Math 320 Exam Crib Sheet

1. Integration by Parts Formula

$$
\int u d v=u v-\int v d u
$$

Example:

$$
\int x \exp (x) d x=x \exp (x)-\int \exp (x) d x+C=x \exp (x)-\exp (x)+C
$$

with $u=x, d v=\exp (x) d x, d u=d x$, and $v=\exp (x)$.

2. Example of Partial Fractions

$$
\int \frac{5}{\left(x^{2}-5 x+6\right)} d x=\int \frac{5}{(x-2)(x-3)} d x
$$

Let

$$
\begin{gathered}
\frac{5}{(x-2)(x-3)}=\frac{A}{(x-2)}+\frac{B}{(x-3)} \\
=\frac{A(x-3)+B(x-2)}{(x-2)(x-3)}
\end{gathered}
$$

Therefore

$$
(A+B) x=0 \quad \text { and } \quad-3 A-2 B=5 .
$$

Solving $A+B=0$ and $-3 A-2 B=5$ gives $A=-5$ and $B=5$. So finally

$$
\int \frac{5}{\left(x^{2}-5 x+6\right)} d x=\int \frac{-5}{(x-2)} d x+\int \frac{+5}{(x-3)} d x=-5 \ln |x-2|+5 \ln |x-3|+C .
$$

3. Exponentials and the Natural Logarithm: All arguments of \ln are assumed greater than zero.

$$
\begin{gathered}
\ln (1)=0 \\
\ln (a / b)=\ln (a)-\ln (b) \\
\ln (a b)=\ln (a)+\ln (b) \\
\ln \left(a^{r}\right)=r \ln (a)
\end{gathered}
$$

$$
\begin{gathered}
\int \frac{1}{u} d u=\ln |u|+C, \quad u \neq 0 \\
\exp (\ln (x))=x \\
\ln (\exp (x))=x \\
\exp (a+b)=\exp (a) \exp (b) \\
\exp (a-b)=\frac{\exp (a)}{\exp (b)} \\
\exp (a b)=(\exp (a))^{b}=(\exp (b))^{a}
\end{gathered}
$$

4. Taylor Series for $f(x)$ about the point $x=x_{o}$:

$$
f(x)=\left.\sum_{n=0}^{\infty} \frac{d^{n}}{d x^{n}} f(x)\right|_{x=x_{o}} \frac{\left(x-x_{o}\right)^{n}}{n!}
$$

6. Sines and cosines for some angles:

$$
\begin{gathered}
\cos (\pi / 6)=\sqrt{3} / 2, \quad \sin (\pi / 6)=1 / 2 \\
\cos (\pi / 3)=1 / 2, \quad \sin (\pi / 3)=\sqrt{3} / 2 \\
\cos (2 \pi / 3)=-1 / 2, \quad \sin (2 \pi / 3)=\sqrt{3} / 2 \\
\cos (4 \pi / 3)=-1 / 2, \quad \sin (4 \pi / 3)=-\sqrt{3} / 2 \\
\cos (5 \pi / 3)=1 / 2, \quad \sin (5 \pi / 3)=-\sqrt{3} / 2 \\
\cos (\pi / 4)=\sqrt{2} / 2, \quad \sin (\pi / 4)=\sqrt{2} / 2 \\
\cos (3 \pi / 4)=-\sqrt{2} / 2, \quad \sin (3 \pi / 4)=\sqrt{2} / 2 \\
\cos (5 \pi / 4)=-\sqrt{2} / 2, \quad \sin (5 \pi / 4)=-\sqrt{2} / 2 \\
\cos (7 \pi / 4)=\sqrt{2} / 2, \quad \sin (7 \pi / 4)=-\sqrt{2} / 2
\end{gathered}
$$

7. Definition of $\sinh (\mathbf{x})$ and $\cosh (\mathbf{x}): \sinh (x)=\left(e^{x}-e^{-x}\right) / 2, \cosh (x)=\left(e^{x}+e^{-x}\right) / 2$
