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1 Problem 1

Find the equilibria of the following differential equationy′ = 1−y2 and determine their stability.
Derive the explicit solution for the initial value problem

y′ (t) = 1 − y2

y (0) = −2

Find the finite time interval for which the solution exists.

solution

Before solving the problem, the domain of the solution is determined. The RHS of the ODE
is f (t,y) = 1 − y2. This is a continuous and real function for all y. Now ∂ f

∂y = −2y shows it is
also continuous and real for all y. Combining these results shows that there exists a solution
and is unique in some subset of the domain

−∞ < y < ∞

The problem is now solved. Since
y′ (t) = f (y)

Then the equilibrium points are the solution to f (y) = 0 or 1−y2 = 0. Therefore there are two
equilibrium points given by

y = ±1

The stability type is determined by taking the second derivative and evaluating it at at each
equilibrium point. If the second derivative is negative, then the point is stable equilibrium. If
the second derivative is positive then the point is unstable equilibrium. If the second derivative
is zero, it is a saddle point. Since

y′′ = −2y

Then at y = 1, y′′ < 0 which implies y = 1 is stable. At y = −1, y′′ > 0 which implies
y = −1 is unstable equilibrium.

The above result was verified by generating the direction field plot for the ODE. It shows that
solution lines are moving away from line y = −1, which means it is unstable (A solution that
starts near y = −1 will move away from its initial position). The plot also shows solutions that
start near y = 1 moving towards y = 1. Hence y = 1 is stable equilibrium. The line in red is the
particular solution trajectory for the initial condition given in the problem.

0.5 1.0 1.5 2.0 2.5 3.0
t

-3

-2

-1

1

2

y(t)
Direction field plot showing the solution trajectory in red
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f[t_, y_] := 1 - y^2;
p = StreamPlot[{1, f[t, y]}, {t, 0, 3}, {y, -3, 2},
Frame -> False,
Axes -> True,
AxesLabel -> {”t”, ”y(t)”},
BaseStyle -> 14,
StreamPoints -> {{{{0, -2}, Red}, Automatic}},
ImageSize -> 400,
PlotLabel -> Style[Text[ ”Direction field plot showing the solution trajectory in red”], 12]
]

The ODE is now solved.

dy

dt
= 1 − y2

dy

1 − y2
= dt

Since it is separable, then Integrating both sides results in∫
dy

1 − y2
=

∫
dt

arctanh (y) = t + c

Hence the solution is
y (t) = tanh (t + c)

But
tanh (z) =

ez − e−z

ez + e−z

Therefore the solution can be written as

y (t) =
et+c − e−t−c

et+c + e−t−c

=
cet − 1

c e
−t

cet + 1
c e

−t

=
c2et − e−t

c2et + e−t

=
Cet − e−t

Cet + e−t
(1)

Using the initial conditions y (0) = −2 the above gives the value of C

−2 =
C − 1
C + 1

−2C − 2 = C − 1

−3C = 1

C =
−1
3

Substituting the constant C value found above into solution (1) gives

y (t) =
−1
3 e

t − e−t

−1
3 e

t + e−t

=
−et − 3e−t

−et + 3e−t

=
et + 3e−t

et − 3e−t

By factoring e−t the above becomes

y (t) =
3 + e2t

−3 + e2t
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To find when the solution stops, means to find the time when solution becomes undefined. This
occurs when the denominator becomes zero (the solution reaches a pole). The denominator of
the solution above becomes zero when

−3 + e2t = 0

2t = ln 3

t =
1
2
ln 3

Numerically, this is approximately t = 0.549 seconds. Here is a plot of the solution showing
what happens when it reaches close to the above t value starting from t = 0.The plot shows that
the solution diverges to −∞ as the pole is approached from the left and the solution becomes
undefined.

0.0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

t (sec)

y(
t)

Showing when solution becomes undefined

sol = (3 + Exp[2 t])/(-3 + Exp[2 t]);
p = Plot[sol, {t, 0, 0.54}, PlotRange -> All,
Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
PlotStyle -> Red,
FrameLabel -> {{”y(t)”, None}%
, {”t (sec)”, ”Showing when solution becomes undefined”}},
BaseStyle -> 14]
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2 Problem 2

solution
dy

dt
= t

√
y

The domain of the solution is first found. Since f (t,y) = t
√
y then this function is real and

continuous for all t and for y ≥ 0. Since ∂ f∂y =
t

2
√
y then this is continuous for all t and for y , 0

(to avoid a pole). Combining these two results shows a solution exists and unique in some
subset of the domain

−∞ < t < ∞

y > 0

The direction field for the above ode is given in the plot below

0.5 1.0 1.5 2.0 2.5 3.0
t

0.5

1.0

1.5

2.0

y(t)
Direction field plot for problem 2

f[t_, y_] := t Sqrt[y];
p = StreamPlot[{1, f[t, y]}, {t, 0, 3}, {y, 0, 2},
Frame -> False,
Axes -> True,
AxesLabel -> {”t”, ”y(t)”},
BaseStyle -> 14,
ImageSize -> 400,
PlotLabel -> Style[Text[”Direction field plot for problem 2”], 12]
]

The ODE is now solved.
dy

dt
= t

√
y

dy
√
y
= tdt
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This is separable. Integrating both sides gives∫
y−

1
2dy =

∫
tdt

2
√
y =

t2

2
+ c

√
y =

t2

4
+
c

2
Applying initial conditions y (1) = k the above becomes

√
k =

1
4
+
c

2

c = 2
√
k −

1
2

Hence

√
y =

t2

4
+

(
2
√
k − 1

2

)
2

=
t2

4
+
√
k −

1
4

(2)

Or

y (t) =

(
t2

4
+
√
k −

1
4

) 2
= k +

1
2

√
kt2 −

1
8
t2 +

1
16
t4 −

1
2

√
k +

1
16

(3)

2.1 part (a)

Looking at solutions in (3) shows that k > 0 is needed to obtain two real solutions.

2.2 part (b)

When k = 0 then y (1) = 0. But from earlier the domain of the unique solution was found to be

−∞ < t < ∞

y > 0

Therefore the initial condition point where y = 0 is outside the above domain. Therefore k = 0
will generate infinite number of solutions because it the initial condition is outside the domain
where the solution have to satisfy in order to be unique.

2.3 part (c)

No real solution can be obtained when k < 0. This is because when k is negative then
√
k =

i
√
|k | and the solution becomes complex.

2.4 part (d)

f (t,y) = t
√
y

Let k = 1. This implies the initial conditions is y (1) = 1. This means the initial conditions point
is inside the domain given. Therefore when k = 1 then f (t,y1) becomes, using y1 (t) solution
from above, the following

f (t,y1) = t
√
y1

=
t

4

√
t4 − t2 + 8t2 +

1
4
+ 16 − 4

=
t

4

√
t4 + 7t2 +

49
4
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The above shows that f (t,y1) is continuous and real over the range 0.5 ≤ t ≤ 1.5. And ∂ f (t,y1)∂y1
becomes

∂ f (t,y1)

∂y1
=

1
2

t
√
y1

Using k = 1 in the solution y1 (t) the above becomes

∂ f (t,y1)

∂y1
=

1
2

t

1
4

√
t4 + 7t2 + 49

4

=
2t√

t4 + 7t2 + 49
4

Over the range 0.5 ≤ t ≤ 1.5 the denominator above is never zero. Hence there is no pole
and therefore ∂ f (t,y1)∂y1

is also continuous and real in the range given. This shows that f (t,y) is
Lipschitz continuous inside a rectangular around initial conditions given for the value k = 1.

This is not the only k value that could be selected. However the problem is asking for one such
k value.
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3 Problem 3

Solution

ay′′ + by′ + cy = 0

Because the coefficients of the ODE are constants, the solution is found by solving for the roots
of the characteristic equation

aλ2 + bλ + c = 0

The roots are
λ =

−b

2a
±

1
2a

√
b2 − 4ac

Hence the solution is given by linear combination of each solution eλ1t , eλ2t as

y (t) = c1e
λ1t + c2e

λ2t

= c1e
−b
2a te

√
b2−4ac
2a t + c1e

−b
2a te

−
√
b2−4ac
2a t

= e
−b
2a t

(
c1e

√
b2−4ac
2a t + c2e

−
√
b2−4ac
2a t

)
(1)

The above shows that since b > 0 and a > 0 then e
−b
2a t will go to zero as t → ∞. This shows

that all solutions will eventually go to zero.

When b = 0, the solution given by (1) reduces to

y (t) = c1e
√
−4ac
2a t + c2e

−
√
−4ac
2a t

But because a > 0 and c > 0 then −4ac is negative and the discriminant
√
−4ac becomes

complex and the above solution becomes

y (t) = c1e
2i
√
ac

2a t + c2e
−2i

√
ac

2a t

= c1e
i
√ c

a t + c2e
−i

√ c
a t

= C1 cos

(√
c

a
t

)
+C2 sin

(√
c

a
t

)
The above shows that the solution never goes to zero as t → ∞ as the solution continues to
oscillate. This happened because the damping term b was set to zero, so there is no loss of
energy in the system as it moves and therefore once the system is set in motion (by some initial
condition away from rest), the system will continue to vibrate for all time.

To obtain unbounded solution,b must be negative while keeping a > 0. In this case the solution
in (1) becomes

y (t) = e
|b |
2a t

(
c1e

√
b2−4ac
2a t + c2e

−
√
b2−4ac
2a t

)
The above shows that since b < 0 then e

−b
2a t = e

|b |
2a t and this will cause the solution to blow up

as t increases. Negative damping means there is energy being added to the system as it time
increases instead of the normal case where damping causes energy to be lost from the system
with time. This is why the solution becomes unbounded when b < 0. In Physical systems the
damping term is always positive.
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4 Problem 4

solution

4.1 Analysis of motion

The following diagram shows the initial positions of the four bugs and what happens after ∆t
has elapsed.

1

2 3

4
(0, 0)

(0, 2) (1, 2)

(1, 0)

1

2
3

4

Initial conditions at t = 0. Position after some ∆t time

Nasser M. Abbasi. ant 1.ipe. 11/11/2018

The four bugs initially are located at the corners of the rectangle. The width is h = 1 and the
height is L = 2. Because each bug moves with the same speed toward the bug adjacent to
it (in clockwise direction), then by symmetry, the four bugs will remain on the corners of a
rectangle as time increases, but the rectangle shrinks and rotates clockwise in time as the bugs
spiral towards the center of the original rectangle where they collide. The following diagram
illustrates such motion after some ∆t has elapsed.
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2

1

x axis

y axis

bug 1

bug 2

bug 3

bug 4

Showing locations of bugs after some ∆t.
Rectangle is rotating clockwise and rotating in
time. (drawing not to scale)

(0, 0)

(0, 2)
(1, 2)

(1, 0)

V1

V2

V3

V4

Nasser M. Abbasi. ant 0.ipe. 11/12/2018

The above shows that at each instance of time, each bug remains at the corner of a scaled down
version of the original rectangle that is rotating. Each bug’s velocity vector is always pointing
straight towards the bug it is chasing. This means that bug’s 1 motion is always at 900 to the
path of bug 2. And bug’s 2 motion is at 900 to the path of bug 3 and so on.

4.2 Equations of motion

To obtain the equation of motion for each bug, each bug’s position is considered relative to the
bug it is chasing. Starting with bug’s 1 relative position to bug 2. This is done with the help of
the following diagram
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(x1, y1)

(x2, y2)

2

1

x axis

y axis

bug 1

bug 2

bug 3

bug 4

Showing relative locations of bug 1 and 2 after some ∆t

Nasser M. Abbasi. ant 2.ipe. 11/11/2018

~v1 = v1
~r2−~r1
‖~r2−~r1‖

~r1

~r2

The position vector of bug 1 is ®r1 (t) and the position vector of bug 2 is ®r2 (t). Therefore

®v1 =
d®r1 (t)

dt
= | ®v1 | r̂

Where r̂ is unit vector in the direction from bug 1 to bug 2. Hence the above can be written as

d®r1 (t)

dt
= | ®v1 |

®r2 (t) − ®r1 (t)

‖ ®r2 (t) − ®r1 (t) ‖

Because | ®v1 | = 1 meter per seconds, then the above simplifies to

d®r1 (t)

dt
=

(x2ı̂ + y2 ̂) − (x1ı̂ + y1 ̂)

‖ (x2ı̂ + y2 ̂) − (x1ı̂ + y1 ̂) ‖(
dx1
dt

ı̂ +
dy1
dt

̂

)
=

x2 − x1√
(x2 − x1)

2 + (y2 − y1)
2
ı̂ +

y2 − y1√
(x2 − x1)

2 + (y2 − y1)
2
̂

Where x1,y1 are the coordinates of bug 1 and x2,y2 are the coordinates of bug 2. The above
gives the equation of motion for bug 1. Let x′1 =

dx1
dt and y′1 =

dy1
dt for bug 1 then the following

are the two equations of motion for bug 1 as function of its position and the position of bug 2

x′1 =
x2 − x1√

(x2 − x1)
2 + (y2 − y1)

2

y′1 =
y2 − y1√

(x2 − x1)
2 + (y2 − y1)

2
(3)

The same analysis is now carried out to obtain x′2 (t) and y
′
2 (t) expressions similar to (3) above

for bug 2.
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(x2, y2)

2

1

x axis

y axis

bug 1

bug 2

bug 3

bug 4

Showing relative location of bugs 2 and 3 after some ∆t

(x3, y3)

Nasser M. Abbasi. ant 3.ipe. 11/11/2018

~r2

~r3

~v2 = v2
~r3−~r2
‖~r3−~r2‖

The position vector of bug 2 is ®r2 (t) and the position vector of bug 3 is ®r3 (t). Therefore ®v2 =
d®r2(t)
dt = | ®v2 | r̂ where r̂ is unit vector in the direction from bug 2 to bug 3. Hence

d®r2 (t)

dt
= | ®v2 |

®r3 (t) − ®r2 (t)

‖ ®r3 (t) − ®r2 (t) ‖

Since | ®v2 | = 1 meter per seconds then

d®r2 (t)

dt
=

(x3ı̂ + y2 ̂) − (x3ı̂ + y2 ̂)

‖ (x3ı̂ + y2 ̂) − (x3ı̂ + y2 ̂) ‖(
dx2
dt

ı̂ +
dy2
dt

̂

)
=

x3 − x2√
(x3 − x2)

2 + (y3 − y2)
2
ı̂ +

y3 − y2√
(x3 − x2)

2 + (y3 − y2)
2
̂

Where x2,y2 are the coordinates of bug 2 and x3,y3 are the coordinates of bug 3. The above
gives the two equations of motion for bug 2. Using x′2 =

dx2
dt and y′2 =

dy2
dt for bug 2, then

the following gives the two equations of motion for bug 2 as function of its position and the
position of bug 3

x′2 =
x3 − x2√

(x3 − x2)
2 + (y3 − y2)

2

y′2 =
y3 − y2√

(x3 − x2)
2 + (y3 − y2)

2
(3)

The same analysis is carried out for bug 3 and bug 4, which results in similar equations. There-
fore the final equations of motions in vector form are

x′ = f (x)
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Or ©«

x′1 (t) =
x2−x1√

(x2−x1)
2+(y2−y1)

2

y′1 (t) =
y2−y1√

(x2−x1)
2+(y2−y1)

2

x′2 (t) =
x3−x2√

(x3−x2)
2+(y3−y2)

2

y′2 (t) =
y3−y2√

(x3−x2)
2+(y3−y2)

2

x′3 (t) =
x4−x3√

(x4−x3)
2+(y4−y3)

2

y′3 (t) =
y4−y3√

(x4−x3)
2+(y4−y3)

2

x′4 (t) =
x1−x4√

(x1−x4)
2+(y1−y4)

2

y′4 (t) =
y1−y4√

(x1−x4)
2+(y1−y4)

2

ª®®®®®®®®®®®®®®®®®®®®®®®®¬
With the initial conditions

x (0) =

©«

x1 (0)

y1 (0)

x2 (0)

y2 (0)

x3 (0)

y3 (0)

x4 (0)

y4 (0)

ª®®®®®®®®®®®®®®¬
=

©«

0

0

0

2

1

2

1

0

ª®®®®®®®®®®®®®®¬
The above system of equation can not written as x′ = Ax because the equations of motion are
not linear. These ODE’s have to solved numerically. The following is the result of running the
numerical solution for 1.5 seconds. The code used is listed below.This shows the bugs spiraling
down to the center of the original rectangle as expected.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

x

y

Solution to the 4 bugs on corner problem
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ode1 =x1'[t] == (x2[t] - x1[t])/Sqrt[(x2[t] - x1[t])^2 + (y2[t] - y1[t])^2];
ode2 =y1'[t]== (y2[t] - y1[t])/Sqrt[(x2[t] - x1[t])^2 + (y2[t] - y1[t])^2];
ode3 =x2'[t] == (x3[t] - x2[t])/Sqrt[(x3[t] - x2[t])^2 + (y3[t] - y2[t])^2];
ode4 =y2'[t] == (y3[t] - y2[t])/Sqrt[(x3[t] - x2[t])^2 + (y3[t] - y2[t])^2];
ode5 =x3'[t]== (x4[t] - x3[t])/Sqrt[(x4[t] - x3[t])^2 + (y4[t] - y3[t])^2];
ode6 =y3'[t]== (y4[t] - y3[t])/Sqrt[(x4[t] - x3[t])^2 + (y4[t] - y3[t])^2];
ode7 =x4'[t]== (x1[t] - x4[t])/Sqrt[(x1[t] - x4[t])^2 + (y1[t] - y4[t])^2];
ode8 =y4'[t] == (y1[t] - y4[t])/Sqrt[(x1[t] - x4[t])^2 + (y1[t] - y4[t])^2];
sol = NDSolve[{ode1, ode2, ode3, ode4, ode5, ode6, ode7, ode8, x1[0] == 0,
y1[0] == 0, x2[0] == 0, y2[0] == 2, x3[0] == 1, y3[0] == 2, x4[0] == 1,
y4[0] == 0},
{x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t]}, {t, 0, 1.5}];
p = ParametricPlot[{x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t]}
/. sol,
{t, 0, 1.5}, AxesOrigin -> {0, 0},
GridLines -> Automatic, GridLinesStyle -> LightGray, Frame -> True,
FrameLabel -> {{”y”, None}, {”x”, ”Solution to problem 4”}},
ImageSize -> 350]

This problem was also solved for a square instead of a rectangle. The only change needed was
to modify the initial conditions so as to locate the bugs at corners of unit square as shown
below. No changes are needed in the equations of motion.

x (0) =

©«

x1 (0)

y1 (0)

x2 (0)

y2 (0)

x3 (0)

y3 (0)

x4 (0)

y4 (0)

ª®®®®®®®®®®®®®®¬
=

©«

0

0

0

1

1

1

1

0

ª®®®®®®®®®®®®®®¬
The time needed to reach the center in this case is one second. The following plot shows the
path generated for the bugs at the corners of the square.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Solution to the 4 bugs on corner problem (square version)
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5 Problem 5

solution

The system can be written using x′ = Ax as(
x′ (t)

y′ (t)

)
=

(
−2 −1

2 −1

) (
x (t)

y (t)

)
(
x (1)

y (1)

)
=

(
2

4

)

Where A =

(
−2 −1

2 −1

)
, The eigenvalues of A are found using det (A − λI ) = 0 which gives

�����−2 − λ −1

2 −1 − λ

����� = 0

(−2 − λ) (−1 − λ) + 2 = 0

λ2 + 3λ + 4 = 0

The roots of the above characteristic equation are

λ =
−b

2a
±

1
2a

√
b2 − 4ac

=
−3
2

±
1
2

√
9 − 4 (4)

=
−3
2

±
1
2

√
−7

=
−3
2

±
i

2

√
7

Therefore the roots are

λ1 = −
3
2
− i

√
7
2

λ2 = −
3
2
+ i

√
7
2

The above shows that the solution will go to zero for large t since the eigenvalues have
negative real part. The system is asymptotically stable. The complex conjugate parts of the

eigenvalues give solutions that will oscillate with frequency
√
7
2 rad/sec. To obtain the actual

solution the eigenvectors are now found for each eigenvalue. Since the eigenvalues are unique,
then there is one eigenvector for each eigenvalue.

For λ1 = −3
2 − i

√
7
2

(A − λ1I ) v1 = 0©«
−2 −

(
−3

2 − i
√
7
2

)
−1

2 −1 −
(
−3

2 − i
√
7
2

) ª®¬
(
v1

v2

)
=

(
0

0

)
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Let v2 = 1. The first equation gives −2−
(
−3

2 − i
√
7
2

)
v1 − 1 = 0 or v1 = 1

−2−
(
− 3

2−i
√
7
2

) = 1
1
2 i
√
7− 1

2

=

−1
2 i

√
7− 1

2(
1
2 i
√
7− 1

2

) (
1
2 i
√
7− 1

2

) = −1
2 i

√
7− 1

2
2 = −i

√
7
4 − 1

4 . Hence the first eigenvector is

v1 =

(
−i

√
7
4 − 1

4

1

)
For λ2 = −3

2 + i
√
7
2

(A − λ2I ) v1 = 0©«
−2 −

(
−3

2 + i
√
7
2

)
−1

2 −1 −
(
−3

2 + i
√
7
2

) ª®¬
(
v1

v2

)
=

(
0

0

)
Letv2 = 1. The first equation gives −2−

(
−3

2 + i
√
7
2

)
v1−1 = 0 orv1 = 1

−2−
(
− 3

2+i
√
7
2

) = 1
− 1

2 i
√
7− 1

2

=

1
2 i
√
7− 1

2
2 = 1

4i
√
7 − 1

4 . Hence the second eigenvector is

v2 =

(
i
√
7
4 − 1

4

1

)
Using the above two linearly independent eigenvectors, the two basis solutions are

x1 = v1e
λ1t

x2 = v2e
λ1t

The solution is a linear combination of the above solutions

x = c1x1 + c1x2

The solution is converted to real solution by taking the real and imaginary part of one of the
basis solution above. Therefore

x3 = Re (x1)

x4 = Im (x1)

The solution becomes
x = c3x3 + c4x4 (1)

But

Re (x1) = Re

[ (
−i

√
7
4 − 1

4

1

)
eλ1t

]
= Re

(
−i

√
7
4 e

λ1t − 1
4e

λ1t

eλ1t

)

= Re
©«
−i

√
7
4 e

(
− 3

2−i
√

7
4

)
t
− 1

4e

(
− 3

2−i
√

7
4

)
t

e

(
− 3

2−i
√

7
4

)
t

ª®®®¬
= Re

©«
−i

√
7
4 e

−3
2 t

(
cos

√
7
4t − i sin

√
7
4t

)
− 1

4e
−3
2 t

(
cos

√
7
4t − i sin

√
7
4t

)
e

−3
2 t

(
cos

√
7
4t − i sin

√
7
4t

) ª®®®¬
= Re

©«
√

7
16e

−3
2 t

(
−i cos

√
7
4t − sin

√
7
4t

)
− 1

4e
−3
2 t

(
cos

√
7
4t − i sin

√
7
4t

)
e

−3
2 t

(
cos

√
7
4t − i sin

√
7
4t

) ª®®®¬
= Re

©«
e

−3
2 t

(
−

√
7
16 sin

√
7
4t −

1
4 cos

√
7
4t

)
+ ie

−3
2 t

(
−

√
7
16 cos

√
7
4t +

1
4 sin

√
7
4t

)
e

−3
2 t cos

√
7
4t − ie

−3
2 t sin

√
7
4t

ª®®¬
=

©«
e

−3
2 t

(
−

√
7
16 sin

√
7
4t −

1
4 cos

√
7
4t

)
e

−3
2 t cos

√
7
4t

ª®®¬ (2)
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And

Im (x1) = Im
©«
e

−3
2 t

(
−

√
7
16 sin

√
7
4t −

1
4 cos

√
7
4t

)
+ ie

−3
2 t

(
−

√
7
16 cos

√
7
4t +

1
4 sin

√
7
4t

)
e

−3
2 t cos

√
7
4t − ie

−3
2 t sin

√
7
4t

ª®®¬
=

©«
e

−3
2 t

(
−

√
7
16 cos

√
7
4t +

1
4 sin

√
7
4t

)
−e

−3
2 t sin

√
7
4t

ª®®¬ (3)

Using (2,3) in (1) gives the solution

x = c3 Re (x1) + c4 Im (x1)(
x (t)

y (t)

)
= c3

©«
e

−3
2 t

(
−

√
7
16 sin

√
7
4t −

1
4 cos

√
7
4t

)
e

−3
2 t cos

√
7
4t

ª®®¬ + c4
©«
e

−3
2 t

(
−

√
7
16 cos

√
7
4t +

1
4 sin

√
7
4t

)
−e

−3
2 t sin

√
7
4t

ª®®¬(
x (t)

y (t)

)
=

©«
c3e

−3
2 t

(
−

√
7
16 sin

√
7
4t −

1
4 cos

(√
7t
2

) )
+ c4e

−3
2 t

(
−

√
7
4 cos

(√
7t
2

)
+ 1

4 sin
(√

7t
2

) )
c3e

−3
2 t cos

(√
7t
2

)
− c4e

−3
2 t sin

(√
7t
2

) ª®®¬
Therefore

x (t) = c3e
−3
2 t

(
−

√
7
4

sin

(√
7t
2

)
−
1
4
cos

(√
7t
2

) )
+ c4e

−3
2 t

(
−

√
7
4

cos

(√
7t
2

)
+
1
4
sin

(√
7t
2

) )
y (t) = c3e

−3
2 t cos

(√
7t
2

)
− c4e

−3
2 t sin

(√
7t
2

)
Or

x (t) = e
−3
2 t

(
c3

(
−

√
7
4

sin

(√
7t
2

)
−
1
4
cos

(√
7t
2

) )
+ c4

(
−

√
7
4

cos

(√
7t
2

)
+
1
4
sin

(√
7t
2

) ) )
y (t) = e

−3
2 t

(
c3 cos

(√
7t
2

)
− c4 sin

(√
7t
2

) )
Let C1 = c3 and C2 = −c3, and the above becomes

x (t) = −
1
4
e

−3
2 t

(
C1

√
7 sin

(√
7t
2

)
+C1 cos

(√
7t
2

)
−
√
7C2 cos

(√
7t
2

)
+C2 sin

(√
7t
2

) )
y (t) = e

−3
2 t

(
C1 cos

(√
7t
2

)
+C2 sin

(√
7t
2

) )
(4)

Initial conditions are now used to find C1,C2. At t = 1 the above becomes

2 = −
1
4
e

−3
2

(
C1

√
7 sin

(√
7
2

)
+C1 cos

(√
7
2

)
−
√
7C2 cos

(√
7
2

)
+C2 sin

(√
7
2

) )
4 = e

−3
2

(
C1 cos

(√
7
2

)
+C2 sin

(√
7
2

) )
In system form the above becomes(

2

4

)
=

©«
−1

4e
−3
2
√
7 sin

(√
7
2

)
− 1

4e
−3
2 cos

(√
7
2

)
1
4e

−3
2
√
7 cos

(√
7
2

)
− 1

4e
−3
2 sin

(√
7
2

)
e

−3
2 cos

(√
7
2

)
e

−3
2 sin

(√
7
2

) ª®¬
(
C1

C2

)
=

(
−0.156 76 −0.01786

0.05 475 0.216 31

) (
C1

C2

)

Solving for

(
C1

C2

)
by elimination gives(

C1

C2

)
=

(
−15.307

22.367

)
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Using these constants in the the solution (4) results in

x (t) = −
1
4
e

−3
2 t

(
(−15.307)

√
7 sin

(√
7t
2

)
− 15.307 cos

(√
7t
2

)
−
√
7 (22.367) cos

(√
7t
2

)
+ 22.367 sin

(√
7t
2

) )
y (t) = e

−3
2 t

(
−15.307 cos

(√
7t
2

)
+ 22.367 sin

(√
7t
2

) )
Or

x (t) = −
1
4
e

−3
2 t

(
−40.499 sin

(√
7t
2

)
− 15.307 cos

(√
7t
2

)
− 59.178 cos

(√
7t
2

)
+ 22.367 sin

(√
7t
2

) )
y (t) = e

−3
2 t

(
−15.307 cos

(√
7t
2

)
+ 22.367 sin

(√
7t
2

) )
Simplifying the above using trigonometric relations gives

x (t) = −
1
4
e

−3
2 t

(
−74.485 cos

(√
7t
2

)
− 18.132 sin

(√
7t
2

) )
y (t) = e

−3
2 t

(
−15.307 cos

(√
7t
2

)
+ 22.367 sin

(√
7t
2

) )
Or

x (t) = e
−3
2 t

(
18.621 cos

(√
7t
2

)
+ 4.533 sin

(√
7t
2

) )
y (t) = e

−3
2 t

(
−15.307 cos

(√
7t
2

)
+ 22.367 sin

(√
7t
2

) )
(5)

The above shows that due to the exponentially decaying term in the solution, then

lim
t→∞

(
x (t)

y (t)

)
→

(
0

0

)
The following is a plot of x (t) and y (t) for t from 1 to 5 seconds showing both solutions go to
zero quickly due to the e

−3
2 t term.

1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.

-0.5

0.

0.5

1.

1.5

2.

t sec

x(
t)

Solution x(t)

1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.

0.

0.5

1.

1.5

2.

2.5

3.

3.5

4.

t sec

y(
t)

Solution y(t)

ClearAll[t];
myXSol=Exp[-3/2 t](18.621 Cos[Sqrt[7] t/2]+4.533 Sin[Sqrt[7] t/2]);
myYSol=Exp[-3/2 t](-15.307 Cos[Sqrt[7] t/2]+22.367 Sin[Sqrt[7] t/2]);
p1=Plot[myXSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{”x(t)”,None},{”t sec”,”Solution x(t)”}},
PlotStyle->Red,
GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,
FrameTicks->{{Range[-1,2,.5],None},{Range[0,5,.5],None}}];
p2=Plot[myYSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{”y(t)”,None},{”t sec”,”Solution y(t)”}},
PlotStyle->Red,GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,
FrameTicks->{{Range[-1,4,.5],None},{Range[0,5,.5],None}}];
p=Grid[{{p1,p2}}]
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6 Problem 6

Solution
3t2y′′ + ty′ + y = 0

Since the powers on the t coefficients match the order of the derivatives in each term of the
ODE, then this is called the Euler ODE. Its solution can be found by assuming solution has this
form (Using the hint given)

y (t) = tα (1)
Therefore

y′ = αtα−1

y′′ = α (α − 1) tα−2

Substituting these in the original ODE gives the characteristic equation to solve for α

3t2α (α − 1) tα−2 + tαtα−1 + tα = 0

3α (α − 1) tα + αtα + tα = 0

tα (3α (α − 1) + α + 1) = 0

Since tα , 0 (else this will result in a trivial solution), the characteristic equation is 3α (α − 1)+
α + 1 = 0 or

3α2 − 2α + 1 = 0

Using the quadratic formula, the roots of the above characteristic equation are

α1 =
1
3
+
1
3
i
√
2

α2 =
1
3
−
1
3
i
√
2

The solution is a linear combination of the basis solutions tα1, tα2 . Hence

y (t) = c1t
α1 + c2t

α2

= c1t

(
1
3+

1
3 i
√
2
)
+ c2t

(
1
3−

1
3 i
√
2
)

= c1t
1
3 t

1
3 i
√
2 + c2t

1
3 t−

1
3 i
√
2

= t
1
3

(
c1t

1
3 i
√
2 + c2t

− 1
3 i
√
2
)

(2)

But

t
1
3 i
√
2 = e

ln
(
t
1
3 i

√
2
)

= e
1
3 i
√
2 ln t

And

t
−1
3 i

√
2 = e

ln
(
t
−1
3 i

√
2
)

= e
−1
3 i

√
2 ln t

Using the above two equations in (2) then the solution (2) becomes

y (t) = t
1
3

(
c1e

1
3 i
√
2 ln t + c2e

−1
3 i

√
2 ln t

)
Using Euler relation the above solution is written using sin and cos to become

y (t) = t
1
3

(
C1 cos

(√
2 ln t
3

)
+C2 sin

(√
2 ln t
3

) )
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7 Problem 7

Solution

y′1 = 3y1 + 2y2 + y3
y′2 = −y1 + 3y2 + 2y3
y′3 = y1 − 3y2 − 2y3

The system is written using y′ = Ay as

©«
y′1 (t)

y′2 (t)

y′3 (t)

ª®®¬ =
©«
3 2 1

−1 3 2

1 −3 −2

ª®®¬
©«
y1 (t)

y2 (t)

y3 (t)

ª®®¬
Where A =

©«
3 2 1

−1 3 2

1 −3 −2

ª®®¬. The eigenvalues are found by solving det (A − Iλ) = 0 which gives

�������
3 − λ 2 1

−1 3 − λ 2

1 −3 −2 − λ

������� = 0

λ3 − 4λ2 + 4λ = 0(
λ2 − 4λ + 4

)
λ = 0

(λ − 2) (λ − 2) λ = 0

Hence the eigenvalues are

λ1 = 0

λ2 = 2

Where λ2 has algebraic multiplicity 2. The eigenvector associated with λ1 = 0 is now found and
then an additional two two linearly independent eigenvectors are needed that are associated
with the second eigenvalue λ2. The eigenvector v1 is found as normally done by solving

(A − λ1I ) v = 0

©«
3 − λ1 2 1

−1 3 − λ1 2

1 −3 −2 − λ1

ª®®¬
©«
v1

v2

v3

ª®®¬ =
©«
0

0

0

ª®®¬©«
3 2 1

−1 3 2

1 −3 −2

ª®®¬
©«
v1

v2

v3

ª®®¬ =
©«
0

0

0

ª®®¬
This gives three equations

3v1 + 2v2 +v3 = 0

−v1 + 3v2 + 2v3 = 0

v1 − 3v2 − 2v3 = 0
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Let v1 = 1, then the above becomes

2v2 +v3 = −3

3v2 + 2v3 = 1

−3v2 − 2v3 = −1

The first equation above gives v2 = −3−v3
2 . Substituting this in the second equation gives

3
(
−3−v3

2

)
+ 2v3 = 1, or v3 = 11. Hence v2 = −3−11

2 = −7.

Therefore the eigenvector associated with λ1 = 0 is

v1=
©«
1

−7

11

ª®®¬
For the eigenvalue λ2 = 2, which has algebraic multiplicity 2, it is first checked if it is defective
eigenvalue or a complete one. A complete eigenvalue is one with an algebraic multiplicitym
and an geometric multiplicitym as well. When this is the case, thenm linearly independent
eigenvectors associated with the eigenvalue can be found.

However, if the eigenvalue is defective, which means its geometric multiplicity is less than
m, then it is not possible to findm linearly independent eigenvectors from the eigenvalue. In
this case the defective eigenvalue algorithm is used to find the remaining linearly independent
eigenvectors. Note that geometric multiplicity can not be larger than the algebraic multiplicity.

Now a check is made to determine if the eigenvalue λ2 = 2 is defective or complete. The
geometric multiplicity of an eigenvalue is the dimension of the null-space of the matrixA−λ2I

given by

(A − λ2I ) =
©«
3 − λ2 2 1

−1 3 − λ2 2

1 −3 −2 − λ2

ª®®¬
=

©«
1 2 1

−1 1 2

1 −3 −4

ª®®¬
The null space of the above matrix is now found. By the Rank nullity theorem of linear algebra,
which says

column rank (A) + nullity (A) = dimension (A)

Then the column rank needs to be found as well. This is done by converting the matrix to
reduced row echelon form as follows

©«
1 2 1

−1 1 2

1 −3 −4

ª®®¬
R2=R2+R1

→
©«
1 2 1

0 3 3

1 −3 −4

ª®®¬
R3=R3−R1

→
©«
1 2 1

0 3 3

0 −5 −5

ª®®¬
R3=R3+

5
3R2

→
©«
1 2 1

0 3 3

0 0 0

ª®®¬
R2=

R2
3
2 R1

→
©«
1 2 1

0 1 2

0 0 0

ª®®¬
The above is in reduced row echelon form. The number of columns with 1 on the diagonal is
the column rank. The above shows the column rank is 2. Using the rank nullity the dimension
of the null space is now found as follows

nullity (A) = dimension (A) − column rank (A)
= 3 − 2

= 1

Therefore the geometric multiplicity is 1 which is less than the algebraic multiplicity 2. This
means only one eigenvector can be obtained directly from λ2 since this eigenvalue is defective.
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The defective eigenvalue method is used next to find the second eigenvector associated with
λ2. In this method the first eigenvector from λ2 is first found as is done normally by solving

(A − λ2I ) v2 = 0

©«
3 − λ2 2 1

−1 3 − λ2 2

1 −3 −2 − λ2

ª®®¬
©«
v1

v2

v3

ª®®¬ =
©«
0

0

0

ª®®¬©«
1 2 1

−1 1 2

1 −3 −4

ª®®¬
©«
v1

v2

v3

ª®®¬ =
©«
0

0

0

ª®®¬
This gives the three equations

v1 + 2v2 +v3 = 0

−v1 +v2 + 2v3 = 0

v1 − 3v2 − 4v3 = 0

Let v1 = 1, then the above becomes

2v2 +v3 = −1

v2 + 2v3 = 1

−3v2 − 4v3 = −1

From the first equation v2 =
−1−v3

2 and from the second equation −1−v3
2 + 2v3 = 1, or v3 = 1.

Hence v2 = −1−1
2 = −1. Therefore the first eigenvector associated with λ2 is

v2 =
©«
v1

v2

v3

ª®®¬ =
©«
1

−1

1

ª®®¬
The second eigenvector associated with λ2 is given by

v3 = t v2 + p

Where p is the solution to

(A − λ2I ) p = v2©«
1 2 1

−1 1 2

1 −3 −4

ª®®¬
©«
p1

p2

p3

ª®®¬ =
©«
1

−1

1

ª®®¬
The above gives the equations

p1 + 2p2 + p3 = 1

−p1 + p2 + 2p3 = −1

p1 − 3p2 − 4p3 = 1

Let p1 = 1, and the above becomes

2p2 + p3 = 0

p2 + 2p3 = −2

−3p2 − 4p3 = 0

The first equation gives p2 =
p3
2 . Hence the second equation becomes p3

2 + 2p3 = 0. Therefore
p3 = 0 and therefore p2 = 0. Which results in

p =
©«
1

0

0

ª®®¬
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Therefore the third eigenvector is found from

v3 = tv2 + p

= t
©«
1

−1

1

ª®®¬ +
©«
1

0

0

ª®®¬
The three eigenvectors are the following

v1=
©«
1

−7

11

ª®®¬ , v2 =
©«
1

−1

1

ª®®¬ , v3 = t
©«
1

−1

1

ª®®¬ +
©«
1

0

0

ª®®¬
The solution can now be written as

y (t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ2tv3

Since λ1 = 0 and λ2 = 2 then the above becomes

©«
y1 (t)

y2 (t)

y3 (t)

ª®®¬ = c1
©«
1

−7

11

ª®®¬ + c2e2t
©«
1

−1

1

ª®®¬ + c3e2t
t

©«
1

−1

1

ª®®¬ +
©«
1

0

0

ª®®¬


Which can be simplified to

y1 (t) = c1 + c2e
2t + c3e

2t (t + 1)

y2 (t) = −7c1 − c2e
2t − c3te

2t

y3 (t) = 11c1 + c2e
2t + c3te

2t (1)

To plot these solutions, the following arbitrary initial conditionsy1 (0) = 0,y2 (0) = 0,y3 (0) = 1
are used ©«

y1 (0)

y2 (0)

y3 (0)

ª®®¬ =
©«
0

0

1

ª®®¬ =
©«
c1 + c2 + c3

−7c1 − c2

11c1 + c2

ª®®¬
Solving, this gives c1 = 1

4, c2 = −7
4, c3 =

3
2 . Therefore the above solution (1) becomes

©«
y1 (t)

y2 (t)

y3 (t)

ª®®¬ =
©«
1
4 −

7
4e

2t + 3
2e

2t (t + 1)

−7
4 +

7
4e

2t − 3
2te

2t

11
4 − 7

4e
2t + 3

2te
2t

ª®®¬
The following is a plot of the solution for these initial conditions. The solutions are not stable,
since they grow in time.

0.5 1.0 1.5 2.0
t

-20

20

40

60

solutions to problem 7

y1(t)

y2(t)

y3(t)

ClearAll[t,y1,y2,y3];
myy1=1/4-7/4 Exp[2 t]+3/2 Exp[2 t](t+1);
myy2=-7/4+7/4 Exp[2 t]-3/2 t Exp[2 t];
myy3=11/4-7/4 Exp[2 t]+3/2 t Exp[2 t];
Plot[{myy1,myy2,myy3},{t,0,2},GridLines->Automatic,GridLinesStyle->LightGray,
ImageSize->300,
AxesLabel->{”t”,”solutions to problem 7”},
PlotLegends->{”y1(t)”,”y2(t)”,”y3(t)”}]



24

8 Problem 8

Solution

y (t) = cos t+sin 2t can not be a solution toy′′+ay′+by = 0, because both basis solutions (these
are the linearly independent solutions sin and cos) must oscillate with the same frequency. The
frequency of oscillation of a second order system with no forcing function is called the natural
frequency of the system. There is one unique natural frequency for a second order system.

This frequency comes from finding the value of the discriminant of the characteristic equation
of the ODE (since it is constant coefficient). To illustrate, the general solution of the second
order ODE is found to show that the proposed solution is not possible. The general solution
of the above ODE is

y (t) = c1e
λ1t + c2e

λ2t

Where λ1,2 are the two roots of the corresponding characteristic equation λ2+aλ+b = 0. These
roots are

λ = −
a

2
±
√
a2 − 4b

Therefore the roots are

λ1 = −
a

2
+
√
a2 − 4b

λ2 = −
a

2
−
√
a2 − 4b

The general solution to the given ODE is linear combination of two linearly independent
solutions eλ1t , eλ2t , one for each root, which results in

y (t) = c1e

(
− a

2+
√
a2−4b

)
t
+ c2e

(
− a

2−
√
a2−4b

)
t

= e−
a
2 t

(
c1e

√
a2−4bt + c2e

−
√
a2−4bt

)
c1, c2 are determined from initial conditions. Since the proposed solution given does not have
e−

a
2 t in it, then this implies that a = 0 (this is the damping term), and since e−

a
2 t = 1 then the

solution reduces to
y (t) = c1e

√
−4bt + c2e

−
√
−4bt

Since the proposed solution is made up of trigonometric functions, it must be that b > 0 in
order to make −4b negative and obtain a pair of conjugate complex roots. The solution now
becomes

y (t) = c1e
2i
√
bt + c2e

−2i
√
bt

Expressing this in terms of trigonometric functions using Euler relation results in

y (t) = c1 cos
(√

bt
)
+ c2 sin

(√
bt

)
The above shows that the solution can not be y (t) = cos t + sin 2t since

√
b can not equal 1 and

2 at the same time.

Another way to show that y (t) = cos t + sin 2t is not be a solution, is to simply substitute this
solution into the ODE and obtain a contradiction as shown below.

Since y′ = − sin t + 2 cos 2t and y′′ = − cos t − 4 sin 2t , the ODE now becomes

(− cos t − 4 sin 2t) + a (− sin t + 2 cos 2t) + b (cos t + sin 2t) = 0

(−1 + b) cos t − a sin t + (−4 + b) sin 2t = 0
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Because the RHS is zero, this implies that

−1 + b = 0

−4 + b = 0

−a = 0

The first equation gives b = 1 and the second equation gives b = −4 which is not possible.

To obtain an ODE with such a solution, the ODE has to be of order 4. This is to obtain two
different natural frequencies (A 4th order ODE can be written as two separate second order
ODE’s). Let the ODE be

y′′′′ (t) +Ay′′′ (t) + By′′ (t) +Cy′ (t) + Dy (t) = 0 (1)

Given that

y = cos t + sin 2t

y′ = − sin t + 2 cos 2t

y′′ = − cos t − 4 sin 2t

y′′′ = sin t − 8 cos 2t

y′′′′ = cos t + 16 sin 2t

Substituting the above into (1) gives

(cos t + 16 sin 2t)+A (sin t − 8 cos 2t)+B (− cos t − 4 sin 2t)+C (− sin t + 2 cos 2t)+D (cos t + sin 2t) = 0

Collecting terms based on the trigonometric function gives

(1 − B + D) cos t + (A −C) sin t + (16 − 4B + D) sin 2t + (−8A + 2C) cos 2t = 0

A solution is obtained by setting all the coefficients above to zero which results in the following
four equations to solve for A,B,C,D

1 − B + D = 0

A −C = 0

16 − 4B + D = 0

−8A + 2C = 0

These are solved by elimination. From the second equation A = C . The fourth equation gives
−8C + 2C = 0 or C = 0. Hence A = 0. From first equation B = 1 + D, hence the third equation
gives 16 − 4 (1 + D) + D = 0, or D = 4 and therefore B = 5. The solution is therefore

A = 0

B = 5

C = 0

D = 4

Using these in (1) gives
y′′′′ (t) + 5y′′ (t) + 4y (t) = 0 (2)

The proposed solution y (t) = cos t + sin 2t now satisfies the above ODE. There will be four
constants of integrations (since this is a 4th order ODE), and therefore two of these constants
must be set to zero using the appropriate initial conditions. To find which constants are needed
to set to zero, the above ODE is first solved. The characteristic equation of (2) is

λ4 + 5λ2 + 4 = 0(
λ2 + 1

) (
λ2 + 4

)
The roots are λ1 = ±i, λ2 = ±2i . Therefore solution to (2) becomes

y (t) = c1e
it + c2e

−it + c3e
2it + c4e

−2it

Using Euler relation the above is written in trigonometric functions as

y (t) = c1 cos t + c2 sin t + c3 cos 2t + c4 sin 2t (3)
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To obtain the proposed solutiony (t) = cos t + sin 2t implies that the constants must have these
values

c1 = 1

c2 = 0

c3 = 0

c4 = 1

The initial conditions which would lead to these constants having these specific values are now
found as follows. From (3)

y (0) = c1 + c3

Since y′ (t) = −c1 sin t + c2 cos t − 2c3 sin 2t + 2c4 cos 2t then

y′ (0) = c2 + 2c4

And since y′′ (t) = −c1 cos t − c2 sin t − 4c3 cos 2t − 4c4 sin 2t , then

y′′ (0) = −c1 − 4c3

and finally since y′′′ (t) = c1 sin t − c2 cos t + 8c3 sin 2t − 8c4 cos 2t then

y′′′ (0) = −c2 − 8c4

Since c1 = 1, c2 = 0, c3 = 0, c4 = 1, then the above initial conditions become

y (0) = 1

y′ (0) = 2

y′′ (0) = −1

y′′′ (0) = −8

The above initial conditions will now give the solution

y (t) = cos t + sin 2t

For the ODE
y′′′′ (t) + 5y′′ (t) + 4y (t) = 0

The following is a plot of the solution

5 10 15 20
t (sec)

-1.5

-1.0

-0.5

0.5

1.0

1.5

y(t)
Problem 8 solution

Plot[Cos[t] + Sin[2 t], {t, 0, 20}, PlotStyle -> Red,
GridLines -> Automatic, GridLinesStyle -> LightGray,
AxesLabel -> {”t (sec)”, ”y(t)”},
PlotLabel -> ”Problem 8 solution”]
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