HW 1, Math 601 Fall 2018 University Of Wisconsin, Milwaukee

Nasser M. Abbasi

 $March\ 27,\ 2019 \qquad \quad {\hbox{\scriptsize Compiled on March 27, 2019 at 3:44am}}$

Contents

Problem set 1

key solution 4

Problem set

PROBLEM SET 13.1

(Powers of i) Show that
$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, \cdots and $1/i = -i$, $1/i^2 = -1$, $1/i^3 = i$, \cdots .

- 2. (Rotation) Multiplication by i is geometrically a counterclockwise rotation through $\pi/2$ (90°). Verify this by graphing z and iz and the angle of rotation for z = 2 + 2i, z = -1 - 5i, z = 4 - 3i.
- 3. (Division) Verify the calculation in (7).
- 4. (Multiplication) If the product of two complex numbers is zero, show that at least one factor must be zero.
- 5. Show that z = x + iy is pure imaginary if and only
- 6. (Laws for conjugates) Verify (9) for $z_1 = 24 + 10i$, $z_2 = 4 + 6i$.

7-15 COMPLEX ARITHMETIC

Let $z_1 = 2 + 3i$ and $z_2 = 4 - 5i$. Showing the details of your work, find (in the form x + iy):

$$(7)(5z_1 + 3z_2)^2$$

8.
$$\bar{z}_1\bar{z}_2$$

9. Re
$$(1/z_1^2)$$

(Re
$$(z_2^2)$$
, (Re z_2)

11.
$$z_2/z_1$$

(10) Re
$$(z_2^2)$$
, (Re z_2)
(12) \bar{z}_1/\bar{z}_2 , (z_1/z_2)

13.
$$(4z_1 - z_2)^2$$
 14. \bar{z}_1/z_1 , z_1/\bar{z}_1

15.
$$(z_1 + z_2)/(z_1 - z_2)$$

16–19 Let
$$z = x + iy$$
. Find:

16. Im
$$z^3$$
, $(\text{Im } z)^3$

17. Re
$$(1/\bar{z})$$

18. Im
$$[(1 + i)^8 z^2]$$

19. Re
$$(1/\bar{z}^2)$$

(Laws of addition and multiplication) Derive the following laws for complex numbers from the corresponding laws for real numbers.

$$z_1 + z_2 = z_2 + z_1$$
, $z_1 z_2 = z_2 z_1$ (Commutative laws)

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3),$$

$$(z_1 z_2) z_3 = z_1 (z_2 z_3)$$

$$(Distribution label)$$

$$z_1(z_2 + z_3) = z_1z_2 + z_1z_3$$
 (Distributive law)
 $0 + z = z + 0 = z$,

$$z + (-z) = (-z) + z = 0,$$
 $z \cdot 1 = z.$

Problem Set 13.2

7.
$$\frac{-6+5i}{3i}$$

$$8. \frac{2+3i}{5+4i}$$

9-15 PRINCIPAL ARGUMENT

Determine the principal value of the argument.

10.
$$-20 + i$$
, $-20 - i$

12.
$$-\pi^2$$
14. $(1+i)^{12}$

15.
$$(9 + 9i)^3$$

16–20 CONVERSION TO x + iy

Represent in the form x + iy and graph it in the complex

16.
$$\cos \frac{1}{2}\pi + i \sin \left(\pm \frac{1}{2}\pi\right)$$
 17. $3(\cos 0.2 + i \sin 0.2)$

17.
$$3(\cos 0.2 + i \sin 0.2)$$

$$(18) 4(\cos \frac{1}{3}\pi \pm i \sin \frac{1}{3}\pi)$$

19.
$$\cos(-1) + i \sin(-1)$$

20. $12(\cos\frac{3}{2}\pi + i\sin\frac{3}{2}\pi)$

21–25 ROOTS

Find and graph all roots in the complex plane.

21.
$$\sqrt{-i}$$

23.
$$\sqrt[4]{-1}$$

$$(22)$$
 $\sqrt[8]{1}$ (24) $\sqrt[3]{3+4}$

25.
$$\sqrt[5]{-1}$$

26. TEAM PROJECT. Square Root. (a) Show that $w = \sqrt{z}$ has the values

$$w_1 = \sqrt{r} \left[\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right],$$

(18)
$$w_2 = \sqrt{r} \left[\cos \left(\frac{\theta}{2} + \pi \right) + i \sin \left(\frac{\theta}{2} + \pi \right) \right]$$

= $-w_1$.

(b) Obtain from (18) the often more practical formula

(19)
$$\sqrt{z} = \pm \left[\sqrt{\frac{1}{2} (|z| + x)} + (\text{sign } y) i \sqrt{\frac{1}{2} (|z| + x)} \right]$$

where sign y = 1 if $y \ge 0$, sign y = -1 if y < 0and all square roots of positive numbers are taken with positive sign. Hint: Use (10) in App. A3.1 with $x = \theta/2$.

(c) Find the square roots of 4i, 16 - 30i, and $9 + 8\sqrt{7}i$ by both (18) and (19) and comment on the

(d) Do some further examples of your own and apply a method of checking your results.

27–30 EQUATIONS

Solve and graph all solutions, showing the details:

27.
$$z^2 - (8 - 5i)z + 40 - 20i = 0$$
 (Use (19).)

28.
$$z^4 + (5 - 14i)z^2 - (24 + 10i) = 0$$

29.
$$8z^2 - (36 - 6i)z + 42 - 11i = 0$$

30. $z^4 + 16 = 0$. Then use the solutions to factor $z^4 + 16$ into quadratic factors with real coefficients.

31. CAS PROJECT. Roots of Unity and Their Graphs. Write a program for calculating these roots and for graphing them as points on the unit circle. Apply the program to $z^n = 1$ with $n = 2, 3, \dots, 10$. Then extend the program to one for arbitrary roots, using an idea near the end of the text, and apply the program to examples of your choice.

32-35 **INEQUALITIES AND AN EQUATION**

Verify or prove as indicated.

32. (Re and Im) Prove $|\text{Re } z| \leq |z|$, $|\text{Im } z| \leq |z|$.

33. (Parallelogram equality) Prove

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

Explain the name.

34. (Triangle inequality) Verify (6) for $z_1 = 4 + 7i$, $z_2 = 5 + 2i$.

35. (Triangle inequality) Prove (6).

CURVES AND REGIONS OF 1-10 PRACTICAL INTEREST

Find and sketch or graph the sets in the complex plane given

1.
$$|z-3-2i|=\frac{6}{3}$$

1.
$$|z - 3 - 2i| = \frac{4}{3}$$
 2. $|z - 1 + 4i| \le 5$

3.
$$0 < |z - 1| < 1$$

$$(5) \text{ Im } z^2 = 2$$

6. Re
$$z > -1$$

4. $-\pi < \text{Re } z < \pi$

(5) Im
$$z^2 = 2$$

7. $|z + 1| = |z - 1|$

$$(8) |Arg z| \leq \frac{1}{4}\pi$$

9. Re
$$z \leq \operatorname{Im} z$$

10. Re
$$(1/z) < 1$$

- 1. Using the Cauchy-Riemann equations, show that e^z is entire.
- Values of e^z . Compute e^z in the form u + iv and 2-8 $|e^z|$, where z equals:
- $(2.)3 + \pi i$
- 3. 1 + 2i
- 4. $\sqrt{2} \frac{1}{2}\pi i$
- 5. $7\pi i/2$
- 6. $(1 + i)\pi$
- 7. 0.8 5i
- 8. $9\pi i/2$
- 9-12 Real and Imaginary Parts. Find Re and Im of:
- 9. e^{-2z}
- 10. e^{z^3} $(\mathbf{I}) e^{1/2}$
- 11. e^{z^2}
- Polar Form. Write in polar form:
- 13-17 (13) Vi
- 15. $\sqrt[n]{z}$ **17.** −9

22. TEAM PROJECT. Further Properties of the Exponential Function. (a) Analyticity. Show that e is entire. What about $e^{1/z}$? $e^{\overline{z}}$? $e^{x}(\cos ky + i \sin ky)$?

Equations. Find all solutions and graph some of

19. $e^z = -2$ $(21.) e^z = 4 - 3i$

- (Use the Cauchy-Riemann equations.) (b) Special values. Find all z such that (i) e^z is real,
 - (ii) $|e^{-z}| < 1$, (iii) $e^{\overline{z}} = \overline{e^z}$.

them in the complex plane.

18. $e^{3z} = 4$

 $(20) e^z = 0$

- (c) Harmonic function. Show that
- $u = e^{xy} \cos(x^2/2 y^2/2)$ is harmonic and find a conjugate.
- (d) Uniqueness. It is interesting that $f(z) = e^z$ is uniquely determined by the two properties $f(x + i0) = e^x$ and f'(z) = f(z), where f is assumed to be entire. Prove this using the Cauchy-Riemann equations.

PROBLEMS

- 1. Prove that $\cos z$, $\sin z$, $\cosh z$, $\sinh z$ are entire functions.
- 2. Verify by differentiation that Re $\cos z$ and Im $\sin z$ are
- FORMULAS FOR HYPERBOLIC FUNCTIONS 3-6 Show that
- $\cosh z = \cosh x \cos y + i \sinh x \sin y$ $\sinh z = \sinh x \cos y + i \cosh x \sin y$.
- 4. $\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$ $\sinh (z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2.$
- $5. \cosh^2 z \sinh^2 z = 1$
- $6. \cosh^2 z + \sinh^2 z = \cosh 2z$
- 7-15 Function Values. Compute (in the form u + iv)
- 7. $\cos (1 + i)$
- $8 \sin(1+i)$
- 9. $\sin 5i$, $\cos 5i$
- 10. $\cos 3\pi i$
- 11. $\cosh(-2 + 3i)$, $\cos(-3 2i)$
- 12. $-i \sinh(-\pi + 2i)$, $\sin(2 + \pi i)$
- 13. $\cosh (2n + 1)\pi i$, $n = 1, 2, \cdots$

- 14. $\sinh (4 3i)$
- 15. $\cosh (4 6\pi i)$
- 16. (Real and imaginary parts) Show that

Re tan
$$z = \frac{\sin x \cos x}{\cos^2 x + \sinh^2 y}$$
,

$$\operatorname{Im} \tan z = \frac{\sinh y \cosh y}{\cos^2 x + \sinh^2 y}$$

- 17-21 Equations. Find all solutions of the following equations.
- 17. $\cosh z = 0$
- 18. $\sin z = 100$
- . 19. $\cos z = 2i$
- 20. $\cosh z = -1$
- **21.** $\sinh z = 0$
- 22. Find all z for which (a) cos z, (b) sin z has real values.
- 23-25 Equations and Inequalities. Using the definitions, prove:
- 23. $\cos z$ is even, $\cos (-z) = \cos z$, and $\sin z$ is odd, $\sin\left(-z\right)=-\sin z.$
- 24. $|\sinh y| \le |\cos z| \le \cosh y$, $|\sinh y| \le |\sin z| \le \cosh y$. Conclude that the complex cosine and sine are not bounded in the whole complex plane.
- 25. $\sin z_1 \cos z_2 = \frac{1}{2} [\sin (z_1 + z_2) + \sin (z_1 z_2)]$

PROBLEM SET 13.7

- Principal Value Ln z. Find Ln z when z equals:
- **1.** -10
- 2. 2 + 2i
- 3. 2-2i5. -3 - 4i
- 4. $-5 \pm 0.1i$
- 7. 0.6 + 0.8i
- **6.** -100
- 8. -ei
- 9. 1 i
- 10-16 All Values of ln z. Find all values and graph some of them in the complex plane.
- **10.** ln 1
- 11. $\ln (-1)$

- 12. ln e
- 13. $\ln (-6)$
- $(14) \ln (4 + 3i)$
- 15. $\ln(-e^{-i})$
- 16. $\ln{(e^{3i})}$
- 17. Show that the set of values of $\ln(i^2)$ differs from the set of values of $2 \ln i$.
- 18-21 Equations. Solve for z:
- 18. $\ln z = (2 \frac{1}{2}i)\pi$
- $(19.) \ln z = 0.3 + 0.7i$
- $20. \ln z = e \pi i$
- 21. $\ln z = 2 + \frac{1}{4}\pi i$

22–28 Ge wo

General Powers. Showing the details of your work, find the principal value of:

22.
$$i^{2i}$$
, $(2i)^i$
24. $(1-i)^{1+i}$

23.
$$4^{3+i}$$

(25) $(1+i)^{1-i}$
27. $i^{1/2}$

26.
$$(-1)^{1-2i}$$

28.
$$(3-4i)^{1/3}$$

(29.) How can you find the answer to Prob. 24 from the answer to Prob. 25?

30. TEAM PROJECT. Inverse Trigonometric and Hyperbolic Functions. By definition, the inverse sine $w = \arcsin z$ is the relation such that $\sin w = z$. The inverse cosine $w = \arccos z$ is the relation such that $\cos w = z$. The inverse tangent, inverse cotangent, inverse hyperbolic sine, etc., are defined and denoted in a similar fashion. (Note that all these relations are multivalued.) Using $\sin w = (e^{iw} - e^{-iw})/(2i)$ and similar representations of $\cos w$, etc., show that

(a)
$$\arccos z = -i \ln (z + \sqrt{z^2 - 1})$$

(b)
$$\arcsin z = -i \ln (iz + \sqrt{1 - z^2})$$

(c)
$$\operatorname{arccosh} z = \ln (z + \sqrt{z^2 - 1})$$

(d)
$$\arcsin z = \ln (z + \sqrt{z^2 + 1})$$

(e)
$$\arctan z = \frac{i}{2} \ln \frac{i+z}{i-z}$$

(f)
$$\operatorname{arctanh} z = \frac{1}{2} \ln \frac{1+z}{1-z}$$

(g) Show that $w = \arcsin z$ is infinitely many-valued, and if w_1 is one of these values, the others are of the form $w_1 \pm 2n\pi$ and $\pi - w_1 \pm 2n\pi$, $n = 0, 1, \cdots$ (The principal value of $w = u + iv = \arcsin z$ is defined to be the value for which $-\pi/2 \le u \le \pi/2$ if $v \ge 0$ and $-\pi/2 < u < \pi/2$ if v < 0.)

2 key solution

Math 601

[13.1] By definition
$$i^2 = i \cdot i = -1$$
 $i^3 = i^2 \cdot i = -i$
 $i^4 = i^2 \cdot i^2 = (-1)(-1) = 1$

The sequence

 $\{i_1 - 1 - i_1\}$ repeals:

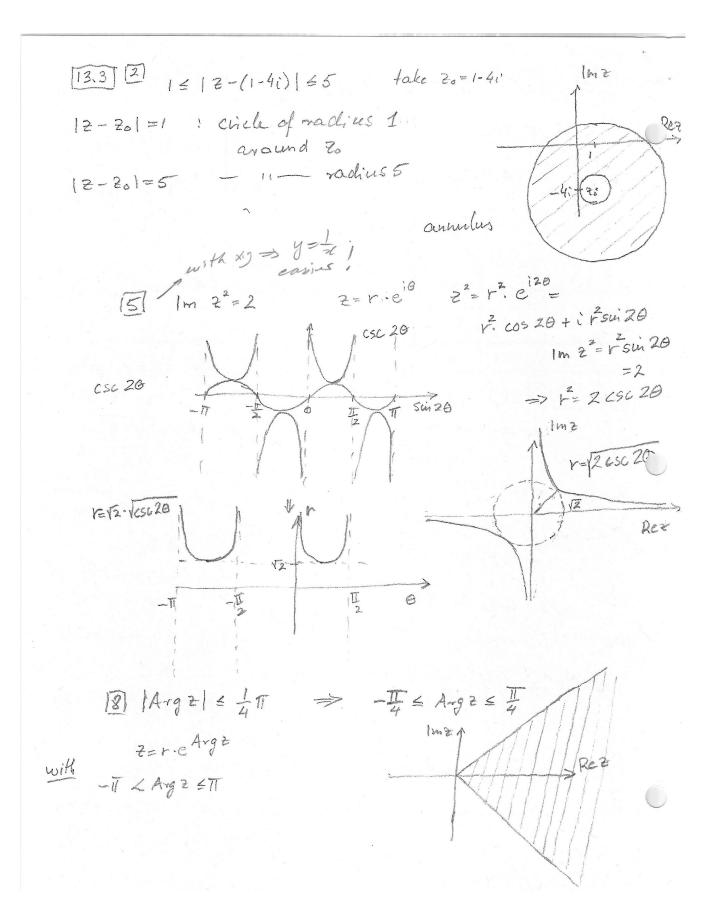
 $i^5 = i^4 \cdot i^2 = -1$
 $i^6 = i^4 \cdot i^4 = -1$
 $i^6 = i^4 \cdot i^2 = -1$
 $i^6 = i^4 \cdot i^4 = -1$

13.2) [8] polar form of
$$z = \frac{2+3i}{5+4i} = re^{i\theta} = \frac{1}{5+4i}$$

with $r = \sqrt{2\cdot 2}$
 $\theta = \tan^{-1}(\frac{4}{4})$
 $(2 = x + iy)$
 $z = \frac{2+3i}{5+4i} = \frac{(2+3i)(5-4i)}{(5+4i)(5-4i)} = \frac{10+12+(15-8)i}{25+16} = \frac{22}{41} + \frac{7}{41}i = x + y \cdot i$

thus $r = \sqrt{\frac{22}{41}} + \frac{7}{41}i$

and $\theta = \tan^{-1}\frac{7/4i}{41} = \tan^{-1}\left(\frac{7}{22}\right)$
 $z = x + iy$
 $z = 4+3i$
 $z = x + iy$
 $z = 4+3i$
 $z = x + iy$
 $z = 4-3i$
 $z = x + iy$
 $z = x + iy$



$$\begin{array}{lll}
|13.5| & (2) & e^{3+\pi i} = e^{3}e^{\pi i} = e^{3}(\cos\pi + i\sin\pi) = -e^{3} \\
|12| & z = r \cdot e^{i\theta} \Rightarrow z' = r' \cdot e^{-i\theta} = \frac{1}{r}(\cos(\theta) + i\sin(\theta)) = \\
|r - |z| & = \frac{1}{r}(\cos\theta - i\sin\theta) \\
|r - |z| = |x^{2}+y^{2}| & = e^{\frac{1}{r}\cos\theta}(\cos(-\frac{1}{r}\sin\theta) + i\sin(-\frac{1}{r}\sin\theta)) = \\
|r - |z| = |x^{2}+y^{2}| & = e^{\frac{1}{r}\cos\theta}(\cos(-\frac{1}{r}\sin\theta) + i\sin(-\frac{1}{r}\sin\theta)) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin(-\frac{1}{r}\sin\theta)) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin(-\frac{1}{r}\sin\theta)) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin(-\frac{1}{r}\sin\theta)) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin(-\frac{1}{r}\sin\theta)) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin(-\frac{1}{r}\sin\theta) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta) = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |\cos\theta(\cos(-\frac{1}{r}\sin\theta) + i\sin\theta = \\
|r - |z| = |z$$

i.e To = Etil

か ドニーニーに受

$$|3.5| |6| \qquad 3+4i = r \cdot e^{i\Theta} = 5 \cdot \left(\cos\left(\frac{\tan^{2}4}{3}\right) + i\sin\left(\frac{\tan^{2}4}{3}\right)\right)$$

$$r = |3^{2}+4^{2} = 5 \qquad \left| = 5\left(\frac{3}{3} + i\frac{4}{5}\right) \right|$$

$$G = \tan^{2}\frac{4}{3}$$

$$\Rightarrow \sin\left(\frac{\tan^{2}4}{3}\right) = \frac{3}{5}$$

$$\sin\left(\frac{\tan^{2}4}{3}\right) = \frac{4}{5}$$

$$|e^{2}| = |e^{4}| \cdot |e^{4}| = \frac{1}{5}$$

$$|e^{1}| \cdot |\cos\Theta + i\sin\Theta|$$

$$|e^{1}| = 0$$

$$|e^{1}| = 0 \text{ has}$$

$$|e^{2}| = 3 - 4i \Rightarrow \ln e^{2} = 2 = \ln(3 - 4i) = 1$$

$$|e^{2}| = 4\sin^{2}\frac{4}{3}$$

$$|e^{2}| = 4\sin^{2}\frac{4}{3}$$

$$|e^{3}| = 1 + i\operatorname{Arg} = 1$$

= e 3/10/cos 7 + i sin 7) =

e0.3 cos 0.7 + i e3/10 sin 0.7