HW1 ME 573 Computational fluid dynamics summer 2015

Nasser M. Abbasi
summer 2015
Compiled on November 28, 2019 at 1:42am
[public]

Contents

0.1 Problem 1 . 2
0.2 Problem 2 . 3
0.3 Problem 3 . 8

0.1 Problem 1

1. Use a Taylor table to derive a third order accurate scheme for a 1st derivative. Use 4 grid points:
two points to the left, one at the point of interest, and one to the right:

Be sure to verify that it is third order accurate (e.g. not 2nd or 4th).

Let

$$
\begin{equation*}
\left.\frac{d u}{d x} \approx \frac{\delta u}{\delta x}\right|_{i}=a u_{i-2}+b u_{i-1}+c u_{i}+d u_{i+1} \tag{1}
\end{equation*}
$$

We now set up the Taylor table as explained in the lecture notes using h in place of $d x$ for the spatial grid spacing in order to simplify the notation. Since we want to find 4 unknowns (a, b, c, d), then we need at least 4 columns. But we generate 5 in order to check for the order of the error using the last column. Therefore, the Taylor table with 5 columns is

	u_{i}	$\left.\frac{\partial u}{\partial x}\right\|_{i}$	$\left.\frac{\partial^{2} u}{\partial x^{2}}\right\|_{i}$	$\left.\frac{\partial^{3} u}{\partial x^{3}}\right\|_{i}$	$\left.\frac{\partial^{4} u}{\partial x^{4}}\right\|_{i}$
u_{i-2}	1	$-2 h$	$(-2 h)^{2} \frac{1}{2!}$	$(-2 h)^{3} \frac{1}{3!}$	$(-2 h)^{4} \frac{1}{4!}$
u_{i-1}	1	$-h$	$(-h)^{2} \frac{1}{2!}$	$(-h)^{3} \frac{1}{3!}$	$(-h)^{4} \frac{1}{4!}$
u_{i}	1	0	0	0	0
u_{i+1}	1	h	$h^{2} \frac{1}{2!}$	$h^{3} \frac{1}{3!}$	$h^{4} \frac{1}{4!}$

We now add the coefficients a, b, c, and d to obtain

	u_{i}	$\left.\frac{\partial u}{\partial x}\right\|_{i}$	$\left.\frac{\partial^{2} u}{\partial x^{2}}\right\|_{i}$	$\left.\frac{\partial^{3} u}{\partial x^{3}}\right\|_{i}$	$\left.\frac{\partial^{4} u}{\partial x^{4}}\right\|_{i}$
$a u_{i-2}$	a	$a(-2 h)$	$a(-2 h)^{2} \frac{1}{2!}$	$a(-2 h)^{3} \frac{1}{3!}$	$a(-2 h)^{4} \frac{1}{4!}$
$b u_{i-1}$	b	$b(-h)$	$b(-h)^{2} \frac{1}{2!}$	$b(-h)^{3} \frac{1}{3!}$	$b(-h)^{4} \frac{1}{4!}$
$c u_{i}$	c	0	0	0	0
$d u_{i+1}$	d	$d(h)$	$d(h)^{2} \frac{1}{2!}$	$d(h)^{3} \frac{1}{3!}$	$d(h)^{4} \frac{1}{4!}$

Expanding and summing each column gives

	u_{i}	$\left.\frac{\partial u}{\partial x}\right\|_{i}$	$\left.\frac{\partial^{2} u}{\partial x^{2}}\right\|_{i}$	$\left.\frac{\partial^{3} u}{\partial x^{3}}\right\|_{i}$	$\left.\frac{\partial^{4} u}{\partial x^{4}}\right\|_{i}$
$a u_{i-2}$	a	$a(-2 h)$	$a(-2 h)^{2} \frac{1}{2!}$	$a(-2 h)^{3} \frac{1}{3!}$	$a(-2 h)^{4} \frac{1}{4!}$
$b u_{i-1}$	b	$b(-h)$	$b(-h)^{2} \frac{1}{2!}$	$b(-h)^{3} \frac{1}{3!}$	$b(-h)^{4} \frac{1}{4!}$
$c u_{i}$	c	0	0	0	0
$d u_{i+1}$	d	$d(h)$	$d(h)^{2} \frac{1}{2!}$	$d(h)^{3} \frac{1}{3!}$	$d(h)^{4} \frac{1}{4!}$
Σ	$a+b+c+d$	$(-2 a-b+d) h$	$\left(2 a+\frac{b}{2}+\frac{d}{2}\right) h^{2}$	$\left(-\frac{8}{6} a-\frac{b}{6}+\frac{d}{6}\right) h^{3}$	$\left(\frac{16}{24} a+\frac{b}{24}+\frac{d}{24}\right) h^{4}$
	0	1	0	0	check if zero

Since first derivative approximation is sought, we want the $\frac{\partial u}{\partial x}$ column to sum to one, and the other
columns to sum to zero. This gives four equations to solve for a, b, c and d

$$
\begin{aligned}
a+b+c+d & =0 \\
(-2 a-b+d) h & =1 \\
\left(2 a+\frac{b}{2}+\frac{d}{2}\right) h^{2} & =0 \\
\left(-\frac{8}{6} a-\frac{b}{6}+\frac{d}{6}\right) h^{3} & =0
\end{aligned}
$$

Since $h \neq 0$ these reduce to

$$
\begin{aligned}
a+b+c+d & =0 \\
-2 a-b+d & =\frac{1}{h} \\
2 a+\frac{b}{2}+\frac{d}{2} & =0 \\
-\frac{8}{6} a-\frac{b}{6}+\frac{d}{6} & =0
\end{aligned}
$$

Solving gives $a=\frac{1}{6 h}, b=-\frac{1}{h}, c=\frac{1}{2 h}, d=\frac{1}{3 h}$. Therefore (1) becomes

$$
\begin{aligned}
\left.\frac{d u}{d x}\right|_{x_{i}} & \left.\approx \frac{\delta u}{\delta x}\right|_{i}=a u_{i-2}+b u_{i-1}+c u_{i}+d u_{i+1} \\
& =\frac{\frac{1}{6} u_{i-2}-u_{i-1}+\frac{1}{2} u_{i}+\frac{1}{3} u_{i+1}}{h} \\
& =\frac{u_{i-2}-6 u_{i-1}+3 u_{i}+2 u_{i+1}}{6 h}
\end{aligned}
$$

To determine the truncation error the last column in the Taylor table above is checked if it sums to non-zero. If the sum turns out to be zero, the next column after that must then be checked.

$$
\begin{aligned}
\left(\frac{16}{24} a+\frac{b}{24}+\frac{d}{24}\right) h^{4} & =\left(\frac{16}{24} \frac{1}{6 h}-\frac{1}{24 h}+\frac{1}{3(24) h}\right) h^{4} \\
& =\left(\frac{16}{24} \frac{1}{6}-\frac{1}{24}+\frac{1}{3(24)}\right) h^{3} \\
& =\frac{1}{12} h^{3}
\end{aligned}
$$

Since the sum is not zero, there is no need to check any more columns and the truncation error is verified to be third order $O\left(h^{3}\right)$.

0.2 Problem 2

2. Use the spectral analysis method to find the effective wave number for this method. Plot the real and imaginary components of $k_{\text {effective. }}$ Compare with the exact wave number and comment on any differences.

Using result from problem 1

$$
\begin{equation*}
\left.\frac{\delta u}{\delta x}\right|_{i}=\frac{u_{i-2}-6 u_{i-1}+3 u_{i}+2 u_{i+1}}{6 h} \tag{1}
\end{equation*}
$$

Using

$$
u(x)=\sum_{k} \hat{u}_{k} e^{j k x}
$$

Where \hat{u}_{k} are the Fourier coefficients, which are functions of k, and are complex numbers in general . Looking at one mode only (one specific k), then we let k run over its range, where k is called the wave number which is related to the wave length λ by

$$
k=\frac{2 \pi}{\lambda}
$$

j above is $\sqrt{-1}$ (We could also have used $\hat{\imath}$ for $\sqrt{-1}$ but it looked very close to the index i and can be confusing). Henc ${ }^{1}{ }^{1}$

$$
u(x)=\hat{u}_{k} e^{j k x}
$$

Equation (1) now can be written as

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x} \hat{u}_{k} e^{j k x} \\
& =(j k) \hat{u}_{k} e^{j k x} \\
& =(j k) u(x) \tag{2}
\end{align*}
$$

For finite difference the above can be written as

$$
\left.\frac{\delta u}{\delta x}\right|_{i}=(j k)_{e f f} u_{i}
$$

And the goal is to determine $(j k)_{e f f}$ using (1) above and compare it to the actual ($j k$) from (2). From (1) we obtain for the RHS

$$
\begin{aligned}
& (j k)_{e f f} u_{i}=\frac{\hat{u}_{k} e^{j k\left(x_{i}-2 h\right)}-6 \hat{u}_{k} e^{j k\left(x_{i}-h\right)}+3 \hat{u}_{k} e^{j k x_{i}}+2 \hat{u}_{k} e^{j k\left(x_{i}+h\right)}}{6 h} \\
& (j k)_{e f f} u_{i}=\left(\frac{e^{-2 j k h}-6 e^{-j k h}+3+2 e^{j k h}}{6 h}\right) \hat{u}_{k} e^{j k x_{i}} \\
& (j k)_{e f f} u_{i}=\frac{e_{e^{-2 j k h}-6 e^{-j k h}+3+2 e^{j k h}}^{6 h}}{6} u_{i}
\end{aligned}
$$

Therefore the effective wave number $(j k)_{\text {eff }}$ is

$$
\begin{aligned}
(j k)_{e f f} & =\frac{e^{-2 j k h}-6 e^{-j k h}+3+2 e^{j k h}}{6 h} \\
& =\frac{(\cos 2 k h-j \sin 2 k h)-6(\cos k h-j \sin k h)+3+2(\cos k h+j \sin k h)}{6 h} \\
& =\frac{j}{6 h}(-\sin 2 k h+6 \sin k h+2 \sin k h)+\frac{1}{6 h}(\cos 2 k h-6 \cos k h+3+2 \cos k h)
\end{aligned}
$$

[^0]Therefore

$$
(j k)_{e f f}=\overbrace{j\left(\frac{8 \sin k h-\sin 2 k h}{6 h}\right)}^{\text {complex part }}+\overbrace{\frac{1}{6 h}(\cos 2 k h-4 \cos k h+3)}^{\text {real part }}
$$

We see that $(j k)_{e f f}$ has both a complex part and a real part. But the exact wave number $(j k)$ is only complex. This is the first major difference we see. Now we will plot the real and the imaginary parts of $(j k)_{e f f}$. The complex part is

$$
(j k)_{e f f_{\text {complex }}}=\frac{8 \sin k h-\sin 2 k h}{6}
$$

And the second is the real part

$$
(j k)_{e f f_{\text {real }}}=\frac{\cos 2 k h-4 \cos k h+3}{6}
$$

We now use x for $k h$ as the argument to simplify the notation and plot it

$$
k_{\text {eff } f_{\text {complex }}}(x)=\frac{8 \sin x-\sin 2 x}{6}
$$

And the real part is

$$
k_{e f f_{\text {real }}}(x)=\frac{\cos 2 x-4 \cos x+3}{6}
$$

The plots of the imaginary part is given below

```
f[x_] := (8 Sin[x] - Sin[2 x])/6
Plot[{x, f[x]}, {x, 0, Pi}, Frame -> True,
FrameTicks -> {{Automatic, None}, {Range[0, Pi, Pi/4], None}},
FrameLabel -> {{Text@Style["effective k dx"],
None}, {Text@Style["Actual k dx"],
Text@Style[
Column[{"Effective wave numbers",
"First derivative Imaginary component"}, Alignment -> Center],
Bold]}}, BaseStyle -> 14,
PlotLegends -> {"Exact", "3rd order"}, GridLines -> Automatic,
GridLinesStyle -> Directive[LightGray, Dashed],
PlotStyle -> {Red, Blue}]
```


Effective wave numbers

 First derivative Imaginary component

Discussion: We see from the above that the imaginary part of the effective wave number is accurate and close to the exact value for small wave numbers. After about $k h \approx \frac{\pi}{3}$, then it is no longer accurate. Smaller k implies larger wave length λ which in turn puts a limits of the grid size h.

The real part plot is below

```
f[x_] := (Cos[2 x] - 4 Cos[x] + 3)/6
Plot[{0, f[x]}, {x, 0, Pi}, Frame -> True,
FrameTicks -> {{Automatic, None}, {Range[0, Pi, Pi/4], None}},
FrameLabel -> {{Text@Style["effective k dx"],
None}, {Text@Style["Actual k dx"],
Text@Style[
Column[{"Effective wave numbers",
"First derivative Real component"}, Alignment -> Center],
Bold]}}, BaseStyle -> 14, PlotLegends -> {"Exact", "3rd order"},
GridLines -> Automatic,
GridLinesStyle -> Directive[LightGray, Dashed],
PlotStyle -> {Red, Blue}]
```


Discussion: The exact value is zero for all wave numbers, since we know from the above, that the exact effective k has only complex part and no real part. but the effective k is only as accurate and close to zero for much smaller wave numbers. After about $k h \approx \frac{\pi}{4}$ it is no longer accurate. Having a real part in the effective wave number, implies the finite difference scheme will introduce damping effect in the result.

```
real[x_] := (Cos[2 x] - 4 Cos[x] + 3)/6
im[x_] := (8 Sin[x] - Sin[2 x])/6
Plot[{real[x], im[x]}, {x, 0, Pi}, Frame -> True,
FrameTicks -> {{Automatic, None}, {Range[0, Pi, Pi/4], None}},
FrameLabel -> {{Text@Style["effective k dx"],
None}, {Text@Style["Actual k dx"],
Text@Style[
Column[{"Effective wave numbers",
"First derivative Real vs. Imaginary components"},
Alignment -> Center], Bold]}}, BaseStyle -> 14,
PlotLegends -> {"Real 3rd order", "Imaginary 3rd order"},
GridLines -> Automatic,
GridLinesStyle -> Directive[LightGray, Dashed],
PlotStyle -> {Red, Blue}]
```


First derivative Real vs. Imaginary components

0.3 Problem 3

3. One way to generate finite difference expressions is to use points between grid points such as:

$$
\frac{u_{i+1 / 2}-u_{i-1 / 2}}{d x}
$$

Then the $(i+1 / 2)$ and $(i-1 / 2)$ are defined by interpolation according to the method one wants to generate. (Note, this is common in finite volume methods). Use this approach and 3 point Lagrange interpolation (upwind) on a uniform grid to define the $1 / 2$ cell points. Then analyze the method to determine its Taylor series accuracy. Discuss.

Hint: for this method you will end up using points at $(i-2)(i-1)(i)$ and $(i+1)$

We need to derive approximation for $\left.\left.\frac{d u}{d x}\right|_{x_{i}} \approx \frac{\delta u}{\delta x}\right|_{i}=\frac{u_{i+1 / 2}(x)-u_{i-1 / 2}(x)}{h}$ using 3 points Lagrangian interpolation. There are 4 points needed. The following diagram shows the cell structure used

When interpolating $u_{i+1 / 2}(x)$, the following 3 points are used

When interpolating for $u_{i-1 / 2}(x)$, the following 3 points are used

Therefore

$$
\begin{aligned}
u_{i+1 / 2}(x) & =u_{i-1}(\cdot)+u_{i}(\cdot)+u_{i+1}(\cdot) \\
& =u_{i-1} \frac{\left(x-x_{i}\right)\left(x-x_{i+1}\right)}{\left(x_{i-1}-x_{i}\right)\left(x_{i-1}-x_{i+1}\right)}+u_{i} \frac{\left(x-x_{i-1}\right)\left(x-x_{i+1}\right)}{\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right)}+u_{i+1} \frac{\left(x-x_{i-1}\right)\left(x-x_{i}\right)}{\left(x_{i+1}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)}
\end{aligned}
$$

When x is midpoint between x_{i+1} and x_{i}, then the above reduces to (where $h=d x$) which is the grid size between each point:

$$
\begin{aligned}
u_{i+1 / 2}(x) & =u_{i-1} \frac{\left(\frac{h}{2}\right)\left(\frac{-h}{2}\right)}{(-h)(-2 h)}+u_{i} \frac{\left(\frac{3}{2} h\right)\left(\frac{-h}{2}\right)}{(h)(-h)}+u_{i+1} \frac{\left(\frac{3}{2} h\right)\left(\frac{h}{2}\right)}{(2 h)(h)} \\
& =-\frac{1}{8} u_{i-1}+\frac{3}{4} u_{i}+\frac{3}{8} u_{i+1}
\end{aligned}
$$

And

$$
\begin{aligned}
u_{i-1 / 2}(x) & =u_{i-2}(\cdot)+u_{i-1}(\cdot)+u_{i}(\cdot) \\
& =u_{i-2} \frac{\left(x-x_{i-1}\right)\left(x-x_{i}\right)}{\left(x_{i-2}-x_{i-1}\right)\left(x_{i-2}-x_{i}\right)}+u_{i-1} \frac{\left(x-x_{i-2}\right)\left(x-x_{i}\right)}{\left(x_{i-1}-x_{i-2}\right)\left(x_{i-1}-x_{i}\right)}+u_{i} \frac{\left(x-x_{i-2}\right)\left(x-x_{i-1}\right)}{\left(x_{i+1}-x_{i-2}\right)\left(x_{i}-x_{i-1}\right)}
\end{aligned}
$$

When x is midpoint between x_{i} and x_{i-1}, then the above reduces to (where $h=d x$) which is the grid size between each point:

$$
\begin{aligned}
u_{i-1 / 2}(x) & =u_{i-2} \frac{\left(\frac{h}{2}\right)\left(-\frac{h}{2}\right)}{(-h)(-2 h)}+u_{i-1} \frac{\left(\frac{3}{2} h\right)\left(\frac{-h}{2}\right)}{(h)(-h)}+u_{i} \frac{\left(\frac{3}{2} h\right)\left(\frac{h}{2}\right)}{(2 h)(h)} \\
& =-\frac{1}{8} u_{i-2}+\frac{3}{4} u_{i-1}+\frac{3}{8} u_{i}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left.\frac{\delta u}{\delta x}\right|_{i} & =\frac{u_{i+1 / 2}(x)-u_{i-1 / 2}(x)}{d x} \\
& =\frac{\left(-\frac{1}{8} u_{i-1}+\frac{3}{4} u_{i}+\frac{3}{8} u_{i+1}\right)-\left(-\frac{1}{8} u_{i-2}+\frac{3}{4} u_{i-1}+\frac{3}{8} u_{i}\right)}{h} \\
& =\frac{1}{8} \frac{3 u_{i}-7 u_{i-1}+3 u_{i+1}+u_{i-2}}{h}
\end{aligned}
$$

To determine the Taylor series accuracy, we expand the RHS around x_{i}

$$
\begin{aligned}
\Delta & =\frac{1}{8 h}\left(3 u_{i}-7 u_{i-1}+3 u_{i+1}+u_{i-2}\right) \\
& \approx \frac{1}{8 h}\left[3 u_{i}-7\left(u_{i}-\left.h \frac{\delta u}{\delta x}\right|_{i}+O\left((-h)^{2}\right)\right)+3\left(u_{i}+\left.h \frac{\delta u}{\delta x}\right|_{i}+O\left(h^{2}\right)\right)+\left(u_{i}-\left.2 h \frac{\delta u}{\delta x}\right|_{i}+O\left((-2 h)^{2}\right)\right)\right] \\
& =\frac{1}{8 h}\left[3 u_{i}-7 u_{i}+\left.7 h \frac{\delta u}{\delta x}\right|_{i}+7 O\left(h^{2}\right)+3 u_{i}+\left.3 h \frac{\delta u}{\delta x}\right|_{i}+3 O\left(h^{2}\right)+u_{i}-\left.2 h \frac{\delta u}{\delta x}\right|_{i}+O\left(4 h^{2}\right)\right] \\
& =\frac{1}{8 h}\left[\left.7 h \frac{\delta u}{\delta x}\right|_{i}+7 O\left(h^{2}\right)+\left.3 h \frac{\delta u}{\delta x}\right|_{i}+3 O\left(h^{2}\right)-\left.2 h \frac{\delta u}{\delta x}\right|_{i}+O\left(4 h^{2}\right)\right] \\
& =\frac{1}{8 h}\left(\left.7 h \frac{\delta u}{\delta x}\right|_{i}+\left.3 h \frac{\delta u}{\delta x}\right|_{i}-\left.2 h \frac{\delta u}{\delta x}\right|_{i}+O\left(h^{2}\right)\right) \\
& =\frac{1}{8}\left(\left.8 \frac{\delta u}{\delta x}\right|_{i}+O(h)\right) \\
& =\left.\frac{\delta u}{\delta x}\right|_{i}+O(h)
\end{aligned}
$$

Therefore this is first order accurate.

[^0]: ${ }^{1}$ We could also write $u(x)=\hat{u}_{k} e^{j k x}$ instead of $u(x)=\hat{u}_{k} e^{-j k x}$. Both are valid expressions, but the first one is more common.

