PROBLEM SET 13.1

- (Powers of i) Show that $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i \cdot \cdot \cdot$ and $1/i = -i \cdot 1/i^2 = -1 \cdot 1/i^3 = i \cdot \cdot \cdot \cdot$
- 2. (Rotation) Multiplication by i is geometrically a counterclockwise rotation through $\pi/2$ (90°). Verify this by graphing z and iz and the angle of rotation for
- z = 2 + 2i, z = -1 5i, z = 4 3i. 3. (Division) Verify the calculation in (7).
- 4. (Multiplication) If the product of two complex numbers is zero, show that at least one factor must be zero.
- 5. Show that z = x + iy is pure imaginary if and only if $\bar{z} = -z$.
- 6. (Laws for conjugates) Verify (9) for $z_1 = 24 + 10i$, $z_2 = 4 + 6i$.

7-15 COMPLEX ARITHMETIC

Let $z_1 = 2 + 3i$ and $z_2 = 4 - 5i$. Showing the details of your work, find (in the form x + iy):

11. z_2/z_1

- 13. $(4z_1 z_2)^2$ 14. \bar{z}_1/z_1 , z_1/\bar{z}_1
- 15. $(z_1 + z_2)/(z_1 z_2)$
- 16–19 Let z = x + iy. Find:
- 16. Im z^3 . $(\text{Im } z)^3$
- 17. Re $(1/\bar{z})$
- 18. Im $[(1+i)^8z^2]$ **19.** Re $(1/\bar{z}^2)$

(Laws of addition and multiplication) Derive the following laws for complex numbers from the corresponding laws for real numbers.

$$z_1 + z_2 = z_2 + z_1$$
, $z_1z_2 = z_2z_1$ (Commutative laws)
 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$,
(Associative laws)

$$z_1 + z_2 + z_3 = z_1 + (z_2 + z_3),$$
(4)
$$(z_1 z_2) z_3 = z_1 (z_2 z_3)$$

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3 \qquad (Distributive law)$$
$$0 + z = z + 0 = z, \qquad (Distributive law)$$

$$z + (-z) = (-z) + z = 0,$$
 $z \cdot 1 = z.$

$$8. \frac{2+3i}{5+4i}$$

9-15 PRINCIPAL ARGUMENT

Determine the principal value of the argument.

$$9. -1 - i$$

10.
$$-20 + i$$
, $-20 - i$

$$(11.)$$
 4 ± 3*i* 13. 7 ± 7*i*

12.
$$-\pi^2$$

13.
$$7 \pm 7i$$

14.
$$(1+i)^{12}$$

15.
$$(9 + 9i)^3$$

CONVERSION TO x + iy16-20

Represent in the form x + iy and graph it in the complex plane.

16.
$$\cos \frac{1}{2}\pi + i \sin \left(\pm \frac{1}{2}\pi\right)$$
 17. $3(\cos 0.2 + i \sin 0.2)$

17.
$$3(\cos 0.2 + i \sin 0.2)$$

(18)
$$4(\cos \frac{1}{3}\pi \pm i \sin \frac{1}{3}\pi)$$
 19. $\cos (-1) + i \sin (-1)$

19.
$$\cos(-1) + i \sin(-1)$$

20.
$$12(\cos\frac{3}{2}\pi + i\sin\frac{3}{2}\pi)$$

21-25 ROOTS

Find and graph all roots in the complex plane.

21.
$$\sqrt{-i}$$

23.
$$\sqrt[4]{-1}$$

$$\sqrt[3]{3} + 4$$

25.
$$\sqrt[5]{-1}$$

26. TEAM PROJECT. Square Root. (a) Show that $w = \sqrt{z}$ has the values

$$w_1 = \sqrt{r} \left[\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right],$$

(18)
$$w_2 = \sqrt{r} \left[\cos \left(\frac{\theta}{2} + \pi \right) + i \sin \left(\frac{\theta}{2} + \pi \right) \right]$$

(b) Obtain from (18) the often more practical formula

(19)
$$\sqrt{z} = \pm \left[\sqrt{\frac{1}{2} (|z| + x)} + (\text{sign } y) i \sqrt{\frac{1}{2} (|z| + x)} \right]$$

where sign y = 1 if $y \ge 0$, sign y = -1 if y < 0and all square roots of positive numbers are taken with positive sign. Hint: Use (10) in App. A3.1 with $x = \theta/2$.

(c) Find the square roots of 4i, 16 - 30i, and $9 + 8\sqrt{7}i$ by both (18) and (19) and comment on the work involved.

(d) Do some further examples of your own and apply a method of checking your results.

27-30 **EQUATIONS**

Solve and graph all solutions, showing the details:

27.
$$z^2 - (8 - 5i)z + 40 - 20i = 0$$
 (Use (19).)

28.
$$z^4 + (5 - 14i)z^2 - (24 + 10i) = 0$$

29.
$$8z^2 - (36 - 6i)z + 42 - 11i = 0$$

30. $z^4 + 16 = 0$. Then use the solutions to factor $z^4 + 16$ into quadratic factors with real coefficients.

31. CAS PROJECT. Roots of Unity and Their Graphs. Write a program for calculating these roots and for

graphing them as points on the unit circle. Apply the program to $z^n = 1$ with $n = 2, 3, \dots, 10$. Then extend the program to one for arbitrary roots, using an idea near the end of the text, and apply the program to examples of your choice.

32-35 **INEOUALITIES AND AN EQUATION**

Verify or prove as indicated.

32. (Re and Im) Prove $|\text{Re } z| \leq |z|$, $|\text{Im } z| \leq |z|$.

33. (Parallelogram equality) Prove

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

Explain the name.

34. (Triangle inequality) Verify (6) for $z_1 = 4 + 7i$, $z_2 = 5 + 2i$.

35. (Triangle inequality) Prove (6).

1. $|z-3-2i|=\frac{4}{3}$

PRACTICAL INTEREST Find and sketch or graph the sets in the complex plane given

$$\int_{0}^{\infty} \int_{0}^{\infty} |z|^{2} = 2$$
7. $|z + 1| = |z - 1|$

3. 0 < |z - 1| < 1

6. Re
$$z > -1$$
(8) $|Arg z| \le \frac{1}{4}\pi$

4. $-\pi < \text{Re } z < \pi$

 $(2.)1 \leq |z-1+4i| \leq 5$

7.
$$|z + 1| = |z|$$

9. Re $z \le \text{Im } z$

10. Re (1/z) < 1

PROBLEM SET 13.5

1. Using the Cauchy-Riemann equations, show that e^z is entire.

Values of e^z . Compute e^z in the form u + iv and $|e^z|$, where z equals:

2. $3 + \pi i$ 3. 1 + 2i 4. $\sqrt{2} - \frac{1}{2}\pi i$ 5. $7\pi i/2$

6. $(1 + i)\pi$ 7. 0.8 - 5i

8. $9\pi i/2$

9-12 Real and Imaginary Parts. Find Re and Im of:

13-17 Polar Form. Write in polar form:

13. \sqrt{i} 14. 1 + i15. $\sqrt[n]{z}$ 16. 3 + 4i

18-21 Equations. Find all solutions and graph some of them in the complex plane.

18. $e^{3z} = 4$ 20. $e^z = 0$ 19. $e^z = -2$ (21.) $e^z = 4 - 3$

conjugate.

22. TEAM PROJECT. Further Properties of the Exponential Function. (a) Analyticity. Show that e^z is entire. What about $e^{1/z}$? $e^{\overline{z}}$? $e^x(\cos ky + i \sin ky)$? (Use the Cauchy–Riemann equations.)

(b) Special values. Find all z such that (i) e^z is real, (ii) $|e^{-z}| < 1$, (iii) $e^{\overline{z}} = \overline{e^z}$.

(c) Harmonic function. Show that $u = e^{xy} \cos(x^2/2 - y^2/2)$ is harmonic and find a

(d) Uniqueness. It is interesting that $f(z) = e^z$ is uniquely determined by the two properties $f(x+i0) = e^x$ and f'(z) = f(z), where f is assumed to be entire. Prove this using the Cauchy-Riemann equations.

- 1. Prove that cos z, sin z, cosh z, sinh z are entire functions.
- 2. Verify by differentiation that Re $\cos z$ and Im $\sin z$ are harmonic.

FORMULAS FOR HYPERBOLIC FUNCTIONS

Show that

- $\cosh z = \cosh x \cos y + i \sinh x \sin y$ 3. $\sinh z = \sinh x \cos y + i \cosh x \sin y$.
- 4. $\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$ $\sinh (z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2.$
- $5 \cdot \cosh^2 z \sinh^2 z = 1$
- 6. $\cosh^2 z + \sinh^2 z = \cosh 2z$

Function Values. Compute (in the form u + iv) 7-15

- 7. $\cos(1+i)$
- (8) $\sin(1+i)$

10. $\cos 3\pi i$

- 9. sin 5i. cos 5i
- 11. $\cosh(-2 + 3i)$, $\cos(-3 2i)$
- 12. $-i \sinh(-\pi + 2i), \sin(2 + \pi i)$
- 13. $\cosh (2n + 1)\pi i$, $n = 1, 2, \cdots$

- 14. $\sinh (4 3i)$ 15. $\cosh (4 6\pi i)$
- 16. (Real and imaginary parts) Show that

Re tan
$$z = \frac{\sin x \cos x}{\cos^2 x + \sinh^2 y}$$
,

$$\operatorname{Im} \tan z = \frac{\sinh y \cosh y}{\cos^2 x + \sinh^2 y} .$$

- Equations. Find all solutions of the following 17-21 equations.
- 17. $\cosh z = 0$

18. $\sin z = 100$

- 19. $\cos z = 2i$ 20. $\cosh z = -1$
- 21. $\sinh z = 0$
- 22. Find all z for which (a) $\cos z$, (b) $\sin z$ has real values.
- Equations and Inequalities. Using the definitions, prove:
- 23.) $\cos z$ is even, $\cos (-z) = \cos z$, and $\sin z$ is odd, $\sin(-z) = -\sin z.$
- 24. $|\sinh y| \le |\cos z| \le \cosh y$, $|\sinh y| \le |\sin z| \le \cosh y$. Conclude that the complex cosine and sine are not bounded in the whole complex plane.
- 25. $\sin z_1 \cos z_2 = \frac{1}{2} [\sin (z_1 + z_2) + \sin (z_1 z_2)]$

PROBLEM SET 13.7

3. 2-2i

1.
$$-10$$
 2. $2 + 2i$

4.
$$-5 \pm 0.1i$$

5.
$$-3 - 4i$$
 6. -100

some of them in the complex plane.

10.
$$\ln 1$$
 11. $\ln (-1)$

).
$$\ln 1$$
 11. $\ln (-1)$

14. $\ln (4 + 3i)$

16.
$$\ln{(e^{3i})}$$

17. Show that the set of values of $\ln(i^2)$ differs from the set of values of 2 ln i.

18. $\ln z = (2 - \frac{1}{2}i)\pi$

20. $\ln z = e - \pi i$

Equations. Solve for z:

13. $\ln (-6)$ 15. $\ln(-e^{-i})$

(19)
$$\ln z = 0.3 + 0.7i$$

21. $\ln z = 2 + \frac{1}{4}\pi i$

22-28

General Powers. Showing the details of your work, find the principal value of:

22.
$$i^{2i}$$
, $(2i)^i$

22.
$$i^{2i}$$
, $(2i)^{i}$
24. $(1-i)^{1+i}$

23.
$$4^{3+i}$$

25. $(1+i)^{1-i}$
27. $i^{1/2}$

26.
$$(-1)^{1-2i}$$

28.
$$(3-4i)^{1/3}$$

29.) How can you find the answer to Prob. 24 from the answer to Prob. 25?

30. TEAM PROJECT. Inverse Trigonometric and Hyperbolic Functions. By definition, the inverse sine $w = \arcsin z$ is the relation such that $\sin w = z$. The inverse cosine $w = \arccos z$ is the relation such that $\cos w = z$. The inverse tangent, inverse cotangent, inverse hyperbolic sine, etc., are defined and denoted in a similar fashion. (Note that all these relations are multivalued.) Using $\sin w = (e^{iw} - e^{-iw})/(2i)$ and similar representations of cos w, etc., show that

(a)
$$\arccos z = -i \ln (z + \sqrt{z^2 - 1})$$

(b)
$$\arcsin z = -i \ln (iz + \sqrt{1 - z^2})$$

(c)
$$\operatorname{arccosh} z = \ln (z + \sqrt{z^2 - 1})$$

(d)
$$\arcsin z = \ln (z + \sqrt{z^2 + 1})$$

(e)
$$\arctan z = \frac{i}{2} \ln \frac{i+z}{i-z}$$

(f)
$$\operatorname{arctanh} z = \frac{1}{2} \ln \frac{1+z}{1-z}$$

(g) Show that $w = \arcsin z$ is infinitely many-valued and if w₁ is one of these values, the others are of the form $w_1 \pm 2n\pi$ and $\pi - w_1 \pm 2n\pi$, $n = 0, 1, \cdots$ (The principal value of $w = u + iv = \arcsin z$ is defined to be the value for which $-\pi/2 \le u \le \pi/2$ if $v \ge 0$ and $-\pi/2 < u < \pi/2$ if v < 0.)