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1 Problem 1

Figure 1: Problem 1 Statement

Solution

x′ = a1x − b1x
2 − c1xy

y′ = a2y − b2y
2 − c2xy

Using the values given in the problem, the above equations become

x′ = 60x − 3x2 − 4xy (1A)
y′ = 42y − 3y2 − 2xy (1B)

Or

x′ = f (x,y)

y′ = д (x,y)

Equilibrium points are found by setting f (x,y) = 0 and д (x,y). This results in the following
two equations to solve for x,y

60x − 3x2 − 4xy = 0 (1)
42y − 3y2 − 2xy = 0 (2)

The first equation (1A) becomes x (60 − 3x − 4y) = 0 which then gives one solution as

x = 0 (3)

And 60 − 3x − 4y = 0 gives another solution as

x =
60 − 4y

3
(4)
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The second equation (1B) becomes y (42 − 3y − 2x) = 0 which gives one solution as

y = 0 (5)

And 42 − 3y − 2x = 0 gives another solution as

y =
42 − 2x

3
(6)

When x = 0 then (6) results iny = 42
3 = 14.When x = 60−4y

3 then (6) results iny =
42−2

(
60−4y

3

)
3 =

8
9y +

2
3 , or y = 6. Hence in this case x = 60−4(6)

3 = 12.

Similarly, when y = 0 then from (4) x = 60−4(0)
3 = 20. The above shows that there are 4

equilibrium points. These are

x = 0,y = 0

x = 0,y = 14

x = 12,y = 6

x = 20,y = 0

To determine the type of stability of each equilibrium point, and since this is a nonlinear system,
we must first linearize the system around each equilibrium point in order to determine the
Jacobian matrix.

Once the system is linearized, then the eigenvalues of the Jacobian matrix are found in each
case. From the values of eigenvalues we can then determine if the system is stable or not at
each one of the above four equilibrium points.

The first step is then to linearize f (x,y) and д (x,y) around each of the equilibrium points.
If we assume the equilibrium point is given by x0,y0 then expanding f (x,y) in Taylor series
around this point gives

f (x0 + ∆x,y0 + ∆y) = f (x0,y0) +
∂ f (x,y)

∂x

����
x0,y0

(∆x + ∆y) +
∂ f (x,y)

∂y

����
x0,y0

(∆x + ∆y) + · · ·

But f (x0,y0) = 0 since it is what defines an equilibrium point, the above becomes, after
ignoring higher order terms since we are assuming small ∆x,∆y

f (x0 + ∆x,y0 + ∆y) =
∂ f (x,y)

∂x

����
x0,y0

(∆x + ∆y) +
∂ f (x,y)

∂y

����
x0,y0

(∆x + ∆y)

Similarly for д (x,y) we obtain the following

д (x0 + ∆x,y0 + ∆y) =
∂д (x,y)

∂x

����
x0,y0

(∆x + ∆y) +
∂д (x,y)

∂y

����
x0,y0

(∆x + ∆y)

Therefore a linearized f ,д functions at the equilibrium point become(
f (x0 + ∆x,y0 + ∆y)

д (x0 + ∆x,y0 + ∆y)

)
=

©­­«
∂ f
∂x

���
x0,y0

∂ f
∂y

���
x0,y0

∂д
∂x

���
x0,y0

∂д
∂y

���
x0,y0

ª®®¬
(
∆x + ∆y

∆x + ∆y

)
Replacing the original nonlinear f (x,y) ,д (x,y) by the above linearized (approximation), the
system can now be written as (

x′

y′

)
=

(
∂ f
∂x

∂ f
∂y

∂д
∂x

∂д
∂x

)
x=x0
y=y0

(
x

y

)

Where

(
∂ f
∂x

∂ f
∂y

∂д
∂x

∂д
∂x

)
is called the the Jacobian J matrix. Hence the system now can be written as

®x′ = [J ] ®x
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Now J is determined. From

∂ f

∂x
=
∂

∂x

(
60x − 3x2 − 4xy

)
= 60 − 6x − 4y

∂ f

∂y
=
∂

∂y

(
60x − 3x2 − 4xy

)
= −4x

∂д

∂x
=
∂

∂x

(
42y − 3y2 − 2xy

)
= −2y

∂д

∂y
=
∂

∂y

(
42y − 3y2 − 2xy

)
= 42 − 6y − 2x

The Jacobian matrix becomes

J =

(
60 − 6x − 4y −4x

−2y 42 − 6y − 2x

)
x=x0,y=y0

And the linearized system is(
x′

y′

)
=

(
60 − 6x − 4y −4x

−2y 42 − 6y − 2x

)
x=x0,y=y0

(
x

y

)
Now each equilibrium point is examined using the above linearized system to determine the
type of stability a that point.

case x0 = 0,y0 = 0

J =

(
60 − 6 (0) − 4 (0) −4 (0)

−2 (0) 42 − 6 (0) − 2 (0)

)
=

(
60 0

0 42

)
Hence the linearized system at this specific equilibrium point is(

x′

y′

)
=

(
60 0

0 42

) (
x

y

)
Since J is a diagonal matrix, its eigenvalues are the values on the diagonal. Therefore λ1 =
60, λ2 = 42. Since the eigenvalues are positive, then this equilibrium point is not stable.

case x0 = 0,y0 = 14

J =

(
60 − 6 (0) − 4 (14) −4 (0)

−2 (14) 42 − 6 (14) − 2 (0)

)
=

(
4 0

−28 −42

)
Therefore linearized system at this specific equilibrium point is(

x′

y′

)
=

(
4 0

−28 −42

) (
x

y

)

The eigenvalues can be found by solving

�����4 − λ 0

−28 −42 − λ

����� = 0 to be λ1 = 4, λ2 = −42. Because

one of the eigenvalues is positive, then this equilibrium point is not stable.

case x0 = 12,y0 = 6

J =

(
60 − 6 (12) − 4 (6) −4 (12)

−2 (6) 42 − 6 (6) − 2 (12)

)
=

(
−36 −48

−12 −18

)
The linearized system at this specific equilibrium point is(

x′

y′

)
=

(
−36 −48

−12 −18

) (
x

y

)
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The eigenvalues can be found to be λ1 = −52.632, λ2 = −1.368. Since both eigenvalues are now
negative, then this equilibrium point is stable.

case x0 = 20,y0 = 0

J =

(
60 − 6 (20) − 4 (0) −4 (20)

−2 (0) 42 − 6 (0) − 2 (20)

)
=

(
−60 −80

0 2

)
The linearized system at this specific equilibrium point is(

x′

y′

)
=

(
−60 −80

0 2

) (
x

y

)
The eigenvalues are λ1 = 2, λ2 = −60. Since one of the eigenvalues is positive, then this
equilibrium point is not stable.

Summary of results obtained so far

equilibrium point eigenvalues type of stability
x = 0,y = 0 λ1 = 60, λ2 = 42 not stable (nodal source)
x = 0,y = 14 λ1 = 4, λ2 = −42 not stable (Saddle point)
x = 12,y = 6 λ1 = −52.632, λ2 = −1.368 stable (Nodal sink)
x = 20,y = 0 λ1 = 2, λ2 = −60 not stable (Saddle point)

To verify the above result, the phase plot for the original nonlinear system was plotted on
the computer and the equilibrium points locations highlighted. The plot below agrees with
the above result when looking at direction of arrows around each point. We see that the
direction field arrows are all moving toward the stable point from any location near it. The
stable equilibrium point was colored as green while the unstable ones colored in red.

In[ ]:= ClearAll[x, y];

f1 = 60 x - 3 x^2 - 4 x y;

f2 = 42 y - 3 y^2 - 2 x y;

StreamPlot[{f1, f2}, {x, -5, 25}, {y, -5, 20},

Epilog → {{Red, PointSize[0.03], Point[{{0, 0}, {0, 14}, {20, 0}}]},

{Green, PointSize[.035], Point[{{12, 6}}]}},

PlotLabel → Column[{"Phase plot for problem 1", "Showing location of all equilibrium points"},

Alignment → Center],

BaseStyle → 12,

ImageSize → 400]

Out[ ]=

-5 0 5 10 15 20 25

-5

0

5

10

15

20

Phase plot for problem 1
Showing location of all equilibrium points

Figure 2: Phase plot for problem 1

Interpretation of results Since the solution of the linearized system can be written as linear
combination of solutions made up of terms that look like cie

λit where ci are constants of
integration and λi are the eigenvalues found above, then this implies when the real part of the
eigenvalue is positive the solution will increase with time, moving away from the equilibrium
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point. Similarly, if the eigenvalue has a negative real part, it means it is a stable solution because
solution will decay with time when perturbed slightly from the equilibrium.

Since this is second order system, there are two eigenvalues. Even if one eigenvalue is stable
(i.e. negative), if the other eigenvalue is positive, then the system is unstable since one part of
the solution will keep growing with time.

In terms of the dynamics of species, it means if the populations x = 12 and population y = 6,
(this is the stable equilibrium) then these population will remain the same in long term even
when one population becomes a little more or less than the other population. But for all other
equilibrium populations sizes, such as x = 20,y = 0, then if the population y were to change
slightly to become sayy = 1 (may be by external influence) then this will cause both population
to start changing, moving it away from x = 20,y = 0 as time increases, hence x = 20,y = 0 is
not stable population size.

This seems to be sensitive to the parameters ai,bi, ci given in the problem. It is not easy to give
a more physical reasoning as why some population values is stable while other are not, other
than to also note that all the unstable ones had at least one population at zero.
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2 Problem 2

Figure 3: Problem 2 Statement

Solution

The ODE can be written as

y′′ − 5y′ + 6y = 4et (U (t) −U (t − 2))

= 4
(
etU (t) − etU (t − 2)

)
Where U (t) is the unit step function. In the following solutions, these Laplace transform
relations obtained from table are used

U (t) ⇔
1
s

U (t − τ ) ⇔
1
s
e−τs

e−αtU (t) ⇔
1

s + α

sin (ωt) ⇔
ω

s2 + ω2

cos (ωt) ⇔
s

s2 + ω2

Assuming L [y (t)] = Y (s), and using the above relations of Laplace transform we find

L
[
etU (t)

]
=

1
s − 1

L
[
etU (t − 2)

]
=
e−2(s−1)

s − 1

Now, taking the Laplace transform of the ODE results in(
s2Y (s) − sy (0) − y′ (0)

)
− 5 (sY (s) − y (0)) + 6Y (s) = 4

(
1

s − 1
−
e−2(s−1)

s − 1

)
Using y (0) = 1,y′ (0) = −2 the above simplifies to(

s2Y (s) − s + 2
)
− 5 (sY (s) − 1) + 6Y (s) =

4
s − 1

−
4e−2(s−1)

s − 1

s2Y (s) − s + 2 − 5sY (s) + 5 + 6Y (s) =
4

s − 1
−
4e−2(s−1)

s − 1

Y (s)
(
s2 − 5s + 6

)
− s + 7 =

4
s − 1

−
4e−2(s−1)

s − 1

Y (s)
(
s2 − 5s + 6

)
=

4
s − 1

−
4e−2(s−1)

s − 1
+ (s − 7)

But
(
s2 − 5s + 6

)
= (s − 3) (s − 2) and the above becomes

Y (s) =
4

(s − 1) (s − 3) (s − 2)
−

4e2e−2s

(s − 1) (s − 3) (s − 2)
+

(s − 7)
(s − 3) (s − 2)

(1)
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These are now simplified by partial fractions. The final result is only shown for brevity, since
the process of performing partial fraction is a standard one.

1
(s − 1) (s − 3) (s − 2)

=
1

2 (s − 3)
−

1
s − 2

+
1

2 (s − 1)

And
s − 7

(s − 3) (s − 2)
=

−4
s − 3

+
5

s − 2

Using the above result back in (1) results in

Y (s) =
2

s − 3
−

4
s − 2

+
2

s − 1
− e2e−2s

(
2

(s − 3)
−

4
s − 2

+
2

(s − 1)

)
−

4
s − 3

+
5

s − 2

=
−2
s − 3

+
1

s − 2
+

2
s − 1

− e2
(
2e−2s

(s − 3)
−
4e−2s

s − 2
+

2e−2s

(s − 1)

)
(2)

Now we apply the inverse Laplace transform. lookup table is also used for this purpose to
obtain

−2L−1
(

1
s − 3

)
= −2e3t

L−1
(

1
s − 2

)
= e2t

2L−1
(

1
s − 1

)
= 2et

And

2L−1
(
e−2s

s − 3

)
= 2e3(t−2)U (t − 2)

4L−1
(
e−2s

s − 2

)
= 4e2(t−2)U (t − 2)

2L−1
(
e−2s

s − 1

)
= 2e(t−2)U (t − 2)

Putting all these results back into (2) gives the response in time domain as

y (t) = −2e3t + e2t + 2et − e2
(
2e3(t−2) − 4e2(t−2) + 2e(t−2)

)
U (t − 2)

The above can also be written as

y (t) =

{
−2e3t + e2t + 2et 0 < t < 2

−2e3t + e2t + 2et − e2
(
2e3t − 4e2t + 2et

)
t ≥ 2

Since the original ODE is not stable (due to damping term −5 negative in the given ODE, the
solution will blow up with time). This is seen by the solution above, where the exponential are
all positive, hence growing with time. The following is a plot of the above solution for up to
t = 2.2
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ClearAll[t];

mySol = -2 ⅇ
3 t

+ ⅇ
2 t

+ 2 ⅇ
t
- ⅇ

2
2 ⅇ

3 t-2
- 4 ⅇ

2 t-2
+ 2 ⅇ

t-2
 UnitStep[t - 2];

Plot[mySol, {t, 0, 2.2},

Frame -> True,

FrameLabel → {{"y(t)", None}, {"t (sec)", "Solution to problem 2"}},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red]

0.0 0.5 1.0 1.5 2.0
-1000

-800

-600

-400

-200

0

t (sec)

y(
t)

Solution to problem 2

Figure 4: Plot of solution for problem 2
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3 Problem 3

Figure 5: Problem 3 Statement

Solution

Let Y1 (s) = L [y1 (t)] and let Y2 (s) = L [y2 (t)]. Taking Laplace transform of the two ODE’s
gives

s2Y1 (s) − sy1 (0) − y′1 (0) + 5Y1 (s) + Y2 (s) = 0

s2Y2 (s) − sy2 (0) − y′2 (0) − 2Y1 (s) + 2Y2 (s) = 0

Substituting the given initial conditions results in

s2Y1 − 3s + 5Y1 + Y2 = 0 (1)
s2Y2 − s − 2Y1 + 2Y2 = 0 (2)

The above two ODE’s are now solved for Y1 (s) ,Y2 (s)

Y1
(
s2 + 5

)
+ Y2 = 3s

Y2
(
s2 + 2

)
− 2Y1 = s

or (
s2 + 5 1

−2 s2 + 2

) (
Y1

Y2

)
=

(
3s

s

)
Using Gaussian elimination: Adding

(
2

s2+5

)
times first row to second row gives(

s2 + 5 1

0 s2 + 2 + 2
s2+5

) (
Y1

Y2

)
=

(
3s

s + 6s
s2+5

)
(
s2 + 5 1

0 1
s2+5

(
s4 + 7s2 + 12

) ) (
Y1

Y2

)
=

(
3s

s
s2+5

(
s2 + 11

) )
Back substitution: From last row

Y2 (s) =
s

s2+5

(
s2 + 11

)
1

s2+5 (s
4 + 7s2 + 12)

=
s
(
s2 + 11

)
s4 + 7s2 + 12

=
s
(
s2 + 11

)
(s2 + 4) (s2 + 3)

(3)
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First row gives (
s2 + 5

)
Y1 + Y2 = 3s

Using Y2 (s) found from (3), the above becomes(
s2 + 5

)
Y1 = 3s −

s
(
s2 + 11

)
(s2 + 4) (s2 + 3)

Y1 (s) =
3s

(s2 + 5)
−

s
(
s2 + 11

)
(s2 + 5) (s2 + 4) (s2 + 3)

(4)

To obtain the time domain solution we need to inverse Laplace transform (3,4). Starting with
(3), and applying partial fractions gives

Y2 (s) =
s
(
s2 + 11

)
(s2 + 4) (s2 + 3)

=
8s

3 + s2
−

7s
4 + s2

(5)

From tables we see that

8L−1
[ s

3 + s2

]
= 8 cos

(√
3t

)
7L−1

[ s

4 + s2

]
= 7 cos (2t)

Hence (5) becomes in time domain as

y2 (t) = 8 cos
(√

3t
)
− 7 cos (2t)

Similarly for Y1 (s), from (4) and applying partial fractions

Y1 (s) =
3s

(s2 + 5)
−

s
(
s2 + 11

)
(s2 + 5) (s2 + 4) (s2 + 3)

=
3s

(s2 + 5)
−

(
4s

s2 + 3
−

7s
s2 + 4

+
3s

5 + s2

)
(6)

From inverse Laplace transform table

3L−1
[

s

(s2 + 5)

]
= 3 cos

(√
5t

)
4L−1

[ s

s2 + 3

]
= 4 cos

(√
3t

)
7L−1

[ s

s2 + 4

]
= 7 cos (2t)

3L−1
[ s

5 + s2

]
= 3 cos

(√
5t

)
Using these in (6), the solution y1 (t) becomes

y1 (t) = 3 cos
(√

5t
)
−

(
4 cos

(√
3t

)
− 7 cos (2t) + 3 cos

(√
5t

) )
= −4 cos

(√
3t

)
+ 7 cos (2t)

In summary

y1 (t) = −4 cos
(√

3t
)
+ 7 cos (2t)

y2 (t) = 8 cos
(√

3t
)
− 7 cos (2t)

The following is a plot of the solutions for 10 seconds.
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ClearAll[y1, y2, t]

y1 = -4 Cos 3 t + 7 Cos[2 t];

y2 = 8 Cos 3 t - 7 Cos[2 t];

Plot[{y1, y2}, {t, 0, 10}, Frame → True,

FrameLabel → {{"y1(t),y2(t)", None}, {"t (sec)", "Problem 3 solution"}},

PlotLegends → {"y1(t)", "y2(t)"},

BaseStyle → 14,

GridLines → Automatic,

GridLinesStyle → LightGray]

Out[ ]=

0 2 4 6 8 10
-15

-10

-5

0

5

10

t (sec)

y1
(t
),
y2

(t
)

Problem 3 solution

y1(t)

y2(t)

Figure 6: Plot of solution for problem 3
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4 Problem 4

Figure 7: Problem 4 Statement

Solution

4.1 Part a

Note: In all the following it is assumed that x is a vector and that x , 0

Let
A = Asy +Ask (1)

Where Asy is a symmetric matrix, which means AT
sy = Asy and Ask is skew symmetric matrix

which means AT
sk
= −Ask . Taking the transpose of (1) gives

AT =
(
Asy +Ask

)T
= AT

sy +A
T
sk

= Asy −Ask (2)

Adding (1)+(2) gives

A +AT = 2Asy

Asy =
A +AT

2
(3)

Subtracting (2)-(1) gives

AT −A = −2Ask

Ask =
A −AT

2
(4)

Therefore for any A,

Asy =
1
2

(
A +AT

)
(4A)

Ask =
1
2

(
A −AT

)
(4B)

To show that Asy is indeed symmetric, this is done by construction :

AT
sy =

1
2

(
A +AT

)T
=

1
2

(
AT +

(
AT

)T )
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But
(
AT

)T
= A, and the above becomes

AT
sy =

1
2

(
AT +A

)
= Asy

Therefore Asy is indeed symmetric.

To show that Ask is skew symmetric matrix :

AT
sk =

1
2

(
A −AT

)T
=

1
2

(
AT −

(
AT

)T )
=

1
2

(
AT −A

)
= −

1
2

(
A −AT

)
= −Ask

Hence Ask is indeed skew symmetric.

Therefore any A matrix can be written as A = Asy +Ask where Asy,Ask are given by (4A,4B).

Now we need to show that this is a unique was to writeA. Proof is by contradictions. Let there
be Ãsy matrix which is symmetric and Ãsy , Asy and let there be Ãsy matrix which is skew
matrix and Ãsk , Ask . And also let A = Ãsy + Ãsy in addition to A = Asy +Ask . Then

AT =
(
Ãsy + Ãsk

)T
= ÃT

sy + Ã
T
sk

Since Ãsy is assumed to be symmetric, then ÃT
sy = Ãsy and since Ãsk is assumed to be skew

symmetric, then ÃT
sk
= −Ãsk and the above becomes

AT = Ãsy − Ãsk

Therefore

1
2

(
A +AT

)
=

1
2

(
Ãsy + Ãsk + Ãsy − Ãsk

)
= Ãsy

But from (4A) above, we showed that 1
2

(
A +AT

)
= Asy . Hence

Asy = Ãsy

Which is a contradiction to our assumption that Ãsy , Asy . Therefore Asy is unique. The same
is done for Ãsk . From

1
2

(
A −AT

)
=

1
2

(
Ãsy + Ãsk −

(
Ãsy − Ãsk

) )
= Ãsk

But from (4) above, we showed that 1
2

(
A −AT

)
= Ask . HenceAsk = Ãsk which is a contradiction.

Therefore there is only way to writeA as sum of symmetric and skew symmetric way, which is

A =

Asy︷  ︸︸  ︷
A +AT

2
+

Ask︷        ︸︸        ︷
1
2

(
A −AT

)
QED.
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4.2 Part b

Starting with the forward direction. We need to show that given A is positive definite (p.d.)
then this implies Asy is also p.d.

From part (a) we found that A can be written as A = Asy +Ask . Since A is now assumed to be
p.d. then this implies

xTAx > 0

xT
(
Asy +Ask

)
x > 0

xTAsyx + x
TAskx > 0 (1)

Now we will show that xTAskx = 0 to finish the above proof. First we observe that(
xTAskx

)T
= (Askx)

T x

= xTAT
skx

But Ask = −AT
sk

by definition of skew symmetric matrix. Therefore the above becomes(
xTAskx

)T
= −

(
xTAskx

)
But xTAskx is a single number, say q. (To be precise, q is 1×1matrix. but since it is 1×1we can
treat it as a number, since it is one element). But the transpose of a number (or 1 × 1 matrix) is
itself. Hence the above relation says that

qT = −q

For a number, this is the same as saying q = −q and this only possible if q = 0 or in other
words

xTAskx = 0 (2)

Using (2) in (1) shows immediately that

xTAsyx > 0

Therefore Asy is positive definite.

Now we need to show the reverse direction. That is, we need to show that if Asy is p.d. then
this implies A is also p.d.

Since Asy is now assumed to be p.d. then we can write

xTAsyx > 0

But A = Asy +Ask therefore Asy = A −Ask and the above becomes

xT (A −Ask)x > 0

xTAx − xTAskx > 0

But we showed in (2) that xTAskx = 0. Therefore the above becomes

xTAx > 0

Which implies that A is positive definite, which is what we are asked to show. QED
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5 Problem 5

Figure 8: Problem 5 Statement

Solution

Two vectors ®v, ®u are orthogonal if their dot product is zero.This is because ®v · ®u = ‖ ®v ‖ ‖ ®u‖ cosθ
where θ is the inner angle between the two vectors. Since the vectors are orthogonal, then
cos 900 = 0 and therefore ®v · ®u = 0. To find which pairs are orthogonal to each others, we
compute the inner product between all possible pairs :

®u1 · ®u2 = −2 + 0 + 0 + 2 = 0

®u1 · ®u3 = 4 + 6 + 0 + 4 = 14

®u1 · ®u4 = −12 + 12 + 0 + 0 = 0

®u2 · ®u3 = −2 + 0 + 3 + 8 = 9

®u2 · ®u4 = 6 + 0 − 6 + 0 = 0

®u3 · ®u4 = −12 + 8 − 2 + 0 = −2

We see from the above that ®u1 · ®u2 = 0, ®u1 · ®u4 = 0, ®u2 · ®u4 = 0. Therefore

S = {®u1, ®u2, ®u4}

≡ { ®v1, ®v2, ®v3}

Or

®v1 = (2, 3, 0, 1) (1B)
®v2 = (−1, 0, 3, 2)

®v3 = (−6, 4,−2, 0)

Form an orthogonal set in R4.

Now we need to find the best approximation of ®w = ®u3 = (2, 2, 1, 4) using the above orthogonal
vectors ®v1, ®v2, ®v3. Using Gram’s theorem, this approximation is

®w = c1 ®v1 + c2 ®v2 + c3 ®v3 (1A)

Where the constants ci are found from solving the system

©­­«
®v1 · ®v1 ®v1 · ®v2 ®v1 · ®v3

®v2 · ®v1 ®v2 · ®v2 ®v2 · ®v3

®v3 · ®v1 ®v3 · ®v2 ®v3 · ®v3

ª®®¬
©­­«
c1

c2

c3

ª®®¬ =
©­­«
®v1 · ®w

®v2 · ®w

®v3 · ®w

ª®®¬
But since ®vi are all orthogonal to each others then ®vi · ®vj = 0 for i , j, and ®vi · ®vi = ‖vi ‖

2 and
the above becomes ©­­«

‖ ®v1‖
2 0 0

0 ‖ ®v2‖
2 0

0 0 ‖ ®v3‖
2

ª®®¬
©­­«
c1

c2

c3

ª®®¬ =
©­­«
®v1 · ®w

®v2 · ®w

®v3 · ®w

ª®®¬ (1)
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But

®v1 · ®w = (2, 3, 0, 1) · (2, 2, 1, 4) = 4 + 6 + 4 = 14

®v2 · ®w = (−1, 0, 3, 2) · (2, 2, 1, 4) = −2 + 3 + 8 = 9

®v3 · ®w = (−6, 4,−2, 0) · (2, 2, 1, 4) = −12 + 8 − 2 = −6

Hence (1) becomes ©­­«
‖ ®v1‖

2 0 0

0 ‖ ®v2‖
2 0

0 0 ‖ ®v3‖
2

ª®®¬
©­­«
c1

c2

c3

ª®®¬ =
©­­«
14

9

−6

ª®®¬ (2)

Since

‖ ®v1‖
2
= ‖(2, 3, 0, 1)‖2 = 4 + 9 + 1 = 14

‖ ®v2‖
2
= ‖(−1, 0, 3, 2)‖2 = 1 + 9 + 4 = 14

‖ ®v3‖
2
= ‖(−6, 4,−2, 0)‖2 = 36 + 16 + 4 = 56

Then (2) becomes ©­­«
14 0 0

0 14 0

0 0 56

ª®®¬
©­­«
c1

c2

c3

ª®®¬ =
©­­«
14

9

−6

ª®®¬ (3)

From the above we see that

c1 = 1

c2 =
9
14

c3 =
−3
28

Hence the best approximation using (1A) becomes

®w = c1 ®v1 + c2 ®v2 + c3 ®v3

= (2, 3, 0, 1) +
9
14

(−1, 0, 3, 2) −
3
28

(−6, 4,−2, 0)

=

(
2,
18
7
,
15
7
,
16
7

)
Therefore

®w =
1
7
(14, 18, 15, 16)

Nowwe need to find basis ®v1, ®v2, ®v3, ®v4 of orthogonal vectors in R4. We already found that from
(1B) that ®v1, ®v2, ®v3 are three such vectors. So we just need to find another ®v4 = [a1,a2,a3,a4]
such that it is orthogonal to the other three, in other words we need to solve

®v1 · ®v4 = 0

®v2 · ®v4 = 0

®v3 · ®v4 = 0

This implies

[2, 3, 0, 1] · [a1,a2,a3,a4] = 0

[−1, 0, 3, 2] · [a1,a2,a3,a4] = 0

[−6, 4,−2, 0] · [a1,a2,a3,a4] = 0

Or

2a1 + 3a2 + a4 = 0

−a1 + 3a3 + 2a4 = 0

−6a1 + 4a2 − 2a3 = 0
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Or

©­­«
2 3 0 1

−1 0 3 2

−6 4 −2 0

ª®®¬
©­­­­­«
a1

a2

a3

a4

ª®®®®®¬
=

©­­«
0

0

0

ª®®¬
This system has three equations and 4 unknowns. Therefore it will have one free parameter
giving an infinite number of solutions. Using Gaussian elimination:

©­­«
2 3 0 1

−1 0 3 2

−6 4 −2 0

ª®®¬
R2=R2+

1
2R1

→
©­­«
2 3 0 1

0 3
2 3 5

2

−6 4 −2 0

ª®®¬
R3=R3+3R1

→

©­­«
2 3 0 1

0 3
2 3 5

2

0 13 −2 3

ª®®¬
R3=R3−

26
3 R2

→
©­­«
2 3 0 1

0 3
2 3 5

2

0 0 −28 −56
3

ª®®¬
We stop the elimination here since no more elimination is possible. We have now this system

©­­«
2 3 0 1

0 3
2 3 5

2

0 0 −28 −56
3

ª®®¬
©­­­­­«
a1

a2

a3

a4

ª®®®®®¬
=

©­­«
0

0

0

ª®®¬
Back substitution: From last row we obtain the equation

−28a3 −
56
3
a4 = 0

a4 = −
3
2
a3

The second row gives

3
2
a2 + 3a3 +

5
2
a4 = 0

a2 =
2
3

(
−3a3 −

5
2
a4

)
= −2a3 −

5
3
a4

Since a4 = −3
2a3 the above becomes

a2 = −2a3 −
5
3

(
−
3
2
a3

)
=

1
2
a3

First row gives

2a1 + 3a2 + a4 = 0

a1 =
1
2
(−3a2 − a4)

Since a2 = 1
2a3 and a4 = −3

2a3 the above becomes

a1 =
1
2

(
−3

(
1
2
a3

)
−

(
−
3
2
a3

) )
= 0

Therefore the solution is ©­­­­­«
a1

a2

a3

a4

ª®®®®®¬
=

©­­­­­«
0
1
2

1

−3
2

ª®®®®®¬
a3
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The above means that for any arbitrary a3 value there is a solution. a3 is just a scalar which
only stretches or shrinks the vector but does not change its direction (orientation). Therefore
the vector remains orthogonal to all others for any a3. Let us pick a3 = 1. Using this ®v4 becomes

®v4 =

[
0,
1
2
, 1,−

3
2

]
To verify the result found, we will check that ®v4 is indeed orthogonal with the other three
vectors :

®v1 · ®v4 = [2, 3, 0, 1] ·

[
0,
1
2
, 1,−

3
2

]
= 0

®v2 · ®v4 = [−1, 0, 3, 2] ·

[
0,
1
2
, 1,−

3
2

]
= 0

®v3 · ®v4 = [−6, 4,−2, 0] ·

[
0,
1
2
, 1,−

3
2

]
= 0

QED.
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6 Problem 6

Figure 9: Problem 6 Statement

Solution

Let

An×n =

©­­­­­­­«

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...
. . .

...

an1 an2 an3 · · · ann

ª®®®®®®®®¬
,b =

©­­­­­­­«

b1

b2

b3
...

bn

ª®®®®®®®®¬
6.1 Part (a)

The first step in Gaussian elimination is to reduce the above matrix to row echelon form :

An×n =

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...
. . .

...

0 0 0 · · · ann

ª®®®®®®®®¬

©­­­­­­­«

b1

b̃2

b̃3
...

b̃n

ª®®®®®®®®¬
Row echelon form has zeros in its the lower left triangle. After this, back substitution starts by
solving for xn from the last row, then solving for xn−1 from the row above the last row and so
on until we reach the first row.

Counting operations for forward pass

The first step is to zero out all entries in first column below a11 using a11 as pivot. Next is to
zero out all entries in second column below the (updated) a22 value and so on.

To zero out an entry, for example a21, we first need to do one division a21
a11
= ∆ and store this

in memory, then do a2i = a2i − ∆a1i for all entries in that row, which means for i = 1 · · ·n.
(no need to count a21 since we know it will be zero). We have to remember that this is being
applied to the b vector as well and not just for A matrix rows.

Hence we need one division to find ∆, and then 2n multiplication and addition/subtraction
operations per row. The division is only needed once per row to find the pivot scaling ∆.

Since there are n − 1 rows then there are (n − 1) divisions and (2n) (n − 1) multiplications/ad-
dition to zero out the first column. After this we have the following system reached

An×n =

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 a32 a33 · · · a3n
...

...
...
. . .

...

0 an2 an3 · · · ann

ª®®®®®®®®¬

©­­­­­­­«

b1

b̃2

b̃3
...

b̃n

ª®®®®®®®®¬
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The total cost now is therefore (n − 1) + (2n) (n − 1).

We now switch to the second row and use the new value of a22 as pivot and repeat the same
as above. The only difference now is that there are n − 2 rows to process and (n − 2) divisions
and therefore 2 (n − 1) (n − 2) multiplications/addition to zero out the second column entries
below the second row. After this we reach the following system

An×n =

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...
. . .

...

0 0 an3 · · · ann

ª®®®®®®®®¬

©­­­­­­­«

b1

b̃2

b̃3
...

b̃n

ª®®®®®®®®¬
The total cost of the above is therefore (n − 2) + 2 (n − 1) (n − 2).

We now switch to the third row and use the new value of a33 as pivot. Now there are now
(n − 3) divisions and 2 (n − 2) (n − 3) multiplications/additions to obtain the following system

An×n =

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...
. . .

...

0 0 0 · · · ann

ª®®®®®®®®¬

©­­­­­­­«

b1

b̃2

b̃3
...

b̃n

ª®®®®®®®®¬
The total cost of the above is therefore (n − 3) + 2 (n − 2) (n − 3) .

And so on until we reach the row before the last row, where there is only one row below it to
process. The cost then is just one division and 2 additions and 2 multiplications. Therefore the
number of total number of multiplication and additions operations for the forward pass is the
sum of all the above operations, which can be written as

row 2︷                       ︸︸                       ︷
[(n − 1) + (2n) (n − 1)] +

row 3︷                             ︸︸                             ︷
[(n − 2) + 2 (n − 1) (n − 2)] + · · · +

last row︷ ︸︸ ︷
[1 + 4]

Writing the above as
n−1∑
k=1

(n − k)+2 (n − k + 1) (n − k) then we need to calculate this sum using

known formulas for summations. Let this sum be ∆, hence

∆ =
n−1∑
k=1

− 3k + 2k2 + 3n − 4kn + 2n2

= −3
n−1∑
k=1

k + 2
n−1∑
k=1

k2 + 3
n−1∑
k=1

n − 4
n−1∑
k=1

kn + 2
n−1∑
k=1

n2

= −3

(
n (n − 1)

2

)
+ 2

(
n3

3
−
n2

2
+
n

6

)
+ 3

(
n2 − n

)
− 4

(
n2 (n − 1)

2

)
+ 2

(
n2 (n − 1)

)
=

2
3
n3 +

1
2
n2 −

7
6
n (1)

The above is the number of operations just for for the forward pass (elimination phase).

For example for matrix of size 3 × 3 the above gives 19 operations, and for matrix of size 4 × 4,
it gives 46 operations and for 5 × 5 it gives 90 operations and so on.

Counting operations for backward pass In back substitution, we start from the end of the elim-
ination phase above, which will be

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...
. . .

...

0 0 0 · · · ann

ª®®®®®®®®¬

©­­­­­­­«

x1

x2

x3
...

xn

ª®®®®®®®®¬
=

©­­­­­­­«

b1

b2

b3
...

bn

ª®®®®®®®®¬
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First step is to solve for xn by finding xn = bn
ann

. This requires only one division. Next is to solve
for xn−1 by finding an−1,n−1xn−1 + an−1,nxn = bn−1, or

xn−1 =
bn−1 −

(
an−1,n

)
xn(

an−1,n−1
)

We see that this needs one subtraction, one multiplication and one division, or 3 operations.
The next step is to solve for xn−2 from(

an−2,n−2
)
xn−2 +

(
an−2,n−1

)
xn−1 +

(
an−2,n

)
xn = b2

Hence

xn−2 =
b2 −

(
an−2,n−1

)
xn−1 −

(
an−2,n

)
xn(

an−2,n−2
)

Therefore we need 2 subtractions, 2 multiplication and one division, or 5 operations. And so
on until we reach the first row to solve for x1. Therefore the total number of operations can be
seen as

1 + 3 + 5 + 7 + · · ·

The above can be written as the sum
n−1∑
k=0

(2k + 1) = 2
n−1∑
k=0

k +
n−1∑
k=0

1

= 2

(
n (n − 1)

2

)
+ n

= n (n − 1) + n

= n2 − n + n

= n2 (2)

We see that the cost of the elimination is much greater than the cost of back substitution. One
is O

(
n3

)
while the other is O

(
n2

)
.

From (1,2), the total number of operations for the complete Gaussian elimination process is

∆ =
2
3
n3 +

1
2
n2 −

7
6
n + n2

=
2
3
n3 +

3
2
n2 −

7
6
n

For large n the above is O
(
n3

)
.

6.2 Part (b)

Given a system of equations

©­­­­­­­«

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...
. . .

...

an1 an2 an3 · · · ann

ª®®®®®®®®¬

©­­­­­­­«

x1

x2

x3
...

xn

ª®®®®®®®®¬
=

©­­­­­­­«

b1

b2

b3
...

bn

ª®®®®®®®®¬
Cramer method works as follows :

x1 =
|A|

|A1 |

x2 =
|A|

|A2 |

...

xn =
|A|

|An |
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Where |A| is the determinant of coefficient matrix An×n and |Ai | is determinant of coefficient
matrix but with the ith column replaced by the column vector b.

An efficient way to find the determinant is to convert the matrix to row echelon form. In this
form, the matrix is upper triangle. Hence the determinant is the product of all elements along
the diagonal. This is more efficient than using the matrix cofactor expansion method.

In doing these row operations on the matrix to find |A| the only difference from the elimination
steps we did for part(a), is that we have to remember the following rules now during the
elimination process

1. When adding multiple of one row to another row, the determinant is not affected.

2. When switching two rows, the determinant is multiplied by −1

3. When multiplying one row by some scalar, the determinant is also multiplied by the
same scalar.

Given the above, let us assume that for each elimination step of a row, we do one multiplication
to account for a possible multiplication by −1 or possible multiplication by a scalar. Since we
do not know if this will happen every time as this clearly depends on the data in the matrix,
then this will be the worst case counting.

This means there is an additional (n − 1) multiplications to add to the cost of doing the elimi-
nation step to reach row echelon form at the end.

Another small difference from part(a), is that now we do not have the b vector added during
the forward step.

Therefore, as we did in part(a), the cost to reach this form

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 a32 a33 · · · a3n
...

...
...
. . .

...

0 an2 an3 · · · ann

ª®®®®®®®®¬
Is now (n − 1) + (2 (n − 1)) (n − 1). Recalling from part(a) the cost at this stage was (n − 1) +
(2n) (n − 1) here. So we changed 2n to 2 (n − 1), since there is no b vector, hence one less
element. And as was done in part (a), the cost to reach

©­­­­­­­«

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...
. . .

...

0 0 an3 · · · ann

ª®®®®®®®®¬
Now becomes (n − 2)+2 (n − 2) (n − 2). Recalling from part(a) the cost at this stagewas (n − 1)+
2 (n − 1) (n − 1). So we changed 2 (n − 1) to 2 (n − 2), since there is nob vector.This continues to
the row before the last as in part (a). Therefore the number of total multiplication and additions
operations for just the forward pass is

row 2︷                               ︸︸                               ︷
[(n − 1) + (2 (n − 1)) (n − 1)] +

row 3︷                             ︸︸                             ︷
[(n − 2) + 2 (n − 2) (n − 2)] + · · · +

last row︷ ︸︸ ︷
[1 + 2]

Hence the cost to put the matrix in row echelon form is
n−1∑
k=1

(n − k) + 2 (n − k)2 =
n−1∑
k=1

n −
n−1∑
k=1

k + 2
n−1∑
k=1

(n − k)2

= n (n − 1) −
n (n − 1)

2
+ 2

n − 3n2 + 2n3

6

=
2
3
n3 −

1
2
n2 −

1
6
n (1)
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The above cost is very close to part(a) elimination phase as expected which was 2
3n

3 + 1
2n

2 −
7
6n. Current cost is smaller because in part(a) we had the b vector there which added more
operations, while here we just operated on A itself.

Let us now add the (n − 1) multiplication we mentioned earlier to the result above. The cost
now becomes

∆ =
2
3
n3 −

1
2
n2 −

1
6
n + (n − 1)

=
2
3
n3 −

1
2
n2 +

5
6
n − 1

We still need to calculate the product of the diagonal elements to find the determinant. For
n × n matrix, this takes n − 1 multiplications. Adding these to the above gives

∆ =
2
3
n3 −

1
2
n2 +

5
6
n − 1 + (n − 1)

=
2
3
n3 −

1
2
n2 +

11
6
n − 2

≈
2
3
n3 −

1
2
n2 +

11
6
n

We will use the above as the cost of finding the determinant.

How many times do we need to find determinants? We need to do it one time to find |A|
and then n more time for each |Ai | . Hence (n + 1) times. This is the main reason why Cramer
method becomes much more costly compared to Gaussian elimination.

The number of operations now becomes

∆ =

(
2
3
n3 −

1
2
n2 +

11
6
n

)
(n + 1)

=
2
3
n4 +

1
6
n3 +

4
3
n2 +

11
6
n

We also need to add the cost of the final divisions |A|
|Ai |

to find each xi . So we add n divisions to
the above, giving the final cost as

∆ =
2
3
n4 +

1
6
n3 +

4
3
n2 +

11
6
n + n

=
2
3
n4 +

1
6
n3 +

4
3
n2 +

17
6
n

We see from above, that Cramer rule for large n is O
(
n4

)
while Gaussian elimination was

O
(
n3

)
. Hence Gaussian elimination is much more efficient for large n.

In summary

n cost of Gaussian elimination 2
3n

3 + 3
2n

2 − 7
6n cost of Cramer 2

3n
4 + 1

6n
3 + 4

3n
2 + 17

6 n

2 5 23

3 19 79

4 46 214

5 90 485

6 155 965

7 245 1743

8 364 2924

9 516 4629

10 705 6995

The following is a graphical illustration of the above
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In[ ]:= ge =
2

3
n3 +

3

2
n2 -

7

6
n;

cramer =
2

3
n4 +

1

6
n3 +

4

3
n2 +

17

6
n;

dataGE = Table[{n, ge}, {n, 2, 10}];

dataCramer = Table[{n, cramer}, {n, 2, 10}];

ListLinePlot[{dataCramer, dataGE}, Mesh → Full, PlotRange → All,

MeshStyle → {Red, PointSize@Large}, GridLines → Automatic, GridLinesStyle → LightGray,

PlotLegends → {"Cramer", "G.E."}, AxesLabel → {"n", "cost"}, BaseStyle → 14,

AxesOrigin → {1, 0}, Ticks → {Range[2, 10], Automatic}]

2 3 4 5 6 7 8 9 10
n

1000

2000

3000

4000

5000

6000

7000

cost

Cramer

G.E.

Figure 10: Cost of Gaussian elimination vs. Cramer method. Problem 6
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7 Problem 7

Figure 11: Problem 7 Statement

Solution

7.1 Part a

The eigenvalues of A are found by solving |A − λI | = 0 or��������
1√
5
− λ 0 2√

5
−2√
5

−λ 1√
5

0 −1 −λ

�������� = 0

(
1
√
5
− λ

) �����−λ 1√
5

−1 −λ

����� − 0 +
2
√
5

�����−2√5 −λ

0 −1

����� = 0(
1
√
5
− λ

) (
λ2 +

1
√
5

)
+

2
√
5

(
2
√
5

)
= 0

1
5
(λ − 1)

(
−5λ − 5λ2 +

√
5λ − 5

)
= 0

1
5
(λ − 1)

(
−5λ2 + λ

(√
5 − 5

)
− 5

)
= 0

(λ − 1)
(
−5λ2 + λ

(√
5 − 5

)
− 5

)
= 0

Hence λ = 1. The quadratic formula is used to solve −5λ2 + λ
(√

5 − 5
)
− 5 = 0. First it is

normalized

5λ2 − λ
(√

5 − 5
)
+ 5 = 0

λ2 − λ

(
1
5

√
5 − 1

)
+ 1 = 0
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Then λ = −b
2a ± 1

2a

√
b2 − 4ac where b = −

(
1
5

√
5 − 1

)
, c = 1,a = 1 and the roots are

λ =

(
1
5

√
5 − 1

)
2

±
1
2

√(
−

(
1
5

√
5 − 1

) ) 2
− 4

=

(√
5

10
−
1
2

)
±
1
2

√(
1
5

√
5 − 1

) 2
− 4

=

(√
5

10
−
1
2

)
±
1
2

√
1 +

5
25

−
2
5

√
5 − 4

=

(√
5

10
−
1
2

)
±
1
2

√
1 +

1
5
−
2
5

√
5 − 4

=

(√
5

10
−
1
2

)
±
1
2

√
−
14
5

−
2
√
5

5

=

(√
5

10
−
1
2

)
±
1
2

√
−14 − 2

√
5

5

=

(√
5

10
−
1
2

)
±
1
2
i

√
14 + 2

√
5

5

=

(√
5

10
−
1
2

)
±
1
2
i

√√√
5
(
14 + 2

√
5
)

(5) 5

=

(√
5

10
−
1
2

)
±

1
(2) (5)

i

√
5
(
14 + 2

√
5
)

=

(√
5

10
−
1
2

)
±

1
10
i

√
10
√
5 + 70

Therefore the roots are

λ1 = 1

λ2 =

(√
5

10
−
1
2

)
+

1
10
i

√
10
√
5 + 70

λ3 =

(√
5

10
−
1
2

)
−

1
10
i

√
10
√
5 + 70

Numerically the above becomes

λ1 = 1

λ2 = −0.276 + 0.961i

λ3 = −0.276 − 0.961i

The following plot shows the locations on the complex plane
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eigs = {1, -0.276 + 0.961 I, -0.276 - 0.961 I};

eigs = ReIm@eigs;

img = Graphics[{

{FaceForm[White], EdgeForm[Black], Disk[]},

{Red, PointSize[.05], Point[eigs]}

}, ImageSize → 300, Axes → True];

grid = Graphics[{}, GridLines → Automatic, PlotRangePadding → None,

GridLinesStyle → LightGray, ImageSize → ImageDimensions@img];

Overlay[{img, grid}]

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 12: Graphical location of eigenvalues for problem 7

To show analytically that the eigenvalues lie on the unit circle means to show that the magni-
tude of each complex number is 1. Clearly λ1 already satisfy this condition. We need to check
now that ‖λ2‖ = 1 and that ‖λ3‖ = 1

‖λ2‖ =

√
Re (λ2)

2 + Im (λ2)
2

=

√(√
5

10
−
1
2

) 2
+

(
1
10

√
10
√
5 + 70

) 2
=

√(
3
10

−
1
10

√
5

)
+

(
1
10

√
5 +

7
10

)
=

√
10
10

= 1

Similarly for λ3 since it is the same except for the sign on the complex part (complex conjugate)
which does not affect the norm. Therefore all the eigenvalues lie on unit circle in C. QED.

7.2 Part b

Let two vectors in the domain of A be x =
©­­«
x1

x2

x3

ª®®¬ and y =
©­­«
y1

y2

y3

ª®®¬. And let the two vector after the

mapping, which now lie in the range ofA be x̃ =
©­­«
x̃1

x̃2

x̃3

ª®®¬ and ỹ =
©­­«
ỹ1

ỹ2

ỹ3

ª®®¬. Since x · y = ‖x‖ ‖y‖ cosθ

where θ is the inner angle between the vectors, and since x̃ · ỹ = ‖ x̃‖ ‖ ỹ‖ cos θ̃ , then we need
to show that

θ = θ̃
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~x

~y

Domain of A ~̃x~̃y

θ

θ̃

A~x

A~y

Range of A

Figure 13: Linear transformation Ax preserves angles. Problem 7

Let

Ax = x̃

Ay = ỹ

Using the A given, then

©­­­«
1√
5

0 2√
5

−2√
5

0 1√
5

0 −1 0

ª®®®¬
©­­«
x1

x2

x3

ª®®¬ =
©­­­«

1√
5
x1 +

2√
5
x3

−2√
5
x1 +

1√
5
x3

−x2

ª®®®¬
Hence

x̃ =
©­­­«

1√
5
x1 +

2√
5
x3

−2√
5
x1 +

1√
5
x3

−x2

ª®®®¬
We see from the above that

x̃1 =
1
√
5
x1 +

2
√
5
x3

x̃2 =
−2
√
5
x1 +

1
√
5
x3

x̃3 = −x2

Similarly

ỹ =
©­­­«

1√
5
y1 +

2√
5
y3

1√
5
y1 −

2√
5
y3

−y2

ª®®®¬
We see from the above that

ỹ1 =
1
√
5
y1 +

2
√
5
y3

ỹ2 =
−2
√
5
y1 +

1
√
5
y3

ỹ3 = −y2

We now need to determine θ and θ̃ and show they are the same. From the definition above

θ = arccos

(
x · y

‖x‖ ‖y‖

)
But x · y = x1y1 + x2y2 + x3y3 and ‖x‖ =

√
x21 + x

2
2 + x

2
3 and ‖y‖ =

√
y21 + y

2
2 + y

2
3 , therefore

the above becomes

θ = arccos
©­­«

x1y1 + x2y2 + x3y3√
x21 + x

2
2 + x

2
3

√
y21 + y

2
2 + y

2
3

ª®®¬ (1)
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Similarly, x̃ · ỹ = x̃1ỹ1 + x̃2ỹ2 + x̃3ỹ3. Using the values of x̃i, ỹi found above the dot product
becomes

x̃ · ỹ =

(
1
√
5
x1 +

2
√
5
x3

) (
1
√
5
y1 +

2
√
5
y3

)
+

(
−2
√
5
x1 +

1
√
5
x3

) (
−2
√
5
y1 +

1
√
5
y3

)
+ (−x2) (−y2)

=
1
5
(x1 + 2x3) (y1 + 2y3) +

1
5
(x3 − 2x1) (y3 − 2y1) + x2y2

=
1
5
x1y1 +

2
5
x1y3 +

2
5
x3y1 +

4
5
x3y3 +

4
5
x1y1 −

2
5
x1y3 −

2
5
x3y1 +

1
5
x3y3 + x2y2

Which simplifies to
x̃ · ỹ = x1y1 + x2y2 + x3y3

And ‖ x̃‖ =
√
x̃21 + x̃

2
2 + x̃

2
3 . Using the values of x̃i found above, this becomes

‖ x̃‖ =

√(
1
√
5
x1 +

2
√
5
x3

) 2
+

(
−2
√
5
x1 +

1
√
5
x3

) 2
+ (−x2)

2

=

√
1
5
x21 +

4
5
x1x3 +

4
5
x23 +

4
5
x21 −

4
5
x1x3 +

1
5
x23 + x

2
2

Which simplifies to

‖ x̃‖ =
√
x21 + x

2
2 + x

2
3

Similarly, ‖ ỹ‖ =
√
ỹ21 + ỹ

2
2 + ỹ

2
3 and using the values of ỹi found above, then this becomes

‖ ỹ‖ =

√(
1
√
5
y1 +

2
√
5
y3

) 2
+

(
−2
√
5
y1 +

1
√
5
y3

) 2
+ (−y2)

2

=

√
1
5
y21 +

4
5
y1y3 +

4
5
y23 +

4
5
y21 −

4
5
y1y3 +

1
5
y23 + y

2
2

Which simplifies to

‖ ỹ‖ =
√
y21 + y

2
2 + y

2
3

Therefore

cos θ̃ =
x̃ · ỹ

‖ x̃‖ ‖ ỹ‖

θ̃ = arccos
©­­«

√
x21 + x

2
2 + x

2
3√

x21 + x
2
2 + x

2
3

√
y21 + y

2
2 + y

2
3

ª®®¬ (2)

Comparing (1) and (2) shows they are the same. Therefore θ = θ̃ . QED.
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8 Problem 8

Figure 14: Problem 8 Statement

Correction: The set S shown above should be

S =

{
1
2π
,
cosx
π
,
sinx
π
,
cos 2x
π
,
sin 2x
π
, · · · ,

cos 5x
π
,
sinx
π

}
Solution

Two functions f ,д are orthogonal on [−π , π ] if
∫π
−π

f дdx = 0. To show this for the set of
functions given, we pick f = 1

2π and then for д we pick cosmx
π and then sinmx

π . i.e.

I1 =

∫ π

−π

1
2π

cosmx

π
dx

I2 =

∫ π

−π

1
2π

sinmx

π
dx

For the rest, we have to determine the following 3 cases

I3 =

∫ π

−π

cosmx

π

cosnx
π

dx

I4 =

∫ π

−π

cosmx

π

sinnx
π

dx

I5 =

∫ π

−π

sinmx

π

sinnx
π

dx

These will take care of all possible combination of any two function in the set S . We could
always replacem,n by a number from 1 · · · 5 after evaluating the integrals in order to obtain a
specific case. Starting with I1

I1 =
1

2π 2

∫ π

−π
cosmxdx
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But cos function has period 2π and therefore the integral above is zero I1 = 0. This shows that
f = 1

2π is orthogonal with all cosmx
π functions in the set.

I2 =
1

2π 2

∫ π

−π
sinmxdx

As above, sin function has period of 2π and therefore the integral above is zero I2 = 0. This
shows that f = 1

2π is orthogonal with all sinmx
π functions in the set.

I3 =
1
π 2

∫ π

−π
cosmx cosnxdx

From tables, using cosA cosB = 1
2 (cos (A − B) + cos (A + B)), then

cosmx cosnx =
1
2
(cos ((m − n)x) + cos ((m + n)x))

And I3 now becomes

I3 =
1

2π 2

∫ π

−π
cos ((m − n)x) + cos ((m + n)x)dx

=
1

2π 2

(∫ π

−π
cos (m − n)xdx +

∫ π

−π
cos ((m + n)x)dx

)
Since the problem is asking us to show orthogonality of different functions in the set, then we
assumem , n, otherwise the integral will have to be handled as special case whenm = n due
to the division.

I3 =
1

2π 2

(
1

m − n
[sin (m − n)x]π−π +

1
m + n

[sin (m + n)x]π−π

)
But since n,m are integers, then both terms above are zero since sin (Nπ ) = 0 for integer N .
Hence I3 = 0. This shows that cosmx

π is orthogonal with cosnx
π whenm , n.

I4 =
1
π 2

∫ π

−π
sinnx cosmxdx

Using sinA cosB = 1
2 (sin (A − B) + sin (A + B)), the above becomes

I4 =
1

2π 2

∫ π

−π
(sin (n −m)x + sin (n +m)x)dx

=
1

2π 2

(∫ π

−π
sin (n −m)xdx +

∫ π

−π
sin (n +m)xdx

)
Again, since n ,m, then the above becomes

I4 =
1

2π 2

(
−1

n −m
[cos (n −m)x]π−π +

−1
n +m

[cos (m + n)x]π−π

)
=

1
2π 2

(
−1

n −m
[cos ((n −m)π ) − cos ((n −m) (−π ))] +

−1
n +m

[cos ((n +m)π ) − cos ((n +m) (−π ))]

)
But cos (−x) = cos (x) and the above becomes

I4 =
1

2π 2

(
−1

n −m
[cos ((n −m)π ) − cos ((n −m)π )] +

−1
n +m

[cos ((n +m)π ) − cos ((n +m)π )]

)
=

1
2π 2

(
−1

n −m
[0] +

−1
n +m

[0]

)
= 0

Hence I4 = 0. This shows that sinmx
π is orthogonal with sinnx

π whenm , n.

The final integral is

I5 =
1
π 2

∫ π

−π
sinmx sinnxdx
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Using sinA sinB = 1
2 (cos (A − B) − cos (A + B)) the above becomes

I5 =
1

2π 2

∫ π

−π
cos ((m − n)x) − cos ((m + n)x)dx

=
1

2π 2

(∫ π

−π
cos ((m − n)x)dx −

∫ π

−π
cos ((m + n)x)dx

)
Case n =m

I5 =
1

2π 2

(∫ π

−π
dx −

∫ π

−π
dx

)
= 0

This shows that sinmx
π is orthogonal with all cosnx

π whenm = n.

Case n ,m

I5 =
1

2π 2

(
1

m − n
[sin ((m − n)x)]π−π −

1
m + n

[sin ((m + n)x)]π−π

)
But since n,m are integers, then both terms above are zero since sin (Nπ ) = 0 for integer N .
Hence I5 = 0. This shows that sinmx

π is orthogonal cosnx
π .

The above shows that all the functions in S are pairwise orthogonal.

Tomake the set S orthonormal, we need to findweightk such that ‖k f (x)‖ = 1 or for functions,
this is the same as √∫ π

−π
(k f (x))2 dx = 1

For f = 1
2π , this becomes √∫ π

−π

(
k
1
2π

) 2
dx = 1

k

2π

√∫ π

−π
dx = 1

k

2π

√
2π = 1

k =
√
2π

For f = cosmx
π √∫ π

−π

(
k
cosmx

π

) 2
dx = 1

k

π

√∫ π

−π
cos2mxdx = 1

k

π

√∫ π

−π

1
2
+
1
2
cos 2mxdx = 1

k

π

√(∫ π

−π

1
2
dx +

1
2

∫ π

−π
cos 2mxdx

)
= 1

k

π

√√√√√√√√√√√√√©­­­­­«
π +

1
2

0︷            ︸︸            ︷[
sin (2mx)

2m

] π
−π

ª®®®®®¬
= 1

k

π

√
π = 1

k =
√
π
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For f = sinmx
π √∫ π

−π

(
k
sinmx

π

) 2
dx = 1

k

π

√∫ π

−π
sin2mxdx = 1

k

π

√∫ π

−π

1
2
−
1
2
cos 2mxdx = 1

k

π

√(∫ π

−π

1
2
dx −

1
2

∫ π

−π
cos 2mxdx

)
= 1

k

π

√√√√√√√√√√√√√©­­­­­«
π −

1
2

0︷            ︸︸            ︷[
sin (2mx)

2m

] π
−π

ª®®®®®¬
= 1

k

π

√
π = 1

k =
√
π

Therefore the orthonormal set now becomes, after using the weights found above as

S̃ =

{
√
2π

1
2π
,
√
π
cosx
π
,
√
π
sinx
π
,
√
π
cos 2x
π
,
√
π
sin 2x
π
, · · · ,

√
π
cos 5x
π
,
√
π
sinx
π

}
=

{
1

√
2π
,
cosx
√
π
,
sinx
√
π
,
cos 2x
√
π
,
sin 2x
√
π
, · · · ,

cos 5x
√
π
,
sinx
√
π

}
We now need to approximate H (x) = π − |x | using S̃ . The following is a plot of H (x) over
[−π , π ]

f = Pi - Abs[x];

Plot[f, {x, -Pi, Pi}, Frame -> True, GridLines → Automatic,

GridLinesStyle → LightGray, PlotStyle → Red,

FrameLabel → {{"H(x)", None}, {"x", "Function to approximate"}},

BaseStyle → 12,

FrameTicks → {{Automatic, None}, {{-Pi, -Pi/ 2, 0, Pi/ 2, Pi}, None}}]

-π - π

2
0 π

2
π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

H
(x
)

Function to approximate

Figure 15: Function H (x) to approximate. Problem 8

Counting the number of functions in S̃ , there are 11 of them. Using Gram’s theorem, this
approximation is

H (x) ≈ c1S1 + c2S2 + c3S3 + · · · (1)
Where S1 = 1√

2π
, S2 =

cosx√
π
, · · · , S10 =

cos 5x√
π
, S11 =

sinx√
π
. Hence

H (x) ≈ c1
1

√
2π
+ c2

cosx
√
π
+ c3

sinx
√
π
+ c4

cos 2x
√
π
+ c5

sin 2x
√
π
+ · · · + c10

cos 5x
√
π
+ c11

sin 5x
√
π
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where the constants ci are found from solving

©­­­­­­­«

〈S1, S1〉 〈S1, S2〉 〈S1, S3〉 · · · 〈S1, S11〉

〈S2, S1〉 〈S2, S2〉 〈S2, S3〉 · · · 〈S2, S11〉

〈S3, S1〉 〈S3, S2〉 〈S3, S3〉 · · · 〈S3, S11〉
...

...
...

. . .
...

〈S11, S1〉 〈S11, S2〉 〈S11, S3〉 · · · 〈S11, S11〉

ª®®®®®®®®¬

©­­­­­­­«

c1

c2

c3
...

c11

ª®®®®®®®®¬
=

©­­­­­­­«

〈S1,H (x)〉

〈S2,H (x)〉

〈S3,H (x)〉
...

〈S11,H (x)〉

ª®®®®®®®®¬
But since

〈
Si, Sj

〉
= 0 for i , j, because we showed above they are orthogonal to each others,

and since Si are all normalized now, then 〈Si, Si〉 = ‖Si ‖
2 = 1. Hence the above reduces to

©­­­­­­­«

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1

ª®®®®®®®®¬

©­­­­­­­«

c1

c2

c3
...

c11

ª®®®®®®®®¬
=

©­­­­­­­«

〈S1,H (x)〉

〈S2,H (x)〉

〈S3,H (x)〉
...

〈S11,H (x)〉

ª®®®®®®®®¬
(2)

So we just need to evaluate 〈Si,H (x)〉 . But we need to do this only for three cases. These are〈
1√
2π
,H (x)

〉
,
〈
cosmx√

π
,H (x)

〉
,
〈
sinmx√

π
,H (x)

〉
and then setm = 1 · · · 5.〈

1
√
2π
,H (x)

〉
=

∫ π

−π

1
√
2π

H (x)dx

=
1

√
2π

∫ π

−π
H (x)dx

=
1

√
2π

(∫ 0

−π
(π + x)dx +

∫ π

0
(π − x)dx

)
=

1
√
2π

( [
πx +

x2

2

] 0
−π

+

[
πx −

x2

2

] π
0

)
=

1
√
2π

( [
0 −

(
−π 2 +

π 2

2

) ]
+

[
π 2 −

π 2

2

] )
=

1
√
2π

( [
π 2

2

]
+

[
π 2 −

π 2

2

] )
=

1
√
2π

π 2

=
π

3
2

√
2

And〈
cosmx
√
π
,H (x)

〉
=

∫ π

−π

cosmx
√
π

H (x)dx

=
1
√
π

(∫ 0

−π
(π + x) cosmxdx +

∫ π

0
(π − x) cosmxdx

)
=

1
√
π

(∫ 0

−π
π cosmx +

∫ 0

−π
x cosmxdx +

∫ π

0
π cosmxdx −

∫ 0

−π
x cosmxdx

)
=

1
√
π

(∫ π

−π
π cosmx +

∫ 0

−π
x cosmxdx −

∫ 0

−π
x cosmxdx

)
(3)∫

x cosmxdx can be evaluated by integration by parts. Let u = x,dv = cosmx → du = 1,v =
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sinmx
m hence ∫ 0

−π
x cosmxdx =

[
x
sinmx

m

] 0
−π

−

∫ 0

−π

sinmx

m
dx

= 0 −
1
m

∫ 0

−π
sinmxdx

= −
1
m

(
−
cosmx

m

) 0
−π

=
1
m2 (1 − cosmπ ) (4)

And ∫ π

0
x cosmxdx =

[
x
sinmx

m

] π
0
−

∫ π

0

sinmx

m
dx

= 0 −
1
m

∫ π

0
sinmxdx

= −
1
m

(
−
cosmx

m

) π
0

=
1
m2 (cosmπ − 1) (5)

And
∫π
−π

π cosmx = π
∫π
−π

π cosmx = 0. Using (4,5) in (3), then〈
cosmx
√
π
,H (x)

〉
=

1
√
π

(
1
m2 (1 − cosmπ ) −

1
m2 (cosmπ − 1)

)
=

1

m2
√
π
(1 − cosmπ − cosmπ + 1)

=
2 (1 − cosmπ )

m2
√
π

Hence 〈
cosmx
√
π
,H (x)

〉
m=1

=

〈
cosx
√
π
,H (x)

〉
=

2 (1 − cosπ )
√
π

=
2 (1 + 1)
√
π

=
4
√
π〈

cosmx
√
π
,H (x)

〉
m=2

=

〈
cos 2x
√
π
,H (x)

〉
=

2 (1 − cos 2π )

4
√
π

= 0〈
cosmx
√
π
,H (x)

〉
m=3

=

〈
cos 3x
√
π
,H (x)

〉
=

2 (1 − cos 3π )

9
√
π

=
2 (1 + 1)

9
√
π
=

4

9
√
π〈

cosmx
√
π
,H (x)

〉
m=4

=

〈
cos 4x
√
π
,H (x)

〉
=

2 (1 − cos 4π )

16
√
π

= 0〈
cosmx
√
π
,H (x)

〉
m=5

=

〈
cos 5x
√
π
,H (x)

〉
=

2 (1 − cos 5π )

25
√
π

=
4

25
√
π

Similarly (we expect all the following integrals to be zero, this is because we see from above
that H (x) is an even function and sin is odd, hence the product is an odd function and the
integral is over the period). This is the same as when in doing Fourier series expansion (which
is what we are doing here essentially but using Gram’s theorem instead), all the bn terms will
be zero when the function being approximated is even and all the an terms will be zero when
the function being approximation is odd.

But we will go ahead and do the integrals to show that this is indeed the case.〈
sinmx
√
π
,H (x)

〉
=

∫ π

−π

sinmx
√
π

H (x)dx

=
1
√
π

(∫ 0

−π
(π + x) sinmxdx +

∫ π

0
(π − x) sinmxdx

)
=

1
√
π

(∫ 0

−π
π sinmx +

∫ 0

−π
x sinmxdx +

∫ π

0
π sinmxdx −

∫ 0

−π
x sinmxdx

)
=

1
√
π

(∫ π

−π
π sinmx +

∫ 0

−π
x sinmxdx −

∫ 0

−π
x sinmxdx

)
(6)
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∫
x sinmxdx is evaluated by integration by parts. Letu = x,dv = sinmx → du = 1,v = − cosmx

m
hence ∫ 0

−π
x sinmxdx = −

1
m

[x cosmx]0−π −

∫ 0

−π

− cosmx

m
dx

= −
1
m

[0 − (−π cosmπ )] +
1
m

∫ 0

−π
cosmxdx

= −
π

m
[cosmπ ] +

1
m

(
sinmx

m

) 0
−π

= −
π

m
[cosmπ ] (7)

And ∫ π

0
x sinmxdx = −

1
m

[x cosmx]π0 −

∫ π

0

− cosmx

m
dx

= −
1
m

[π cosmπ ] +
1
m

∫ π

0
cosmxdx

= −
π

m
[cosmπ ] (8)

And
∫π
−π

π sinmx = 0. Using (7,8) in (6), then〈
sinmx
√
π
,H (x)

〉
=

1
√
π

(
−
π

m
[cosmπ ] +

π

m
[cosmπ ]

)
= 0

Hence as expected all the inner products now are zero〈
sinmx
√
π
,H (x)

〉
m

= 0 m = 1, 2, 3, 4, 5

Using all the above results in (2) gives

©­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®¬

©­­­­­­­­­­­­­­­­­­­­­­«

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

〈
1√
2π
,H (x)

〉〈
cosx√

π
,H (x)

〉〈
sinx√
π
,H (x)

〉〈
cos 2x√

π
,H (x)

〉〈
sin 2x√

π
,H (x)

〉〈
cos 3x√

π
,H (x)

〉〈
sin 3x√

π
,H (x)

〉〈
cos 4x√

π
,H (x)

〉〈
sin 4x√

π
,H (x)

〉〈
cos 5x√

π
,H (x)

〉〈
sin 5x√

π
,H (x)

〉

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
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Using the results found above, the above becomes

©­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®¬

©­­­­­­­­­­­­­­­­­­­­­­«

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­­­­«

1√
2
π

3
2

4√
π

0

0

0
4

9
√
π

0

0

0
4

25
√
π

0

ª®®®®®®®®®®®®®®®®®®®®®®®¬
Therefore we see that ©­­­­­­­­­­­­­­­­­­­­­­«

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­­­­­­«

1√
2
π

3
2

4√
π

0

0

0
4

9
√
π

0

0

0
4

25
√
π

0

ª®®®®®®®®®®®®®®®®®®®®®®®¬
The above shows that c1 = 1√

2
π

3
2 , c2 =

4√
π
, c6 =

4
9
√
π
, c10 =

4
25
√
π

and all other c′s are zero.
Therefore the best approximation is

H (x) ≈ c1
1

√
2π
+ c2

cosx
√
π
+ c3

sinx
√
π
+ c4

cos 2x
√
π
+ c5

sin 2x
√
π
+ · · · + c10

cos 5x
√
π
+ c11

sin 5x
√
π

=
1
√
2
π

3
2

1
√
2π
+

4
√
π

cosx
√
π
+

4

9
√
π

cos 3x
√
π
+

4

25
√
π

cos 5x
√
π

=
1
2
π +

4
π
cosx +

4
9π

cos 3x +
4

25π
cos 5x

Or
H (x) ≈ 1

2π +
4
π cosx + 4

9π cos 3x + 4
25π cos 5x

To verify the approximation, the above was plotted against the original H (x), first using one
term H1 (x) ≈ 1

2π then using 2 terms H2 (x) ≈ 1
2π +

4
π cosx then using 3 terms H3 (x) ≈

1
2π +

4
π cosx + 4

9π cos 3x and then using all terms H4 (x) ≈
1
2π +

4
π cosx + 4

9π cos 3x + 4
25π cos 5x .

The plot below shows that the approximation improved as more terms added giving the best
approximation when all terms are added as expected.
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ClearAll[x, n];

f = Pi - Abs[x];

approx = 
1

2
π,

4

π
Cos[x],

4

9 π
Cos[3 x],

4

25 π
Cos[5 x];

data = Table[

Plot[{f, Total[approx[[1 ;; n]]]}, {x, -Pi, Pi}, Frame -> True,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue}, FrameLabel → {{"H(x)", None}, {"x", Total[approx[[1 ;; n]]]}},

BaseStyle → 12,

FrameTicks → {{Automatic, None}, {{-Pi, -Pi/ 2, 0, Pi/ 2, Pi}, None}},

ImageSize → 300],

{n, 1, 4}

];

Grid[Partition[data, 2]]
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Figure 16: H (x) approximation final resul. Problem 8t
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