HW 5 (Second HW on ODE's), Math 601 Fall 2018
 University Of Wisconsin, Milwaukee

Nasser M. Abbasi
1 problems description 1
2 problem 1 1
2.1 part a 1
2.2 part b 2
2.3 part c 3
3 problem 2 4
4 problem 3 5
5 problem 4 6
6 Key solution 8
\mid MATH 6 61 HW 42 ODEs| giver ont oct 10,2018 II Solve the mitial value problems
a) $y^{\prime}+4 y=20$
b, $\begin{aligned} y^{\prime}+3 y & =\sin x \\ y(\pi / 2) & =0.3\end{aligned}$
c) $y^{\prime}-y\left(1+\frac{3}{x}\right)=x+2$
$y(0)=2$
$y(n)=e^{-1}$
(2) Solve the Bernoulli equation

$$
y^{\prime}+\frac{y}{3}=\frac{1-2 x}{3} y^{4}
$$

(3) Consider the model $\left\{\begin{array}{l}m \frac{d v}{d t}=w-B-k v \\ v(0)=0\end{array}\right.$
for the sinking of a container in the ocean.
$/ v=v(t)$-velocity. w-weight, B buoyancy farce
k - drag coefficient, 'w,B,k constants /
If container hits bottom at $v_{c}=12 \mathrm{~m} / \mathrm{sec}$ critical velocity or less it will not break. Determine the critical time t_{c} when the container reaches critical velocity, assuming $W=2254 \mathrm{~N}, B=2090 \mathrm{~N}, K=0.637 \mathrm{~kg} / \mathrm{sec} . \quad\left(\mathrm{N}=\frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{sec}^{2}}\right)$ What is the critical depth beyond which the container might break up.?
(4) Consider the Ricatti equation

$$
y^{\prime}=x^{3}(y-x)^{2}+\frac{y}{x} \quad \text { and solve it }
$$

/ Hint consider a substitution $w(x)=y(x)-x$
15 Under what conditions for the constants $A, B, C D$
is $(A x+B y)+(C x+D y) y^{\prime}=0$ exact diff. eq.
Solve the equation!

2 problem 1

2.1 part a

The ODE to solve is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(x)+4 y(x)=20
$$

with initial conditions $y(0)=2$.
Trying separable ODE.
In canonical form, the ODE is written as

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-4 y+20
\end{aligned}
$$

The ODE $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 y+20$, is separable. It can be written as

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y)
$$

Where $f(x)=1$ and $g(y)=-4 y+20$. Therefore

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 y+20
$$

Hence

$$
\begin{aligned}
(-4 y+20)^{-1} \mathrm{~d} y & =\mathrm{d} x \\
\int(-4 y+20)^{-1} \mathrm{~d} y & =\int \mathrm{d} x \\
-1 / 2 \ln (2)-1 / 4 \ln (|y-5|) & =x+C_{1}
\end{aligned}
$$

Solving for y gives

$$
y=-1 / 4 \mathrm{e}^{-4 x-4 C_{1}}+5
$$

The solution above can be written as

$$
\begin{equation*}
y=-1 / 4 C_{1} \mathrm{e}^{-4 x}+5 \tag{1}
\end{equation*}
$$

Initial conditions are now used to solve for C_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
2 & =-1 / 4 C_{1} \mathrm{e}^{0}+5 \\
& =-1 / 4 C_{1}+5
\end{aligned}
$$

Hence

$$
C_{1}=12\left(\mathrm{e}^{0}\right)^{-1}
$$

Which is simplified to

$$
C_{1}=12
$$

Substituting C_{1} found above back in the solution gives

$$
y(x)=-3 \mathrm{e}^{-4 x}+5
$$

2.2 part b

The ODE to solve is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(x)+3 y(x)=\sin (x)
$$

with initial conditions $y(\pi / 2)=3 / 10$.
Trying Linear ODE.
In canonical form, the ODE is written as

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-3 y+\sin (x)
\end{aligned}
$$

The ODE is linear in y and has the form

$$
y^{\prime}=y f(x)+g(x)
$$

Where $f(x)=-3$ and $g(x)=\sin (x)$.
Writing the ODE as

$$
\begin{aligned}
y^{\prime}-(-3 y) & =\sin (x) \\
y^{\prime}+3 y & =\sin (x)
\end{aligned}
$$

Therefore the integrating factor μ is

$$
\mu=e^{\int 3 \mathrm{~d} x}=\mathrm{e}^{3 x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =\mu(\sin (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{3 x}\right) & =\sin (x) \mathrm{e}^{3 x} \\
\mathrm{~d}\left(y \mathrm{e}^{3 x}\right) & =\left(\sin (x) \mathrm{e}^{3 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating both sides gives

$$
y \mathrm{e}^{3 x}=-1 / 10 \cos (x) \mathrm{e}^{3 x}+3 / 10 \sin (x) \mathrm{e}^{3 x}+C_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x}$ results in

$$
y=\frac{-1 / 10 \cos (x) \mathrm{e}^{3 x}+3 / 10 \sin (x) \mathrm{e}^{3 x}}{\mathrm{e}^{3 x}}+\frac{C_{1}}{\mathrm{e}^{3 x}}
$$

Simplifying the solution gives

$$
y=3 / 10 \sin (x)-1 / 10 \cos (x)+C_{1} \mathrm{e}^{-3 x}
$$

Initial conditions are now used to solve for C_{1}. Substituting $x=\pi / 2$ and $y=3 / 10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
3 / 10 & =3 / 10 \sin (\pi / 2)-1 / 10 \cos (\pi / 2)+C_{1} \mathrm{e}^{-3 / 2 \pi} \\
& =3 / 10+C_{1} \mathrm{e}^{-3 / 2 \pi}
\end{aligned}
$$

Hence

$$
C_{1}=-1 / 10 \frac{3 \sin (\pi / 2)-\cos (\pi / 2)-3}{\mathrm{e}^{-3 / 2 \pi}}
$$

Which is simplified to

$$
C_{1}=0
$$

Substituting C_{1} found above back in the solution gives

$$
y(x)=3 / 10 \sin (x)-1 / 10 \cos (x)
$$

2.3 part c

The ODE to solve is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(x)-y(x)\left(1+3 x^{-1}\right)=x+2
$$

with initial conditions $y(1)=\mathrm{e}-1$.
Trying Linear ODE.
In canonical form, the ODE is written as

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+x y+2 x+3 y}{x}
\end{aligned}
$$

The ODE is linear in y and has the form

$$
y^{\prime}=y f(x)+g(x)
$$

Where $f(x)=\frac{x+3}{x}$ and $g(x)=\frac{x^{2}+2 x}{x}$.
Writing the ODE as

$$
\begin{aligned}
y^{\prime}-\left(\frac{(x+3) y}{x}\right) & =\frac{x^{2}+2 x}{x} \\
y^{\prime}-\frac{(x+3) y}{x} & =\frac{x^{2}+2 x}{x}
\end{aligned}
$$

Therefore the integrating factor μ is

$$
\mu=e^{\int-\frac{x+3}{x} \mathrm{~d} x}=\mathrm{e}^{-x-3 \ln (x)}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =\mu\left(\frac{x^{2}+2 x}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-x-3 \ln (x)}\right) & =\frac{\left(x^{2}+2 x\right) \mathrm{e}^{-x-3 \ln (x)}}{x} \\
\mathrm{~d}\left(y \mathrm{e}^{-x-3 \ln (x)}\right) & =\left(\frac{\left(x^{2}+2 x\right) \mathrm{e}^{-x-3 \ln (x)}}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating both sides gives

$$
y \mathrm{e}^{-x-3 \ln (x)}=-\mathrm{e}^{-x-3 \ln (x)} x+C_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x-3 \ln (x)}$ results in

$$
y=-x+\frac{C_{1}}{\mathrm{e}^{-x-3 \ln (x)}}
$$

Simplifying the solution gives

$$
y=-x+C_{1} x^{3} \mathrm{e}^{x}
$$

Initial conditions are now used to solve for C_{1}. Substituting $x=1$ and $y=\mathrm{e}-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\mathrm{e}-1=-1+C_{1} \mathrm{e}
$$

Hence

$$
C_{1}=1
$$

Substituting C_{1} found above back in the solution gives

$$
y(x)=-x+x^{3} \mathrm{e}^{x}
$$

3 problem 2

The ODE to solve is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(x)+1 / 3 y(x)=1 / 3(1-2 x)(y(x))^{4}
$$

Trying Bernoulli ODE.
In canonical form, the ODE is written as

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-y / 3-2 / 3 y^{4} x+1 / 3 y^{4}
\end{aligned}
$$

This is a Bernoulli ODE. Comparing the ODE to solve

$$
y^{\prime}=-y / 3-2 / 3 y^{4} x+1 / 3 y^{4}
$$

With Bernoulli ODE standard form

$$
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n}
$$

Shows that $f_{0}(x)=-1 / 3$ and $f_{1}(x)=-2 / 3 x+1 / 3$ and $n=4$.
Dividing the ODE by y^{4} gives

$$
\begin{equation*}
y^{\prime} y^{-4}=-1 / 3 y^{-3}+-2 / 3 x+1 / 3 \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
v=y^{-3} \tag{2}
\end{equation*}
$$

Taking derivative of (2) w.r.t x gives

$$
\begin{align*}
v^{\prime} & =-3 y^{-4} y^{\prime} \\
y^{-4} & =\frac{v^{\prime}}{-3 y^{\prime}} \tag{3}
\end{align*}
$$

Substituting (3) into (1) gives

$$
\begin{aligned}
\frac{v^{\prime}}{(-3)} & =(-1 / 3) v+-2 / 3 x+1 / 3 \\
v^{\prime} & =(-3)(-1 / 3) v+(-3)(-2 / 3 x+1 / 3) \\
& =v+2 x-1
\end{aligned}
$$

The above now is a linear ODE in $v(x)$ which can be easily solved using an integrating factor. In canonical form, the ODE is written as

$$
\begin{aligned}
v^{\prime} & =F(x, v) \\
& =v+2 x-1
\end{aligned}
$$

The ODE is linear in v and has the form

$$
v^{\prime}=v f(x)+g(x)
$$

Where $f(x)=1$ and $g(x)=2 x-1$.
Writing the ODE as

$$
\begin{array}{r}
v^{\prime}-(v)=2 x-1 \\
v^{\prime}-v=2 x-1
\end{array}
$$

Therefore the integrating factor μ is

$$
\mu=e^{\int-1 \mathrm{~d} x}=\mathrm{e}^{-x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu v & =\mu(2 x-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(v \mathrm{e}^{-x}\right) & =(2 x-1) \mathrm{e}^{-x} \\
\mathrm{~d}\left(v \mathrm{e}^{-x}\right) & =\left((2 x-1) \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating both sides gives

$$
v \mathrm{e}^{-x}=-(2 x+1) \mathrm{e}^{-x}+C_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
v=-2 x-1+\frac{C_{1}}{\mathrm{e}^{-x}}
$$

Simplifying the solution gives

$$
v=-2 x-1+C_{1} \mathrm{e}^{x}
$$

Replacing v in the above by y^{-3} from equation (2), gives the final solution.

$$
y^{-3}=-2 x-1+C_{1} \mathrm{e}^{x}
$$

Solving for y gives

$$
\begin{aligned}
& y=\frac{1}{\sqrt[3]{-2 x-1+C_{1} \mathrm{e}^{x}}} \\
& y=-1 / 2 \frac{1}{\sqrt[3]{-2 x-1+C_{1} \mathrm{e}^{x}}}+\frac{i / 2 \sqrt{3}}{\sqrt[3]{-2 x-1+C_{1} \mathrm{e}^{x}}} \\
& y=-1 / 2 \frac{1}{\sqrt[3]{-2 x-1+C_{1} \mathrm{e}^{x}}}-\frac{i / 2 \sqrt{3}}{\sqrt[3]{-2 x-1+C_{1} \mathrm{e}^{x}}}
\end{aligned}
$$

4 problem 3

The ODE to solve is

$$
m \frac{\mathrm{~d}}{\mathrm{~d} x} v(x)=w-B-k v(x)
$$

with initial conditions $v(0)=0$.
Trying separable ODE.
In canonical form, the ODE is written as

$$
\begin{aligned}
v^{\prime} & =F(x, v) \\
& =-\frac{k v+B-w}{m}
\end{aligned}
$$

The ODE $\frac{\mathrm{d} v}{\mathrm{~d} x}=-\frac{k v+B-w}{m}$, is separable. It can be written as

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=f(x) g(v)
$$

Where $f(x)=1$ and $g(v)=\frac{-k v-B+w}{m}$. Therefore

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{-k v-B+w}{m}
$$

Hence

$$
\begin{aligned}
\left(\frac{m}{-k v-B+w}\right) \mathrm{d} v & =\mathrm{d} x \\
\int\left(\frac{m}{-k v-B+w}\right) \mathrm{d} v & =\int \mathrm{d} x \\
-\frac{m \ln (|k v+B-w|)}{k} & =x+C_{1}
\end{aligned}
$$

Solving for v gives

$$
v=\frac{1}{k}\left(-\mathrm{e}^{-\frac{k\left(x+C_{1}\right)}{m}}-B+w\right)
$$

Initial conditions are now used to solve for C_{1}. Substituting $x=0$ and $v=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{1}{k}\left(-\mathrm{e}^{-\frac{k c_{1}}{m}}-B+w\right)
$$

Hence

$$
C_{1}=-\frac{m \ln (-B+w)}{k}
$$

Substituting C_{1} found above back in the solution gives

$$
v(x)=\frac{1}{k}\left(-\mathrm{e}^{-\frac{k}{m}\left(x-\frac{m \ln (-B+w)}{k}\right)}-B+w\right)
$$

The solution $\frac{1}{k}\left(-\mathrm{e}^{-\frac{k}{m}\left(x-\frac{m \ln (-B+w)}{k}\right)}-B+w\right)$ can be simplified to

$$
\begin{equation*}
v(x)=\frac{1}{k}\left(-\mathrm{e}^{\frac{m \ln (-B+w)-x k}{m}}-B+w\right) \tag{2}
\end{equation*}
$$

5 problem 4

The ODE to solve is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} y(x)=x^{3}(y(x)-x)^{2}+\frac{y(x)}{x}
$$

Trying Riccati ODE.
In canonical form, the ODE is written as

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{6}-2 x^{5} y+x^{4} y^{2}+y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{5}-2 x^{4} y+x^{3} y^{2}+\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{5}, f_{1}(x)=\frac{-2 x^{5}+1}{x}$ and $f_{2}(x)=x^{3}$.
Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u x^{3}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification) in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =3 x^{2} \\
f_{1} f_{2} & =\left(-2 x^{5}+1\right) x^{2} \\
f_{2}^{2} f_{0} & =x^{11}
\end{aligned}
$$

Substituting the above terms back in (2) gives

$$
x^{3} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} u(x)-\left(3 x^{2}+\left(-2 x^{5}+1\right) x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} u(x)+x^{11} u(x)=0
$$

Solving the above ODE gives

$$
u(x)=\mathrm{e}^{-1 / 5 x^{5}}\left(x^{5} C_{2}+C_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=-x^{4} \mathrm{e}^{-1 / 5 x^{5}}\left(x^{5} C_{2}+C_{1}-5 C_{2}\right)
$$

Hence, using the above in (1) gives the solution

$$
y(x)=\frac{x\left(x^{5} C_{2}+C_{1}-5 C_{2}\right)}{x^{5} C_{2}+C_{1}}
$$

Dividing both numerator and denominator by C_{2} gives, after renaming the constant $\frac{C_{1}}{C_{2}}=C_{0}$ the following

$$
y(x)=\frac{x\left(x^{5}+C_{0}-5\right)}{x^{5}+C_{0}}
$$

MATH GO1 HWU2 ODES Solutions
(1) a) $\left.\left.\begin{array}{rlrl}\left\{\begin{array}{ll}y^{\prime}+4 y=20 & 1 \cdot e^{4 x}\end{array} \quad\left[e^{4 x} \cdot y\right]^{\prime}\right. & =20 e^{4 x} \\ y(0)=2 & e^{4 x} y & =5 e^{4 x}+c\end{array}\right\} \begin{array}{ll}2=y(0)=5+c \Rightarrow c=-3 & y=5+c e^{-4 x}\end{array}\right] \begin{array}{ll}y(t)=5-3 e^{-4 x},\end{array}$

$$
\text { b, } \begin{array}{ll}
\{ & \begin{cases}y^{\prime}+3 y= & \sin x \\
y(\pi / 2)=0.3 & 1 \cdot e^{3 x} \quad\left[e^{3 x} y\right]^{\prime}=e^{3 x} \sin x \\
& y=e^{-3 x} \int e^{3 x} \sin x d x\end{cases} \\
\int e^{3 x} \sin x d x=\frac{1}{3} e^{3 x} \sin x-\int \frac{1}{3} e^{3 x} \underbrace{\cos x} d x \\
u^{\prime} v \\
u=\frac{1}{3} e^{3 x}=\frac{e^{3 x}}{3} \sin x-\left[\frac{1}{9} e^{3 x} \cos x+\frac{1}{9} \int e^{3 x} \sin x d x\right] \Rightarrow \\
\int e^{3 x} \sin x d x\left(1+\frac{1}{9}\right)=\frac{e^{3 x}}{3}\left(\sin x-\frac{\cos x}{3}\right) \\
\int e^{3 x} \sin x d x=\frac{9}{10} \frac{e^{3 x}}{3}\left(\sin x-\frac{\cos x}{3}\right)+C
\end{array}
$$

$$
y(x)=\frac{3}{10} \sin x-\frac{1}{10} \cos x+c e^{-3 x}
$$

$$
\frac{3}{10}=y\left(\frac{\pi}{2}\right)=\frac{3}{10} 1-\frac{1}{10} \cdot 0+c e^{-3 \pi / 2} \Rightarrow c=0
$$

$$
\text { solution } y(x)=\frac{3}{10} \sin x-\frac{1}{10} \cos x
$$

$$
\text { c, } y^{\prime}-y\left(1+\frac{3}{x}\right)=x+2 \quad 1 \cdot e^{\int_{1+3}+\frac{d x}{x}}=e^{x+3 \ln x}=e^{x} \cdot x^{3}
$$

$$
\begin{aligned}
& {\left[y \cdot e^{x} \cdot x^{3}\right]^{\prime}=(x+2) x^{3} e^{x}} \\
& y \cdot e^{x} \cdot x^{3}=\int x^{4} e^{x} d x+2 \int x^{3} e^{x} d x \text { integration by parts }
\end{aligned}
$$

$$
e^{x}\left[x^{4}-\frac{4!}{3!} x^{3}+\frac{4!}{2!} x^{2}-\frac{4!}{1!} x+4!\right]
$$

$$
+e^{x}\left[2 x^{3}-2 \cdot \frac{3!}{2!} x^{2}+2 \frac{3!}{1!} x-2 \cdot 3!\right]+c
$$

$$
\begin{array}{r}
e^{x}\left[x^{4}+(-4+2) x^{3}+(4 \cdot 3-2 \cdot 3) x^{2}+(-4 \cdot 3 \cdot 2+2 \cdot 3 \cdot 2) x+(4!\cdot-2 \cdot 3!)\right. \\
+c
\end{array}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\int x^{4} e^{x} d x=e^{x} x^{4}-4 \int x^{3} e^{x} d x=x^{4} e^{x}-4 x^{3} e^{x}+4 \cdot 3 x^{2} e^{x}-4 \cdot 3 \cdot 2 x e^{x}+ \\
v u^{\prime} \\
y \cdot 4 \cdot 2 \cdot e^{x}+c
\end{array}\right. \\
& \iint x^{3} e^{x} d x=x^{3} e^{x}-3 \int x^{2} e^{x} d x=x^{3} e^{x}-3 x^{2} e^{x}+3!x e^{x}-3!e^{x}+c \\
& \iint x^{2} e^{x} d x=x^{2} e^{x}-2 \int x e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+c \\
& \int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+c \\
& y=\frac{1}{e^{x} \cdot x^{3}} \cdot\left[e^{x}\left[x^{4}-2 x^{3}+6 x^{2}-12 x+12\right]+c\right]= \\
& =x-2+\frac{6}{x}-\frac{12}{x^{2}}+\frac{12}{x^{3}}+\frac{c}{e^{x} x^{3}} \\
& y(1)=1-2+6-12+12+\frac{c}{e}=e-1 \quad \Rightarrow c=e(e-6) \\
& y=x-2+6 / x-\frac{12}{x^{2}}+\frac{12}{x^{3}}+\frac{\left(e^{2}-6 e\right)}{e^{x} x^{3}} \\
& 12 \\
& y^{\prime}+y / 3=\frac{1-2 x}{3} y^{4} \\
& u=\frac{1}{y^{4-1}}=y^{-3} ; u^{\prime}=-3 y^{-4} y^{\prime}= \\
& \begin{array}{ll}
u^{\prime}-u=2 x-1 \\
\left(u e^{-x}\right)^{\prime}=(2 x-1) e^{-x} & y=\frac{1}{\sqrt[3]{u}} \quad=-\frac{3}{y^{4}}\left(\frac{1-2 x}{3} y^{4}-y / 3\right)=
\end{array} \\
& u e^{-x}=2 \int x e^{-k} d x-\int e^{-x} d x \\
& \left.\int x e^{-x} d x=-x e^{-x}+\int e^{-x} d x\right)=-2 e^{-x}(x+1)+e^{-x}+c= \\
& 2 x-1+y^{-3}=2 x-1+4 \\
& \begin{aligned}
v=-e^{-k}=-e^{-x}(x+1) \quad=-e^{-x}(2 x+2-1)+c \Rightarrow u=-e^{x} e^{-k}(2 x+1)+c e^{x} \\
u=-1-2 x+c e^{x}
\end{aligned} \\
& M=-1-2 x+c e^{x} \\
& y=\frac{1}{\sqrt[3]{6 e^{x}-1-2 x}} \\
& 13 \text {. } 10 \begin{array}{ll}
m v^{\prime}=w-B-k v & v^{\prime}+\frac{k}{m} v=\frac{w}{m}-\frac{B}{m} \quad 1 \cdot e^{k / m} x \\
v(v)=0 & \left(v e^{k / m x}\right)^{\prime}=\left(\frac{w}{m}-\frac{B}{m}\right) e^{k / m x}
\end{array} \\
& v=e^{-\frac{k}{m} x}\left(\frac{\omega-B}{m} \frac{m}{k}\right) e^{k m_{n} x}+c e^{-k p_{m} x} \\
& v<V_{5}=12 \mathrm{~m} / \mathrm{sec} \\
& 0=v(0)=\frac{W-B}{k}+c \Rightarrow C=\frac{B-W}{k} \\
& \frac{W-B}{k}\left(1-e^{-k / m x}\right) \leqslant 12
\end{aligned}
$$

$$
\begin{aligned}
& \text { weight: } W=m . g \quad\left(g=9.89 \mathrm{~m} / \mathrm{sec}^{2}\right) \\
& m_{m}=9 / u \\
& x \text {-time inseconds } \\
& \text { at } t \equiv x \\
& \text { Solve } \quad\left(1-e^{-\frac{k w}{g} t}\right)<\frac{12 k}{w-B} \\
& e^{-\frac{k w}{9} t}>1-\frac{12 k}{w-B} \quad\binom{k>0}{w>B>0} \\
& -\frac{k w}{g} t>\ln \frac{W-B-12 k}{w-B} \\
& \quad \frac{q<-\frac{g}{k \omega} \ln \frac{w-B-12 k}{w-B}}{1-B-12 k} \\
& \text { Then } t_{\text {crit }}=-\frac{g}{k W} \ln \frac{W-B-12 k}{w-B} \\
& \begin{array}{l}
y(t) \underset{\text { position }}{\text { (depth) }}
\end{array} \quad y=\int \frac{w-B}{k}\left(1-e^{-k / m t}\right) d t= \\
& =\frac{W-B}{k} t+\frac{W-B}{m} \cdot e^{-k / m t}+D \\
& \text { use } y(0)=0 \\
& \begin{array}{c}
\text { start at } \\
\text { surface }
\end{array} \\
& 0=\frac{W-B}{m}+D \quad \Rightarrow D=-\frac{(W-B) W}{g} \\
& y=\frac{W-B}{k} \cdot t+\frac{(W-B) w}{g} e^{-\frac{k w}{g} t}-\frac{W-B}{9} w \\
& \text { critical depth } y \text { wait }=\frac{W-B}{k} t_{\text {ant }}+\frac{(w-B)}{g} w e^{-\frac{k w}{g} \tan ^{2} t}-\frac{w-B}{\theta} W \\
& \text { Substitute data } \\
& W=2254 \frac{\mathrm{kgm}}{\mathrm{sec}^{2}} \\
& g=9.89 \mathrm{~m} / \mathrm{sec}^{2} \\
& \text { (in KMS) } \begin{array}{r}
\text { Slunits. }
\end{array} \\
& B=2090 \quad \frac{\mathrm{kq}}{\mathrm{sec}^{2}} \\
& k=0.637 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

4

$$
\begin{gathered}
y^{\prime}=x^{3}(y-x)^{2}+y / x \quad w^{\prime}+1=x^{3} w^{2}+\frac{w}{x}+1 \\
w=y-x ; y^{\prime}=w^{\prime}+1 \quad w^{\prime}-\frac{1}{x} w=x^{3} w^{2} \\
\frac{w+1}{x}=y / x \quad u^{\prime}=\frac{1}{w^{2-1}}=\frac{1}{w} \quad u^{\prime}=-\frac{1}{w^{2}} w^{\prime}= \\
\left.u^{\prime}+\frac{1}{x} u=-x^{3} / \cdot e^{\ln x}=x\right)=-\frac{1}{w^{2}}\left(\frac{1}{x} w+x^{3} w^{2}\right)= \\
u^{\prime} x+u=-x^{4} \\
(u x)^{\prime}=-x^{4} \quad-\frac{1}{x} w^{\prime}-x^{3}=-\frac{1}{x} u^{\prime}-x^{3} \\
u=\frac{1}{x}\left(-\frac{x^{5}}{5}+C\right)=-\frac{x^{4}}{5}+\frac{c}{x} \\
w=\frac{1}{u}=\frac{5 x}{5 C-x^{5}}=\frac{5 x}{D-x^{5}} \\
y(x)=w(x)+x=\frac{5 x}{D-x^{5}+x^{2}}
\end{gathered}
$$

5

$$
\underbrace{(A x+B y)}_{M(x, y)} d x+(C x+D y) d y=0
$$

$$
M
$$

Equation exact wher $\quad M_{y}=N_{x}$ or $B=C$
Take $B=0, \quad M(x, y)=\frac{\partial u(x, y)}{\partial x} \quad N(x, y)=\frac{\partial u(x, y)}{\partial y}$ with $u(x, y)=r$ const implicit solutiou.
$U(x, y)=\int M(x, y) d x+K(y)$
$\begin{aligned} U_{y}=\left(\frac{A x^{2}}{2}+B x y+K(y)\right)_{y}=B x+K^{\prime}(y)=N(x, y) & =C x+D y \\ & =B x+D y\end{aligned}$

$$
\Rightarrow K(y)=D q
$$

Then $\quad 1(x, y)=\frac{A x^{2}}{2}+B x y+\frac{D y^{2}}{2}+q \quad k(y)=\frac{D y^{2}+q}{2}$ const.
impliat solution

$$
\frac{A x^{2}}{2}+B x y+\frac{D y^{2}}{2}=\tilde{C}=r-q \text { const. }
$$

Hou can we quadratie farmula to oblain explicit

