showing that Theorem 7 is moré |
general than Theorem 8.

CAS PROJECT. Sequences and Series. (a) Write a
program for graphing complex sequences. Apply it to
sequences of your choice that have interesting
“geometrical” properties (e.g., lying on an ellipse,
spiraling toward its limit, etc.).

(b) Write a program for computing and graphing
numeric values of the first n partial sums of a series
of complex numbers. Use the program to experimen
with the rapidity of convergence of series of you
choice.

TEAM PROJECT. Series. (a) Absolute convergence
Show that if a series converges absolutely, it i
convergent.

(b) Write a short report on the basic concepts and -
properties of series of numbers, explaining in each case
whether or not they carry over from real series
(discussed in calculus) to éomplex series, with reasons
given.
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1. (Powers missing) Show that if = a,,z" has radius of
convergence R (assumed finite), then = a,,z>™ has radius
of convergence VR. Give examples. o=

2. (Convergence behavior) Illustrate the facts shown by
Examples 1-3 by further examples of your own.

RADIUS OF CONVERGENCE

Find the center and the radius of convergence of the
following power series. (Show the details.)

o] T >3} n A7, 00 n+1
+ A —1
Tk i 4.3 @+ 2y Qlj P
n? n! e n
n=1 n=0 n=1

13. 3, n(n — D@ = 3 + 207
n=2
& D o

14. EO o]

10.

12.

6. i i
=
> o
é) a ini)" =0
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2.2.2 Problem 2, section 15.1

nmi

Is sequence z, =¢ 4 bounded? convergent? Find their limit points.
Solution

Sequence is bounded, since each element has modulus 1. It does not converge, since sequence repeats.
2n = %, hence 1 = 8. So only 8 elements are unique. Each of these is limit point. These are roots of

V1.

2.2.3 Problem 6, section 15.1

1
Is sequence z, = (34:?) bounded? convergent? Find their limit points.
Solution
(re)"
Zy =
n!

But » =5 and 6, = arctan (g) The above becomes

5" ein 6o
Zy, =

n!

n
2 ginty
n!

. 1
Since modulus of ¢”% =1, then we just need to look at — to see if it is bounded or not. lim, _,, g 0.

5 n
n! n!

. . . 5" -
So it is bounded. Since n'" term goes to zero as n — oo it converges. The terms are — (cosnby + isinnb).

. . 5
It converges to zero, since hmn_)Oo o= 0.

2.2.4 Problem 13, section 15.1
If z;,zp, .-+ converges to L, and zj,2,, --- converges to L, show that z; +Z;,2z; + 25, -+ converges to L+ L
Solution

This problem seems to be based on the idea that if sequence is convergent to L, then for any ¢ no
matter how small we can find an #n, such that |z, — L| < . So let us pick

L L
|Zn_ |<§€
|Z 1_|<1
" EE

Where in the above, we did the same for the other sequence. Now by triangle inequality |A + B| <
|Al + |B|, where now we treat A as (z, — L) and B as (Zn - i), we have

(zn—L)+(2n—E)|Slzn—L|+|Zn—E|
|(zn+zn)—(L+E)| < %e+%e

The above is |(zn +z,)— (L + E)' < ¢. But this is the definition of a limit. It says that (z, + z,,) has limit
L + L, which is what we are asked to show.
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2.2.5 Problem 18, section 15.1

00 i"

Are the following series convergent or divergent? Give a reason. )

n=0 n2-2;
Solution
. . 1 . 1 .
The numerator has modulus 1. So we just need to consider ¥ =T Since — converges and since
= nc—czi
. . 1 1 .
|n2 - 21| > n? (vectors, Argand diagram), then =] <=, therefore it converges. We could also use
ne—cz1

the ratio test, but this is simpler.

2.2.6 Problem 19, section 15.1

00 1

n=1 %

Are the following series convergent or divergent? Give a reason. )
Solution

Since terms are % where |a| < 1, since a = % here. Then we know it is divergent. It series becomes
convergent for a > 1. To show this, we can try the ratio test. But this gives the limit of 1, so ratio test
is inconclusive. Using the integral test is best here. (notice that only upper limit is needed in this test,
no need to use lower limit). We can use the integral test because the terms — are monotonically

f

decreasing.

. N 1 . N
lim —dx = lim (2\/&)
x§ N—oo

N—oo
= lim 2VN

N—co

=

Hence diverges.

2.2.7 Problem 24, section 15.1

A\
Are the following series convergent or divergent? Give a reason. ¥,° 1 (i)

Solution



Trying ratio test gives

. An+1 .
lim |[—| = lim
n—oo| g, n—o0
= lim
n—o0

Since limit is smaller than 1, then converges.

2.2.8 Problem 7, section 15.2

. . . a\"
Find center and radius of convergence of series E:’:O (—) z"

Solution

b

24

For these type of problem, always compare it to standard form ¥ A, (z—z)". Where z is the
center of disk. So we see that here z, is the origin. Now to find R (the radius of convergence), it is

Apt1
Ay

given by the inverse of L = lim,,_,,

L= lim

n—oo

= lim

n—oo

= lim

n—00
a|
b

b
Hence R = |;|

2.2.9 Problem 9, section 15.2

. Therefore we start by finding L

a\n+1
()
Nz
(5)
an+1bn
anb+1
a

b

Find center and radius of convergence of series E‘:’:O (n—-i)"z"

Solution



The center is zy = 0 by comparing to 220:0 A, (z-1zp)". To find L

) (n _ i)i’H’l
= lim |[—Z
L i (n-1)"
=1
Hence R =1.
2.2.10 Problem 11, section 15.2
(_1)n+1 "

Find center and radius of convergence of series ¥, |

z
n

Solution
The center is zy = 0 by comparing to ¥° | A, (z—z)". To find L

(_l)n+2

L= lim |22
n—oo (71)

. (_1)7’l+2n
= lim [———
i | (C1) (1 + 2)
n

= li
woo | (1 +2)

=1

Hence R =1.

2.211 Problem 12, section 15.2

o 4
n=1 (1+i)"

Find center and radius of convergence of series Y, (z-5)"

Solution

The center is zy = 5 by comparing to E:;O A, (z—2z)". To find L
4n+1
Pt
L= lim %
n—o00
a+)"
A a D)
= lim —
n—eo (41 (1 + 1)
o laa+d)"
= lim ol
n= (1 + 1)
4

= lim |—
n—oo |1 +1

4
m -
oo [1 4]

4
= lim —

n—co \/E

25



Hence

R =

V2
4

2.2.12 Problem 18, section 15.2

00 (4n)!
n=1 pn(ut

Find center and radius of convergence of series ), (z + mi)"
Solution

The center is zy = —mi by comparing to E:;O A, (z-2zp)". To find L

(4(n+1))!
_ e |20 D@y
L= lim =y
21 ()t
| @m+ )2
= lim 1
e | (41)1201+D) (1 + 1)!)

1 An +1)! (n))*
2 > | (dn)! ((n + 1)1)*
(@n + 4)! (n))*
= | (4n)! ((n + 1)H*
(4n + 4) (4n + 3) (4n + 2) (4n + 1) (dn)! (n!)*
@n)! ((n + 1)H*
(4n +4) (dn + 3) (4n + 2) (An + 1) (n))*
((n+ 1N
(4n +4) (dn + 3) (4n + 2) (An + 1) (n))*
((n+1)n))*
An+4)dn+3)dn+2)(dn+1)
(n+1)*
2561* + 640n° + 560n% + 200n + 24|
nt+4n3 + 6n2 +4n +1

j:
1=

S y—
=
=

|
8

j:
5B

j:
58

NP NP NP NI=P NP N

j:
58

Hence

256 + 640~ + 560~ + 200= + =
n 1 n n

1

[ =
1 1 1
1+4;+6ﬁ+4ﬁ+n_4

1
— lim
2 n—oo

= %(256)

=128

Hence

R= —
128

26
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2.213 key solution
23 HW 3
2.3.1 Problem set
[Seenene
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2.3.2 Problem 1

Consider the power series below. Given the center and find radius of convergence for each.

1. 2n(z+i\/§)n

2 %) -’
n=1
o G,
:02"(n!)3
(o5 1 "
4. ,;)“”’" (z+2-1)

Solution

1) Comparing to form Ean (z - zp)" then center is —iv2. Now,

n=1

Hence R =1

L= lim

n—oo

= lim

n—o0

=1

A1
al’l
(n+1)|

n

2) Comparing to form Ean (z - zp)" then center is ir. Now,

n=1

b
Hence R = -

3n)!
21(n1)3

3) Comparing 2
n=0

n=1

L= lim

n—oo

= lim

n—oo

= lim
n—oo
a

b

An+1
ay

(0"
(0
)

z" to Ean (z—zp)" then center is 0. Now




. Ant1
L= lim [Z£
n—oo| q,

B(n+1))!

e 2 (men®

= lim | =G
21(n!)

B n+1)2" (n!)?
> [ (3512141 (17 + 1)1)°
1. | Gn+3)m)
2 n>o0 | (3p)! ((n + 1)1)°
Gn+1)(3n +2) 3n +1) 3n)! (n!)°
- Gn)! ((n + 1))’
Gn+1)(3n +2)3n +1) (1)
(n+1)°
Gn+1)(3n +2)3n +1) (1n)°
((n+1)n!)°
Gn+1)(3n +2)3n +1) (1)°
(n +1)° (n!)’
BGn+1)Bn+2)Bn+1)
(n+1)°
BGn+1)Bn+2)Bn+1)
(n+1)°

l
8

S —
=
=

!
8

S —
=
=

T:
=

S —
=
=)

)
8

NI—= NI= NP N2 N2 N

l
8

S —
=
=)

Hence the above becomes

2713 + 3612 + 151 + 2
m+3n2+3n+1

1 1 2

1 1 1
2200 1 43- 43+
n n n

2
Hence R = T

4) Comparing Zﬁ (z-(-2+1)" to Ean (z - zp)" shows that center is zyg = -2 +i. Now
n=0

n=1

30
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. Apt1
L = lim |22
n—co| a,

1
= lim 1+

v I

1+i)"
. 1 +q)"
= hm P

n=e0 | (1 + 9)

1

=i

oo | (L + 1)

1
+ 1)

—

(

%l

2

Hence R = \/E

2.3.3 Problem 2

Find radius of convergence using both 1) R = % where L = lim,_,., fntl

and 2) the termwise

differentiation/integration properties of power series. Do this for

o 6" .
1L XY@ i)'

(o] 3”(ﬂ+1)l’l 2n
2. ano —Z

Solution

1) First method. The center is i. And

. Ap+1
L=lim |—
n—eo| q,

61+l

n+1
n—ooo| 6"

(6n+1)n
= lim |———
n—co |6 (n +1)
. 6n
= lim
n—oo|(n+1)
. n |
=6 lim |[——
n—oo [(n +1)
=6

1
Hence R = G
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Second method: Taking termwise differentiation gives

s n

f@=Y ne-i

n=1
=63,6"1(z-i)""
n=1

Changing the indexing gives

f@)=6)6" i)

n=0

=6, (6(z-1)"
n=0

(o)

Comparing to Binomial series Zr“, the above is 6— where r = 6 (z —i). Hence this converges for
n=0
. | . co 1l o . .
"l <1orl|6(z—i) <1or|z-1i)< A and diverges for |z —i| > - Since termwise differentiated series

. 1 .
has same radius of convergence, then R = ¢ as using first method.

3" (n+1)n

n (o) .
= (ZZ) to X, au (2 —20)" then center is zero. And

2) First method. Comparing %"
TODO

2.3.4 Problem 3

1
(1-z

Show that

series.

7 = EZO:O (n+1)z", using (a) the Cauchy product. (b) By differentiating a suitable

Solution (a)

111
1-z? @(-2(1-2)
=(1+z+zz+z3+---)(1+z+zz+z3+~~-)

=(1+z+22+z3+---)+z(1 +z+zz+z3+~~~)+zz(1+z+zz+z3+---)+~~
=(1+z+zz+z3+---)+(z+zz+z3+---)+(zz++z3+z4+-~)+-~

=1+2z+322+4z4+ - lz| <1

But Z:’:O (n+1)z" =1+2z+ 322 + 4z* + ---. Hence the same.

Solution (b) Observing that

d
1Nz = — n+1
n+1)z dzz



33

Then

(o)

o i i .
Z%(n+1)z” = 2 de”*

n=0

d & 1

dz :g; LM+

dOO
=d—z

d

_z

(z+z +23+- )
L

(1+z+z + - ))

T dz
=)
Cdz
, hence the above becomes, where A=z,B=1-z

d Alz) _ A'B-AB

But dz Bz) B2

< . (1=2)—z(-1)
nz:%(n+1)z = —(1_2)2

1-z+2z

S (1-2)
1

T 1-27

2.3.5 Problem 4

If f (z) is an even function, where f (z) = E:’:O a,z", show that a, = 0 when #n is odd. And if f (z) is odd
function, show that a,, = 0 when # is even.

Solution

If f (z) is even, then f(-z) = f (z). Therefore

(o) (o)
Y, (=2)" =Y, a,z"
n=0 n=0

Ag — A2 + Ap2° — A32° + agz* — - = ag + a1z + 4y2% + ;2% + a2t + -

Since power series is unique, then we must have a; = —a; which means a; = 0, the same for a3 = —a3,
which gives a3 = 0 and so on for all odd a,.

If f (z) is odd, then f(-z) = —f (z). Therefore

(o] (o)
D, (-2)" ==Y, a,z"
n=0 n=0

Ay — Az + ap2% — a32% + ayzt — - = —(ao +mz + 422 + 4328 + a7t + )

= —ay — Mz — Ay2% — a32° — Azt + -



34

Since power series is unique, then we must have gy = —a; which means gy = 0, the same for a, = —a,,
which gives a, = 0 and so on for all even a,,.

2.3.6 Problem 5

Develop the functions below in Maclaurin’s series and determine the radius of convergence R for
z+2

each. (a) cos (222), (b) —

1-22

Solution (a)

Replacing x = 222 gives

cos (222) =1- (222)2 (222)4 (222)6

a TTm e T
. 2224 . 2428 ~ 26212 o
2! 4! 6!
1 4i4 @ ~ 43212
2! 4! 6!
_ i(_l)” 4nZZn
= (2n)!

o . (4zz)n
=Y (1
712:10 (-1)

(2n)!
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Hence

A+l

n—oo| g,
(4zz)n+1
(2(n+1))!
n—00 (422);1
2n)!

(422)”+1 2n)!
= (422)" 2 (n + 1)
472 (2n)!
n—oo | (2n + 2)!
472 (2n)!

n—eo | (2n + 2) (2n + 1) (2n)!
472

n—00 ZEZ_;TZFEEZ_;fIS
472
n—co |4n?% + 61 + 2

1
HenceR:Z:oo

(b) % Apply partial fractions. Obtain two binomial series and combine.

2.3.7 Problem 6

Develop (a) f(z) = % in Taylor series around zy = i. (b) g(z) = ¢* around z; = 4. What is radius of
convergence?

Solution (a)

N2 frr (s _'3 " ([
U LAV

f@=fi+E-if i+ ~

But f’ (z) = —le,f” (z) = Z%,f”’ (z) = —%, ---, hence the above becomes
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~i?2 (-’ ( 203
f2) = ——(z—z)— (22!1) i—3+(23!1) (— ;4))+
(z-i) (z—z)
2!

=—i+(z—-1)+2i -2(3)

——i+(z—i)+i(z—z) —(z—i) +
2 n+1 ( _Z)

Hence this convergence for |z -] <1.

Solution (b)

(z- a);g” (@  E-a’g" @

g(z)=g(@+(z-a)g (a)+ 3

But ¢’ (z) = ¢%,8" (z) = €%,8"" (z) = €%, ---, hence the above becomes

2 4 3.
g(z):ea+(z—a)eﬂ+(z_a)e +(Z a)’ e

2! 3!
z-a (-0’
— pl _
=e (1+(z a) + o + 3 +
[o] (Z_a)n
= eﬂ E
n=0 n!
1
T aps1| _ qs m+1)! | _ 9 n! T n! T L _
Where L = lim,,_,, ~|= lim, o [——| = 1im,, 0 —(1+n)!| = lim,,_, e lim,,_, = 0. Hence

1
R = = = co. Conver, verywhere.
7 Converges everywhere

2.3.8 Problem 7

Show that " (Z ))|z converges uniformly in |z| <3

Solution:

To find if it converges uniformly for |z| < 3, we need to find R, the radius of converges using normal
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method, then it R > 3, then it will converge uniformly for |z| < 3.

L= lim

n—00

= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—00

= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—oo

A1
ai’l
(n+1)1?
@(n+1))!

2n)!

((n + D> (2n)!
(n)? (2 (n +1))!
((n + 1) n)* (2n)!
n)?* 2 (n +1))!
(n +1)* (2n)!

2n +2)!
(n +1)* (2n)!

2n+2)(2n+1)(2n)!
(n+1)°
n+2)2n+1)

n?+2n+1
4n?2 +6n+2

2 1
1+-+5
n n

6 2
4+Z+ﬁ

Hence Radius of convergence R = 4. Since 3 < 4, then it converges uniformly for R < 3.

2.3.9 Problem 8

n
2 .
Where does Y| ( s ) z"" converges uniformly?

5n-3

Solution We first find R. Since the series of the form E:’:l A"Z" then it is easier to use

1
L= lim #|A"|

n—oo

1
= lim #/|A"|

= lim

n—00
1
7 n+2 n
nseo \[[5n -3

Hence R = 5. Therefore it converges uniformly for |z| <r <5
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24 HW 4

2.41 problems description

# 44 ) J ]
' ; 17 o A . £z [
{ :-}.{3 Sheke that | the i isfan ~§‘f/'u'*"« [ A ot sof{ute ue
A : < i !
e

eihad  valea  probluc

&) yw=ce ™ A

) ’
P -2 4o . 4 Le oDE ] Tt R
i ; y=Cx—c is a odhon to He (éj P, va*cf g

</

3 f“‘f QAAj . C@u&"éﬁn
Fud a Sa;jufa« solukbion to the ons (m;% NIV N 53, y=ex __Ca)
§ . 12 o
£>a; “}éwﬂq‘!@f»q? Lﬁxﬂ QDE  wau, s Hee L:;Z,&{ cax?{w'?«'z' "¢ }{ G brasa L4,

~/

.‘f

M/: ol Q/gf 550’&44"0%5 &7(’ floe fﬁ»;fowu 7 olef. r*i’vfﬁlfé wj
Ao f_{i“ﬁ..!ﬁ?‘{;k's'

l 7 / i 2
oy, Yy +285x =0 By Y= i
"o + o (/4 F ou=8
C) y(j = X :J [ Hlwd ot = g
—
[$5] Solve He I1vPs.
;
< s ' TPIOR, 4
s ( /':: /‘/“45{ Ji | ;:7 /%’
)Y v <IN v
b e ) . -
{ yor=o oo dY #
&/
S { QV(Z/ L P
oy, d = =txdilg



1)

g’}-‘am Hoat  Hhe scbubow Ca.ve, G’IZ :7 - Z“E
~/

fabe é/x

Oee o

4 . e f}’ : oy =0
Consiole, the hypect erlas Xy=c

Groe o o ;{3 fi‘rea,v%a/f eguet ahou

N

Cumtitn Ot Mmiie,_vf?zo e
Frud a. obE that has the ehalsht Cocees
N
Hrought 2o schabions (except x-o bire ).
¥
- Xo ok e Y
R s A L B
Hie yespeckiie _x,of;,«/t’:zgw

f«z{%;fg? ’fz,(»%}j}:’a/.}, g{/‘i)i} 13 7

y; L. /r ' y ;}
Cley e ‘e ii"‘fwr &?éfw’g Q@f’/& a}éﬁif@y' «:Qj ¥ ‘;?aiz,a' Cha 2 Ce |

4
. o AP o o
Bﬁpé’&a@, wﬁ_\? 5 {{uﬂi a«gwﬂ;fjﬁ oo Tl F

e

£k e
o fz{x,ﬁ, 1

2.4.2 Problem 1

part a

Yy =-cosx+2ax+Db
Yy’ =sinx+2a

Yy =cosx

Substituting into the ODE y’” = cos x shows it satsifies it. Hence this is true for any 4,0, c.

part b

Since tan (x +c) =

sin(x+c)

cos(x+c)

v =1+tan®(x +c)

Substituting this into the ode y’ =1 + y? gives

1+tan®(x +¢) =1+ tan® (x + ¢

wobich all Hoeae
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Which is true for any ¢

2.4.3 Problem 2
see Key.

2.44 Problem 3
see Key

2.4.5 Problem 4

(a) Find all solutions to yy’ +25x =0 (b) ¥’ = ky? (c) xy’ =x+y

Part a
yj—z = -2bx
ydy = —25xdx
y; =- 5x2 +C
y? = -25x% + C;
Hence

y = +yCq — 25x?
For real solution, we want C; > 25x2.
Part b
1 dy
y? dx
1
?dy = kdx

-1
— =kx+C

Y= ix+C

Part c

d_y:1+y x#0
dx X

d
Letu = % or y = ux. Hence ﬁ = u'x + u and the above ODE becomes
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wx+u=1+u

, 1

u ==

X

1
du = —dx

X

u=Inlx|+C
Hence
y=x(nlx+C)
2.4.6 Problem 5

(a) Solve the IVP i/ (x) =1+ 4y? with y(0) = 0. (b) v’ = —§ with (1) = V3 (c) ey’ = 2 (x +1) y? with
y(0) = ¢

Part a
Y (x) =1+ 4y?
d
Yy _ dx
1+ 4y?

1
3 arctan (Zy) =x+C

arctan (Zy) =2x+C;

_ tan(2x + Cy)
- 2
Applying IC gives
1
0= 5 tan (Cy)
Hence C; = 0. Therefore the solution is
y = = tan(2x)
Part b
, x
y=-=
Y
ydy = —xdx
1 1
S22 1.2
Zy 2x +C

Applying IC gives



Hence solution is

For real solution 4 — x% > 0.

Part c

Hence

Applying IC gives

Hence solution is

3=-1+C;
C1=4
yzz—x2+4

y=xV4-x?

ey =2(x+1)y?

3—2:2(x+1)e"‘
y2dy=2(x+1)e™
1
—; :f2(x+1)e‘xdx

=2+2)e*+C

1
y= 2(x+2)e* +Cy
B 1
C 2xe ¥ +4e ¥ +Cy

11

6 4+C;
4+C =6
C1=2
1

y= 2xe™ + 47X + 2

50
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2.5.1 problems description
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2.5.2 problem 1

part a
The ODE to solve is

d

V() +4y () =20
with initial conditions y (0) = 2.
Trying separable ODE.
In canonical form, the ODE is written as

¥ =F(x,y)
=-4y+20

The ODE % = -4y + 20, is separable. It can be written as

dy _
T f(0g)

Where f(x) =1 and g(y) = -4y + 20. Therefore

dy

4 _-_4

e y+20
Hence

(-4y+ 20)_1 dy = dx

f(—4y+20)_1 dy=fdx

“12mn@)-1/4n(ly-5) =x+C

Solving for y gives
y=-1/4e44C1 45

The solution above can be written as

y=-1/4Ce™4* +5 (2.1)

Initial conditions are now used to solve for C;. Substituting x = 0 and y = 2 in the above solution
gives an equation to solve for the constant of integration.

2=-1/4C1e"+5
=-1/4C; +5
Hence
C,=12 (eo)_l
Which is simplified to
C, =12



Substituting C; found above back in the solution gives

y(x)=-3e*¥+5

part b
The ODE to solve is
Sy +3y@ =sin@
with initial conditions y (7/2) = 3/10.
Trying Linear ODE.
In canonical form, the ODE is written as
y' =Fxy)
= -3y +sin(x)
The ODE is linear in y and has the form
Y =yf) +8(x)
Where f(x) = -3 and g(x) = sin (x).
Writing the ODE as
Yy - (—3 y) = sin (x)
Y +3y =sin(x)
Therefore the integrating factor u is
u=e [3dx _ e3%
The ode becomes
<Ly = i (@)
% (yeSx) = sin (x) e3¥
d (ye3x) = (sin (x) e3") dx
Integrating both sides gives
ye3¥ = =1/10 cos (x) €3* + 3/10 sin (x) e3* + C;
Dividing both sides by the integrating factor y = €3~ results in

_ —1/10 cos (x) €* +3/10 sin (x) e>*  C;
= B * 3

Simplifying the solution gives

y = 3/10 sin (x) — 1/10 cos (x) + C;e~3%

57

Initial conditions are now used to solve for C;. Substituting x = 77/2 and y = 3/10 in the above solution



gives an equation to solve for the constant of integration.
3/10 = 3/10 sin (17/2) — 1/10 cos (77/2) + C1e~327
=3/10 + Cye ™2™

Hence
C, = -1/10 3 sin (n/223_—3/02(7)15 (1/2) -3
Which is simplified to
C1=0

Substituting C; found above back in the solution gives

y (x) = 3/10 sin (x) —1/10 cos (x)

part c
The ODE to solve is
%y(x) —y(x) (1 +3x‘1) =x+2
with initial conditions y (1) =e-1.
Trying Linear ODE.
In canonical form, the ODE is written as

Y =Fy)
_ X2 +xy+2x+3y
x

The ODE is linear in y and has the form
Y =yf)+8()

x+ x2+2x

Where f(x) = 2 and g(x) =

X

Writing the ODE as

X .

, [x+3)y _x2+2x
Y X T x
_(x+3)y_x2+2x

’

x X
Therefore the integrating factor yu is
p= ef‘? dx — e—x—3 In(x)
The ode becomes
d  (x®+2x
dx Hy = U X
i (ye_x_3 ln(x)) _ (xZ +2 x) e~*-3 In(x)
dx X

2 -x-3 In(x)
d (ye—x—f} ]n(x)) — [(x + 2x) e ]dx

X
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Integrating both sides gives
ye—x—?: In(x) — _e—x—S ln(x)x + Cl

Dividing both sides by the integrating factor u = ™3 "™ results in

Cq

Y=+ S5ne

Simplifying the solution gives

y=-x+ C1x3ex
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Initial conditions are now used to solve for C;. Substituting x =1 and y = e —1 in the above solution

gives an equation to solve for the constant of integration.
e-1=-1+Cqe
Hence
C =1
Substituting C; found above back in the solution gives

y(x) = —x + 1%

2.5.3 problem 2
The ODE to solve is

d 4
TV +1By () =1/3 (1-2%) (y @)

Trying Bernoulli ODE.
In canonical form, the ODE is written as
y =Fxy)
=-y/3-2/3y*x +1/3y*
This is a Bernoulli ODE. Comparing the ODE to solve
v = -y/3-2/3y*x +1/3y*
With Bernoulli ODE standard form
y' = foy + fr(0)y"
Shows that fy(x) = -1/3 and f;(x) = -2/3x +1/3 and n = 4.
Dividing the ODE by y* gives
vyt =-13y>+-2/3x+1/3
Let
v=Yy

1)

2)
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Taking derivative of (2) w.r.t x gives

’ 4.7

v'=-3y"y

’
—4 _ (4

=Sy

y )

Substituting (3) into (1) gives

,U/

(=3)
v =(-3)(-1/3)v + (-3) (-2/3x + 1/3)
=v+2x-1

=(-13)v+-2/3x+1/3

The above now is a linear ODE in v(x) which can be easily solved using an integrating factor.
In canonical form, the ODE is written as

v’ = F(x,0)

=v+2x-1

The ODE is linear in v and has the form

v = 0f(x) +8(x)
Where f(x) =1 and g(x) =2x-1.
Writing the ODE as

v-()=2x-1

v-v=2x-1

Therefore the integrating factor yu is

= o) Ldx _ x
The ode becomes

d
L= H (2x-1)
4 (ve™)=R2x-1)e™
dx B
dwe™) =(2x-1)e™)dx
Integrating both sides gives
ve*=-Qx+1)e™*+C;
Dividing both sides by the integrating factor y = e™ results in

v=-2x-1+—
e—x

Simplifying the solution gives

v=-2x-1+Cqe"

Replacing v in the above by = from equation (2), gives the final solution.



y 2 =-2x-1+Ce"

Solving for y gives
1

7= V-2x -1+ Cye*
1 /2
y=-102 i2V3

+
\3/—2x—1 +Cie* 2x-1+Ce*

1 i24/3

J2x-1+Cie* J—2x-1+Ce*

y=-1/2

2.5.4 problem 3
The ODE to solve is
d
m—uov(x) =w-B—-kov(x)
dx
with initial conditions v (0) = 0.

Trying separable ODE.

In canonical form, the ODE is written as

v = F(x,v)
_ kv+B-w
B m
do ko+B-w . .
The ODE = = ———, is separable. It can be written as

% = f(0)g(©)
Where f(x) =1 and g(v) = _kv_%. Therefore

dv_ —kv-B+w
dx m

m
(—kv—B+w)dU_dx

ST te= J o

_mln(lkvk+ B —w)) x4 G

Hence

Solving for v gives

1 7k(x+C1)
U—E—e m  —B+w

61

Initial conditions are now used to solve for C;. Substituting x = 0 and v = 0 in the above solution
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gives an equation to solve for the constant of integration.

1 _kC1
0=—-(-e » -B+
k(e w)

Hence

mln (-B + w)
K
Substituting C; found above back in the solution gives

1 _5 _mln(—B+w)
U(X)Z%(—e ’”(X k )—B+w)

C1:

k (x_ m ln(;B-ﬁ-w) )

The solution % (—e_'” -B+ w) can be simplified to

m In(-B+w)-xk

v(x) = % (—em -B+ w) (2.2)

2.5.5 problem 4
The ODE to solve is

d A
ay(x) =3 (y(x)—x) =

Trying Riccati ODE.
In canonical form, the ODE is written as

¥ =F(x,y)
B x0 - 2% +xt? +y

X

This is a Riccati ODE. Comparing the ODE to solve
y

Yy =2 -2x%y + 3% + "
With Riccati ODE standard form

Y = fo(0) + [0y + fo(x)y?

Shows that fy(x) = x°, f1(x) = _29;5“ and f,(x) = x°.
Let
/ fau
=3 1)

Using the above substitution in the given ODE results (after some simplification) in a second order
ODE to solve for u(x) which is

fau" () = (f5 + fif2) ' () + fafou(x) =0 2)



But
fy=322
fifz = (—2x5 + 1) x?
fifo=x"

Substituting the above terms back in (2) gives
2

x3d—u (x) - (3x2 + (—2x5 + 1)x2) %u () +xMu(x)=0

dx?

Solving the above ODE gives

ux) = e 15 (x5C2 + Cl)
The above shows that
W (x) = —xte 5% (x5C2 +Cy-5 Cz)
Hence, using the above in (1) gives the solution
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Chapter 3

exams

3.1 first exam

3.11 Problem1

Consider the complex exponential function f (z) = ¢* = e* (cosy +isin y), where x = Re(z),y = Im (z).
Use the Cauchy-Riemann equations to show that f (z) is analytic in the whole complex plane C, and
using the definition of the derivative, show that f’ (z) = f (2).

Solution
f(z) =e*cosy +ie*siny
Comparing the above to f(z) = u + iv, shows that
u=e‘cosy
v=e¢'siny

Cauchy-Riemann equations in Cartesian coordinates are given by

du Jdvu
5% oy 1)
du Jdvu
oz 2
dy dx @
Since % = ¢*cosy and j—; = e¢*cosy, then (1) is satisfied. Looking at (2), since 3—; = —¢*siny and
% = ¢*siny, then (2) is also satisfied.

In addition, since all these partial derivatives are continuous everywhere because the elementary cos, sin, exp
are all continuous everywhere, then f (z) = ¢* is entire, or in other words, analytic everywhere.

To show that f’ (z) = f (z), by the definition of derivative, which is

o fletA)-f@)
fr@ =l =

91
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And since Az=Ax+iAyand f(z) =u (x, y) +iv (x, y) then the above becomes

(u (x + Ax,y + Ay) + v (x + Ax,y + Ay)) - (u (x,y) + v (x,y))
Ax +iAy

@)= jm,

Ay—0
= lim M(x+Ax,y+A.y)_u(x,y) +I-U(x+Axly+A.y)—v(x,y)
Ax—0 Ax +iAy Ax + iAy

Ay—0
Since ¢* is analytic, then the limit does not depend on the direction, so we can pick any direction to
approach z. Let us choose a direction such that the approach is on the x axis only keeping y fixed in
order to simplify the above. This implies that now Ay = 0. The above simplifies to

u(x+Ax,y) —u(x,y) ‘v(x+Ax,y) —v(x,y)

"(2) = li +
f@ AYSS0 Ax : Ax
Ax,y)-u(x, Ax,y)-v(x,
But limp,_,g M(Hx+u(xy) = % and w = %, then the above reduces to
du Jdv
’ = 4=
f@ ox " ox

From the first part we obtained that g g cosy and % = ¢*sin y. Using these in the above gives
ox Ix
f'(z) =e*cosy +ie*siny
=e (cosy + isiny)

= e¥elY

Therefore f’ (z) = f (z). QED.

3.1.2 Problem 2

Determine the domain D of the z values on the complex plane where the complex function, given
by the following series
1 11
F(z) =23 +2z7 4+z11 4215 + ...

is well defined. What is the set of values z € C, for which it holds that
2 1 -6 1 -10 1 -4

F (z) = gz? + 527 + ﬁzf + Ezf + .-

Solution

z can be either zero or not zero. When z = 0, then clearly F(z)|,_, = 0 from the expression given for
F(z) above. So F(z) is defined at z.

When z # 0, then each term in the series will now become multivalued since the terms are of the
1

form z» for integer n. So we need to first make F(z) single valued before considering the sum. We
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need to decide on which branch cut to use. Writing

1 1

zn = (rei(‘g*z”k)); k=0,1,2,--,n-1

1 4(9 27‘[k)
12428
pne\n

1( (9 2nk) o (6 2nk))
=ru|cos|=+ —|+isin|— + —
n n n n

1
In order to make the multivalued z» function single valued, we select k = 0 and limit principal
argument 0 to

-n<0<m
1
with z # 0 for each term. Hence zsimplifies to

11 0 0
zn =rn (cos (—) +isin (—))
n n

Where r = 2] is the modulus of z. Now that each term is single valued, we can now look at the sum.
Writing F (z) as

& 1
F(z) = E Z4n+3
n=0
o0 1 90
= E 74n+3 o 4n+3
n=0

We start with the preliminarily test to check if the above sum could be converging or not. Since the

magnitude of the complex exponential is unity, we only need to check the modulus. Hence let
1
a, = ¥ 4n+3
Now we check if lim,_,, 4, = 0 or not. This is a a necessary condition for convergence but not a

sufficient condition.
1
lim g, = lim r4+3

n—oo n—oo

=1

We see that the limit is not zero. Therefore when z # 0, then F (z) does not converge. Which means

F(z) is defined only at z =0

To answer that last part. Since we showed that F (z) only defined at one point z = 0, then its derivative
is not defined. Because a derivative requires a small neighborhood region around any point where
the derivative to be evaluated due to using the limit as Az — 0 in the definition of derivative. Since
there is no such neighborhood around z = 0, then it follows immediately that

F’(z) is not defined anywhere

3.1.3 Problem 3

Consider the real function defined by the power series

Feo=3 B0 (%)

n=0 (1’1!)4
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Use the results on complex power series to determine the largest open interval on which f (x) is
defined. For what values of 2 < b does f (x) converges uniformly on [a, b]?

Solution

Using the ratio test

n+1
an
(4(n+1))! (f)nﬂ
- lim ((+1)*
ol )
(my* \6

L = lim

n—oo

Which simplifies to
(& (n+ 1) ()" 2
@) ((n +1H*
@@n+1) ()
(@n)! (n +1)1)*
But ((n + 1)!)4 =(n+ l)n!)4 =n+ 1)4 (n!)4 and the above simplifies to
4 +1)!
@n)! (n +1)*
But (4(n +1))! = (4n +4)! = ((4n + 4) (4n + 3) (4n + 2) (4n + 1) (4n)!) and the above simplifies to

|x
6

n—oo

lim

n—oo

L:|

L |x lim dn+4)dn+3)(dn+2)(dn+1)(4n)!
=|=| lim
6ln—eo @n)! (n +1)*
|x lim dn+4)dn+3)dAn+2)(dn+1)
=|=| lim
61n—eo n+1)*
Expanding gives
x| .. |256n* + 64013 + 5601n% + 2001 + 24
= |— lim
61n—c0 n*+4nd +6n2 +4n+1

Dividing numerator and denominator by n* gives

1 1 1 24
L:|f 256+640; +5601? +200n—3+7?
6

lim
1 1 T 1
e 1+4-+65+45+—
n n n n

Now we can take the limit which gives 256. Hence

256
b=

For convergence, we want |L| <1, which implies

256| <1
— |x
6

3 .
Therefore f (x) is defined and absolutely converges for ﬁ <x < 7. Therefore by using theorem 1,



page 699 in the textbook, we conclude that for uniform convergence we need

K<< —
A=< 18

3 3
> = =
X a> 123 andx <b< 123

Hence the series converges uniformly on [a, b] where

3.1.4 Problem 5
Let f (z) be given as

f@= E n(n1+ 1) \4 (Z)HH

95

(a) Find the domain D on which f (%) is analytic. (b) For what z values does g(z) defined by the

Laurent series

S A R -
g(z)_ngln(n+l)(4_z) +r§ﬁz
Converge?

Solution

part (a)

First we find where f (z) converges.

f@

n (n1+ 1) (ZEJL)H+1

el

=
l
—_

I
1
ihs

);

zoo
) 2 (n+1)(n+2)4”( ~ %)

n=0

S T 1)

—_——
BN BN
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(o]

z) converges in a disk centered at zy = 0 if the series
g 0
ratio test to find L gives

120 mz“ converges there. Using the

. A+l
L= lim |—
n—oo | a,

1
(n+2)(n+3)4n+1

= lim T
n—oo
(n+1)(n+2)4"
. n+1)(n+2)4"
= lim
n—oo | (1 + 2) (n + 3)4n+1
1 n2+3n+2
== lim |[——
4n>|n24+5n+6
1 1432 +2—
e
dnoeofq 524 2
n o n?
_ 1
4

Since L = i then the radius of convergence R = % or R = 4. This means f (z) converges inside disk

centered at zero of radius R = 4. Therefore f (%) converges everywhere outside this disk. Since there

n+1
are no other singularities in the function given by f (%) =X, - (n1+ 5 (412) outside disk of radius 4

then it is analytic there everywhere (it is differentiable everywhere outside this disk). Therefore, we

conclude this part by saying that
1 0 1 1 n+1
f(Z) ks (E)

n=1

is analytic outside disk of radius 4.

Part (b)

x© q 1\ & o
g(z)zzn(n+1)(4_z) +Z—z”

n=1
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The first series in the right side above, we found from part (a) where it converges, which is for |z| > 4.
Now we need to find where the second series converges.
a
L= lim [~
n—oo| g,
(n+1)!

1
. n+1)"*
= lim Lo
n—oo n!

nn
. (n+1)n"
= lim |———7
= nl(n+1)

. (n+1)nn"
= lim [———3
n=e | ul(n +1)"

. (n+1)n"
= lim [———
n—= | +1)"

i n+1)n"
= lim [——————
n—eo | (n +1) (n +1)"
nl’l

=1
w41

?

. . 1 . . n!
Hence the radius of convergence is R = - = e = 2.718. This means the second series P
convergence for [z] < e, or inside disk of radius R = e. But the first series converges outside disk of
radius 4. Therefore, there is no common annulus where both series converge. Therefore

There are no z values where g (z) converges

3.1.5 Problem 6

Determine the MacLaurin series for the following special functions for z € R. The resulting series
defines the functions for complex numbers as well. Give the radius of convergence of the resulting
series. Determine whether any of them is even f(-z) = f (z) or odd f(-z) = f (2).

2 _ . sin
(a) erf(a) = = fe 23t (b) Si(z) = £ Snl gt

t

solution

Part (a)

o X"

4
n=0 n!

2 . .
IR hence e7** series expansion

Starting with MacLaurin series for e = )
around zero becomes

Xz X3
:1+X+E+§+

e

2V (L2 L2\t
t2=1+(_t2)+<;) +(?t>!) +(4t3!) ’
) 4 t6 tS
=1—t+i—§+a—'“
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Therefore

2 Z 0
erf(z)=—_f e Fdt
o 8
1-RP 4 —— — 4 ——...
_f( t+| TR )dt

Since exp (x) is analytic everywhere, we can integrate the above term by term, which gives

1, 16 1¢ 1F )Z
ft—— _ - _ .

f(z) = —

ert(z) \/E( 30 T52 73 "o
2( 1, 122 17 12 )

= —\|lz-— - —+ .

= SE_CE L IE

zZ +
3 521 73! 94!

To find its radius of convergence, we need to first find closed form for the above. The general term
is seen to be

¢ ( 1)71 2n+1
erf(z) = \/— 2 a2+ 1)
Hence
B 2 ( 1)” 2n
erf(z) = ﬁ nz:% n!'(2n+1)

2 < (<D n
En'(2n+1)(2)

Now let z% = s. We now find the radius of convergence R for 3 '((21) D s" and then find VR to find
radius of convergence for 3 % 2n
D"

Applying the ratio test to

. . . n
7m0 71 2n+1)s to find its L. Since we are using absolute values, the (-1)
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does not affect the result, hence

L= lim Bn1
n—oo an
1
- lim (n+1)!1(2n+2)
n—oo
n!(2n+1)
. n!'(2n+1)
= lim |[———————
n—oo|(n + 1) (2n + 2)
! n!'2n+1)
= lim
n—o0 (n + 1) n! (211 + 2)
. 2n+1)
= lim [—————
n—oo|(n+1)(2n +2)
I 2n+1
= lim |[——
n—co |2n2 + 4n + 2
2.1
= lim |22
n

o Nlo

Therefore R = % = 00. But /o0 = 0. Hence

erf(z) is analytic on the whole complex plane

Now, to find if it is even or odd. Using the above series definition

2 (-1)" 22"
erf(z) = Z n!'(2n +1)

Lets check if it odd. i.e. if f (-z) = —f (z). From above

(-1)" (=2)*"
erf(-2) = _( )g n!'2n+1)

But (—z)zn = z%" since the exponent is even, and the above simplifies to

1)" 2n
erf(-z) = Z n(, (Z)n D (1)
Now lets find —f (z). From the definition
—erf(z) = __2 E M (2)
\/E “n! 2n+1)

Since (1) and (2) are the same, then

erf(z) is odd



Part (b)
Starting with MacLaurin series for
) S, x5 7 x9
sin (x) = ;::0 o+ T TE T o
Hence — 00 hecomes
sin(x) 1 ¥ X
x x\" 35 709
I R S o
TR T
Hence
v4 t2 t4 6 8
SI(X):L(l—a § a a—)dt
4 6 8
Sincel- 24X 2,2 analytic everywhere, we can integrate the above term by term, which

3! 5! 7! 9!

gives
18 1£ 1+ 1¢
Si@)=|t-z=+==-=2=+==
i@ ( 331755 771" 99
122 122 1727 12°

+ +

331 55 771 99l

In closed form, this can be written as

Si() = 2( )(2n+1)(2n+1)'z

_ZE( by (2n+1)(2n+1)'

‘ZZ( b (2n+1)(2n+1)'

2n+1

2n

=)

100
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So we need to find radius of convergence R for EZO:o (=" s" and then find VR as we did in

part (a).

2n+1)(2n+1)!

T
L = lim [Z2=
n—eo| g,

1
— lim (2n+2)(2n+2)!

=00 1

(2n+1)(2n+1)!
o l@n+1)2n+1)!
= lim
n—oo|(2n + 2) 2n + 2)!
. 2n+1)2n +1)! |
= lim
n—oo|(2n +2) (2n + 2) (2n + 1)!
. 2n+1)
= lim |[————
n—oo|(2n + 2) (2n + 2)
. 2n+1
= lim |[————
n=co |4n2 + 8n + 4
2 1
n 2
8 4
+ —_
n

= lim
n—oo 4

+

n2

o wio

Hence R = % = c0. But y/c0 = co. Hence

Si(z) is analytic on the whole complex plane

Now, to find if it is even or odd. Using the above series definition

1
Sl(z)_ZE( b Qn+1)n+1)l”

Lets check if it odd. i.e. f (-z) = —f (2). From above

Si(-z) = _ZE( 1)"

2n

1

2n
o D P

But (—z)Z” = z?" since the exponent is even, so the above becomes
1
Si(-z) = -z 2 "

2n
2n+1)(2n+ 1)' (1)
Now lets find what —f (z) gives

- Si(z) = 2 (2)

ZZ( b (2n+1)(2n+1)'Z

Comparing (1,2) we see they are the same. Hence

Si(z) is odd



3.1.6 Problem 7

(a) Determine the Laurent series of the function

In the annulus 1 <z <5 and in |z| > 5.

(b) Determine the Taylor series representation of the function

2

g(z) = e_%
with center z; = 0. What is the radius of convergence?
Solution
Part (a)

2z+6
f@= z22-6z+5
B 2z +6
C(z-5@E-1)
__A B
S (-5 (z-1)
Hence

2z+6=A(z-1)+B(z-5)
=z(A+B)-A-5B
Solving the above two equations for A, B gives
2=A+B
6=-A-5B
First equations gives A =2 - B. Second equation becomes

6=-(2-B)-5B

6=-2-4B
__8
4
=2
Hence A = 4. Therefore (1) becomes
4 2
fO=e=5 &

102

2)

We now see there is a pole at z =5 and at z =1. So there are three regions. The following diagram

shows these three different regions
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Y
A

Three region f(z) can be expanded in.

N

. s _ 4 2 .
For region B, which is annulus 1 < z < 5, we need to expand f (z) = 5~ o Looking at first part
4 4
(z-5) 5-z
I
T =1 z\
51-3)

This can be expanded for |§| <1 or |z| < 5. Using Binomial series it gives

Sae s (5 G ) )
5(1_5) 5 5 5 5
5 2(E)
ENE 3)
5 nz:% 5
We now consider the second term in (2), which is %
2 __ 2
(z-1 1-z

This can be expanded only when |z| < 1. But we want |z] > 1, therefore we need to convert it to

negative power. We write
2 =2
(z-1) z (l - 1)
z
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Now —— can be expanded for |§| <1 or z > 1, which puts in region B. Hence the second term can

-3)

now be expanded as

=2 oo (4)

Therefore (3,4) gives us the expansion of f (z) valid in region B. Substituting results from (3,4) into
(2) gives

4 2
fz)= -
(z=5) (z-1)
_—45":(2)” i": 2
5n:05 n:OZ}H1
—_4 1+Z+Zz+ 21+1+1+
5 5 52 z z2 Z
4 4z 472 2 2 2
\sTERTm ) T2 AT

The above shows that residue is —2, which is the coefficient for the % term.

For region C
This is for |z| > 5.For the first term in (2), which is (Z‘_L—S) we write it as
4 4 1

a—sz@_g

z

We can expand this for |§| <1 or |z| > 5 which is what we want. Hence it becomes

iy = REREEEE

_45’1 5\"

_ano Z

[oe] 5;1
n+1

=4
2

For the second in (2), which is > We can use the expansion found earlier since it is valid for |z| > 1,
2

. L2 Qoo
hence also valid for |z| > 5 as well. which is T 211:0 -
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Therefore, in region C, the expansion is
4 2
fO=5 &

o D" o 2
=4zzn+1 _Ezn+1

=0 =0
Vv WE)-2
- ZO i+l
2 18 98 498
TRt ET A
The residue is 2.
Part (b)
22
s@)=c2
Taylor series for g (z) expanded around z; is given by
2 3
§@)=g(z0)+8 (20)z+g" (20) L +g" (20) ;+ g% (ZO)
But
8(z0) =g(0) =1
2z 2
g (z0) = - EZE 2
z=29=0
=0
And
22
=)
zZ=z)
Z2 ZZ
= (—3_2 _Zze_z)
z=z0=0
=-1
And

d 22 22
g//r (ZO) - (—6_2 _ ZZE_Z)
dz -

2
(ze 2 —2z¢ 7 —z3e 2)

z=20=0



And
22
@ (o) = (ze 2 —2z¢"

2 2

z zZ

|

=1

€2 —2%77 -2 2 4272372 —32% 2 +z% 2
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2
2 -z

2

362

z=z0

2 22 2 2

|

z=20=0

And so on. We can see the sequence pattern as

g(z) =g(z9) + g (zg)z +

72 z3
8" (z9) ot g (z0) ET g

4
z
(z0) 3 +

ZZ 4 Z6
=1+0-—+0+—+0-
2 4! 6'
ZZ Z4 Z6
=1-=—+=-=
2 4' 6'
(2n)'

To find radius of convergence, we write the above as

g(2) =

And find R for s then take \/_ R. Hence for (1

= lim
n—oo

= lim

n—oo

= lim

n—oo

= lim

n—o00

= lim
n—oo

= lim

n—oo

= lim

n—oo

=0

Hence R = % = 0. Therefore \/1_2 = co0. The

S >(2),<>

ZJ (2n)' (1)
)
a,

+1

ay
1

(1)
1

(@2n)!
(2n)!
2m+ 1))!|
(2n)!
n + 2)!’
(2n)!
2n+2)(2n+1)(2n)!
1
2n+2)2n+1)
1
4n? + 6m +2

expansion is valid in the whole complex plane.
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3.1.7 Problem 8

Evaluate the integral below on the curve C = C; U C, where C; 1 z(t) = ¢™,0<t<1and C, : z(t) =

2%-1,0<t<1.
3§Re(z)dz
C

Solution

The diagram below shows the curves

08f
06f
04f
0.2

-

Curve C2

-1.0 -0.5

R dz = R "(H)d R "(t)d 1
f ¢ (2)dz fc e(z(H)2 (t) t+fcz e (z(H)2 (Hdt (1)

But on Cy, z(f) = ¢™ = cos(nt) + isin (nt), then Re(z(t)) = cos(nt) and 2’ (t) = ine'™, therefore the
integral on C; becomes

1 1
f cos (rit) ime™dt = ircf cos (rtt) e dt
0 0
= inl )

Where I = K cos (1tt) e™dt. We now evaluate I. Since e™ = cos (rtt) + isin (rit), then
1 1
I= f cos (1it) cos (rit) dt + i f cos (1it) sin (ret) dt 3)
0 0
But first integral in above is
1 1
f cos (7tt) cos (rtt) dt = f cos? (mtt) dt
0 0

11 1
:fo §+§cos(2nt)dt

1 1 . 1
+ 5 (sin (2711,‘))0

2
1
2



And for second integral in (3), and using sin Acos A = % sin (2A), it becomes

1

1 1
f cos (7tt) sin (7tf) df = f > sin @ret) di
0

0
1 [cos (2mtt) ]1
o

2 21
1
= [cos (2nt)](1)
1

= [cos (2m) — 1]
=0

Therefore integral on C; from (2) becomes

1
f cos (rt) ime'™dt = inl
0

Now the second integral on C, is found, where z () = 2t -1, and z’ (t) = 2. Hence

1 1

f Re(z(t))z’(t)dt:f 2t -1)2 dt

0 0
:Z(tz—t)

=0

1
0
Therefore contribution comes only from the integration over C; which is

in
3§ Re(z)dz= =
C

108
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3.1.8 Optional choice Problem 4

4. We refer to an open connected set D C C as a domain of the complex plane, and if
F(z) is an analytic function on D we call the set

F(D)={F(2):z€ D}

the analytic transformation of D by F. (E.g.: if the open unit disk centered at 1 is
given as

Ul={zeC:|z—-1| <1},
and F(z) = z +1, H(z) = iz, then the analytic transformations F'(U') and H(U"!)

are a shift by i of U, and a counterclockwise rotation by 90 degrees — or 7/2 radian
— around the origin of U, respectively.)

a) Consider
Ul={z€C:|z| <1},
and fi(z) = 2. Show that fi(z) is a 1-1 (and analytic) function on U°, and
argue that f; , also referred to as a Mobius transformation, transforms U° to

the right half plane, i.e. f1(U%)={2€ C: Rez > 0}.
b) Write the function

f(Z) _ e—zln{[z(ffi)]%}

as a composite of 6 analytic functions f(z) = fso fs 0 fyo fzo fo o fi(z) and
show that f transforms U° into an annulus f(U°). [Hint: Determine in order

F1(U°), fao fi(U°),..., foo fso fao fzo fao fi(U°)]

// g \\\\

//’(/H»)'///f/‘///ﬂ//'ﬁll
| 0

c) (Eztra credit/fun:) If you have access to a software performing complex arith-
metic (e.g. Matlab), compute the transformation of the “transformation” text
shaped domain 7" given inside the unit disk (as black text) on the adjacent
image.

Solution
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Part (a)
z+1
=" 1

h@ =1 1)
The domain U is the unit disk centered at origin. To show f; (z) is 1-1 on U° means to show that if

f1(z1) = f1(22) 2)
The this implies that

21=2

Applying (1,2) to both points gives
f1(z1) = f1(22)

Z1+1 _Z2+1
1—21 B 1—22

(x1 + iyl) +1 (xg_ + iyz) +1
1- (xl + iyl) - (x2 + iyz)
(1 + i) +1) (1= (2 + i) = (1= (1 + ) (32 + i) +1)
(x1 + 1y +1) (1 - Xy — iyz) = (1 —-X1 - iy1) (xz +iy2 +1)
Xy = X1Xp —iX1Yp + 1Yy — i1 Xp + Y2 + 1 - Xy — iy = Xp +iyp +1 = XXy —1YoXy — Xy — iY1Xp + Y12 — iy

Collecting real and imaginary parts

(X1 - XX+ Y1Yo +1 - Xz) + i(—xlyz T Y1~ Yixp - yz) = (xz +1-x0—x1 + ylyz) + i(}/z —Y2X1 —Y1Xp — 3/1)
)
If two complex numbers are equal, then the real part and the imaginary part must be equal. Hence

in equation (3), equating real parts gives

X1 =X+ 1Yy +1 -2 = +1 =112 — X1 + Y12
X1 —Xp =Xp— X1
2.X'1 = 2.762

X1 =X (4)

And equating imaginary parts in (3) gives

—X1Y2 T Y1 —Y1X2 — Y2 = Y2 — YoX1 —Y1X2 — Y1

Yi—V2=Y2— W1
2y1 =2y,
Y=Y (%)

From (4,5) we see that z; = x; + iy, is the same point as z, = x, + iy,. This shows that

f1(z) is 1-1 on ue

To show that f; (z) is analytic, we see that there is a pole at z = 1. But this is outside the disk |z] < 1.

So there is no singularity inside the disk. And since % is differentiable as many times as we wish,
then it is analytic. We can also apply Cauchy Riemann equations also to verify this, but it is not
needed for this simple function.

The last part is to show that f; is a Mobius transformation.
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Range of fi(z) is R(z) >0

Domain of f(z) i

.
NI

To show this, we apply f; (z) to an arbitrary point in the domain |z| <1 and see if the real part of
f1(z) comes out to be always positive or not. Let zy be any point inside the disk |z| <1 where z = x +1iy.
Hence

\J

f1(@) = %
(x + iy) +1
C1- (x + iy)
_(x+D)+iy
(1-x)-iy
Multiplying the numerator and denominator by the complex conjugate of the denominator gives
((x +1) + iy) ((l —-x)+ iy)
((1 -x) - iy) ((1 -x)+ iy)
3 x+D)(T-x)+iy(x+1)+iy(1-x) -2
- (1—x)* + 12
(D) (A —x) +iyx + iy + iy — iyx — i
- (1 —x)° +12
(1 - xz) +2iy — 12
1 —x)* + 12
_(=¥)- o
- (1—x)z+y2 +l(l—x)2+y2

f1(z0) =

=u+iv
Hence

1-22) 12

o) = S2EE

1- (x2 + yz)

I

1-Jzf
ICES Y

We now need to show that u (x,y) is always positive. Now, Since |z| < 1, then |x| <1 and also |y| <1.
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This shows that the denominator is always positive and can not be zero even when x = 0, = 0 in
which case the denominator is 1. The only problem comes when x =1 and y = 0 in which case the
mapping goes to infinity. More on this below. But this point is on the boundary itself, and not inside
the disk.

Now, for the numerator, since |z| <1 then 1 - |z|2 is always positive. Only when |z| =1 (boundary
points), then will u (x, y) = 0. Therefore we conclude that

Each point inside the disk maps to right side of the complex plane

For example, the center of the disk, x = 0,y = 0, maps to the right side complex plane, since
1-2%) -y ux
o) =
I-x)"+y> (Q-x"+y>?
f1(0,0) =1+0i

What about points on the boundary of the disk where |z| = 1? Lets pick the point x =1,y = 0, then
we see that

] (x+iy)+1 1+x
lim =
y—>01—(x+iy) 1-x

Hence as x — 1 it will blow up and it goes to infinity. How about the point x = 0,y = 1, then this
point maps to

1-1
D= i
AOD =17+

=0+1i0

. 0
+

So it maps to origin in the complex plane. The point x = -1,y = 0 maps to
f1(-1,0) =0+1i0
All other points on the boundary of disk |z| = 1 map to the origin of the complex plane, except for the point

x =1,y = 0 which maps to infinity.

This point maps to oo I(z)
A A

Domain of f(z) —

fi(2)

» R(z)

all points on the boundary
of the disk map to origin
of the complex plane

z+1

Transformation given by =
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Part (b)

F2) = —iln\/%
Since f7(z) = —, where from part(a), we know it maps all points inside disk |z| <1 to the right side
of the complex plane Then the above can be written as
f2) = ominyifi(2)
Now let
f2(2) =if1(2)

The effect of this is to rotate each point in the right half plane clockwise by 90°. This can be seen by
considering an arbitrary point zy = r¢', then

L
izg=¢€2 (re’e)

. M

— 1l(0+3)

Hence the result of applying f, (z) = if; (z) is to rotate the right side plane to the upper half plane as
shown below

T

The next step is to apply the square root function. This means

f3@ =f2 (1)

1
What does applying a square root to a point zy in the complex plane do? Since z2 = ¢2

where here we used the principal argument of z, therefore

z% _ e%(ln r+i0)

(1n\z|+1 Arg(z))

NID

1

=r2e
Hence the effect is to take the square root of the module and to reduce the argument by half. Points
inside a unit circle will increase their module and move closer to the inner edge of the unit circle,
and points outside the unit circle will decrease their modulus and move closer to the outside edge of
the unit circle. Points on the unit circle will not change their modulus. But all points will have their
argument halved. The result of this is all points will move and end up in the first quadrant of the
complex plane
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The next step is to apply the In function on the resulting points. Hence
f1@) =In(f3 ()
Now we ask, what does In (z) do to a point z? Let z = re’ then
In(z) =In (reig)
=Inr+Ine?
=Inr+i0

This gives a complex variable whose real part is In|z| and whose imaginary part is the argument of
z. Since In [z] is negative for |z| <1, then all points inside the unit circle will have their real part move
to the negative half plane, and all points outside the unit circle will have their real part in the right
half plane. And all points on the unit circle will have their real part be zero. So all point on the unit
circle will move to the imaginary axis. For example, the point (1,0) will move to (0,0) and the point
(0,1) will move to (0, g)

As a point is closer to the origin, it will map closer to —co in negative half plane, since lim, ,jIn (r) is

—0Q,

The imaginary part of each point be the argument of the point z. Since all points now reside in the
first quadrant as seen in the above diagram, then the imaginary part will extend from 0--- g The
following diagram just shows the transformation by f, (z) for selected points

\J

The next step is to apply —i to each point. Hence
f5(2) = -if4(2)
= e_igf 4(2)



115

Let z = re'” = f,(z) and the above becomes

T
f3@) = ¢ re?
= rgi(e_ g)

So the effect of multiplying by —i is rotate each point clockwise by 90°. Hence the whole strip shown
above (f4(z)), will now rotate by 90° clockwise. The arguments of each new point location will now

be in the range g e — g as shown below
T5(fa(fs(f2(f1(2))))) A
b o
3

i

The final step is to apply exp (z) to each point in generated by applying f5 (z). Let a point be z = x +1iy,
then

fo(2) = ¥
= ety
=e* (cosy + isiny)
=e‘cosy +ie*siny
Hence the real part of each new point become ¢* cosy and imaginary part become ¢*siny.

All points on imaginary line, with x = 0 will map to cosy +isiny. All point on the x axis, where y =0
will map to e* + 0i.

All points on the vertical line (g,y) will map to e2 cosy +ie2 siny. To better see the mapping, I wrote
a small program to plot the above transformation. The function samples points from x = 0 to x = g
and samples points from y = -5 to y = 5. For each such point (x, y) it transforms it to (ex cosy, e sin y).

The result shows that all points map to concentric rings outside the unit circle as shown in the plot
below
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-

Result of applying fg(z). annulus outside unit circle.

Hence the final mapping is to an annulus outside disk on radius 1. The following shows all the
transformation applied on the same diagram.

fa(z) fol(2)
Fo(2)A . f5(2)

e h:) % e N S
AN b

wols
=

Part (c)

Using Matlab, the code provided was run after applying the function fg ( fs ( fa ( f3 ( f2 ( f1 (z)))))) on
it.

close all

load 'TransPoints.mat';

TR—=exp(-1i.*log( sqrt( 1i*((COMPLD+1)./(1-COMPLD) ))));
IMtr=imag(TR);

REtr=real(TR);

plot(REtr,IMtr,'k.")

axis equal

title('Math 601, problem 4 result. Nasser M. Abbasi')

grid

The following shows the original image, and the transformed image below it.
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Math 601, problem 4 result. Nasser M. Abbasi

45

N

251

151

3.2 second exam

3.21 Problem1

Find the equilibria of the following differential equation ' = 1 - 1> and determine their stability.
Derive the explicit solution for the initial value problem

y’(t):1—y2
y(0)=-2

Find the finite time interval for which the solution exists.
solution

Before solving the problem, the domain of the solution is determined. The RHS of the ODE is f (t, y) =

1 -y This is a continuous and real function for all y. Now a—i = -2y shows it is also continuous and

real for all y. Combining these results shows that there exists a solution and is unique in some subset
of the domain

—0 <Y <00
The problem is now solved. Since
v () =f(y)

Then the equilibrium points are the solution to f (y) = 0 or 1 — y? = 0. Therefore there are two
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equilibrium points given by

y==1
The stability type is determined by taking the second derivative and evaluating it at at each equilib-
rium point. If the second derivative is negative, then the point is stable equilibrium. If the second
derivative is positive then the point is unstable equilibrium. If the second derivative is zero, it is a
saddle point. Since

17

y' =2
Then at y =1, y” < 0 which implies y =1 is stable. At y = -1, ¥ > 0 which implies y = -1 is unstable

equilibrium.

The above result was verified by generating the direction field plot for the ODE. It shows that solution
lines are moving away from line y = -1, which means it is unstable (A solution that starts near y = -1
will move away from its initial position). The plot also shows solutions that start near y = 1 moving
towards y = 1. Hence y =1 is stable equilibrium. The line in red is the particular solution trajectory
for the initial condition given in the problem.

Direction field plot showing the solution trajectory in red

y(t)

N
T
-~

\\\\
\ LY
VLo A
_3x\w\x\\\x\\\x\
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flt_, y_1 :=1 - y~2;

p = StreamPlot[{1, f[t, yl}, {t, 0, 3}, {y, -3, 2},
Frame -> False,

Axes -> True,

AxesLabel -> {"t", "y(t)"},

BaseStyle -> 14,

StreamPoints -> {{{{0, -2}, Red}, Automatic}},
ImageSize -> 400,

]

PlotLabel -> Style[Text[ "Direction field plot showing the solution trajectory in red"], 12]

The ODE is now solved.

dy )
Y
"
1-y?
Since it is separable, then Integrating both sides results in
d
L= fa
1-v?

arctanh (y) =t+c
Hence the solution is

y(t) =tanh(t +¢)
But

tanh (z) = ¢

e+ ez

Therefore the solution can be written as
et+c _ e—t—c

y(t)

et+c + e—t—c

1 _
cet — —¢7t
.

1
cet + —e!

et —et
_ Cet—e!
- Cet+et
Using the initial conditions y (0) = -2 the above gives the value of C
_C-1
S C+1
-2C-2=C-1
-3C=1

-1
C=—
3

1)
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Substituting the constant C value found above into solution (1) gives

-1 _
—et —et

y(t)=2——
S +et
—et =3¢t
et +3e7t
et — 3e~t

By factoring e™' the above becomes

3+
vy =
To find when the solution stops, means to find the time when solution becomes undefined. This
occurs when the denominator becomes zero (the solution reaches a pole). The denominator of the
solution above becomes zero when

-3+ =0
2t=1In3
1
t:§ln3

Numerically, this is approximately t = 0.549 seconds. Here is a plot of the solution showing what
happens when it reaches close to the above t value starting from ¢ = 0. The plot shows that the
solution diverges to —co as the pole is approached from the left and the solution becomes undefined.

Showing when solution becomes undefined

y(t)

-60[
-80r

-100+

0.0 0.1 0.2 0.3 0.4 0.5
t (sec)

sol = (3 + Exp[2 t])/(-3 + Exp[2 t]);

p = Plot[sol, {t, 0, 0.54}, PlotRange -> All,

Frame -> True,

GridLines -> Automatic, GridLinesStyle -> LightGray,
PlotStyle -> Red,

FrameLabel -> {{"y(t)", Nonel}/

, {"t (sec)", "Showing when solution becomes undefined"}},
BaseStyle -> 14]
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3.2.2 Problem 2

2. Consider the initial value problem

Determine the k-values for which the above equation has

(a) two real solutions,
(b) infinitely many real solutions,
(¢) no real solutions.

(d) Is there a k-value for which f(t,y) = t\/y is Lipschitz continuous on the
rectangular domain 0.5 <t <15, 09< y<1.17

solution
The domain of the solution is first found. Since f (t, y) = t4/y then this function is real and continuous
for all t and for y > 0. Since (;—J; = %ﬁ then this is continuous for all # and for y # 0 (to avoid a pole).
Combining these two results shows a solution exists and unique in some subset of the domain
-0 <t <00
y>0
The direction field for the above ode is given in the plot below

Direction field plot for problem 2

y(t)
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flt_, y_1 := t Sqrtlyl;

p = StreamPlot[{1, f[t, yIl}, {t, 0, 3}, {y, 0, 2},

Frame -> False,

Axes -> True,

AxesLabel -> {"t", "y(t)"},

BaseStyle -> 14,

ImageSize -> 400,

PlotLabel -> Style[Text["Direction field plot for problem 2"], 12]
]

The ODE is now solved.

This is separable. Integrating both sides gives

1
fy‘édy:ftdt

t2
2\/y:E+C

2 ¢
W=gt;

Applying initial conditions y (1) = k the above becomes

1
V=241

4 2

1
Cc —-2\[-— 5

Hence
)
12 1
=5 +Vk- (2)
Or
2 1\
y(f)—(z‘*' k‘z)
il o, 1y 1 1
_k+2\/ﬁt 8t+16t 2\/E+16 (3)
part (a)

Looking at solutions in (3) shows that k > 0 is needed to obtain two real solutions.
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part (b)
When k = 0 then y (1) = 0. But from earlier the domain of the unique solution was found to be
—00 <t <00
y>0

Therefore the initial condition point where y = 0 is outside the above domain. Therefore k = 0 will
generate infinite number of solutions because it the initial condition is outside the domain where the
solution have to satisfy in order to be unique.

part (c)

No real solution can be obtained when k < 0. This is because when k is negative then Vk=i |k| and
the solution becomes complex.

part (d)

f(ty)=tyy

Let k = 1. This implies the initial conditions is y (1) = 1. This means the initial conditions point is
inside the domain given. Therefore when k =1 then f (t, y1) becomes, using v, (f) solution from above,
the following

F(w) =t

t 1
= —\/t4—t2+8t2+1+16—4

49
=\ H+T7R+ —
4

The above shows that f (t, yl) is continuous and real over the range 0.5 <t <1.5. And

If (by1) 1 ¢

S

B~ =

If(tyr)

becomes
1

Iy 2
Using k =1 in the solution y; (f) the above becomes

af (f:%)
i

t

1
2 t4+7t2+%

2t

1
4

t4+7t2+%

Over the range 0.5 < t < 1.5 the denominator above is never zero. Hence there is no pole and therefore
If(ty1)
!
inside a rectangular around initial conditions given for the value k = 1.

is also continuous and real in the range given. This shows that f (t, y) is Lipschitz continuous

This is not the only k value that could be selected. However the problem is asking for one such k
value.
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3.2.3 Problem 3

3. If a,b and c are positive constants, show that all solutions of ay’ + by +cy =0

approach zero as ¢ — co. If b is set to zero is there any solution with this property;
are there any solutions that are not bounded?

Solution

ay” + by +cy =0
Because the coefficients of the ODE are constants, the solution is found by solving for the roots of
the characteristic equation

aA2+bA+c=0

The roots are
-b 1
A= — =+ —Vb?-dac
2a  2a

Hence the solution is given by linear combination of each solution e', ¢t2!

as

y(t) = creMt + cpet?t

b, Vi2—dac b, -Vb2-4ac
= cngrr e 2a + cngrr e 2

-b Vb2-4ac —Vb2—4act
c1e

t

—e2 2a + e 2

1)

-b
The above shows that since b > 0 and a > 0 then ez will go to zero as t — co. This shows that all

solutions will eventually go to zero.

When b = 0, the solution given by (1) reduces to

\/—4uct —\/—4{ICt
y(t)=cre 22 " +cpe 2

But because a > 0 and ¢ > 0 then —4ac is negative and the discriminant vV—4ac becomes complex and
the above solution becomes
Mt 72iﬁt
y({)=cie 22 " +cpe 2

. [c . [c
1\/jt —iy/=t
=Cc1e vV +cre a

ey o)

The above shows that the solution never goes to zero as t — oo as the solution continues to oscillate.
This happened because the damping term b was set to zero, so there is no loss of energy in the
system as it moves and therefore once the system is set in motion (by some initial condition away
from rest), the system will continue to vibrate for all time.

To obtain unbounded solution, b must be negative while keeping a > 0. In this case the solution in
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(1) becomes

Mt Vb2—4ac ~Vb2-4ac ¢
y(t)=e2 |cie 20 " +cpe 2

b bl )
The above shows that since b < 0 then e2' = ez’ and this will cause the solution to blow up as

increases. Negative damping means there is energy being added to the system as it time increases
instead of the normal case where damping causes energy to be lost from the system with time. This
is why the solution becomes unbounded when b < 0. In Physical systems the damping term is always
positive.

3.2.4 Problem 4

4. Assume that four bugs moving around the floor with their positions given as

wi(t) = [‘;gﬂ ,  i=1,23,4.

They are chasing each other in the following fashion: bug No.1. chasing bug No. 2.,
No. 2. chasing No. 3., No. 3. chasing No. 4., No. 4. chasing No. 1. At any instant
each bug travels at its top speed heading staight towards its target (for simplicity
assume that the top speed of each is the same: unit speed). Write a vector equation
for each bug describing its (vector) velocity in terms of the position of the four bugs.
Give an initial value problem for an 8-dimensional nonlinear system of ODEs that
describes the dynamics of the chase when the initial positions are

w©=[o]. w=[5]. w0 = 3], wo =],

respectively

solution

Analysis of motion

The following diagram shows the initial positions of the four bugs and what happens after At has
elapsed.



126

Initial conditions at t = 0. Position after some At time
|
|
|
2 5 3
o[ a2
| Y
|
|
|
N D A _ _
|
|
A |
|
|
1 : -/
0,00 | (1,0)

Nasser M. Abbasi. ant-l.ipe. 11/11/2018

The four bugs initially are located at the corners of the rectangle. The width is # =1 and the height
is L = 2. Because each bug moves with the same speed toward the bug adjacent to it (in clockwise
direction), then by symmetry, the four bugs will remain on the corners of a rectangle as time increases,
but the rectangle shrinks and rotates clockwise in time as the bugs spiral towards the center of the
original rectangle where they collide. The following diagram illustrates such motion after some At
has elapsed.
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Y axis
1
(0,2) ; 2
|
bug 3
V3
2
1%
bug 1
> 1 axis
(0,0) (1,0)

Showing locations of bugs after some At.
Rectangle is rotating clockwise and rotating in
time. (drawing not to scale)

Nasser M. Abbasi. ant_0.ipe. 11/12/2018

The above shows that at each instance of time, each bug remains at the corner of a scaled down
version of the original rectangle that is rotating. Each bug’s velocity vector is always pointing straight
towards the bug it is chasing. This means that bug’s 1 motion is always at 90° to the path of bug 2.
And bug’s 2 motion is at 90° to the path of bug 3 and so on.

Equations of motion

To obtain the equation of motion for each bug, each bug’s position is considered relative to the bug it
is chasing. Starting with bug’s 1 relative position to bug 2. This is done with the help of the following
diagram
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y axis

1
1
bug 3

bug 4
P 1 axis

Showing relative locations of bug 1 and 2 after some At

Nasser M. Abbasi. ant_2.ipe. 11/11/2018

_dr ()

The position vector of bug 1 is 7 () and the position vector of bug 2 is 7, (). Therefore

9T T
= [o| 7

dr (t) _ |5 | 7o () =71 (1)
dt 7o -7 |

Where 7 is unit vector in the direction from bug 1 to bug 2. Hence the above can be written as

Because [7)| = 1 meter per seconds, then the above simplifies to
dry (t) _ (22t +2f) = (21 + waf)
dt | (xaf + yof) = (af +f) |
Y2—%

~

~

Xy — X1

(dﬁA dij) = i+
\/(xz —xp) + (yz - y1)2 \/(xz —xp) + (}/2 - y1)2

ar ' a
Where x,y, are the coordinates of bug 1 and x,,y, are the coordinates of bug 2. The above gives
the equation of motion for bug 1. Let x] = % and y] = ﬂ%l for bug 1 then the following are the two
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equations of motion for bug 1 as function of its position and the position of bug 2

, X2~ X
\/(xz —x1)" + (_1/2 - ]/1)
vi = 22t ®)

2
\/(xz - x1)2 + (yz - }/1)
The same analysis is now carried out to obtain xj () and y; (t) expressions similar to (3) above for
bug 2.

y axis
1
(T2, 2)
bug 2 = —
- ’T‘-é—;‘_Q\ T bug 3
V2 = Vg =g =~ (eslys)
73
2 “
*bug 1
bug 4
L]

P 1 axis

Showing relative location of bugs 2 and 3 after some At

Nasser M. Abbasi. ant_3.ipe. 11/11/2018

The position vector of bug 2 is 7, (t) and the position vector of bug 3 is 75 (f). Therefore v, = 2l _
where 7 is unit vector in the direction from bug 2 to bug 3. Hence

dr (t) _ 3 | 73 () =7 (1)
dt N7 ) -7, |

Since [0, = 1 meter per seconds then

dry () _ (xal +yaf) = (sl + )
dt || (xs+ yof) = (xaf + o) |l
(dsz dyzA) B X3 =X R Y3 =1 R
— i+ —==j| = I+
o \/(xs —x)* + (y5 - yz)z \/(xs —x) + (y3 - yz)2

Where x,,y, are the coordinates of bug 2 and x3,y; are the coordinates of bug 3. The above gives
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the two equations of motion for bug 2. Using x; = ‘%2 and y; = ‘%2 for bug 2, then the following gives

the two equations of motion for bug 2 as function of its position and the position of bug 3

, X3~ X2
x2 = 5 >
\/(x3 -x)" + (v3-12)
vi= L ®)

2 2
\/(x3 —X)" + (}/3 - yz)
The same analysis is carried out for bug 3 and bug 4, which results in similar equations. Therefore
the final equations of motions in vector form are

X' = f(x)
Or
X () = 1
(ch—X1)2+(yz—y1)2
() = =
(x27x1)2+(y27y1)2
x5 () = =
(Xs—x2)2+(y3—y2)2
vy (1) = —2E
(x3—x2)2+(y3—y2)2
x5 (b = ==
(x4*x3)2+(y4*y3)2
yé () = Y4Y3
(X4—X3)2+(y4—y3)2
AGE L
(x1—X4)2+(y1—y4)2
%’1 () = Y17Ya
(xl—x4)2+(y1—y4)2

With the initial conditions
x1 (0)
y1(0)
x, (0)
¥2(0)
0) = =
R P
y3(0)
x4 (0)
Y4 (0)

The above system of equation can not written as x’ = Ax because the equations of motion are not
linear. These ODE’s have to solved numerically. The following is the result of running the numerical
solution for 1.5 seconds. The code used is listed below. This shows the bugs spiraling down to the
center of the original rectangle as expected.

S P, N P N O O O




131

Solution to the 4 bugs on corner problem

2.0r

> 1.0 / B

0.5 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

odel =x1'[t] == (x2[t] - x1[t])/Sqrt[(x2[t] - x1[t])~2 + (y2[t] - y1[tl)~2];
ode2 =y1'[t]== (y2[t] - y1[t])/Sart[(x2[t] - x1[t]1)~2 + (y2[t] - yi[t]l)~2];
ode3 =x2'[t] == (x3[t] - x2[t])/Sqrt[(x3[t] - x2[t])~2 + (y3[t] - y2[t])~2];
oded =y2'[t] == (y3[t] - y2[t])/Sqrt[(x3[t] - x2[t])~2 + (y3[t] - y2[t])~2];
odeb =x3'[t]== (x4[t] - x3[t])/Sart[(x4[t] - x3[t])~2 + (y4[t] - y3[t])~2];
ode6 =y3'[t]== (y4[t] - y3[t])/Sart[(x4[t] - x3[t])~2 + (y4[t] - y3[t])~2];
ode7 =x4'[t]== (x1[t] - x4[t])/Sqrt[(x1[t] - x4[t])~2 + (y1[t] - y4l[t]l)~2];
ode8 =y4'[t] == (y1[t] - y4[t])/Sart[(x1[t] - x4[t])~2 + (y1[t]l - y4[tl)~2];

sol = NDSolve[{odel, ode2, ode3, ode4, ode5, ode6, ode7, ode8, x1[0] == O,
yl[O] == 0, x2[0] == 0, y2[0] == 2, x3[0] == 1, yS[O] == 2, x4[0] == 1,
y4[0] == 0},

{x1[t], y1lt]l, x2[t], y2[t], x3[t], y3[t]l, x4[t], y4ltl}, {t, 0, 1.5}];

p = ParametricPlot [{x1[t], yil[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4l[tl}
/. sol,

{t, 0, 1.5}, AxesOrigin -> {0, 0},

GridLines -> Automatic, GridLinesStyle -> LightGray, Frame -> True,
FrameLabel -> {{"y", None}, {"x", "Solution to problem 4"}},

ImageSize -> 350]

This problem was also solved for a square instead of a rectangle. The only change needed was to
modify the initial conditions so as to locate the bugs at corners of unit square as shown below. No
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changes are needed in the equations of motion.

x1 (0)
1 (0)
x2 (0)
x(0) = |2 O] _
x3(0)
y3(0)
x4 (0)
y4(0)) \0
The time needed to reach the center in this case is one second. The following plot shows the path
generated for the bugs at the corners of the square.

I e T = =)

Solution to the 4 bugs on corner problem (square version)

0.8

0.6

0.4

0.2

0.0+

3.2.5 Problem 5

5. Determine the long term behavior of the solution (z(t),y(t)) of the following initial
value problem

{x’:—2x—y #(1) =2
y=2r—-y y(l)=4

by determining the limits lim; ,, z() and lim,_,, y(t)

solution
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The system can be written using x’ = Ax as
X)) (-2 -1)(x(®)
v <t>) i [ 2 —1](;/ <t>]
x(@)] (2
[y <1>J i [4]

Where A = 1], The eigenvalues of A are found using det (A — AI) = 0 which gives
-2-1 -1 |
2 a-Al
(2-A)(-1-A)+2=0
A2 +31+4=0

The roots of the above characteristic equation are

-b 1
A=— =+ —Vb —4ac

2a  2a

3 1
J_rE\/9—4(4)
1

+-V-7

2
-3
2 72
-3
2

+ V7

2

Therefore the roots are

Ay = —2 —j22
1=77715
3 A7

= —— 41—
Ma=-3+i5

The above shows that the solution will go to zero for large t since the eigenvalues have negative real part.
The system is asymptotically stable. The complex conjugate parts of the eigenvalues give solutions

that will oscillate with frequency g rad/sec. To obtain the actual solution the eigenvectors are now
found for each eigenvalue. Since the eigenvalues are unique, then there is one eigenvector for each
eigenvalue.

For Ay =-- - i?
(A - All) V1 = 0
3 7
2 -1- (_§ - 1ﬁ) () 0
2
Let v, = 1. The first equation gives -2 - (—é —1—) v1-1=0o0rv = ! ! - =
2
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Livr-1 N N
2 2 = 2——*% =i~ — .. Hence the first eigenvector is

T

3.7
For /12 =-3 + 17
(A - A2D vV, = 0
3., .7
3 \ﬁ - 0
2 -1- (_E + 17) (%]
1,51
Let v, = 1. The first equation gives -2 — (—g + i?)vl -1=0o0rv = 2_(_1{%) = ,li\lﬁ,l =z 5 2 =
2 2
ii 7- }L . Hence the second eigenvector is

A7 1
1

Using the above two linearly independent eigenvectors, the two basis solutions are

X1 = VleAlt

X, = voettt
The solution is a linear combination of the above solutions
X = (1X1 + C1Xp

The solution is converted to real solution by taking the real and imaginary part of one of the basis
solution above. Therefore

x3 = Re(x)

xg = Im(xp)
The solution becomes

X = (3X3 + CqXy (1)
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But
[(_¥7 _1
Re (x;) = Re 4 4feMt
| 1
V7 a1 g
1—e'lt — -
= 4
Re i ]
.7 3 7
Ll )
= Re 4
frd)
—i—eTt(COb[t—zslnft)——eZ (cosft—zsm[t)
= Re 3
ez (cos\/;t—lsm\/;t)
[7 3¢( . 7 . [7 1 3 7. .. 7
—e2 (—zcos\/tt—sm\/tt)——ez (COS\/jf—lSIH\/tt)
— Re 16 4 4
ez (cosft—zsmft)
1315 7 .
—Re ez (—,/Esm\/;t—zcos\/;t)ﬂez ( w/ cosft+ sm\/rt)
e%Stcos\/Z—ze2 sm\/tt
4 4
= 7. \/7 1 7
B ez (— 1 Sin Jt—gcos Zt) 5
- 5 (2)
ez2 cos\/;t
And

3 -3
=y [7 . 7 1 7 . 2 [7 7 1 . 7
2 (— 1—6s1n\/;t—zcos\/;t)+162 (— Ecos\/;t+zsm\/;t)
-3 -3
—t 7 L=t . 7
ez2 cos\/;t—lez sm\/;t
7 ( 1/ cosft+—sm[t)
= (3)
—-e2 sm\/Zt

Using (2,3) in (1) gives the solution

Im (x;) = Im

x =c3Re (xl) + ¢4 Im (x7)

{x(t)]zc3 ez ( fsnft——cos[t) e? ( fcosfﬂ—smft)
y () ez cos\/;t —e? sm\/Zt
o o o) S 2) )

y () \ft) 34 (\ft)

2y
c3e2 COoS (— —4e2 sin
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Therefore

_ 2 V7 (V7)1 \7t =1 \7 N AN R

X(t)—C3€ —TS 2 _ZCOS T + cye —TCOS T +ZSIH T
-3, [\/71?] 3, (\/71‘]
y(t)—c362 cos —c4e 2 sin BN

2

= V7 (V7 1 V7t V7 V7t) 1 . (V7
x(t)—ez (63[_78 [ > ]—ZCOS[T)J+C4[—TCOS[T]+ZSIH(TJ]]

o)
y(#) =e2"|c3cos - — ¢y 8in -

Let C; = ¢3 and C, = —c3, and the above becomes

x(t)Z—EIe;t[Cl\ﬁsin \/_t]+Clcos(\/_t] \/_Czcos(ﬁt]+Czsm(\/_t]]

2

yt)=ez (Cl cos(\/_t +Cy sm(\/z_tJ) (4)

2

Initial conditions are now used to find C;,C,. At t =1 the above becomes

12 (V7 V7 V7 (V7
2=—162(C1\/§s1n 2]+C1COS( ] \/_Czcos[ ]+Czsm[7J]

= V7 (V7
4=¢2 [Cl cos [7] + C, sin {?]]

In system form the above becomes

) —316_73 7sin(¥)—%e%3 cos(?) 318_73 7cos€¥)—jze_23 sin(%) Cy
(4] > (\ﬁ 2 sin [ )

e2 cos

)
[—0.156 76 -0. 01786] [E ]

0.05475 0.21631

C
Solving for {Cl) by elimination gives
2

Ci| [-15.307
C,] | 22367
Using these constants in the the solution (4) results in

x(t) = —}Le% [(_15.307) Wsin[\/;t] 15.307 cos[\/z_ ] V7 (22.367) cos [‘ft] +22.367 si n(\/_t]]
y(t) = et [—15.307 cos[\/jt] +22.367 sm(\/z_t))
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18 7t 7t 7t 7t
x(f) = —Ze 2! (—40.499 sin [%] —15.307 cos [\/_T] —59.178 cos (\/_T] +22.367 sin [\/_T)]

y(t) = o7t [—15.307 oS (@] +22.367 sin [@]]

Simplifying the above using trigonometric relations gives

x(t) = —}Le_?st [_74.485 cos (@] —18.132sin [ﬁ]]

2

y(t) = et {—15.307 oS [?] +22.367 sin (@D

x(t) = 3_73t [18.621 cos [@] + 4.533 sin (ﬁ])

2
y(b) = et {—15.307 oS [@] +22.367 sin [?J] (5)

The above shows that due to the exponentially decaying term in the solution, then

x(o))
lim —
t—oo y (t) 0

The following is a plot of x(t) and y (t) for ¢ from 1 to 5 seconds showing both solutions go to zero
-3

quickly due to the 2" term.

Solution x(t) Solution y(t)
2 4.+
15 35
’ 3.+
1 25
= £ 2r
X 0.5 >
1.5+
0. 1.+
0.5F
-0.5F
0.r
1. 15 2. 25 3. 35 4. 45 5 1. 15 2. 25 3. 35 4. 45 5.

tsec t sec
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ClearAll[t];

myXSol=Exp[-3/2 t](18.621 Cos[Sqrt[7] t/2]1+4.533 Sin[Sqrt[7] t/21);
myYSol=Exp[-3/2 t](-15.307 Cos[Sqrt[7] t/2]1+22.367 Sin[Sqrt([7] t/2]1);
pl=Plot [myXSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{"x(t)",None},{"t sec","Solution x(t)"}},
PlotStyle->Red,

GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,

FrameTicks->{{Range[-1,2,.5] ,None},{Range[0,5,.5] ,None}}];

p2=Plot [myYSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{"y(t)",None},{"t sec","Solution y(t)"}},
PlotStyle->Red,GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,
FrameTicks->{{Range[-1,4,.5],None},{Range[0,5,.5] ,None}}];

p=Grid [{{p1,p2}}]

3.2.6 Problem 6

6. Find the general solution of the homogeneous linear second order differential equa-
tion

3t2y”—|—ty'+y — 0

(Hint: look for solution as a t—power).

Solution
32y +ty' +y =0
Since the powers on the t coefficients match the order of the derivatives in each term of the ODE,

then this is called the Euler ODE. Its solution can be found by assuming solution has this form
(Using the hint given)

y) =t @
Therefore
y = at*!
Yy =a(a-1)t2
Substituting these in the original ODE gives the characteristic equation to solve for a
3ta(a -1t 2 + tat® 1+t =0
Sa(a-Dt*+at*+t* =0
Ba(@-1)+a+1)=0
Since t* # 0 (else this will result in a trivial solution), the characteristic equation is 3a (@ —1)+a+1 =0
or

302 -2a+1=0



Using the quadratic formula, the roots of the above characteristic equation are
1 1
a == +-iV2
17373
1 1
a==—-=iV2
273 3
The solution is a linear combination of the basis solutions %1, %2, Hence

y () = cq 11 + ¢t ™2
1 1\/2)

1 1.
2tz 2=l 2)
_Clt(3 3

+ Czt(3 8

lli\/i ll\/i

=y #3453V 4 pt3t 5

1 1. 1.
=55 (clté“ﬁ + czt_gﬂ/i)

But
i _ eln(t%iﬁ]
_ e%ix@lnt

And

-1.
i
t%ll\/i = eln[t ’ ]
- e%li\/ilnt
Using the above two equations in (2) then the solution (2) becomes

1 1. -1.
y(t) =13 (Clegl\/ilnt + Cze?zﬁlnt)

Using Euler relation the above solution is written using sin and cos to become

1=} (Creon(22) sy 22

3.2.7 Problem 7

7. Compute the general solution of the following linear constant coefficient system of

ODEs

Y1 =3y1+2y2 + s
Yo = —y1 + 3y + 2y3
Y3 = Y1 — 3y2 — 2y3

139

2)
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Solution

V1= 31+ 202 + s

Yo =1+ 32 +2y;

Y3 = Y1~ 3Y2 =2y

The system is written using y’ = Ay as
vi® (3 2 1)(n®
y®O|=-1 3 2|y®
y3 () T -3 =2){ys ()

3 2 1
Where A=|-1 3 2 | The eigenvalues are found by solving det (A —IA) = 0 which gives
1 -3 -2
3-4 2 1
-1 3-A 2 [=0
1 -3 -2-A

A3 —4A2 441 =0
(12-41+4)1=0
A-2)(A-2)A=0
Hence the eigenvalues are
A =0
Ay =2

Where A, has algebraic multiplicity 2. The eigenvector associated with A; = 0 is now found and then
an additional two two linearly independent eigenvectors are needed that are associated with the
second eigenvalue A,. The eigenvector v, is found as normally done by solving

(A-MDv=0
3-144 2 1 1 0
-1 3-X1 2 v =10
1 -3 2-A1)\v; 0
3 2 1} 0
-1 3 2|lv]|=]0
1 -3 -2J\vs 0

This gives three equations
3'1]1+27)2+U3 =0
-0 + 37)2 + 2’03 =0

’(')1—3?)2—2’()3=0
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Let v; =1, then the above becomes
20y + U3 = =3
30, + 2053 =1
-30v, - 203 = -1

-3-v3
2

-3-v3

The first equation above gives v, =

-3-11
1, or v3 =11. Hence v, = — =7

. Substituting this in the second equation gives 3 ( )+ZU3 =

Therefore the eigenvector associated with A, =0 is

V1: '—7
11

For the eigenvalue A, = 2, which has algebraic multiplicity 2, it is first checked if it is defective
eigenvalue or a complete one. A complete eigenvalue is one with an algebraic multiplicity m and
an geometric multiplicity m as well. When this is the case, then m linearly independent eigenvectors
associated with the eigenvalue can be found.

However, if the eigenvalue is defective, which means its geometric multiplicity is less than m, then
it is not possible to find m linearly independent eigenvectors from the eigenvalue. In this case the
defective eigenvalue algorithm is used to find the remaining linearly independent eigenvectors. Note
that geometric multiplicity can not be larger than the algebraic multiplicity.

Now a check is made to determine if the eigenvalue A, = 2 is defective or complete. The geometric
multiplicity of an eigenvalue is the dimension of the null-space of the matrix A — A,I given by

3-1, 2 1
A-Ah=| -1 3-1, 2
1 3 —2-2,

1 2 1

=l-1 1 2

1 -3 -4

The null space of the above matrix is now found. By the Rank nullity theorem of linear algebra,
which says

column rank (A) + nullity (A) = dimension (A)

Then the column rank needs to be found as well. This is done by converting the matrix to reduced
row echelon form as follows

1 2 1 1 2 1 1 2 1

1 A IV S W R Sl IO

1 -3 -4 1 -3 -4 0 -5 -5
Rochsr R, 1 21 Rzzi 1 21
S0 3 30 S o1 2
00 0 000

The above is in reduced row echelon form. The number of columns with 1 on the diagonal is the
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column rank. The above shows the column rank is 2. Using the rank nullity the dimension of the
null space is now found as follows
nullity (A) = dimension (A) — column rank (A)
=3-2
=1
Therefore the geometric multiplicity is 1 which is less than the algebraic multiplicity 2. This means

only one eigenvector can be obtained directly from A, since this eigenvalue is defective.

The defective eigenvalue method is used next to find the second eigenvector associated with A,. In
this method the first eigenvector from A, is first found as is done normally by solving

(A-AD)vy =0
3-4, 2 1 (2 0
-1 3-A 2 v [ =10
1 -3 2-A)\v; 0
1 2 1)y 0
-1 1 2|]v]|=]0
1 -3 —4)\vs 0

This gives the three equations
U1 +20,+03=0
01+ 0+ 203 =0
U1 — 30, —4v3 =0
Let v; =1, then the above becomes

2?]2 + 03 = -1

Uy + 21)3 =1
—31)2 - 41)3 =-1
From the first equation v, = % and from the second equation —1;;3 + 203 =1, or v; = 1. Hence
vy = % = —1. Therefore the first eigenvector associated with A, is
01 1
Vo =107 = -1
U3 1

The second eigenvector associated with A, is given by
V3 =1tVvy+D

Where p is the solution to

(A=A p=v,
1 2 1]|(pm 1
-1 1 2 (lp2|=1-1

1 -3 —4){ps) |1
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The above gives the equations
p1t2p2+ps=1
—p1+p2+2p3=-1
p1—3p2—4ps =1

Let p; =1, and the above becomes
2pp+p3 =0
p2+2p3 = -2
—3p2—4p3 =0

The first equation gives p, = %. Hence the second equation becomes % +2p3 = 0. Therefore p; =0
and therefore p, = 0. Which results in

1
p=]|0
0
Therefore the third eigenvector is found from
V3 =1tV + D
1 1
=t[-1[+]0
1 0
The three eigenvectors are the following
1 1 1 1
vi=|-7|,vo =|-1],v3=¢t[-1|+]|0
11 1 1 0
The solution can now be written as
y () = c1eMtvy + ey, + czettv,
Since A; =0 and A, = 2 then the above becomes
1 () 1 1 1) (1
Yo ()| = o1 | =7 [+ coe® [ -1 [+ c3e® |t -1 +|0
y3 () 11 1 1 0

Which can be simplified to
Yy (£) = c1 + cpe? + cze? (H+1)
y2 () = =7c1 = ¢
y3 (t) = ey + cpe? + cate?® (1)

t_ Cs teZt

To plot these solutions, the following arbitrary initial conditions y; (0) = 0,1, (0) = 0,y3(0) = 1 are
used

Ut (0) 0 C1+C+C3
wO)|=10[=[ -7c1 -
Y3 (0) 1 11C1 + 0
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Solving, this gives ¢; = 411’02 = —Z,c3 = ; Therefore the above solution (1) becomes
y1 (t) 411 —;eﬂ + geZt (t+1)
7 7o 3,0
AU y + ; e te
170t 3,2t
y3 (t) 1 1 + 2t€

The following is a plot of the solution for these initial conditions. The solutions are not stable, since
they grow in time.

solutions to problem 7

60
a0t
_ — y1(t)
201 y2(t)
Lot y3(t)
2.0
_20 L

ClearAll[t,y1,y2,y3];

myy1=1/4-7/4 Exp[2 t]1+3/2 Exp[2 t](t+1);

myy2=-7/4+7/4 Exp[2 t]1-3/2 t Exp[2 t];

myy3=11/4-7/4 Exp[2 t]1+3/2 t Exp[2 t];

Plot [{myyl,myy2,myy3},{t,0,2},GridLines->Automatic,GridLinesStyle->LightGray,
ImageSize->300,

AxesLabel->{"t","solutions to problem 7"},
PlotLegends->{"y1(t)","y2(t)","y3(t)"}]

3.2.8 Problem 8

8. Explain why y(t) = cost -+ sin 2¢ cannot be a solution to a constant coefficient ODE

of the form y” + ay’ + by = 0, with a,b € R. Find an ODE with rea] coefficients of
order greater than 2 that y(¢) does satisfy.

Solution

y (t) = cost+sin 2t can not be a solution to y” +ay’ + by = 0, because both basis solutions (these are the
linearly independent solutions sin and cos) must oscillate with the same frequency. The frequency of
oscillation of a second order system with no forcing function is called the natural frequency of the
system. There is one unique natural frequency for a second order system.
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This frequency comes from finding the value of the discriminant of the characteristic equation of the
ODE (since it is constant coefficient). To illustrate, the general solution of the second order ODE is
found to show that the proposed solution is not possible. The general solution of the above ODE is

Aqt Aot

y(t) =ce

Where A, , are the two roots of the corresponding characteristic equation A? +aA +b = 0. These roots
are

+ Cpe

Therefore the roots are

The general solution to the given ODE is linear combination of two linearly independent solutions
eMt ed2t one for each root, which results in

(—g+ a2—4b)t (—g—\/az—élb)t

y () =cqe + e

a
—=t Va2— V2=
—¢ 2 (cle a 4ht+C2€ a 4bt)

a
. - . . . . —5t .
c1, ¢, are determined from initial conditions. Since the proposed solution given does not have ¢ 2" in

a
it, then this implies that a = 0 (this is the damping term), and since ¢"2' =1 then the solution reduces
to

y(@t) = creV4t 4 o VAl

Since the proposed solution is made up of trigonometric functions, it must be that b > 0 in order to
make —4b negative and obtain a pair of conjugate complex roots. The solution now becomes

]/(t) — Clezi\/l;t + Cze—Zi\/Et
Expressing this in terms of trigonometric functions using Euler relation results in

y(#) = cq cos (\/l;t) + ¢y sin (\/Et)

The above shows that the solution can not be y (f) = cos + sin 2t since Vb can not equal 1 and 2 at
the same time.

Another way to show that y (t) = cost +sin 2t is not be a solution, is to simply substitute this solution
into the ODE and obtain a contradiction as shown below.

Since y’ = —sint + 2cos2t and y”’ = —cost - 4sin 2¢, the ODE now becomes

(—cost—4sin2t)+a(—sint +2cos2t) + b(cost +sin2t) =0
(-1 +b)cost—asint+ (-4 +b)sin2t =0
Because the RHS is zero, this implies that

-1+b=0
-4+b=0
-a=0

The first equation gives b =1 and the second equation gives b = —4 which is not possible.
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To obtain an ODE with such a solution, the ODE has to be of order 4. This is to obtain two different

natural frequencies (A 4" order ODE can be written as two separate second order ODE’s). Let the
ODE be

y"" (t) + Ay () + By” () + Cy' (£) + Dy () = 0 1)
Given that
Yy =cost+sin2t
Yy = —sint+2cos2t

Yy’ =—cost—4sin2t

Yy
Yy’ =cost +16sin2t

44

=sint - 8cos2t
Substituting the above into (1) gives

(cost +16sin2t) + A(sint — 8 cos2t) + B(—cost —4sin2t) + C(—sint + 2cos2t) + D (cost + sin2t) =0
Collecting terms based on the trigonometric function gives

(1-B+D)cost+(A-C)sint+ (16 —4B + D)sin2t + (-8A +2C)cos2t =0

A solution is obtained by setting all the coefficients above to zero which results in the following four
equations to solve for A,B,C,D

1-B+D=0
A-C=0
16-4B+D =0
-8A+2C=0

These are solved by elimination. From the second equation A = C. The fourth equation gives
-8C +2C =0 or C = 0. Hence A = 0. From first equation B =1 + D, hence the third equation gives
16-4(1+ D)+ D =0, or D =4 and therefore B = 5. The solution is therefore

A=0
B=5
C=0
D=4
Using these in (1) gives
Y (1) + 5y (1) + 4y () = 0 )

The proposed solution y (t) = cost + sin 2t now satisfies the above ODE. There will be four constants
of integrations (since this is a 4" order ODE), and therefore two of these constants must be set to
zero using the appropriate initial conditions. To find which constants are needed to set to zero, the
above ODE is first solved. The characteristic equation of (2) is

AM+502+4=0
(12+1) (A2 +4)
The roots are A; = +i, A, = +2i. Therefore solution to (2) becomes

y(t) = cre + cpe™™ + c3e?t + cue7?i
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Using Euler relation the above is written in trigonometric functions as
y(#) = cycost+cysint + c3 cos2t + ¢4 sin 2t (3)

To obtain the proposed solution y (t) = cost +sin 2t implies that the constants must have these values

¢ =1
¢, =0
c3=0
cp =1

The initial conditions which would lead to these constants having these specific values are now found
as follows. From (3)

y(0)=c1+c3
Since y’ (t) = —cq sint + ¢, cos t — 2c3 sin 2t + 2¢4 cos 2t then
¥ (0) =c + 24
And since y” (t) = —c; cost — ¢; sin t — 4¢3 cos 2t — 4c, sin 2f, then
Y’ (0) = —c; —4c3
and finally since y"”’ (t) = c; sint — ¢, cos t + 8c3 sin 2f — 8c4 cos 2t then
Yy (0) = —c, — 8¢y

Since ¢; =1,¢, =0,¢3 = 0,¢4 =1, then the above initial conditions become

y(0)=1

y(0)=2
y’(0)=-1
y”(0)=-8

The above initial conditions will now give the solution
y(t) = cost +sin2t
For the ODE
y" () +5y" () + 4y () =0
The following is a plot of the solution
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Problem 8 solution
y(t)

1.5

1.0

0.5
— (sec)

-0.5

-1.0

-15

Plot[Cos[t] + Sin[2 t], {t, O, 20}, PlotStyle -> Red,
GridLines -> Automatic, GridLinesStyle -> LightGray,
AxesLabel -> {"t (sec)", "y(t)"},
PlotLabel -> "Problem 8 solution"]
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3.3 Third exam

3.3.1 Problem 1

1. Let z(t) and y(t) denote the population sizes of two biological species. If the two
species are not competing for resources (occupy different biological niches) then a
simple logistic model could be feasible to describe the dynamics of their coexistence.

' = ax — biz®

Y = axy — boy”.

If however the two species are direct competitors, then their access to resources and
their population growth rate could be reduced by a quantity that is proportional
to the size of the competing species’ population, leading to a competition system
model

= az —biz? — czy

y’ = a2y — b2y2 — CY.

Assume that in a competition system (with appropriate units) the coefficients are

given as
&1:60, a2:42, b1:3, b2:3, 6124,' 02:2,

and determine all equilibria of the system as well as their corresponding stability
properties. Give a short interpretation of your results in terms of the long term
species dynamics (as t — 00).

Figure 3.1: Problem 1 Statement

Solution
x' = a;x — byx? — cixy
Y = apy — boy? — cpxy

Using the values given in the problem, the above equations become

x' = 60x — 3x2 — 4xy (1A)
y' =42y - 3y% — 2xy (1B)
Or
X' = (x,
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Equilibrium points are found by setting f (x, y) =0 and g(x, y). This results in the following two
equations to solve for x,y

60x — 3x% — 4xy =0 1)
42y -3y -2xy =0 (2)

The first equation (1A) becomes x (60 -3x - 4y) = 0 which then gives one solution as

x=0 @)
And 60 - 3x — 4y = 0 gives another solution as
60 - 4y
= 4
= )
The second equation (1B) becomes y (42 -3y - 2x) = 0 which gives one solution as
y=0 )
And 42 - 3y - 2x = 0 gives another solution as
42 - 2x
= 6
y="3 (©)

3 2

When x = 0 then (6) results in y = % =14. When x = @ then (6) results in y = 2
60-46) _ 15

3

3 =3y

or y = 6. Hence in this case x =

Similarly, when y = 0 then from (4) x = 60-4(0)

points. These are

= 20. The above shows that there are 4 equilibrium

x=0,y=0

x=0,y=14
x=12,y=6
x=20,y=0

To determine the type of stability of each equilibrium point, and since this is a nonlinear system,
we must first linearize the system around each equilibrium point in order to determine the Jacobian
matrix.

Once the system is linearized, then the eigenvalues of the Jacobian matrix are found in each case.
From the values of eigenvalues we can then determine if the system is stable or not at each one of
the above four equilibrium points.

The first step is then to linearize f (x, y) and g(x, y) around each of the equilibrium points. If we
assume the equilibrium point is given by x,y, then expanding f (x, y) in Taylor series around this

point gives

af (x,y)

af (x,
f(.X'O +Ax,y0 +Ay) :f(XOIyO) + o f(x y)

dy

(Ax + Ay) +

Xo0.40

(Ax+Ay) + -

X0/Y0

But f (xo, yo) = 0 since it is what defines an equilibrium point, the above becomes, after ignoring
higher order terms since we are assuming small Ax, Ay

af (x,y)

af (x,
f<x0+Ax,yO+Ay) =— f(x ]/)

(Ax + Ay) + oy

X0/Y0 X040

(Ax + Ay)
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Similarly for g (x, y) we obtain the following

g (x, y)

g (x,
g(xo + Ax,yo + Ay) = P 8 (x y)

(Ax + Ay) + oy
X0.4%0 X0,Y0
Therefore a linearized f, g functions at the equilibrium point become
o
f (xo + Ax,yo + Ay) _ Ix 9|40 [(Ax + Ay
g (xo + Ax,y + Ay) 28 Ax + Ay

(Ax + Ay)

X0.Y0

2
P

F)
ovo  Yxowo

Replacing the original nonlinear f (x, y) ,8 (x, y) by the above linearized (approximation), the system

can now be written as
, of  9f
)7z =
Y dx  dx/JX=X0 y

¥=Yo
o I
Where [gg gg] is called the the Jacobian | matrix. Hence the system now can be written as
ox  ox
¥ =[x

Now J is determined. From

Jdf d

- = 52 (60 =3+ —4xy) = 60— 6x — 4y

af d

8_y = 8_y (60x 3x? —4xy)

ag d

5= 5o (42 -3y - 2vy) = -

938 _9 _

5y = 3y (42y - 3y% - 2xy) = 42 - 6y - 2x
The Jacobian matrix becomes

J= 60 — 6x — 4y —4x

-2y 42 - 6y - 2x
*Y=Xo.y=Yo
And the linearized system is
x| [60—6x—-4y —4x x
v) | -2y 42 -6y - 2x y
xX=X0,y=Yo

Now each equilibrium point is examined using the above linearized system to determine the type of
stability a that point.

case xo =0, =0

_(60-6(0)-4(0) ~4(0) (60 0
B -2(0) 42-60)-20)) o 42
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Hence the linearized system at this specific equilibrium point is

x| (60 0 |[x
v) Lo 42y
Since | is a diagonal matrix, its eigenvalues are the values on the diagonal. Therefore 1; = 60,1, = 42.

Since the eigenvalues are positive, then this equilibrium point is not stable.

case xp = 0,9 =14

[ 60 — 6(0) — 4 (14) -4(0) (4 o0
- -2(14) 42-6(14)-2(0)) |-28 -42

Therefore linearized system at this specific equilibrium point is

F)-L o

4-A 0
-28 —42-A
the eigenvalues is positive, then this equilibrium point is not stable.

The eigenvalues can be found by solving =0 to be A; = 4,1, = —42. Because one of

case xp =12,y =6

_(60-6(12) - 4(6) ~4(12) _(-36 -48
- ~2(6) 2-66)-2012)) (-12 -18

The linearized system at this specific equilibrium point is
x| [-36 -48|(x
y) |-12 -18)ly
The eigenvalues can be found to be A; = -52.632, 1, = —1.368. Since both eigenvalues are now negative,

then this equilibrium point is stable.

case xg =20,y =0

(60 -6(20) - 4(0) ~4(20) (60 -80
B -2(0) £2-60-220)) (o 2

The linearized system at this specific equilibrium point is
x| [-60 -80](x
y) L0 2 )y
The eigenvalues are A; = 2,1, = —60. Since one of the eigenvalues is positive, then this equilibrium

point is not stable.

Summary of results obtained so far




equilibrium point | eigenvalues type of stability
x=0,y=0 AL =60,1, =42 not stable (nodal source)
x=0y=14 A =4,1,=-42 not stable (Saddle point)
x=12,y=6 A = -52.632, A, = —1.368 | stable (Nodal sink)
x=20,y=0 A =2,A, = -60 not stable (Saddle point)
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To verify the above result, the phase plot for the original nonlinear system was plotted on the

computer and the equilibrium points locations highlighted. The plot below agrees with the above
result when looking at direction of arrows around each point. We see that the direction field arrows
are all moving toward the stable point from any location near it. The stable equilibrium point was
colored as green while the unstable ones colored in red.

ClearAll[x, y];

fl=60x-3x"2-4xy;
f2=42y-3y"2-2xy;
StreamPlot[ {f1, 2}, {x, -5, 25}, {y, -5, 20},

Epilog -» { {Red, PointSize[0.03], Point[{ {0, @}, {0, 14}, {20, 0}}1},

{Green, PointSize[.035], Point[{{12, 6}}]1}},

BaseStyle » 12,
ImageSize - 400]

Alignment - Center],

PlotLabel - Column[{"Phase plot for problem 1", "Showing location of all equilibrium points"},

Phase plot for problem 1
Showing location of all equilibrium points

>

Figure 3.2: Phase plot for problem 1

Interpretation of results Since the solution of the linearized system can be written as linear combi-

nation of solutions made up of terms that look like c;e* where c; are constants of integration and A;
are the eigenvalues found above, then this implies when the real part of the eigenvalue is positive the
solution will increase with time, moving away from the equilibrium point. Similarly, if the eigenvalue
has a negative real part, it means it is a stable solution because solution will decay with time when

perturbed slightly from the equilibrium.

Since this is second order system, there are two eigenvalues. Even if one eigenvalue is stable (i.e.
negative), if the other eigenvalue is positive, then the system is unstable since one part of the solution

will keep growing with time.



154

In terms of the dynamics of species, it means if the populations x = 12 and population y = 6, (this
is the stable equilibrium) then these population will remain the same in long term even when one
population becomes a little more or less than the other population. But for all other equilibrium
populations sizes, such as x = 20,y = 0, then if the population y were to change slightly to become say
y =1 (may be by external influence) then this will cause both population to start changing, moving
it away from x = 20,y = 0 as time increases, hence x = 20,y = 0 is not stable population size.

This seems to be sensitive to the parameters a;,b;, c; given in the problem. It is not easy to give a
more physical reasoning as why some population values is stable while other are not, other than to
also note that all the unstable ones had at least one population at zero.

3.3.2 Problem 2

- 2. Use Laplace transform to solve the following initial value problem for y(%) :

det if 0 <t <2
" / e
y ”5y+6y'{ 0 if t>2

Figure 3.3: Problem 2 Statement

Solution

The ODE can be written as
y” =5y + 6y =4el (U()-U(t-2)
=4(c'U(t) - U (t-2)

Where U (f) is the unit step function. In the following solutions, these Laplace transform relations
obtained from table are used

1

U o -

s

1
U(t-1)e —e™

s

1
() & ——
S+«

sin (wt) & ———
(@h) s2 + w2
s

cos(wt) & ——=
@) $2 + w?
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Assuming & [y (t)] = Y (s), and using the above relations of Laplace transform we find

_ 1
ZldUu)|=—
[e ( )] s—1
-2(s-1)
-1

Now, taking the Laplace transform of the ODE results in

Zeu-2)]= 2

1 e—2(s—l)
(¥YK@—sy®)—y%m)—SGY@)—y«D)+6Y@):4(;r1— s—l)
Using y(0) =1,y (0) = -2 the above simplifies to
4 4 —2(s-1)
(Y (9 =5+2) =5(Y (5) =) +6Y(5) = — - 2-1
—2(s-1)
s2Y (s)—s+2—-55Y(s) + 5+ 6Y(s) = i - gt
s=1 s—1
—2(s-1)
Y(s)(52—55+6)—s+7= ;%1— 4es—l
—2(s—-1)
Y(s)(sz—55+6) = ﬁ— 4es_1 +(5s-7)
But (s2 —b5s+ 6) = (s —3)(s —2) and the above becomes
B 4 4e%e7% (s—7)
Y 6-96-2 6-D6-96-2 ' 6-96-2 @

These are now simplified by partial fractions. The final result is only shown for brevity, since the
process of performing partial fraction is a standard one.
1 1 1 1
G-D6-9G-2) 2(6-3) s-2 26-1

And
s—-7 4 5
(s-3)(s-2) s-3 * s—2
Using the above result back in (1) results in

2 4 2 2 4 2 4 5
Y — _ _ 2,25 _ _
©) s-3 s—2+s—1 ee ((5—3) s—2+(s—1)) s—3+s—2
2 1 2 2% 4o 2%
= + + ] (2)
s-3 s-2 s-1 (s=3) s-2 (s-1)
Now we apply the inverse Laplace transform. lookup table is also used for this purpose to obtain
1
2771 (—) = 203
s-3

1
N PR Y
< (5_2) e

2. 71 (L) et
s—1
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And
-1 e 3(t-2
277 —— ) =282 (- 2)
s—3
1 e 2(t-2
47 = 42D (t - 2)
s—2
-1 e -2
27 1 =2eEDU (t-2)

Putting all these results back into (2) gives the response in time domain as
y(t) = =263 + ¢ + 2¢ — &2 (ZeS(t‘z) — 462t-2) 4 Ze(t_z)) ut-2)
The above can also be written as
y(t):{ 263 + ¢ + 2t 0<t<2
—263 + 2t 4 Dt — 2 (2@3t — 40 4 2et) t>2
Since the original ODE is not stable (due to damping term —5 negative in the given ODE, the solution

will blow up with time). This is seen by the solution above, where the exponential are all positive,
hence growing with time. The following is a plot of the above solution for up to t =2.2

ClearAll[t];
mysol = -2e3t + e?t 4+ 2" - @2 (2 e3(t-2) _ge2(t-2) 4 2e(t'2)) UnitStep[t - 2];
Plot [mySol, {t, 0, 2.2},

Frame -> True,

FrameLabel » {{"y(t)", None}, {"t (sec)", "Solution to problem 2"}},
GridLines - Automatic, GridLinesStyle -» LightGray, PlotStyle - Red]

Solution to problem 2

—200 |
—400 |
—600 ]

~800 - |

~1000 L. A
0.0 05 1.0 15 2.0

1 L L L L 1 L L L L 1 L 1

t (sec)

Figure 3.4: Plot of solution for problem 2
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3.3.3 Problem 3

3. Solve the following linear system using Laplace transform

Yy, +5y1 +y2 =0
Yy — 2y1 + 2y, =0

y1(0) =3
y,(0) =0
ya(0) =1
y2(0) =0

Figure 3.5: Problem 3 Statement

Solution
Let Y{(s) =& [yl (t)] and let Y, (s) = & [yz (t)]. Taking Laplace transform of the two ODE’s gives
s2Y1 (s) —sy1 (0) = 5 (0) +5Y7 (s) + Y, (s) =0
$2Y (5) = 52 (0) — 3 (0) = 21 (5) +2Y, (5) = 0
Substituting the given initial conditions results in
s2Y; —=3s+5Y;+Y,=0 (1)
Y, —5s—2Y; +2Y, =0 (2)
The above two ODE’s are now solved for Y (s), Y5 (s)
Y (s2+5) + Y, =3s
Y, (s2+2)-2Y; =s

[

or
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Using Gaussian elimination: Adding (ﬁ) times first row to second row gives

s> +5 1 Y, 3s
0 2+2+2 v, s+
s 52+5 2 ST s

[s2+5 1 )[Yl] [ 3s ]
1 (4 2 s (2
0 = (st+72+12))(v2) (25 (2+11)

Back substitution: From last row
5 (2
— (s +11
YZ (S) _ - 5245 ( )
= (s +7s2+12)
s (s2 + 11)

T4+ 7524+12

s (s2 + 11)

T (2+4)(2+3) @

First row gives
(s2+5) Y1+ Y, =35
Using Y; (s) found from (3), the above becomes
s (52 + 11)
(32 + 4) (52 + 3)
3s s(s?+11
B e R ((sz : 4))(52 +3) W

To obtain the time domain solution we need to inverse Laplace transform (3,4). Starting with (3),
and applying partial fractions gives

(s2+5)Y; =3s-

s (s2 + 11) 85 75

A ENUA T ETEY R P g

)

From tables we see that

83‘1[ ’ ]= 8COS(\/§t)

3+ 52

7771 [ —isz] =7 cos (2t)

N

Hence (5) becomes in time domain as
Yo (t) = 8cos (\/gt) —7cos (2t)
Similarly for Y7 (s), from (4) and applying partial fractions

3 s(sz+11)
N S A S Y Y ey

: 3s 4s 7s 3s 6
_(52+5)_(52+3_52+4+5+52) (©)




From inverse Laplace transform table

371 (st—+5) = 3.cos (V5t)
471 [52 — 3: = 4cos (V3t)
777 5o | = 7cos @0
371 [5 ESZ: = 3 cos (V5t)

Using these in (6), the solution y; (t) becomes

y1 () =3 cos (\/gt) - (4 cos (\/gt) —7cos(2t) + 3 cos (\/gt))

In summary

= -4 cos (\/gt) + 7 cos (2t)

vy (t) = —4cos (\/ét) + 7 cos (2t)
Y2 (t) = 8 cos (V3t) = 7 cos (21)

The following is a plot of the solutions for 10 seconds.

ClearAll[yl, y2, t]

yl = -4Cos[«/? t] +7Cos[2t];

y2 = 8Cos[«/? t] - 7Cos[2t];

Plot[{yl, y2}, {t, @, 10}, Frame - True,

FrameLabel » { {"y1(t),y2(t)", None}, {"t (sec)", "Problem 3 solution"}},

PlotLegends -» {"y1(t)", "y2(t)"},
BaseStyle - 14,
GridLines - Automatic,
GridLinesStyle - LightGray]

Problem 3 solution

A A /\

10+

>
>

y1(t).y2(t)
& o
¢

-5

— y1()
y2(t)

Figure 3.6: Plot of solution for problem 3
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4. Consider an n x n real matrix A. Show that A can be uniquely written as a sum of
a symmetric and a skew symmetric matrix

A= Asy + Agp.

We say that A is positive definite if g(x) > 0 for x # 0 where the quadratic form
q: R® — R is defined as ¢(x) = x7 Ax.

‘Show that A is positive definite if and only if A,, is positive definite.

Solution

Part a

Note: In all the following it is assumed that x is a vector and that x # 0

Let

Figure 3.7: Problem 4 Statement

A=Ay + Ay

1)

Where A, is a symmetric matrix, which means ASTy = A,y and Ay is skew symmetric matrix which
means A, = —A. Taking the transpose of (1) gives

Adding (1)+(2) gives

Subtracting (2)-(1) gives

Therefore for any A,

AT = (A + Ask)T

= Al + AL
:Asy_Ask
A+ AT =24,
A+ AT
Ay =—
AT — A =-2A
A-AT
Ay = 5
1 T
Ay =5 (A+AT)
1
Ag = E(A—AT)

2)

()

(4)

(4A)

(4B)
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To show that A, is indeed symmetric, this is done by construction :

AL = % (a+ar)

1 T
=5 (47 (a7))
T
But (AT) = A, and the above becomes

A§y=%(AT+A)

= A,
Therefore A, is indeed symmetric.
To show that Ay is skew symmetric matrix :
1 T
T _ T
Al =5 (A-AT)
1 T
— 2 (AT _ (AT
2 (A (A7) )
_Lliar
=5 (AT-4)
— 1 AT
=5 (4-47)
= —Ag

Hence Ay is indeed skew symmetric.
Therefore any A matrix can be written as A = A, + Ay where A, Ay are given by (4A,4B).

Now we need to show that this is a unique was to write A. Proof is by contradictions. Let there be

A~sy matrix which is symmetric and A~sy # Ay, and let there be Asy matrix which is skew matrix and
Ag # Ay And also let A = Asy + Asy in addition to A = A, + Ag. Then

_ N
AT = (A, + Ay)
= AT+ AT,
Since /Ly is assumed to be symmetric, then /TSTy = Asy and since Ay is assumed to be skew symmetric,
then AL = -Ay and the above becomes

Therefore
1 1, ~ ~ -
5 (A+AT) = 5 (Ay + Ag + Ay - Ay)
= Asy
But from (4A) above, we showed that % (A + AT) = A,,. Hence
Ay = A,

Which is a contradiction to our assumption that Asy # Ay Therefore Ay, is unique. The same is
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done for A;. From
(4= A7) = 5 (Ay + A= (Ay - Ay))

sk

NI~
2 N

But from (4) above, we showed that %(A - AT) = Ay. Hence Ay = Ay which is a contradiction.
Therefore there is only way to write A as sum of symmetric and skew symmetric way, which is
A

4 Ak
—N—
A+ AT 1
A= +=(A-AT)
2 2
QED.
Part b

Starting with the forward direction. We need to show that given A is positive definite (p.d.) then this
implies A, is also p.d.

From part (a) we found that A can be written as A = A;, + Ay. Since A is now assumed to be p.d.
then this implies

xTAx >0
xT (Asy + Ask) x>0
xTAgx +xTAgx > 0 (1)
Now we will show that x” Agx = 0 to finish the above proof. First we observe that
T
(xTAskx) = (Askx)Tx
= xTAgcx
But Ay = —AJ by definition of skew symmetric matrix. Therefore the above becomes
T
(xTAskx) = - (xTAskx)

But xT Agx is a single number, say 4. (To be precise, g is 1 X 1 matrix. but since it is 1 x 1 we can treat
it as a number, since it is one element). But the transpose of a number (or 1 X 1 matrix) is itself.
Hence the above relation says that

9 =-1
For a number, this is the same as saying g = —g and this only possible if 4 = 0 or in other words
xTAgx =0 (2)
Using (2) in (1) shows immediately that
xTAgx >0

Therefore A, is positive definite.

Now we need to show the reverse direction. That is, we need to show that if Ay, is p.d. then this
implies A is also p.d.

Since Ay, is now assumed to be p.d. then we can write

xTAsyx >0
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But A = A, + Ay therefore Ay, = A— Ay and the above becomes
xT(A-Ag)x>0
xTAx = xTAgx > 0
But we showed in (2) that x” Ayx = 0. Therefore the above becomes
xTAx >0

Which implies that A is positive definite, which is what we are asked to show. QED

3.3.5 Problem 5

5. Consider

u; = [2 30 1}, Ug = [—1 0 3 2]
ll3=[2 2 1 4:], 114:[—6 4 =2 0]

Show that three vectors vi,vs, v out of the above four form an orthogonal set in
R*. What are these vectors?

Find the best approximation w € Span(vy,vs,vs) to the fourth vector using
Gramm’s theorem.

Find a basis vq, va, v, vy of orthogonal vectors for R%.

Figure 3.8: Problem 5 Statement

Solution

Two vectors 3,1 are orthogonal if their dot product is zero. This is because 7+ = [g]| |if|| cos & where
0 is the inner angle between the two vectors. Since the vectors are orthogonal, then cos90° = 0 and
therefore ¥ -1 = 0. To find which pairs are orthogonal to each others, we compute the inner product
between all possible pairs :

Uy =-2+0+0+2=0

‘U3 =4+6+0+4=14

Uy =-12+12+0+0=0

‘U3=-2+0+3+8=9

‘Uyg=6+0-6+0=0

Uy -ty =-12+8-2+0=-2

=

=

SRR RS
N —_

N

4

We see from the above that 1 -1, = 0,u; - Uy = 0,1, - tiy = 0. Therefore
S = {ﬁl,ﬁz,ﬂ4}

= = =
= {01102103}
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7 =(2,3,0,1) (1B)
¥y = (-1,0,3,2)
Ty = (—6,4,-2,0)

Form an orthogonal set in R*%.

Now we need to find the best approximation of @ = i3 = (2,2,1,4) using the above orthogonal vectors
U1,7,,73. Using Gram’s theorem, this approximation is

W= Cl?}l + Cz?}z + C3?}3 (1A)

Where the constants c; are found from solving the system

o SR [ - = — —
01°01 01:0p 01°03]|C1 01w
- = - = - = — —
UpU1 Up:Uy UVp-U3||Co| =0 W
- = - = - = — =
U301 0U3:Uy 0U3°03)\C3 U3 -w

=

But since g; are all orthogonal to each others then 7; - 7; = 0 for i # j, and 7; - 7; = llo;lI* and the above
becomes

B o 0 \(a) (4@
0 ”?)}2”2 0 G| = 32 . 77) (1)
0 0 | \s) Bew

But
W=2,3,01)(2,21,4)=4+6+4=14
, -0 =(-1,0,3,2)-(2,2,1,4) =-2+3+8=9

0 =(-6,4,-2,00-(2,2,1,4) =-12+8-2 = —6

Hence (1) becomes

BF o 0 V() (14

0 [ o |[e]=]9 ©)
o o Bl )\es) (6

Since
B = 12,30, =4+9+1=14
IBal = 11-1,0,3,2IP =1+9+4 =14
18] = l(=6,4, -2, 0| = 36 + 16 + 4 = 56
Then (2) becomes

14 0 0)\(cq 14
0 14 0l||c|=1]9 (3)
0 0 56)lcs) (-6
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From the above we see that

C1=1
9

Cz—ﬁ
-3

C3—§

Hence the best approximation using (1A) becomes

Z—()J:C15)1+C232+C363
—2,3,0,1) + = (-1,0,3,2) - - (—6,4,-2,0)
- 7~ MYy 14 sy 28 7 X 7

18 15 16
7777

Therefore
|
= - (14,18,15,16)
Now we need to find basis ¥y, 7,, 3,74 of orthogonal vectors in R*. We already found that from (1B)

that 7;,7,,7; are three such vectors. So we just need to find another 7, = [ay, a, a3, a4] such that it is
orthogonal to the other three, in other words we need to solve

61‘5)4:0
62'64:0
63'64:0

This implies
[2,3,0,1]- [ay,a5,a3,a4] =0
[-1,0,3,2] - [aq,4ap,a3,a4] =0
[-6,4,-2,0] - [ay,a,,a3,a4] =0

Or
2a1+3a2+a4=0
—ﬂ1+3613+2614=0
—6ﬂ1+4612—2€l3=0
Or
m
2 3 0 1 0
az
-1 0 3 2 =10
as
-6 4 -2 0 0
a4

This system has three equations and 4 unknowns. Therefore it will have one free parameter giving
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an infinite number of solutions. Using Gaussian elimination:

23 01 R22R2+%R1 2 2 0 i]R3R3+3R1
10 3 2 =" |0 3 1>
6 4 -2 0 6 4 -2 0
S [
R e
013 -2 3 00 -28 -2

We stop the elimination here since no more elimination is possible. We have now this system

3 0 1 0
a
>3 % 2[=1o
a
00 -28 -2)|° lo
37\ ay
Back substitution: From last row we obtain the equation
28a > a; =0
373 M=
3
a, = —§ﬂ3
The second row gives
3 5
5612 + 3613 + E{l4 =0
2 5
ay = 5 —3{13 - §ﬂ4
= —2ﬂ3 — =y

. 3
Since a4 = —503 the above becomes

First row gives

2a1+3a2+a4 =0
1
ap = 5 (=3ay — ay)
2
. 1 3
Since a, = 543 and a4 = —503 the above becomes

ool

=0
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Therefore the solution is

aq 0
a 1
as 1
3
ay -z

2

The above means that for any arbitrary a; value there is a solution. a3 is just a scalar which only
stretches or shrinks the vector but does not change its direction (orientation). Therefore the vector
remains orthogonal to all others for any a3. Let us pick a3 = 1. Using this 7, becomes

o 1 3
U4 = 0/ 5111_5

To verify the result found, we will check that 7, is indeed orthogonal with the other three vectors :

o

U104 = [2/310/1] : [Or E/l/_§:| =

Up =04 = [_1/0/312] : [0/ 5111_5] =0
1 3

53 '64 = [_614/ _2rO] : [0/ _/1/__] =0

QED.

3.3.6 Problem 6

6. For a general n X n nonsingular matrix A compute the total number of multiplica-~
tions/divisions necessary to solve the linear system

Ax = h,

a) using Gauss elimination with back-substitution,
b) using Cramer’s rule. ‘

Figure 3.9: Problem 6 Statement

Solution
Let
a;p Ap 413 o Ay by
a1 Ay A3 Ay b,
Apxn =|as  asy asy -+ az,|,b=|bs

Ap1 A2 Ay o dpy bn
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Part (a)

The first step in Gaussian elimination is to reduce the above matrix to row echelon form :

ayp iy a3 o a4y, |(b
0 ay ay - ay||b2
Apn =0 0 azz - a3,|]|bs
0 0 0 - a,)\b,

Row echelon form has zeros in its the lower left triangle. After this, back substitution starts by solving
for x, from the last row, then solving for x, ; from the row above the last row and so on until we
reach the first row.

Counting operations for forward pass

The first step is to zero out all entries in first column below a;; using a;; as pivot. Next is to zero out
all entries in second column below the (updated) a5, value and so on.

a1

To zero out an entry, for example a,;, we first need to do one division = = A and store this in
11

memory, then do a,; = ay; — Aay; for all entries in that row, which means for i =1---n. (no need to
count a,; since we know it will be zero). We have to remember that this is being applied to the b
vector as well and not just for A matrix rows.

Hence we need one division to find A, and then 2n multiplication and addition/subtraction operations
per row. The division is only needed once per row to find the pivot scaling A.

Since there are n —1 rows then there are (1 —1) divisions and (2n) (n — 1) multiplications/addition to
zero out the first column. After this we have the following system reached

apn iy a3 o ay ||

0 agp ay - ayl|lb

Apn =0 azgp az - az||bs
0 App  Apz 0 Apy bn

The total cost now is therefore (n —1) + 2n) (n —1).

We now switch to the second row and use the new value of a,, as pivot and repeat the same as above.

The only difference now is that there are n — 2 rows to process and (n - 2) divisions and therefore
2(n —1) (n - 2) multiplications/addition to zero out the second column entries below the second row.
After this we reach the following system

a1 A agz o 1| b
0 ayp ay - ayllb
Anxn =10 0 azz -+ A3y b3
0 0 Az =0 Apn En

The total cost of the above is therefore (n —2) +2(n-1) (n - 2).

We now switch to the third row and use the new value of a3; as pivot. Now there are now (n - 3)
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divisions and 2 (n — 2) (n — 3) multiplications/additions to obtain the following system

a2 a3 o a4 |(b

0 ayp ax -+ ayl||b
Apn=|0 0 ag - az||bs
0 0 0 - au)\b,

The total cost of the above is therefore (n —3)+2(n-2)(n-3).

And so on until we reach the row before the last row, where there is only one row below it to process.
The cost then is just one division and 2 additions and 2 multiplications. Therefore the number of
total number of multiplication and additions operations for the forward pass is the sum of all the
above operations, which can be written as

row 2 row 3 last row
—_——
[(m-1D)+2n)(n-D]+ [(n-2)+2n-1)(n—-2)] +--- + [1 +4]
n-1
Writing the above as E (n—k)+2(n—k+1)(n—k) then we need to calculate this sum using known
k=1
formulas for summations. Let this sum be A, hence
n-1
A=Y -3k +2k? + 3n — 4kn + 2n?
k=1
n-1 n-1 n-1 n-1 n-1
=-3)k+2) k2 +3) -4 kn+2)
k=1 k=1 k=1 k=1 k=1
nn-1) nmw n* n ) n?(n-1) )
:—3( > )+2(€—? te +3(n-n)-4 — +2(n2(n-1))
2 1 7
=-n’+-n*--n 1)
3 2 6

The above is the number of operations just for for the forward pass (elimination phase).

For example for matrix of size 3 x 3 the above gives 19 operations, and for matrix of size 4 x 4, it
gives 46 operations and for 5 x 5 it gives 90 operations and so on.

Counting operations for backward pass In back substitution, we start from the end of the elimination

phase above, which will be

a1 dyp 43 o A | X by
0 axp axpm - a4y |lx b,
0 0 azz -+ A3y || X3 | = b3
o 0 0 - a,)\x, b,

by

First step is to solve for x, by finding x, = —. This requires only one division. Next is to solve for
nn
Xn-1 by ﬁnding Ap-1n-1Xp-1 + Ap-1,0Xn = by, or

bn—l - (an—l,n) Xn
Xp-1 =
([’ln—l,n—l)

We see that this needs one subtraction, one multiplication and one division, or 3 operations. The
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next step is to solve for x,_, from
(an—z,n—z) X2t (an—Z,n—l) Xp1t (ﬂn—z,n) Xy = by
Hence
bZ - (an—Z,n—l) Xp-1— (an—Z,n) Xn
Xp—2 =
(an—Ln—Z)

Therefore we need 2 subtractions, 2 multiplication and one division, or 5 operations. And so on until
we reach the first row to solve for x;. Therefore the total number of operations can be seen as

1+34+54+74--

The above can be written as the sum
n

n-1 n-1 -1
kz_;)(ZkH) :22k+§%1

k=0 k=

2 (—n (nz— 1)) +n

nn-1)+n
=n?-n+n

=n’ 2)

We see that the cost of the elimination is much greater than the cost of back substitution. One is
O (n3) while the other is O (nz).

From (1,2), the total number of operations for the complete Gaussian elimination process is

2 1 7
A==+ -n?>--n+n?
3 2 6
2 3 7
_*%3 2
=-n’+-n“--n
3 2 6
For large n the above is O (n3).
Part (b)
Given a system of equations
a1 aip a3 o I | % by
ap1 Ay dp3 - dyp || X2 by
az;  azx 4z o Az, ||x3|=|bs
Ayl Gpp Ap3 o Opp )\ Xy bn
Cramer method works as follows :
o= |Al
= —
|A1]
LA
= —
|As]
|A|
X, =

1Ayl
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Where |A| is the determinant of coefficient matrix A,, and |A;| is determinant of coefficient matrix
but with the i column replaced by the column vector b.

An efficient way to find the determinant is to convert the matrix to row echelon form. In this form,
the matrix is upper triangle. Hence the determinant is the product of all elements along the diagonal.
This is more efficient than using the matrix cofactor expansion method.

In doing these row operations on the matrix to find |A| the only difference from the elimination
steps we did for part(a), is that we have to remember the following rules now during the elimination
process

1. When adding multiple of one row to another row, the determinant is not affected.
2. When switching two rows, the determinant is multiplied by -1

3. When multiplying one row by some scalar, the determinant is also multiplied by the same
scalar.

Given the above, let us assume that for each elimination step of a row, we do one multiplication to
account for a possible multiplication by —1 or possible multiplication by a scalar. Since we do not
know if this will happen every time as this clearly depends on the data in the matrix, then this will
be the worst case counting.

This means there is an additional (n —1) multiplications to add to the cost of doing the elimination
step to reach row echelon form at the end.

Another small difference from part(a), is that now we do not have the b vector added during the
forward step.

Therefore, as we did in part(a), the cost to reach this form

a1 412 a3 o Ay
0 ayp ay - a4y
0 axp azg - a4z
0 App  Ap3 = Apy

Is now (n—-1) + (2(n —1)) (n —1). Recalling from part(a) the cost at this stage was (n—1) + (2n) (n — 1)
here. So we changed 2n to 2 (n - 1), since there is no b vector, hence one less element. And as was
done in part (a), the cost to reach

a1 dip 413 ot iy
0 ayp axy - ay
0 0 as3 se asy,
0 0 pz =+ g

Now becomes (1 —2) + 2(n—2)(n —-2). Recalling from part(a) the cost at this stage was (n-1) +
2(n-1)(n—-1). So we changed 2(n-1) to 2(n —-2), since there is no b vector. This continues to
the row before the last as in part (a). Therefore the number of total multiplication and additions
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operations for just the forward pass is

row 2 row 3 last row

[(m-1D)+Q2n-1)n-D]+ [n-2)+2n-2)n-2)]+ -+ [1 +2]

Hence the cost to put the matrix in row echelon form is

n-1 n-1 n-1 n-1
M-k +20m-kF=Yn-Yk+2), (k7>
k=1 k=1

k=1 k=1

n(n-1) N n—3n% +2n3

= -1)- 2
L 6
2 1 1
_Z.3__-.2__ 1
30 T2 T e @)
The above cost is very close to part(a) elimination phase as expected which was 2113 + %nz - gn.

Current cost is smaller because in part(a) we had the b vector there which added more operations,
while here we just operated on A itself.

Let us now add the (n —1) multiplication we mentioned earlier to the result above. The cost now
becomes

2 1 1
A:§n3—§n2—gn+(n—1)
2 1 5
=-md--n’+-n-1
3 2 6

We still need to calculate the product of the diagonal elements to find the determinant. For n X n
matrix, this takes n —1 multiplications. Adding these to the above gives

2 1 5
A=-nm*—-n? +-n-1+n-1
3 2 6
2 1 11
== -+ —n-2
3 2 6
2 1 11
~ -’ - -n’>+—n
3 2 6

We will use the above as the cost of finding the determinant.

How many times do we need to find determinants? We need to do it one time to find |A| and then n
more time for each |A;|. Hence (n + 1) times. This is the main reason why Cramer method becomes
much more costly compared to Gaussian elimination.

The number of operations now becomes

2 1 11
A= (§n3 - EnZ + gn) (n+1)

2 1 4
=-nt+nd+ 2P+ —n
3 6 3 6
We also need to add the cost of the final divisions % to find each x;. So we add n divisions to the

above, giving the final cost as

A 2 4+1 3+4 2+11 +
= —-n -n —-n —n n
3 6 3 6
2 1 4 17
=§Tl4+gi’l3+§1’lz+gl’l

We see from above, that Cramer rule for large n is O (n4) while Gaussian elimination was O (n3).



Hence Gaussian elimination is much more efficient for large n.

In summary

n | cost of Gaussian elimination §n3 + gnz —~ gn cost of Cramer 5114 + %ng’ + %nz + %711
2 15 23

3 119 79

4 | 46 214

5 190 485

6 | 155 965

7 | 245 1743

8 | 364 2924

9 | 516 4629

10 | 705 6995

The following is a graphical illustration of the above

2 ., 3, 7
e= —N" +—nN"-—-—n;
8= 3 2 6

2 , 1, 4, 17
cramer = —n" +—-N"+ —N"+ —Nj;
3 6 3 6

dataGE = Table[{n, ge}, {n, 2, 10}];
dataCramer = Table[ {n, cramer}, {n, 2, 10}];

ListLinePlot [ {dataCramer, dataGE}, Mesh - Full, PlotRange - All,
MeshStyle - {Red, PointSizeelLarge}, GridLines -» Automatic, GridLinesStyle - LightGray,
PlotLegends -» {"Cramer", "G.E."}, AxesLabel » {"n", "cost"}, BaseStyle -» 14,
AxesOrigin - {1, 0}, Ticks » {Range[2, 10], Automatic}]

cost
7000F
6000+
5000F
4000
3000
2000
1000

—— Cramer
G.E.

Figure 3.10: Cost of Gaussian elimination vs. Cramer method. Problem 6
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3.3.7 Problem 7

7. Consider the matrix

A=

oSS
o O
S5t

a) Show that its eigenvalues lie on the unit circle in C.

b) Show that the linear transformation 7'(x) = Ax preserves the angles in R3, i.e.
for any x,y € R3,
£L(x,y) = £(Ax, Ay).

(Here Z(u,v) denotes the angle between u and v in R®. Note that Z(u,v) can be
expressed in terms of the norms and dot product of the vectors u and v.)

Figure 3.11: Problem 7 Statement

Solution

Part a

The eigenvalues of A are found by solving |[A — Al =0 or

1 2
w00 E
2 )1 Ll=o
B B
0 -1 -4
1 -2
(L—/\) V5[—0+ —|V5 A:o
5 -1 -A 510 1

0
Hence A = 1. The quadratic formula is used to solve =512 + A (\/5 - 5) -5 =0. First it is normalized
512 -1 (V5-5) +5=0

AZ—A(é\/E—l)H:o
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Then A = ;—Z + %Vbz —4ac where b = - (g\/g—l),c =1,a =1 and the roots are

Therefore the roots are

Numerically the above becomes

V5 1) 1 N1 2
-3 e 3\(5v5-1) -
V51 1\/ 5 2
0 3) e\ T 5
VBo1) 1 1 2
A P —_Z\5_4
10 2)%3V s 5\/5
V51 L1 14 2v5

10 2)7 2\ 5 s

V5 o1 1 14 -2+/5

10 2/ 2 5

VB 1) 1. [14+245

10 2)72 5

V5 1) 1, [5(14+2v5)
0 2772 )5
V51

- /5 (14 +2
0 2702006 5(14-+2v5)
V5 o1} 1,

075 sz/lO\/g+ 70

=1

(i_;)+%im
I CR B e

Al = l
Ay = =0.276 + 0.961:
A3 = —0.276 — 0.961i

The following plot shows the locations on the complex plane

175



176

eigs = {1, -90.276 +0.961 I, -0.276 - 0.9611};
eigs = ReImeeigs;
img = Graphics|[ {
{FaceForm[White], EdgeForm[Black], Disk[]},
{Red, PointSize[.05], Point[eigs]}
}, ImageSize -» 300, Axes - True];
grid = Graphics[{}, GridLines -» Automatic, PlotRangePadding - None,
GridLinesStyle -» LightGray, ImageSize -» ImageDimensions@img];
Overlay[ {img, grid}]

N

/ AN

0.5

o

N

Figure 3.12: Graphical location of eigenvalues for problem 7

To show analytically that the eigenvalues lie on the unit circle means to show that the magnitude
of each complex number is 1. Clearly A, already satisfy this condition. We need to check now that
I4,]l =1 and that ||A5]| =1

)l = yRe (1,2 + I (1,)°
2
— J(\l/_og _ %] ¥ (11—0\/10\/5 + 70)

Vi) [+
E
10

2

=1

Similarly for A3 since it is the same except for the sign on the complex part (complex conjugate)
which does not affect the norm. Therefore all the eigenvalues lie on unit circle in C. QED.



Part b

X1

Let two vectors in the domain of Abe x =|x, |and y =

X3
X
which now lie in the range of A be X =|%,|and y

X3

177

)|
Y2
Y3
]71
Y2
s

. And let the two vector after the mapping,

. Since x -y = [[x]||ly]l cos 8 where 6 is the

inner angle between the vectors, and since x -y = [|X]| |[¥]| cos 0, then we need to show that

0=0

oA
Domain of A

~
~
~
N
A
-
y_

Range of A

Figure 3.13: Linear transformation

Ax preserves angles. Problem 7

Let
AxX =X
Ay =y
Using the A given, then
\5 \5 X1 5 1 \5 3
__2 0 L X = __zx +Lx
V5 CH | O R
0 -1 0)\Wxs —X
Hence
Ly + Zx
B
X = 7§x1+\—f5x3
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We see from the above that

1 2
X1 = %xl + @X:},
N -2 1
Xo = %Xl + %x:g
X3 = =X
Similarly
‘1@% + \/gyzy
y= 75% - 75%
—Y2
We see from the above that
174 — L + i
W \/51/1 \/gys
e
Y2 \/gyl \/gyB
¥3=-

We now need to determine 6 and 6 and show they are the same. From the definition above

' )

But x-y = x1y; + X, + x3y3 and [|x|| = /x5 + x5 + 2% and ||lyll = \/y? + y3 + 13, therefore the above

becomes

0= arccos[ X1Y1 + XoYo + X3Y3 1)
B+ B+ B R+ B+

Similarly, X - ¥ = ¥17; + X7, + X373. Using the values of %;,7; found above the dot product becomes
1 2

%.5= (Exl + $x3) (%yl + %m) + (%xl + %xg) (%yl + %%) + (=) (-12)

= = (xq +2x3) (1 +2y3) + é (3 = 2x1) (y3 = 2y1) + X2

S T

2 2 4 4 2 2 1
= gxﬂ/l + gxﬂ/?, + §x3]/1 + §x3]/3 + gxﬂ/l - gxll/a - gxslh + 5x3y3 + Xolf2
Which simplifies to
X ¥ = X1Y1 + XY + X3Y3

And ||X|| = 1/5&% + %% + 56% Using the values of ¥; found above, this becomes

lIxIl = \/(LM + i953)2 + (_—2951 + Lxs)z + (-x)°
R B

\/12+4 T T P
= =X =X1X =X =X7— =X1X =X X
51 513 53 51 513 53 2




Which simplifies to

TR % N S,
[[XI] = /x] + x5 + x5

Similarly, [I§]l = /74 + 73 + 7% and using the values of 7; found above, then this becomes

WhJGﬂﬁ%ﬁf%%%#%@isz

1, 4 4, 4, 4 1,
= g%"‘g%%"‘g%"‘gyl_gylya"'gy?)"'yz

911 = 2 + ¥3 + 13

Which simplifies to

Therefore
~ Xy
X1 {711
~ A2+ 33+ x5
0 = arccos

N RN
Comparing (1) and (2) shows they are the same. Therefore 6 = . QED.
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3.3.8 Problem 8

8. Write the expressions
cos(nz — mz) — cos(nx + ma), cos(nx — mx) — cos(nz + mz),

sin(nz — mz) — sin(nz 4+ mz), sin(nz — mz) + sin(nz + mz)

with integers n and m in terms of

COS N, Sin nx, cos M, sin mx.

Consider the Hilbert space of real square integrable functions L?[— 7] on the [—7, 7]
interval, equipped with the inner product < f,g >= ffﬂ fgdx. Show that the set

of functions ’

< { 1 cosz sinz cos2z sin2z cos bz sin5x} e L2[ |
= ) 3 ) ) g ey ) -,
V2 AT T T T VroT

is an orthogonal but not an orthonormal set in L?[—n, 7]. How would you change S
to make it orthonormal? Use Gram’s theorem to compute the best approximating
function Hs(z) from the subspace of S-linear combinations span(S) of L[—m, 7] to

the function
H(z)=7—|z| € L*-m, 7]

Figure 3.14: Problem 8 Statement

Correction: The set S shown above should be

7 7y 7

1 cosx sinx cos2x sin2x cosbx sinx
o' n’ n’ om e ' T

Solution

Two functions f, g are orthogonal on [-7, 7] if f § fgdx = 0. To show this for the set of functions given,
=T

sinmx .

we pick f = i and then for ¢ we pick Coimx and then —. i.e.

™ 1 cosmx
n2m T
7™ 1 sinmx
Z2n m

11:

12: X
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For the rest, we have to determine the following 3 cases

T COS MX COS X
13 = dx
w7 e
T COs mX Sin nx
14 = dx
n T i
T sin mx sin nx
15 = d.X
e T

-7
These will take care of all possible combination of any two function in the set S. We could always
replace m, n by a number from 1---5 after evaluating the integrals in order to obtain a specific case.
Starting with I

1 7T
L =:= f cos mxdx
2 J_,

But cos function has period 27 and therefore the integral above is zero I; = 0. This shows that f = %

cosmx . .
—— functions in the set.

1 TC
b=l [ s
2= 53 _nsmmxx

As above, sin function has period of 27t and therefore the integral above is zero I, = 0. This shows

is orthogonal with all

that f = % is orthogonal with all % functions in the set.
1 T

= — COS mx cos nxdx
2
-7t

I3

From tables, using cos Acos B = % (cos (A — B) + cos (A + B)), then

COS MX COS NX = % (cos ((m — n) x) + cos ((m + n) x))

And I3 now becomes
1

L =—
57 o2

fﬂ cos ((m —n)x) + cos ((m + n) x) dx

= z%z(fn c:os(111—n)xdx+f77 COS((m+n)x)dx)

-7
Since the problem is asking us to show orthogonality of different functions in the set, then we assume
m # n, otherwise the integral will have to be handled as special case when m = n due to the division.

I; = % (ml—n [sin(m—n)x]f71 T ml [sin (m +n)X]:T)

+n

But since n,m are integers, then both terms above are zero since sin (N7) = 0 for integer N. Hence
I3 = 0. This shows that Coimx

is orthogonal with &nm when m # n.

1 ™ .
Iy = = f sin nx cos mxdx
T =Tt
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Using sin AcosB = % (sin (A — B) + sin (A + B)), the above becomes

1 7T
14:—2f (sin (n —m) x + sin (n + m) x) dx
2 J_,

1 s 7T
=2_712(f sin(n—m)xdx+f Sin(n+m)xdx)

=T
Again, since n # m, then the above becomes

1 -1
I = _ Tt
4 ( [cos (n —m) x]_n + p—

= 57\ [cos (m + n) x]?n)

- % (nilm [cos ((n = m) ) = cos (2 = m) (-m))] + ——

But cos (—x) = cos (x) and the above becomes

[cos ((n + m) 1) — cos ((n + m) (—n))])

1 -1
Lh=5= ( [cos ((n —m) 1t) — cos (n —m) )] + [cos ((n + m) 1) — cos ((n + m) n)])
2 \n—m n+m
1 -1 -1
= z—nz(n_m[(’]* nrm [0])
=0
Hence I, = 0. This shows that Sinnmx is orthogonal with S \when m # n.

The final integral is
1 T

I =—
5 2 .

sin mx sin nxdx

Using sin AsinB = % (cos (A — B) — cos (A + B)) the above becomes

1

Is = Ff;cos((m—n)x)—cos((m+n)x)dx

TT

= zlﬁ(f cos((m—n)x)dx—f7Z cos((m+n)x)dx)

1 TU us
Is=— f dx—f dx
27-[2 —Tt —Tt

=0

cos nx

Case n=m

This shows that when m = n.

Smnmx is orthogonal with all

Casen#m

+n

[sin ((m + n) x)]?n)

1 (1 L
Is = ﬁ(m—n [sin((m—ﬂ)x)]in_ "

But since n,m are integers, then both terms above are zero since sin (N7) = 0 for integer N. Hence

I5 = 0. This shows that S orthogonal —COZ"X,

s

The above shows that all the functions in S are pairwise orthogonal.

To make the set S orthonormal, we need to find weight k such that ||k f (x)|| =1 or for functions, this



is the same as

1.
For f = —, this becomes

Ccos mx

For f =

fﬂ (kf @) dx=1

=Tt

2
w1
fn(kg) dx =1

k T
— dx =1
2m j:n *

k
—V2n =1
27

k=vV2n

\/fﬂ (kcosmx)zdxz1
n o
k 7T
—,/f cos2 mxdx =1
nt -
k 1 1
— f — + —cos2mxdx =1
n\J_,2 2

k T 1 ™ ;
- ( _nidx+§£n0082mx x)—l

k
T

1 [sin 2mx) "
T+ = |——=
2 2m
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sin mx

For f =

x
4
k T
—,/f sin? mxdx = 1
T =Tt
k f“l 1 omdx = 1
- 2 2cos mxdx =
k
p —dx——f cos2mxdx| =1

0
—_—

k 1 [Sin (2mx) ]n
L P e
2 2m

—Tt

k
_\/Ezl
TC

k=+/n

Therefore the orthonormal set now becomes, after using the weights found above as

:{\/Z_ni,ﬁcosx,ﬁSinx,ﬁCOS2x,ﬁSin2x,--‘,\/%COSSx,\/ESinx}
2n b i T i T

Tt

{ 1 cosx sinx cos2x sin2x cosb5x sin x}

Var NT VT VTR N

We now need to approximate H (x) = 7 — |x| using 5. The following is a plot of H(x) over [-7, 7]
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f =Pi-Abs[x];

Plot[f, {x, -Pi, Pi}, Frame -> True, GridLines - Automatic,
GridLinesStyle - LightGray, PlotStyle - Red,
FrameLabel » {{"H(x)", None}, {"x", "Function to approximate"}},
BaseStyle » 12,
FrameTicks » { {Automatic, None}, {{-Pi, -Pi/2, @, Pi/ 2, Pi}, None}}]

Function to approximate

3.0F

251

101

0.5F

0.0r

|
S
|
N
o
INISES
S

Figure 3.15: Function H(x) to approximate. Problem 8

Counting the number of functions in S, there are 11 of them. Using Gram’s theorem, this approxima-
tion is

H(x) = C151 + CZSZ + c353 + e (1)
Where 5, = \/%—nfsz = &\/?,"'/510 = %,511 = % Hence
Hx) =~ c 1 +CcostrCsinerC(3052x+CsianerJrC cos5x+c sin 5x
1\/2—7_( 2\/E S G = 5 r 10 N 1 Nz

where the constants c; are found from solving

(51,51) (51,52 (S1,S3) - (S S |[a (51,H (x))
(52,51) (52,52 <52/ 53> {8, S1) || e (S2,H (x))
(53,51) (S3,52) (S3,S3) -+ (S3,S1) || s |=](Ss H(x)
(511,51) (S511,S2) (S11,S3) -+ (S11,S1))\en (511, H (x))

But since <SZ~, Sj> = 0 for i # j, because we showed above they are orthogonal to each others, and
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since S; are all normalized now, then (S;,S;) = ||S,4||2 =1. Hence the above reduces to

100 - 0)cy (51,H (x))
01 0 - 0llc (52, H (x))
001 - 0|lc|=]¢S3H@) (2)
00 0 - 1){ey (511, H (%))

So we just need to evaluate (S;, H(x)). But we need to do this only for three cases. These are

<F,H( )> <CO\S/1"x,H( )> <S‘:‘/T‘,H(x)> and then set 7 =1---5.
<\/%_N,H(x)> :J: %ﬂH(x)dx
= \/% j:H(x)dx

_ ; (fo (n+x)dx+f0n(n—x)dx)

=Tt
— +x2 O + el
X+ — -=
2 ™
- —T 0
[ 2
2

N
otz
El
\/3_7'(

And

<cosmx Hix )> f cosmxH( ) dx
T
= — (f (1t + x) cos mxdx + f (1t —x)cos mxdx)
ﬁ -7 0
1 0 0 7 0
= —(f ncosmx+f xcosmxdx+f ncosmxdx—f xcosmxdx)
\/% -7 - 0 -7

1 4 0 0
= — (f 7T COS MX + f x cos mxdx — f X COS mxdx) (3)

f xcosmxdx can be evaluated by integration by parts. Let u = x,dv = cosmx — du =1,v = sin mx
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hence

. 0 .
0 sin mx 0 sinmx
x cosmxdx = |x - dx
mo] m

—Tt =Tt

1 0
:0——f sin mxdx
m

—Tt

B 1( cosmx)o

m m

-7

= % (1 - cosmm) (4)

. us .
7t sin mx U SIn mx
x cos mxdx = |x - dx
0 m-fy Jo M

1 7T
=0-— sin mxdx
mJo

B 1( cosmx)“
0

And

m m

= % (cosmm —1) (5)

And f_n TTCOSMX = T f_n ncosmx = 0. Using (4,5) in (3), then

1 (1 1
<cos mx,H(x)> _ (_2 (1 - cos mm) — — (cos mm - 1)
— m m

v i

1
=——(1-cosmm—cosmm+1
oy )

_ 2(1 - cosmn)

m?\r

Hence

cOos mx _ [cosx _2(1—cosn)_2(1+1)_i
= 'H("’>m:1‘<ﬁ'H(")>‘ VR VR
<cosmx H( )> B <cos2x H( )>_ 2(1 - cos2mn) 0

N R W AN

COS mx _ [cos3x _2(1-cos3m)  2(1+1) 4
e I e v v BT
<cosmx H( )> B <cos4x H( )>_ 2 (1 - cos4n) 0

E L VNE T T evR
<cosmx H( )> _<cos5x H( )>_2(1—C085T[)_ 4

e P IR A N N N

Similarly (we expect all the following integrals to be zero, this is because we see from above that
H (x) is an even function and sin is odd, hence the product is an odd function and the integral is over
the period). This is the same as when in doing Fourier series expansion (which is what we are doing
here essentially but using Gram’s theorem instead), all the b, terms will be zero when the function
being approximated is even and all the a,, terms will be zero when the function being approximation
is odd.
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But we will go ahead and do the integrals to show that this is indeed the case.

<w H(x)> _ f SIIX L
Tt -

v v
0 T

f (7 + x) sin mxdx + f (7 — x) sin mxdx)
-7 0

_ 1 (

W
1 0 0 I 0

:—(f nsinmx+f xsinmxdx+f nsinmxdx—f xsinmxdx)
ﬁ - — 0 T

s —

1 T 0 0
=— (f 7 sinmx + f x sin mxdx — f xsin mxdx) (6)
ﬁ -7 -7 -7

fxsin mxdx is evaluated by integration by parts. Let u = x,dv = sinmx — du =1,v = =

hence

0 1 0 0 _cosmx
xsinmxdx = —— [x cos mx]_7I - —dx
m

—n o m

1 1 Y
= ——[0-(-mtcosmm)] + —f cos mxdx
m m

=Tt
. 0
T 1 (sinmx
= ——[cosmn] + —
m m m

=Tt

= —% [cosmm] (7)

And

T 1 T — COS MX
f xsinmxdx = —— [x cos mx]; — f — dx
0 m 0 m
1 1 7
= ——[ncosmn] + — cos mxdx
m mJy

= —% [cos mm] 8)

And f_n nsinmx = 0. Using (7,8) in (6), then

<sin mle(x)> _

\/E

% (—% [cos mmt] + % [cos mn])
=0

Hence as expected all the inner products now are zero

<sin mx

\/E

,H&» =0 m=1,234,5

m
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Using all the above results in (2) gives

H )
JH(x)

1
V2

COosXx

{

vr

sinx

,H (x)

\Vr
cos 2x

+H(x)

VE

sin 2x

H(x)

\r

cos 3x

+H(x)

VE

sin 3x

H(x)

\Vr
cos 4x

,H (x)

i
sin 4x

/H(x)

Vr

cos 5x

H(x)

+H(x)

VE

sin 5x

VE

G

C2

C3

C4

Cs

Co

Cy

Cs

C9

C11

1 000 0O0O0OOGO0OGO
01 000OO0OO0OO0OOTO OGO
0010O0O0O0O0OO0OGO0ODTO
0001 0O0O0O0OO0GO 0O
0 000O1O0O0O0OO0OTO 0P O
0 000O0O1O0O0OO0OTO OGO

000O0O0OO0OCT1TO0O0GO0ODO
0 000O0OO0OO0OT1TO0GO 0O
0 000O0OOO0OOT1TTO0TP O

0 000 O0OO0OO0O0OO0OT1 0f]c

000O0O0OO0OO0OO0OGO0OTG 01

Using the results found above, the above becomes

™Il

1__,/,ﬁ4_ﬁ o

4
25+/n

0

G

C2

C3

Cy

Cs

Cy

Cs

C9

€10

11

1000 0O0O0O0OOGO0O
01 00 0O0OO0O0OOTO OGO
00100O0O0O0OO0OGO0OTO
0001 0O0O0O0OO0GO0O
00001 O0O0O0OO0OGO 0O

0 000O0O1O0O0OO0OTO0®O

000O0O0OO0OT1O0O0O0OO
0 000O0OO0OO0OT1TO0GO0OO
0 000O0OO0OO0OO0OT11TTO0GO0

0 000O0OO0OOO0OOT1®O0
000O0O0OO0OO0OO0OGO0ODTU 01
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Therefore we see that

1 3
— 772
Cq \/En
4
Cy \/_E
C3 0
Cyq 0
Cs 0
N 't
“17| o
Cy 0
Cg 0
Cq 0
C10 4
c 25yn
11 0
1 ¢ 4 4 4 ,
The above shows that ¢; = ﬁm,cz = \/_E’% = ﬁ,clo = 5 and all other ¢’s are zero. Therefore the
best approximation is
H () ~ e COS X ce sinx e Ccos 2x e sin 2x ot cos bx iy sin bx
1 \/— 2 \/— 3 \/— 4 \/H 5 ﬁ 10 ﬁ 11 \/E
4 cosx 4 cos3x N 4 cosbx
f v— NN AN A TN AN
+ 4 + 4 3x + 4 5
= —n — cosx + — cos 3x + — cos 5x
2 T 9n 257

1 4 4 4
H{ix) = 37+~ COSX + - COS3x + o— cos 5x

To Verify the approximation, the above was plotted against the original H (x), first using one term
Hi(x) = —n then using 2 terms H, (x) ln + é cos x then using 3 terms Hj (x) = ln + é cosx+ i cos 3x
and then using all terms Hy (x) = 577 + = cosx + gi cos3x + f cos 5x. The plot below shows that the

approximation improved as more terms added giving the best approximation when all terms are
added as expected.
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ClearAll[x, n];
f =Pi-Abs[x];

1 4 4 4
approx = {E T, 7_‘- Cos[x], ;COS[SX], ECOS[SX]};

data = Table[

Plot [ {f, Total[approx[[1;; n]]]1}, {x, -Pi, Pi}, Frame -> True,
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle -» {Red, Blue}, FrameLabel » {{"H(x)", None}, {"x", Total[approx[[1;;n]]1}},
BaseStyle - 12,
FrameTicks -» { {Automatic, None}, {{-Pi, -Pi/2, @, Pi/2, Pi}, None}},
ImageSize - 300],

{n, 1, 4}
15

Grid [Partition[data, 2]]

g 4 cos(x +E
2 s 2
3.0F 3.0F
25¢F 25¢F
20¢F 2.0F
< =
T 1.5¢F T 1.5
1.0F 1.0F
0.5¢ 0.5¢
0.0F : 0.0F :
-7 - 0 18 T -7 _ 0 s T
2 2 2 2
X X
4cos(x)+40033x +7_T 4 cos(x) +4COS(3X)+4COSSX)+E
s 9 2 s 9 257 2
3.0F 3.0F
25¢F 25¢F
20¢F 2.0F
< =
T 1.5¢f T 1.5
1.0F 1.0F
0.5¢ 0.5¢
0.0F : : 0.0F : :
-7 - 0 18 T -7 _ 0 s T
2 2 2 2
X X

Figure 3.16: H(x) approximation final resul. Problem 8t
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