Math 320 (Smith): Practice Problems for Exam 2

1. Given the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 1 / 2 & 3 \tag{1}\\
-1 / 3 & -3 / 2 & -1 \\
-1 / 2 & -1 / 4 & -3 / 2
\end{array}\right]
$$

for what vectors \mathbf{b} does $\mathbf{A x}=\mathbf{b}$ have a solution?
2. (a) For what vectors \mathbf{b} does $\mathbf{A x}=\mathbf{b}$ have a solution, with \mathbf{A} given by

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 1 / 2 \tag{3}\\
3 & 1 & 2 \\
0 & 6 & 3
\end{array}\right]
$$

(b) Find all possible solutions (or no solution) for $\mathbf{b}^{T}=\left[\begin{array}{lll}0 & 1 & 12 / 5\end{array}\right]$ and for $\mathbf{b}^{T}=\left[\begin{array}{lll}0 & 12 / 5 & 1\end{array}\right]$.
3. Consider $\mathbf{A x}=\mathbf{b}$ for

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 / 3 & a_{12} & -2 \tag{3}\\
-1 / 5 & -1 / 3 & 3 / 5 \\
1 / 2 & 5 / 6 & -3 / 2
\end{array}\right]
$$

(a) For what values of a_{12} is \mathbf{A} non-singular?
(b) For what values of a_{12} is \mathbf{A} singular?
(c) In all cases of \mathbf{A} singular, analyze the system $\mathbf{A x}=\mathbf{b}$. What vectors \mathbf{b} lead to solutions \mathbf{x} ? What are those solutions \mathbf{x} ?
4. Given that two vectors \mathbf{u} and \mathbf{v} are linearly independent, are $3 \mathbf{u}-5 \mathbf{v}$ and \mathbf{v} linearly dependent or linearly independent? Prove your answer.
5. Are the following statements TRUE or FALSE? If the statement is false, correct it.
(a) A square matrix with two identical rows is row equivalent to the identity matrix.
(b) The inverse of a square matrix \mathbf{A} exists if \mathbf{A} is row equivalent to the identity matrix \mathbf{I} with the same dimensions.
(c) The determinant of an upper triangular square matrix is the sum of the diagonal elements.
6. Prove Property 4 of the seven properties of determinants.
7. Consider the matrix \mathbf{A}

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & -1 \tag{7}\\
2 & -1 & 2 \\
0 & a_{32} & a_{33}
\end{array}\right]
$$

(a) Find a condition on a_{32} and a_{33} such that \mathbf{A}^{-1} exists.
(b) Find the value of the determinant for $a_{32}=1$ and $a_{33}=-2$. How many columns of \mathbf{A} are independent for $a_{32}=1$ and $a_{33}=-2$?
(c) For $a_{32}=5$ and $a_{33}=-4$, can $\mathbf{p}^{T}=\left[\begin{array}{lll}3 & 5 & 0\end{array}\right]$ be expressed as a linear combination of the columns of A? Support your answer with a calculation (no work, no credit).
(d) Find the value of the determinant for $a_{32}=5$ and $a_{33}=-4$. How many columns of \mathbf{A} are independent for $a_{32}=5$ and $a_{33}=-4$?
8. (a) Consider a 3×3 matrix A. Show that $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$.
[In fact, $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$ for $\mathbf{A} n \times n$.]
(b) The square matrix \mathbf{A} is called orthogonal if $\mathbf{A}^{T}=\mathbf{A}^{-1}$. Show that the determinant of an orthogonal matrix is either +1 or -1 . You may use the fact that $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.
9. Find the determinant Hint: Use elementary row operations.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & -2 & 5 \tag{9}\\
-1 & 2 & 3 & 4 \\
1 & 3 & 1 & -2 \\
-1 & -3 & 0 & -4
\end{array}\right]
$$

10. Using elementary row operations, find the inverse of

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 5 & 6 \tag{10}\\
2 & 4 & 3 \\
2 & 3 & 5
\end{array}\right]
$$

11. (a) Show that any plane through the origin is a subspace of \mathbf{R}^{3}.
(b) Show that the plane $x+3 y-2 z=5$ is not a subspace of \mathbf{R}^{3}.
