HW5 EMA 471 Intermediate Problem Solving for Engineers

Spring 2016 Engineering Mechanics Department University of Wisconsin, Madison

Instructor: Professor Robert J. Witt

By

NASSER M. ABBASI

December 30, 2019

Contents

0.1	Problem	m1												•				•	•	•		3
0.2	Problem	m 2			 •	•	•		•		 •		•	•		•	•	•		•		4
	0.2.1	part a			 •	•	•	 •	•	•	 •	•		•		•	•	•	•	•		6
	0.2.2	part b			 •	•			•	•				•	 •			•			•	7
0.3	Problem	m 3			 •	•			•	•				•	 •			•			•	12
	0.3.1	shape function	ıs						•	•				•		•		•	•	•		14
	0.3.2	x(s,t,r) terms			 •	•			•	•								•				15
	0.3.3	y(r,s,t) terms							•	•				•		•		•	•	•		18
	0.3.4	z(r,s,t) terms							•	•				•		•		•	•	•		22
	0.3.5	results			 •	•	•		•	•				•			•	•	•	•	•	26

List of Tables

1	HW5, problem 1 result	3
2	Gaussian quadrature using different points $\int_{0}^{2.5} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx$. Compared with	
	Matlab Quad result of 0.115990989197426 for same integral	6
3	Gaussian quadrature using 5 and 6 points $\int_0^{1.25} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx + \int_{1.25}^{2.5} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx$.	
	Compared with Matlab integral result of $\int_{0}^{2.5} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx = 0.115990989197426$	7
4	Gaussian quadrature using 5 and 6 points. Comparing part(a) and part(b)	
	relative error against Matlab's Quad	8
5	work-equivalent conversion at each corner, problem 3	30

List of Figures

1	problem 1 description	3
2	problem 2 description	5
3	Comparing Gaussian quadrature with Matlab's integral result	6
4	Relative error for different <i>N</i> values	7
5	Comparing Gaussian quadrature with Matlab's integral result, part(b)	8
6	Relative error for different N values, part(b)	8
7	problem 3 description	12
8	more problem 3 description	13
9	3D plot of the volume in physical coordinates	27
10	3D plot of the aligned volume used for verification	28

EP 471 – Homework #5 Due: Thursday, April 7th, 2016

(1) (8 pts) It is stated without proof in Exercise 15 that Gaussian quadrature of order N produces an exact result when applied to the integration of a polynomial of order 2N - 1. Consider the following polynomials in the interval $0 \le x \le 4$:

(a) $f_1(x) = x^5$

(b) $f_2(x) = x^7$

Integrate (a) and (b) over the interval $0 \le x \le 4$ using Gaussian quadrature of N = 3 and 4 respectively and compare your results to the analytical values. Does the quadrature of the appropriate order produce an exact match?

Figure 1: problem 1 description

A polynomial f(x) of order p is integrated exactly with the Gaussian quadrature method using $\frac{p+1}{2}$ number of Gaussian points.

Hence $f_1(x) = x^5$ needs $\frac{5+1}{2} = 3$ Gaussian points and $f_2(x) = x^7$ needs $\frac{7+1}{2} = 4$ Gaussian points for exact result.

The integral $\int_{a}^{b} f(x) dx$ is first converted to be in the domain $\{-1, +1\}$ as follows

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \int_{-1}^{+1} f\left(\frac{b-a}{2}t + \frac{b+a}{2}\right) \, dt$$

For a polynomial f(x) of order p = 3, two Gaussian points are needed to evaluate the above integral exactly. Therefore the above integral simplifies to

$$\int_{a}^{b} f(x) \, dx = A \left(w_1 f(At_1 + B) + w_2 f(At_2 + B) \right)$$

Where

$$A = \frac{b-a}{2}$$
$$B = \frac{b+a}{2}$$

And w_i is the weight at location t_i . The weights and location of the weights are obtained from tables. For higher order polynomials, more points and weights are needed.

In general, using N points the integral is

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \sum_{i=1}^{N} w_{i} f\left(\frac{b-a}{2}t_{i} + \frac{a+b}{2}\right)$$
$$= A \sum_{i=1}^{N} w_{i} f(At_{i} + B)$$
(1)

The program nma_EMA_471_HW5_problem_1.m integrates the above two polynomials $f_1(x), f_2(x)$ using Gaussian quadrature method (1) using N = 3 and N = 4 points respectively and compares the result of each to the analytical solution. The following table shows the result.

Table 1: HW5, problem 1 result

function	analytical result	Ν	Gaussian quadrature result
$f_1(x) = x^4$	$\int_0^4 x^4 dx = \frac{2048}{3} = 682.666666666666667$	3	682.666666666666
$f_1(x) = x^7$	$\int_{0}^{4} x^{7} dx = 8192$	4	8192

The result is exact. Note: The above Matlab program used the exact weights and points for Gaussian quadrature as given in https://en.wikipedia.org/wiki/Gaussian_quadrature

```
function nma_EMA_471_HW5_problem_1()
1
   %Solves problem 1, HW5, EMA 471
2
  %Nasser M. Abbasi
3
4
   %reference https://en.wikipedia.org/wiki/Gaussian_quadrature for points
5
   %and weights. These are exact.
6
7
8
   gauss_3_points=[-sqrt(3/5) , 5/9;
                                       %point, weight per row
                             , 8/9;
9
                   0
                   sqrt(3/5) , 5/9];
10
11
   gauss_4_points=[-sqrt(3/7+ 2/7*sqrt(6/5)) , (18-sqrt(30))/36;
12
13
                   -sqrt(3/7- 2/7*sqrt(6/5)) , (18+sqrt(30))/36;
                   sqrt(3/7- 2/7*sqrt(6/5)) , (18+sqrt(30))/36;
14
                    sqrt(3/7+ 2/7*sqrt(6/5)) , (18-sqrt(30))/36];
15
16
17
   f1=@(x) x.^5;
   integrate(f1,0,4,gauss_3_points)
18
19
   f1=@(x) x.^{7};
20
   integrate(f1,0,4,gauss_4_points)
21
22
   end
23
   24
25 function the_sum = integrate(f,from,to,g)
26 %INPUT: f is handle to function to integrate
           from, to these are lower and upper integral bounds
27 %
            g This is matrix of Gaussian quadrature. first column is points
28 %
29 %
               second column is corresponding weights
30
31 A = (to-from)/2;
32 B = (to+from)/2;
33 i = 1:size(g,1);
34 the_sum = A * sum( g(i,2) .* f(A*g(i,1)+B) ); %vectored sum
35
   end
```

0.2 Problem 2

(2) (12 pts) In one of our exercises we evaluated the following function by Gaussian quadrature:

$$I = \int_0^{25} \frac{\sin^2 x \cdot \sin(x^2)}{(1+x^2)^2} dx$$

using 2, 3 and 4 gauss points. In this case, the domain is large enough and the function changes sharply enough that we don't get very good agreement with Matlab's quad utility even for 4 gauss points. To get better agreement, we could use a larger number of Gauss points, or break the domain into pieces, $0 \le x \le 1.25$ and $1.25 \le x \le 2.5$, for example.

	weighting factor	degree
0	0.56888889	9
±0.53846931	0.47862867	-
±0.90617985	0.23692689	
±0.23861918	0.46791393	11
±0.66120939	0.36076157	
±0.93246951	0.17132449	
0	0.41795918	13
±0.40584515	0.38183005	
±0.74153119	0.27970539	
±0.94910791	0.12948497	
±0.18343464	0.36268378	15
±0.52553241	0.31370665	
±0.79666648	0.22238103	
±0.96028986	0.10122854	
	$\begin{array}{c} 0\\ \pm 0.53846931\\ \pm 0.90617985\\ \hline\\ \pm 0.23861918\\ \pm 0.66120939\\ \pm 0.93246951\\ \hline\\ 0\\ \pm 0.40584515\\ \pm 0.74153119\\ \pm 0.94910791\\ \hline\\ \pm 0.18343464\\ \pm 0.52553241\\ \pm 0.79666648\\ \pm 0.96028986\\ \hline\end{array}$	$\begin{array}{c cccccc} 0 & 0.56888889 \\ \pm 0.53846931 & 0.47862867 \\ \pm 0.90617985 & 0.23692689 \\ \hline \\ \pm 0.23861918 & 0.46791393 \\ \pm 0.66120939 & 0.36076157 \\ \pm 0.93246951 & 0.17132449 \\ \hline \\ 0 & 0.41795918 \\ \pm 0.40584515 & 0.38183005 \\ \pm 0.74153119 & 0.27970539 \\ \pm 0.94910791 & 0.12948497 \\ \hline \\ \hline \\ \pm 0.18343464 & 0.36268378 \\ \pm 0.52553241 & 0.31370665 \\ \pm 0.79666648 & 0.22238103 \\ \pm 0.96028986 & 0.10122854 \\ \hline \end{array}$

The following extends the table in Exercise 15 to 5, 6, 7 and 8 gauss points:

(a) Keeping the original domain, $0 \le x \le 2.5$, how does the agreement with Matlab's quad utility improve with 5, 6, 7 and 8 point Gaussian quadrature?

(b) Breaking the domain into two pieces, 0 ≤ x ≤ 1.25 and 1.25 ≤ x ≤ 2.5, evaluate the integral using 5 and 6 gauss points in each subdomain. How does the agreement compare with results from Matlab's quad utility now?

Figure 2: problem 2 description

0.2.1 part a

The program nma_EMA_471_HW5_problem_2_part_a.m implements the first part of this problem.

The following table shows the result of the computation. It shows the result of the integral using Gaussian quadrature for different number of points with the relative error against Matlab's Quad (integral) command.

Number of points	relative error (percentage)	value of integral
2	79.845442	0.023377470178383
3	23.892753	0.143704430262801
4	3.060319	0.112441294428254
5	4.692010	0.121433298541329
6	0.019015	0.116013045399658
7	0.011820	0.116004700249995
8	0.001535	0.115989208171974

Table 2: Gaussian quadrature using different points $\int_{0}^{2.5} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx$. Compared with Matlab Quad result of 0.115990989197426 for same integral

The following is a plot of the above data

Figure 3: Comparing Gaussian quadrature with Matlab's integral result

Figure 4: Relative error for different N values

0.2.2 part b

The program nma_EMA_471_HW5_problem_2_part_b.m implements the second part of this problem. By breaking the domain into 2 parts, the following table shows the result of the computation. It shows the result of the integral using Gaussian quadrature for 5 and 6 points with the relative error against Matlab's Quad (integral) command. The integration was done on each subdomain and the results added.

Number of points	relative error (percentage)	value of integral using Gaussian quadrature
5	1.231392	0.114562685084637
6	0.000303	0.115990636860983

Table 3: Gaussian quadrature using 5 and 6 points $\int_{0}^{1.25} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx + \int_{1.25}^{2.5} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx$. Compared with Matlab integral result of $\int_{0}^{2.5} \frac{\sin^2 x \sin x^2}{(1+x^2)^2} dx = 0.115990989197426$

The above shows clearly that by breaking the domain into two smaller parts, and adding each result, the final result of Gaussian quadrature improved compared to part(a) where one large domain was used. This makes sense. Because we have effectively used more sampling points in part(b) compared to part(a) when looking at the whole domain.

This shows that, to obtain more accuracy using Gaussian quadrature, and still use the same number of points N, then we can break the domain into smaller regions, and use N on each region, and add the result obtained from each region.

To see the difference between part(a) and (b) more clearly, the following table shows the result for 5 and 6 points side by side from part(a) and part(b). The table below shows the relative error is much smaller for part(b).

Number of points	relative error part(b)	relative error part(a)
5	1.231392	4.692010
6	0.000303	0.019015

Table 4: Gaussian quadrature using 5 and 6 points. Comparing part(a) and part(b) relative error against Matlab's Quad

Figure 5: Comparing Gaussian quadrature with Matlab's integral result, part(b)

Figure 6: Relative error for different *N* values, part(b)

```
function nma_EMA_471_HW5_problem_2_part_a()
1
2
  %Solves problem 2, part(a) HW5, EMA 471
  %Nasser M. Abbasi
3
4
5
  close all; clc;
6
  gauss_2_points=[-0.57735027 , 1;
                                        %point, weight
7
                                                          per row
                   0.57735027
8
                                , 1
9
                  ];
```

```
10
11
   gauss_3_points=[-sqrt(3/5) , 5/9;
                                          %point, weight
                                                             per row
                                , 8/9;
                    0
12
                    sqrt(3/5)
                                , 5/9];
13
14
   gauss_4_points=[-sqrt(3/7+ 2/7*sqrt(6/5)) , (18-sqrt(30))/36;
15
                    -sqrt(3/7- 2/7*sqrt(6/5)) , (18+sqrt(30))/36;
16
                     sqrt(3/7- 2/7*sqrt(6/5)) , (18+sqrt(30))/36;
17
                     sqrt(3/7+ 2/7*sqrt(6/5)) , (18-sqrt(30))/36];
18
19
   gauss_5_points=[0
                                                   , 128/225;
20
21
                -(1/3)*sqrt(5-2*sqrt(10/6)) , (322+13*sqrt(70))/900;
                 (1/3)*sqrt(5-2*sqrt(10/6)) , (322+13*sqrt(70))/900;
22
                -(1/3)*sqrt(5+2*sqrt(10/6)) , (322-13*sqrt(70))/900;
23
                 (1/3)*sqrt(5+2*sqrt(10/6)) , (322-13*sqrt(70))/900];
24
25
   gauss_6_points=[0.238619186083197 , 0.467913934572691;
26
                   -0.238619186083197 , 0.467913934572691;
27
                    0.661209386466265 , 0.360761573048139;
28
                   -0.661209386466265 , 0.360761573048139;
29
                    0.932469514203152 , 0.171324492379170;
30
                   -0.932469514203152 , 0.171324492379170];
31
32
33
   gauss_7_points=[0
                                        , 0.417959183673469;
                    0.405845151377397 , 0.381830050505119;
34
                   -0.405845151377397 , 0.381830050505119;
35
36
                    0.741531185599394 , 0.279705391489277;
37
                   -0.741531185599394 , 0.279705391489277;
38
                    0.949107912342759 , 0.129484966168870;
39
                   -0.949107912342759 , 0.129484966168870];
40
41
42
   gauss_8_points=[0.183434642495650 , 0.362683783378361;
                   -0.183434642495650 , 0.362683783378361;
43
                    0.525532409916329 , 0.313706645877887;
44
45
                   -0.525532409916329 , 0.313706645877887;
46
                    0.796666477413627 , 0.222381034453374;
47
                   -0.796666477413627 , 0.222381034453374;
                    0.960289856497536 , 0.101228536290376;
48
                   -0.960289856497536 , 0.101228536290376];
49
50
   f=@(x) sin(x).^2 .* sin(x.^2) ./ (1+x.^2).^2 ;
51
   x min
              = 0;
52
              = 2.5;
   x max
53
              = \operatorname{zeros}(7,4);
   data
54
              = integral(f,x_min,x_max);
55
   chk
   data(:,1) = chk;
56
57
   for i=1:size(data,1)
58
       switch i
59
         case 1
60
               data(i,2) = integrate(f,x_min,x_max,gauss_2_points);
61
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
62
               data(i,4) = 2;
63
64
         case 2
65
               data(i,2) = integrate(f,x_min,x_max,gauss_3_points);
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
66
67
               data(i,4) = 3;
68
         case 3
               data(i,2) = integrate(f,x_min,x_max,gauss_4_points);
69
70
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
               data(i,4) = 4;
71
72
         case 4
```

```
data(i,2) = integrate(f,x_min,x_max,gauss_5_points);
73
74
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
               data(i,4) = 5;
75
          case 5
76
               data(i,2) = integrate(f,x_min,x_max,gauss_6_points);
77
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
78
               data(i,4) = 6;
79
80
          case 6
               data(i,2) = integrate(f,x_min,x_max,gauss_7_points);
81
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
82
               data(i,4) = 7;
83
          case 7
84
               data(i,2) = integrate(f,x_min,x_max,gauss_8_points);
85
               data(i,3) = 100*abs(chk - data(i,2))/abs(chk);
86
               data(i,4) = 8;
87
        end
88
    end
89
90
   figure;
91
    plot(data(:,4),data(:,2),'bo',data(:,4),data(:,2),'b--');
92
   hold on;
93
   plot(data(:,4),data(:,1),'r-o');
94
   xlim([1.5,9]);
95
   xlabel('$N$ number of Gaussian points used', ...
96
97
            'interpreter','Latex','Fontsize',10);
    ylabel('integral result');
98
    title('Comparing Gaussian quadrature with Matlab integral (Quad) result',...
99
          'interpreter','Latex');
100
    legend('Gaussian','','Matlab Quad');
101
102
    grid;
103
104
    figure;
105
    plot(data(2:end,4),data(2:end,3),'ro',data(2:end,4),...
           data(2:end,3),'r--');
106
    xlabel('$N$ number of Gaussian points used','interpreter',...
107
            'Latex', 'Fontsize',10);
108
    ylabel('relative error','interpreter','Latex');
109
    title({'relative error between Gaussian quadrature with',...
110
            'Matlab''s integral (Quad) for different $N$'},...
111
112
             'interpreter','Latex');
113
    grid:
    xlim([2.5,9]);
114
    ylim([-2,25]);
115
116
117
118
    end
119
    120
    function the_sum = integrate(f,from,to,g)
121
   %INPUT: f is handle to function to integrate
122
   % from, to these are lower and upper integral bounds
123
   \%~{\rm g} This is matrix of Gaussian quadrature. first column is points
124
   % second column is corresponding weights
125
126
127
   A = (to-from)/2;
   B = (to+from)/2;
128
   i = 1:size(g,1);
129
   the_sum = A * sum( g(i,2) .* f(A*g(i,1)+B) );
130
                                                     %vectored sum
   end
131
    function nma_EMA_471_HW5_problem_2_part_b()
 1
    %Solves problem 2, part(b) HW5, EMA 471
 2
   %Nasser M. Abbasi
 3
```

4

```
10
```

```
close all; clc;
5
6
7
                                                , 128/225;
8
   gauss_5_points=[0
                   -(1/3)*sqrt(5-2*sqrt(10/6)) , (322+13*sqrt(70))/900;
9
                    (1/3)*sqrt(5-2*sqrt(10/6)) , (322+13*sqrt(70))/900;
10
                   -(1/3)*sqrt(5+2*sqrt(10/6)) , (322-13*sqrt(70))/900;
11
                    (1/3)*sqrt(5+2*sqrt(10/6)) , (322-13*sqrt(70))/900];
12
13
   gauss_6_points=[0.238619186083197 , 0.467913934572691;
14
                  -0.238619186083197 , 0.467913934572691;
15
                   0.661209386466265 , 0.360761573048139;
16
                  -0.661209386466265 , 0.360761573048139;
17
                   0.932469514203152 , 0.171324492379170;
18
                  -0.932469514203152 , 0.171324492379170];
19
20
21
   f=@(x) sin(x).^2 .* sin(x.^2) ./ (1+x.^2).^2 ;
22
            = zeros(2,4);
   data
23
             = integral(f,0,2.5);
   chk
24
   data(:,1) = chk;
25
26
   data(1,2) = integrate(f,0,1.25,gauss_5_points)+integrate(f,1.25,2.5,gauss_5_points);
27
   data(1,3) = 100*abs(chk - data(1,2))/abs(chk);
28
   data(1,4) = 5;
29
30
   data(2,2) = integrate(f,0,1.25,gauss_6_points)+integrate(f,1.25,2.5,gauss_6_points);
31
   data(2,3) = 100*abs(chk - data(2,2))/abs(chk);
32
   data(2,4) = 6;
33
34
   figure;
35
   plot(data(:,4),data(:,2),'bo',data(:,4),data(:,2),'b--');
36
37
   hold on;
   plot(data(:,4),data(:,1),'r-o');
38
   xlim([1.5,9]);
39
   xlabel('$N$ number of Gaussian points used','interpreter','Latex','Fontsize',10);
40
41
   ylabel('integral result');
   title({'Comparing Gaussian quadrature with Matlab integral (Quad) result', ...
42
           'by breaking domain into two'}, 'interpreter', 'Latex');
43
   legend('Gaussian','','Matlab Quad');
44
   grid;
45
   xlim([4.5,6.2]);
46
47
   ylim([.11,.12]);
   ax = gca;
48
   ax.XTick = [5 6];
49
50
51
   figure;
52
   plot(data(:,4),data(:,3),'ro',data(:,4),data(:,3),'r--');
53
   xlabel('$N$ number of Gaussian points used','interpreter','Latex','Fontsize',10);
54
   ylabel('relative error','interpreter','Latex');
55
   title({'relative error between Gaussian quadrature with',...
56
           'Matlab''s integral (Quad) for different $N$'},'interpreter','Latex');
57
58
   grid;
   xlim([4.5,6.2]);
59
60 ylim([-.2,1.5]);
   ax = gca;
61
   ax.XTick = [5 6];
62
63
64
65
66
   end
```

```
function the_sum = integrate(f,from,to,g)
68
69
   %INPUT:
            f is handle to function to integrate
70
   %
             from, to these are lower and upper integral bounds
71
   %
             g This is matrix of Gaussian quadrature. first column is points
72
   %
                second column is corresponding weights
73
   A = (to-from)/2;
74
   B = (to+from)/2;
75
76
   i = 1:size(g,1);
   the_sum = A * sum( g(i,2) .* f(A*g(i,1)+B) );
                                                    %vectored sum
77
   end
78
```

0.3 Problem 3

(3) (20 pts) When using commercial software such as ANSYS, one can find the interpolation functions used for various element types in the Shape Functions section of the on-line Theory Manual. The most general 3D continuum elements are 20-node brick elements, and this figure from ANSYS lists the interpolation scheme:

4

These shape functions are used for 20-node solid elements such as SOLID90:

$$\begin{split} u &= \frac{1}{8}(u_{I}(1-s)(1-t)(1-r)(-s-t-r-2) + u_{J}(1+s)(1-t)(1-r)(s-t-r-2) \\ &+ u_{K}(1+s)(1+t)(1-r)(s+t-r-2) + u_{L}(1-s)(1+t)(1-r)(-s+t-r-2) \\ &+ u_{M}(1-s)(1-t)(1+r)(-s-t+r-2) + u_{N}(1+s)(1-t)(1+r)(s-t+r-2) \\ &+ u_{O}(1+s)(1+t)(1+r)(s+t+r-2) + u_{P}(1-s)(1+t)(1+r)(-s+t+r-2)) \\ &+ \frac{1}{4}(u_{Q}(1-s^{2})(1-t)(1-r) + u_{R}(1+s)(1-t^{2})(1-r) \\ &+ u_{S}(1-s^{2})(1+t)(1-r) + u_{T}(1-s)(1-t^{2})(1-r) \\ &+ u_{U}(1-s^{2})(1-t)(1+r) + u_{V}(1+s)(1-t^{2})(1-r) \\ &+ u_{W}(1-s^{2})(1+t)(1+r) + u_{X}(1-s)(1-t^{2})(1+r) \\ &+ u_{W}(1-s^{2})(1+t)(1+r) + u_{Z}(1+s)(1-t^{2})(1+r) \\ &+ u_{Y}(1-s)(1-t)(1-r^{2}) + u_{Z}(1+s)(1-t)(1-r^{2}) \\ &+ u_{A}(1+s)(1+t)(1-r^{2}) + u_{B}(1-s)(1+t)(1-r^{2})) \end{split}$$

Note that in this representation, "r", "s" and "t" have replaced "xi" (ζ), "eta" (η) and "zeta" (ζ) as the natural coordinate system variables. The interpolation shown above is for displacement degree-of-freedom u, but this same interpolation holds for the other degrees-of-freedom as well as for the coordinates (x,y,z) within the element domain. Calculation of the volume of this element would be accomplished through:

Figure 7: problem 3 description

03/28/16

$$V = \int dx \, dy \, dz = \int_{-1}^{+1} \int_{-1}^{+1} \int_{-1}^{+1} \frac{\partial(x, y, z)}{\partial(r, s, t)} \, dr \, ds \, dt \cong \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} w_i w_j w_k \det J(r_i, s_j, t_k)$$

In the event that we need to find the response of a 3D structure to its own weight, we have to convert the continuously distributed weight density into a series of 20 discrete weights at each of the nodes. The work-equivalent finite element result is that the force at node i (i = I through B in the figure above) is found from:

$$F_{i} = \int \gamma(x, y, z) f_{i}(r, s, t) dx dy dz$$

= $\int_{-1}^{+1} \int_{-1}^{+1} \int_{-1}^{+1} \gamma[x(r, s, t), y(r, s, t), z(r, s, t)] f_{i}(r, s, t) \frac{\partial(x, y, z)}{\partial(r, s, t)} dr ds dt$

Here $\gamma = \rho g$ is the weight density and may be a function of position within the element. The f_i are the interpolation functions listed in the figure on the previous page. For example, for i = I,

$$f_i = f_I = \frac{1}{8}(1-r)(1-s)(1-t)(-r-s-t-2)$$

Aside: The interpolation functions are defined so that they go to one when their associated node is approached from inside the element. All the other interpolation functions go to zero at the same location, so that the interpolated quantity goes to the nodal quantity. In the case of node I, you'll notice from the figure that this corresponds to r = s = t = -1.

Given the nodal coordinates listed below for nodes I through B (taken from one element in a mesh prepared using ANSYS), and given the spatial dependence of the mass density, find the *z*-component forces to be applied to each of the nodes so that the weight is applied to the element in a work-equivalent fashion (assumes **g** points in the -z direction).

Nodal coordinates (x, y, z) are: (all values in units of cm):

			/
Node I:	1	0	0
Node J:	1.1	0	0
Node K:	1.09066	0	-0.086305
Node L:	0.99692	0	-0.078459
Node M:	1.0077	0.16559	0
Node N:	1.1069	0.17203	0
Node O:	1.1035	0.17202	-0.08663
Node P:	1.0046	0.16557	-0.07882
Node Q:	1.05	0	0
Node R:	1.0992	0	-0.043186
Node S:	1.0468	0	-0.082382
Node T:	0.9923	0	-0.039260
Node U:	1.0573	0.16881	0
Node V:	1.1061	0.17202	-0.043328
Node W:	1.0540	0.16880	-0.082725
Node X:	1.0069	0.16558	-0.039418
Node Y:	1.0051	0.082737	0
Node Z:	1.1046	0.085964	0
Node A:	1.1012	0.085938	-0.086550
Node B:	1.0020	0.082709	-0.078731

03/28/16

The mass density (units of g/cm^3) is due to a functionally graded material and has the functional form:

$$\rho = \rho_o(x^2 + z^2) \qquad ; \qquad \rho_o = 1$$

Figure 8: more problem 3 description

0.3.1 shape functions

The following are the shape functions

$$\begin{split} f_I &= \frac{1}{8}(1-r)(1-s)(1-t)(-r-s-t-2) \\ f_J &= \frac{1}{8}(1-r)(s+1)(1-t)(-r+s-t-2) \\ f_K &= \frac{1}{8}(1-r)(s+1)(t+1)(-r+s+t-2) \\ f_L &= \frac{1}{8}(1-r)(1-s)(t+1)(-r-s+t-2) \\ f_M &= \frac{1}{8}(r+1)(s+1)(1-t)(r+s-t-2) \\ f_N &= \frac{1}{8}(r+1)(s+1)(t+1)(r+s+t-2) \\ f_O &= \frac{1}{8}(r+1)(s+1)(t+1)(r-s+t-2) \\ f_Q &= \frac{1}{4}(1-r)(1-s)(t+1)(r-s+t-2) \\ f_Q &= \frac{1}{4}(1-r)(1-s^2)(1-t) \\ f_R &= \frac{1}{4}(1-r)(1-s^2)(t+1) \\ f_T &= \frac{1}{4}(1-r)(1-s)(1-t^2) \\ f_W &= \frac{1}{4}(r+1)(1-s)(1-t^2) \\ f_W &= \frac{1}{4}(r+1)(1-s)(1-t^2) \\ f_X &= \frac{1}{4}(r+1)(1-s)(1-t^2) \\ f_Y &= \frac{1}{4}(1-r^2)(1-s)(1-t) \\ f_Z &= \frac{1}{4}(1-r^2)(s+1)(1-t) \\ f_A &= \frac{1}{4}(1-r^2)(s+1)(t+1) \\ f_B &= \frac{1}{4}(1-r^2)(1-s)(t+1) \end{split}$$

2)

To obtain the Jacobian, we need to obtain the determinant of

$$\begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \end{pmatrix}$$

$$x(r, s, t) = \sum_{i=I}^{I=B} x_i f_i(r, s, t)$$

$$y(r, s, t) = \sum_{i=I}^{I=B} y_i f_i(r, s, t)$$

$$z(r, s, t) = \sum_{i=I}^{I=B} z_i f_i(r, s, t)$$

Where

Once we determine x(r, s, t), y(r, s, t), z(r, s, t) from the above, then we can determine the Jacobian determinant at each Gaussian point.

0.3.2 *x*(*s*, *t*, *r*) **terms**

From the above sum, expanding x(r, s, t) gives

 $x_{=}x_{I}f_{I} + x_{J}f_{J} + x_{K}f_{K} + x_{L}f_{L} + x_{M}f_{M} + x_{N}f_{N} + x_{O}f_{O} + x_{P}f_{P} + x_{Q}f_{Q} + x_{R}f_{R} + x_{S}f_{S} + x_{T}f_{T} + x_{U}f_{U} + x_{V}f_{V}$ Substituting the values of f_{i} into the above results in

$$\begin{split} x(r,s,t) = & x_{I} \frac{1}{8} (1-r)(1-s)(1-t)(-r-s-t-2) + \\ & x_{J} \frac{1}{8} (1-r)(s+1)(1-t)(-r+s-t-2) + \\ & x_{K} \frac{1}{8} (1-r)(s+1)(t+1)(-r+s+t-2) + \\ & x_{L} \frac{1}{8} (1-r)(1-s)(t+1)(-r-s+t-2) + \\ & x_{M} \frac{1}{8} (r+1)(1-s)(1-t)(r-s-t-2) + \\ & x_{N} \frac{1}{8} (r+1)(s+1)(1-t)(r+s-t-2) + \\ & x_{O} \frac{1}{8} (r+1)(s+1)(t+1)(r+s+t-2) + \\ & x_{O} \frac{1}{8} (r+1)(1-s)(t+1)(r-s+t-2) + \\ & x_{Q} \frac{1}{4} (1-r)(1-s^{2})(1-t) + \\ & x_{R} \frac{1}{4} (1-r)(s+1)(1-t^{2}) + \\ & x_{S} \frac{1}{4} (1-r)(1-s)(1-t^{2}) + \\ & x_{U} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ & x_{W} \frac{1}{4} (r+1)(s+1)(1-t^{2}) + \\ & x_{W} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ & x_{X} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ & x_{X} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ & x_{X} \frac{1}{4} (1-r^{2})(s+1)(1-t) + \\ & x_{Z} \frac{1}{4} (1-r^{2})(s+1)(1-t) + \\ & x_{A} \frac{1}{4} (1-r^{2})(s+1)(t+1) + \\ & x_{B} \frac{1}{4} (1-r^{2})(1-s)(t+1) \end{split}$$

Taking partial derivative of the above w.r.t. r, s, t in turn gives the following

$$\begin{split} \frac{\partial x}{\partial r} = & x_I \left(\frac{1}{8} (s-1)(t-1)(2r+s+t+1) \right) + \\ & x_J \left(\frac{1}{8} (s+1)(t-1)(-2r+s-t-1) \right) + \\ & x_K \left(-\frac{1}{8} (s+1)(t+1)(-2r+s+t-1) \right) + \\ & x_L \left(-\frac{1}{8} (s-1)(t+1)(2r+s-t+1) \right) + \\ & x_M \left(-\frac{1}{8} (s-1)(t-1)(-2r+s+t+1) \right) + \\ & x_N \left(-\frac{1}{8} (s+1)(t-1)(2r+s-t-1) \right) + \\ & x_O \left(\frac{1}{8} (s+1)(t+1)(2r+s+t-1) \right) + \\ & x_Q \left(\frac{1}{4} (s^2-1)(t+1)(-2r+s-t+1) \right) + \\ & x_Q \left(-\frac{1}{4} (s^2-1)(t-1) \right) + \\ & x_R \left(\frac{1}{4} (s+1) (t^2-1) \right) + \\ & x_T \left(-\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_U \left(\frac{1}{4} (s^2-1) (t-1) \right) + \\ & x_W \left(-\frac{1}{4} (s^2-1) (t-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{4} (s-1) (t^2-1) \right) + \\ & x_X \left(\frac{1}{2} r (s-1) (t-1) \right) + \\ & x_A \left(-\frac{1}{2} r (s-1) (t-1) \right) + \\ & x_B \left(\frac{1}{2} r (s-1) (t+1) \right) + \\ \end{split}$$

+

In the Matlab implementation, the terms r, s, t in the above expression are the Gaussian integration points along the three directions. Similarly, we now find $\frac{\partial x}{\partial s}$ as above. This

results in

$$\begin{split} \frac{\partial x}{\partial s} &= x_I \left(\frac{1}{8} (r-1)(t-1)(r+2s+t+1) \right) + \\ &x_I \left(-\frac{1}{8} (r-1)(t-1)(r-2s+t+1) \right) + \\ &x_K \left(\frac{1}{8} (r-1)(t+1)(r-2s-t+1) \right) + \\ &x_L \left(-\frac{1}{8} (r-1)(t+1)(r+2s-t+1) \right) + \\ &x_M \left(\frac{1}{8} (r+1)(t-1)(r-2s-t-1) \right) + \\ &x_N \left(-\frac{1}{8} (r+1)(t+1)(r+2s+t-1) \right) + \\ &x_O \left(\frac{1}{8} (r+1)(t+1)(r-2s+t-1) \right) + \\ &x_Q \left(-\frac{1}{2} (r-1)s(t-1) \right) + \\ &x_R \left(\frac{1}{4} (r-1) \left(t^2 - 1 \right) \right) + \\ &x_T \left(-\frac{1}{4} (r-1) \left(t^2 - 1 \right) \right) + \\ &x_V \left(-\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ &x_W \left(-\frac{1}{2} (r+1)s(t+1) \right) + \\ &x_X \left(\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ &x_X \left(\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ &x_X \left(\frac{1}{4} (r^2 - 1) (t-1) \right) + \\ &x_X \left(\frac{1}{4} \left(r^2 - 1 \right) (t-1) \right) + \\ &x_X \left(-\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ &x_X \left(\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ &x_X \left(\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ &x_X \left(\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ &x_X \left(\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ \end{aligned}$$

+

+

+

Similarly, we now find $\frac{\partial x}{\partial t}$ as above. This results in

$$\begin{split} \frac{\partial x}{\partial t} &= x_I \left(\frac{1}{8} (r-1)(s-1)(r+s+2t+1) \right) + \\ &\quad x_J \left(-\frac{1}{8} (r-1)(s+1)(r-s+2t+1) \right) + \\ &\quad x_K \left(\frac{1}{8} (r-1)(s+1)(r-s-2t+1) \right) + \\ &\quad x_L \left(-\frac{1}{8} (r-1)(s-1)(r+s-2t+1) \right) + \\ &\quad x_M \left(\frac{1}{8} (r+1)(s-1)(r-s-2t-1) \right) + \\ &\quad x_N \left(-\frac{1}{8} (r+1)(s+1)(r+s+2t-1) \right) + \\ &\quad x_O \left(\frac{1}{8} (r+1)(s-1)(r-s+2t-1) \right) + \\ &\quad x_Q \left(-\frac{1}{4} (r-1) \left(s^2 - 1 \right) \right) + \\ &\quad x_R \left(\frac{1}{2} (r-1)(s+1)t \right) + \\ &\quad x_S \left(\frac{1}{4} (r-1) \left(s^2 - 1 \right) \right) + \\ &\quad x_U \left(\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ &\quad x_W \left(-\frac{1}{2} (r+1)(s+1)t \right) + \\ &\quad x_W \left(-\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ &\quad x_W \left(-\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ &\quad x_X \left(\frac{1}{2} (r+1)(s-1)t \right) + \\ &\quad x_X \left(\frac{1}{2} (r+1)(s-1)t \right) + \\ &\quad x_X \left(\frac{1}{2} (r+1)(s-1)t \right) + \\ &\quad x_X \left(\frac{1}{4} \left(r^2 - 1 \right) \left(s - 1 \right) \right) + \\ &\quad x_A \left(-\frac{1}{4} \left(r^2 - 1 \right) \left(s - 1 \right) \right) + \\ &\quad x_B \left(\frac{1}{4} \left(r^2 - 1 \right) \left(s - 1 \right) \right) \end{split}$$

+

+

+

0.3.3 y(r, s, t) **terms**

We now repeat all the above to find $\frac{\partial y}{\partial r}, \frac{\partial y}{\partial s}$ and $\frac{\partial y}{\partial t}$. We first need to expand $y(r, s, t) = \sum_{i=1}^{I=B} y_i f_i(r, s, t)$, which gives

 $y_{=}y_{I}f_{I} + y_{J}f_{J} + y_{K}f_{K} + y_{L}f_{L} + y_{M}f_{M} + y_{N}f_{N} + y_{O}f_{O} + y_{P}f_{P} + y_{Q}f_{Q} + y_{R}f_{R} + y_{S}f_{S} + y_{T}f_{T} + y_{U}f_{U} + y_{V}f_{V}$

Expanding the above gives

$$\begin{split} y(r,s,t) = &y_{I} \frac{1}{8} (1-r)(1-s)(1-t)(-r-s-t-2) + \\ &y_{J} \frac{1}{8} (1-r)(s+1)(1-t)(-r+s-t-2) + \\ &y_{K} \frac{1}{8} (1-r)(s+1)(t+1)(-r+s+t-2) + \\ &y_{L} \frac{1}{8} (1-r)(1-s)(t+1)(-r-s+t-2) + \\ &y_{M} \frac{1}{8} (r+1)(s+1)(1-t)(r-s-t-2) + \\ &y_{N} \frac{1}{8} (r+1)(s+1)(1-t)(r+s-t-2) + \\ &y_{O} \frac{1}{8} (r+1)(s+1)(t+1)(r-s+t-2) + \\ &y_{O} \frac{1}{8} (r+1)(1-s)(t+1)(r-s+t-2) + \\ &y_{Q} \frac{1}{4} (1-r)(1-s^{2})(1-t) + \\ &y_{R} \frac{1}{4} (1-r)(1-s^{2})(1-t) + \\ &y_{T} \frac{1}{4} (1-r)(1-s)(1-t^{2}) + \\ &y_{U} \frac{1}{4} (r+1)(1-s^{2})(1-t) + \\ &y_{V} \frac{1}{4} (r+1)(s+1)(1-t^{2}) + \\ &y_{W} \frac{1}{4} (r+1)(s+1)(1-t^{2}) + \\ &y_{W} \frac{1}{4} (r+1)(s+1)(1-t^{2}) + \\ &y_{W} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ &y_{W} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ &y_{W} \frac{1}{4} (r+1)(1-s)(1-t^{2}) + \\ &y_{X} \frac{1}{4} (1-r^{2})(1-s)(1-t) + \\ &y_{Z} \frac{1}{4} (1-r^{2})(s+1)(1-t) + \\ &y_{Z} \frac{1}{4} (1-r^{2})(s+1)(1-t) + \\ &y_{A} \frac{1}{4} (1-r^{2})(s+1)(t+1) + \\ &y_{B} \frac{1}{4} (1-r^{2})(1-s)(t+1) \end{split}$$

Taking partial derivatives of the above w.r.t. r, s, t in turn, we see that it gives similar results to earlier ones, but the only difference is in the multipliers now being the y_i values of

coordinates instead of the x_i coordinates. This is reproduced again for completion

$$\begin{split} \frac{\partial y}{\partial r} =& y_I \left(\frac{1}{8} (s-1)(t-1)(2r+s+t+1) \right) + \\ & y_I \left(\frac{1}{8} (s+1)(t-1)(-2r+s-t-1) \right) + \\ & y_K \left(-\frac{1}{8} (s+1)(t+1)(-2r+s+t-1) \right) + \\ & y_L \left(-\frac{1}{8} (s-1)(t+1)(2r+s-t+1) \right) + \\ & y_M \left(-\frac{1}{8} (s-1)(t-1)(-2r+s+t+1) \right) + \\ & y_O \left(\frac{1}{8} (s+1)(t-1)(2r+s-t-1) \right) + \\ & y_O \left(\frac{1}{8} (s+1)(t+1)(2r+s+t-1) \right) + \\ & y_Q \left(-\frac{1}{4} (s^2-1)(t+1)(-2r+s-t+1) \right) + \\ & y_Q \left(-\frac{1}{4} (s^2-1)(t-1) \right) + \\ & y_R \left(\frac{1}{4} (s^2-1)(t-1) \right) + \\ & y_X \left(\frac{1}{4} (s^2-1)(t+1) \right) + \\ & y_U \left(-\frac{1}{4} (s-1)(t^2-1) \right) + \\ & y_U \left(-\frac{1}{4} (s-1)(t^2-1) \right) + \\ & y_W \left(-\frac{1}{4} (s-1)(t^2-1) \right) + \\ & y_X \left(\frac{1}{4} (s-1)(t^2-1) \right) + \\ & y_X \left(\frac{1}{4} (s-1)(t^2-1) \right) + \\ & y_X \left(\frac{1}{4} (s-1)(t^2-1) \right) + \\ & y_X \left(\frac{1}{2} r(s-1)(t-1) \right) + \\ & y_Z \left(\frac{1}{2} r(s-1)(t-1) \right) + \\ & y_Z \left(\frac{1}{2} r(s+1)(t-1) \right) + \\ & y_A \left(-\frac{1}{2} r(s+1)(t-1) \right) + \\ & y_B \left(\frac{1}{2} r(s-1)(t+1) \right) + \\ \end{split}$$

+

$$\begin{array}{l} \text{Similarly, we now find } \frac{\partial y}{\partial s} \text{ as above. This results in} \\ & \frac{\partial y}{\partial s} = y_{I} \Big(\frac{1}{8} (r-1)(t-1)(r+2s+t+1) \Big) + \\ & y_{I} \Big(-\frac{1}{8} (r-1)(t-1)(r-2s+t+1) \Big) + \\ & y_{K} \Big(\frac{1}{8} (r-1)(t+1)(r-2s-t+1) \Big) + \\ & y_{L} \Big(-\frac{1}{8} (r-1)(t+1)(r+2s-t+1) \Big) + \\ & y_{M} \Big(\frac{1}{8} (r+1)(t-1)(r+2s-t-1) \Big) + \\ & y_{O} \Big(\frac{1}{8} (r+1)(t+1)(r+2s+t-1) \Big) + \\ & y_{O} \Big(\frac{1}{8} (r+1)(t+1)(r+2s+t-1) \Big) + \\ & y_{Q} \Big(-\frac{1}{2} (r-1)s(t-1) \Big) + \\ & y_{Q} \Big(-\frac{1}{2} (r-1)s(t-1) \Big) + \\ & y_{S} \Big(\frac{1}{2} (r-1)s(t-1) \Big) + \\ & y_{T} \Big(-\frac{1}{4} (r-1) (t^{2} - 1) \Big) + \\ & y_{U} \Big(\frac{1}{2} (r+1)s(t-1) \Big) + \\ & y_{U} \Big(-\frac{1}{2} (r+1)s(t-1) \Big) + \\ & y_{W} \Big(-\frac{1}{4} (r+1) (t^{2} - 1) \Big) + \\ & y_{X} \Big(\frac{1}{4} (r+1) (t^{2} - 1) \Big) + \\ & y_{X} \Big(\frac{1}{4} (r^{2} - 1) (t-1) \Big) + \\ & y_{X} \Big(-\frac{1}{4} (r^{2} - 1) (t-1) \Big) + \\ & y_{Z} \Big(-\frac{1}{4} (r^{2} - 1) (t-1)$$

+

+

+

We now find $\frac{\partial y}{\partial t}$ as above. This results in

$$\begin{split} \frac{\partial y}{\partial t} =& y_I \left(\frac{1}{8} (r-1)(s-1)(r+s+2t+1) \right) + \\ & y_I \left(-\frac{1}{8} (r-1)(s+1)(r-s+2t+1) \right) + \\ & y_K \left(\frac{1}{8} (r-1)(s+1)(r-s-2t+1) \right) + \\ & y_L \left(-\frac{1}{8} (r-1)(s-1)(r+s-2t+1) \right) + \\ & y_M \left(\frac{1}{8} (r+1)(s-1)(r-s-2t-1) \right) + \\ & y_O \left(\frac{1}{8} (r+1)(s+1)(r+s+2t-1) \right) + \\ & y_O \left(\frac{1}{8} (r+1)(s-1)(r-s+2t-1) \right) + \\ & y_Q \left(-\frac{1}{4} (r-1) \left(s^2 - 1 \right) \right) + \\ & y_Q \left(-\frac{1}{4} (r-1) \left(s^2 - 1 \right) \right) + \\ & y_X \left(\frac{1}{2} (r-1)(s+1)t \right) + \\ & y_U \left(\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ & y_W \left(-\frac{1}{2} (r+1)(s+1)t \right) + \\ & y_W \left(-\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ & y_W \left(-\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ & y_X \left(\frac{1}{2} (r+1)(s-1)t \right) + \\ & y_X \left(\frac{1}{2} (r+1)(s-1)t \right) + \\ & y_Z \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ & y_Z \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ & y_A \left(-\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ & y_B \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) \end{split}$$

+

+

0.3.4 z(r, s, t) **terms**

We now repeat all the above to find $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$. These produce similar results to the above, but will have z_i as multipliers. We first need to expand $z(r,s,t) = \sum_{i=I}^{I=B} z_i f_i(r,s,t)$, which gives

$$z_{=}z_{I}f_{I} + z_{J}f_{J} + z_{K}f_{K} + z_{L}f_{L} + z_{M}f_{M} + z_{N}f_{N} + z_{O}f_{O} + z_{P}f_{P} + z_{Q}f_{Q} + z_{R}f_{R} + z_{S}f_{S} + z_{T}f_{T} + z_{U}f_{U} + z_{V}f_{V} + z_{V}f_{V}$$

Expanding the above gives

$$\begin{split} z(r,s,t) = & z_I \frac{1}{8} (1-r)(1-s)(1-t)(-r-s-t-2) + \\ & z_J \frac{1}{8} (1-r)(s+1)(1-t)(-r+s-t-2) + \\ & z_K \frac{1}{8} (1-r)(s+1)(t+1)(-r+s+t-2) + \\ & z_L \frac{1}{8} (1-r)(1-s)(t+1)(-r-s+t-2) + \\ & z_M \frac{1}{8} (r+1)(1-s)(1-t)(r-s-t-2) + \\ & z_N \frac{1}{8} (r+1)(s+1)(1-t)(r+s-t-2) + \\ & z_O \frac{1}{8} (r+1)(s+1)(t+1)(r+s+t-2) + \\ & z_O \frac{1}{8} (r+1)(1-s)(t+1)(r-s+t-2) + \\ & z_Q \frac{1}{4} (1-r)(1-s^2)(1-t) + \\ & z_R \frac{1}{4} (1-r)(s+1)(1-t^2) + \\ & z_T \frac{1}{4} (1-r)(1-s)(1-t^2) + \\ & z_U \frac{1}{4} (r+1)(1-s)(1-t^2) + \\ & z_W \frac{1}{4} (r+1)(s+1)(1-t^2) + \\ & z_W \frac{1}{4} (r+1)(1-s)(1-t^2) + \\ & z_W \frac{1}{4} (1-r^2)(1-s)(1-t) + \\ & z_Z \frac{1}{4} (1-r^2)(s+1)(1-t) + \\ & z_A \frac{1}{4} (1-r^2)(s+1)(t+1) + \\ & z_B \frac{1}{4} (1-r^2)(1-s)(t+1) \end{split}$$

Taking partial derivative of the above w.r.t. r, s, t in turns gives the following

$$\begin{split} \frac{\partial z}{\partial r} &= z_I \left(\frac{1}{8} (s-1)(t-1)(2r+s+t+1) \right) + \\ &z_J \left(\frac{1}{8} (s+1)(t-1)(-2r+s-t-1) \right) + \\ &z_K \left(-\frac{1}{8} (s+1)(t+1)(-2r+s+t-1) \right) + \\ &z_L \left(-\frac{1}{8} (s-1)(t+1)(2r+s-t+1) \right) + \\ &z_M \left(-\frac{1}{8} (s-1)(t-1)(-2r+s+t+1) \right) + \\ &z_N \left(-\frac{1}{8} (s+1)(t-1)(2r+s-t-1) \right) + \\ &z_O \left(\frac{1}{8} (s+1)(t+1)(2r+s+t-1) \right) + \\ &z_O \left(\frac{1}{8} (s-1)(t+1)(-2r+s-t+1) \right) + \\ &z_Q \left(-\frac{1}{4} (s^2-1)(t-1) \right) + \\ &z_S \left(\frac{1}{4} (s^2-1)(t-1) \right) + \\ &z_T \left(-\frac{1}{4} (s-1)(t^2-1) \right) + \\ &z_V \left(-\frac{1}{4} (s-1)(t^2-1) \right) + \\ &z_V \left(-\frac{1}{4} (s-1)(t^2-1) \right) + \\ &z_X \left(\frac{1}{4} (s-1)(t^2-1) \right) + \\ &z_X \left(\frac{1}{4} (s-1)(t^2-1) \right) + \\ &z_X \left(\frac{1}{4} (s-1)(t^2-1) \right) + \\ &z_Z \left(\frac{1}{2} r (s-1)(t-1) \right) + \\ &z_Z \left(\frac{1}{2} r (s-1)(t-1) \right) + \\ &z_Z \left(\frac{1}{2} r (s+1)(t-1) \right) + \\ &z_R \left(-\frac{1}{2} r (s+1)(t-1) \right) + \\ &z_R \left(-\frac{1}{2} r (s-1)(t-1) \right) + \\ &z_R \left(-\frac{1}{2} r (s-1)(t-1) \right) + \\ &z_R \left(\frac{1}{2} r (s-1)(t-1) \right) + \\ &z_R$$

+

Similarly, $\frac{\partial z}{\partial s}$ results in

$$\begin{split} \frac{\partial z}{\partial s} =& z_I \left(\frac{1}{8} (r-1)(t-1)(r+2s+t+1) \right) + \\ & z_I \left(-\frac{1}{8} (r-1)(t-1)(r-2s+t+1) \right) + \\ & z_K \left(\frac{1}{8} (r-1)(t+1)(r-2s-t+1) \right) + \\ & z_L \left(-\frac{1}{8} (r-1)(t+1)(r+2s-t+1) \right) + \\ & z_M \left(\frac{1}{8} (r+1)(t-1)(r-2s-t-1) \right) + \\ & z_N \left(-\frac{1}{8} (r+1)(t+1)(r+2s+t-1) \right) + \\ & z_O \left(\frac{1}{8} (r+1)(t+1)(r-2s+t-1) \right) + \\ & z_Q \left(-\frac{1}{2} (r-1)s(t-1) \right) + \\ & z_Q \left(-\frac{1}{2} (r-1)s(t-1) \right) + \\ & z_T \left(-\frac{1}{4} (r-1) \left(t^2 - 1 \right) \right) + \\ & z_U \left(\frac{1}{2} (r+1)s(t-1) \right) + \\ & z_W \left(-\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ & z_W \left(-\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ & z_X \left(\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ & z_X \left(\frac{1}{4} (r+1) \left(t^2 - 1 \right) \right) + \\ & z_Z \left(\frac{1}{4} \left(r^2 - 1 \right) (t-1) \right) + \\ & z_Z \left(\frac{1}{4} \left(r^2 - 1 \right) (t-1) \right) + \\ & z_R \left(-\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ & z_R \left(-\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ & z_R \left(\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ & z_R \left(\frac{1}{4} \left(r^2 - 1 \right) (t+1) \right) + \\ \end{split}$$

+

And $\frac{\partial z}{\partial t}$ gives

$$\begin{split} \frac{\partial z}{\partial t} &= z_I \left(\frac{1}{8} (r-1)(s-1)(r+s+2t+1) \right) + \\ &z_J \left(-\frac{1}{8} (r-1)(s+1)(r-s+2t+1) \right) + \\ &z_K \left(\frac{1}{8} (r-1)(s+1)(r-s-2t+1) \right) + \\ &z_L \left(-\frac{1}{8} (r-1)(s-1)(r+s-2t+1) \right) + \\ &z_M \left(\frac{1}{8} (r+1)(s-1)(r-s-2t-1) \right) + \\ &z_N \left(-\frac{1}{8} (r+1)(s+1)(r+s+2t-1) \right) + \\ &z_O \left(\frac{1}{8} (r+1)(s+1)(r+s+2t-1) \right) + \\ &z_Q \left(-\frac{1}{4} (r-1) \left(s^2 - 1 \right) \right) + \\ &z_R \left(\frac{1}{2} (r-1)(s+1)t \right) + \\ &z_T \left(-\frac{1}{2} (r-1)(s-1)t \right) + \\ &z_W \left(-\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ &z_W \left(-\frac{1}{4} (r+1) \left(s^2 - 1 \right) \right) + \\ &z_X \left(\frac{1}{2} (r+1)(s-1)t \right) + \\ &z_X \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ &z_Z \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ &z_R \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ &z_R \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ &z_R \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ &z_R \left(\frac{1}{4} \left(r^2 - 1 \right) (s-1) \right) + \\ \end{aligned}$$

+

Finally now we can determine the Jacobian and its determinant using the above expressions. This is done in the Matlab code provided. The following Jacobian Matrix is evaluated at each Gaussian integration point then its determinant is found using det() command.

$$\begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \end{pmatrix}$$

0.3.5 results

The first step was to obtain estimate of the volume in order to verify that the volume calculation was valid and that the Jacobian was correct.

An independent small piece of code was written to plot the 3D shape and obtain its volume using a build-in function in the computer algebra program Mathematica. This is a plot of the 3D shape generated and below it is the code used to generate the plot, with the volume found shown in the title.

volume = 0.00142514

Figure 9: 3D plot of the volume in physical coordinates

```
1 xI=1;xJ=1.1;xK=1.09066;xL=0.99692;xM=1.0077;
  xN=1.1069; xO=1.1035; xP=1.0046; xQ=1.05; xR=1.0992;
2
  xS=1.0468;xT=0.9923;xU=1.0573;xV=1.1061;xW=1.0540;
3
  xX=1.0069;xY=1.0051;xZ=1.1046;xA=1.1012;xB=1.0020;
4
5
  xCoordinates={xI,xJ,xK,xL,xM,xN,xO,xP,xQ,xR,xS,xT,xU,xV,xW,xX,xY,xZ,xA,xB};
  yI=0;yJ=0;yK=0;yL=0;yM=0.16559;
6
   yN=0.17203; yO=0.17202; yP=0.16557; yQ=0; yR=0;
7
   yS=0;yT=0;yU=0.16881;yV=0.17202;yW=0.16880;
8
   yX=0.16558; yY=0.082737; yZ=0.085964; yA=0.085938; yB=0.082709;
9
  yCoordinates={yI,yJ,yK,yL,yM,y0,yP,yQ,yR,yS,yT,yU,yV,yW,yX,yY,yZ,yA,yB};
10
   zI=0;zJ=0;zK=-0.086305;zL=-0.078459;zM=0;
11
  zN=0;zO=-0.08663;zP=-0.07882;zQ=0;zR=-0.043186;
12
  zS=-0.082382;zT=-0.039260;zU=0;zV=-0.043328;zW=-0.082725;
13
  zX=-0.039418;zY=0;zZ=0;zA=-0.086550;zB=-0.078731;
14
   zCoordinates={zI,zJ,zK,zL,zM,zN,zO,zP,zQ,zR,zS,zT,zU,zV,zW,zX,zY,zZ,zA,zB};
15
   data3D=Table[{xCoordinates[[i]],yCoordinates[[i]],
16
             zCoordinates[[i]]},{i,1,Length@yCoordinates}];
17
   nodes={"I","J","K","L","M","N","O","P","Q",
18
          "R","S","T","U","V","W","X","Y","Z","A","B"};
19
   Needs["TetGenLink`"];
20
   {pts,surface}=TetGenConvexHull[data3D];
21
   c=First@Last@Reap@Do[Sow@{nodes[[i]],data3D[[i]]},{i,1,Length[nodes]}];
22
   Labeled[Graphics3D[{
23
      {Red,PointSize[0.02],Point[data3D]},
24
      {Yellow,Opacity[.4],EdgeForm[{Thin,Black}],
25
26
       GraphicsComplex[data3D,Polygon[surface]]},
      {Text[Style[#[[1]],14],1.01*#[[2]]]&/@c}
97
28
   },Boxed->False,Axes->False,SphericalRegion->True,
       ImageSize->300,ImageMargins->5],
29
       Row[{"volume = ",RegionMeasure@ConvexHullMesh[data3D]}]]
30
```

We now know the volume should be 0.0042514 cm³ from the above independent verification. The Matlab code was now implemented, and the volume was verified to be the same. Also, a separate test was run to verify that ||J|| = 1 for a test 3D volume which was aligned along the same orientation as the natural coordinates as shown below.

volume = 8.

Figure 10: 3D plot of the aligned volume used for verification

```
The code used to plot the above is
   xI=1;xJ=1.1;xK=1.09066;xL=0.99692;xM=1.0077; xN=1.1069;xO=1.1035;xP=1.0046;
1
  xQ=1.05;xR=1.0992;xS=1.0468;xT=0.9923;xU=1.0573;xV=1.1061;xW=1.0540;
2
3
   xX=1.0069;xY=1.0051;xZ=1.1046;xA=1.1012;xB=1.0020;
   xCoordinates={xI,xJ,xK,xL,xM,xN,xO,xP,xQ,xR,xS,xT,xU,xV,xW,xX,xY,xZ,xA,xB};
4
   yI=0;yJ=0;yK=0;yL=0;yM=0.16559; yN=0.17203;yD=0.17202;yP=0.16557;yQ=0;yR=0;
5
   yS=0;yT=0;yU=0.16881;yV=0.17202;yW=0.16880; yX=0.16558;yY=0.082737;yZ=0.085964;
6
   yA=0.085938;yB=0.082709;
7
   yCoordinates={yI,yJ,yK,yL,yM,yN,yO,yP,yQ,yR,yS,yT,yU,yV,yW,yX,yY,yZ,yA,yB};
8
   zI=0;zJ=0;zK=-0.086305;zL=-0.078459;zM=0; zN=0;zD=-0.08663;zP=-0.07882;zQ=0;
9
   zR=-0.043186; zS=-0.082382; zT=-0.039260; zU=0; zV=-0.043328; zW=-0.082725;
10
   zX=-0.039418;zY=0;zZ=0;zA=-0.086550;zB=-0.078731;
11
   zCoordinates={zI,zJ,zK,zL,zM,zN,zO,zP,zQ,zR,zS,zT,zU,zV,zW,zX,zY,zZ,zA,zB};
12
   data3D=Table[{xCoordinates[[i]],yCoordinates[[i]],zCoordinates[[i]]},{i,1,
13
      Length@yCoordinates}];
   nodes={"I","J","K","L","M","N","O","P","Q",
14
          "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "A", "B"};
15
   Needs["TetGenLink`"];
16
   {pts,surface}=TetGenConvexHull[data3D];
17
   c=First@Last@Reap@Do[Sow@{nodes[[i]],data3D[[i]]},{i,1,Length[nodes]}];
18
   Labeled[Graphics3D[{
19
      {Red,PointSize[0.02],Point[data3D]},
20
      {Yellow,Opacity[.4],EdgeForm[{Thin,Black}],
21
       GraphicsComplex[data3D,Polygon[surface]]},
22
23
      {Text[Style[#[[1]],14],1.01*#[[2]]]&/@c}
   },Boxed->False,Axes->False,SphericalRegion->True,
24
       ImageSize->300,ImageMargins->5],
25
       Row[{"volume = ",RegionMeasure@ConvexHullMesh[data3D]}]]
26
```

This test also passed in Matlab and gave a volume of 8cm³ as expected. Here is the small code segment in Matlab which verifies the above.

```
1
  wt(1) = 5/9;
                      wt(2) = 8/9;
                                     wt(3) = 5/9;
2
  gs(1) = -sqrt(3/5); gs(2) = 0;
                                     gs(3) = sqrt(3/5);
3
4
  %set nodal coordinates as cube of side 2, centered
5
  %with natural coordinates origin
6
 xI=1;
           xJ=1; xK=-1;
                                       xL=-1;
                                                    xM=1:
```

```
7
   xN=1;
                x0=-1;
                             xP=-1;
                                           xQ=1;
                                                         xR=0;
 8
   xS=-1;
                xT=0;
                          xU=1;
                                         xV=0;
                                                       xW=-1;
 9
   xX=0;
                xY=1;
                           xZ=1;
                                          xA=-1;
                                                        xB=-1;
10
11
   xCoordinates=[xI,xJ,xK,xL,xM,xN,xO,xP,xQ,xR,xS,xT,xU,xV,...
12
                 xW, xX, xY, xZ, xA, xB];
                                               yL=-1;
13 yI=-1;
                                                             yM=-1;
                 yJ=1;
                              yK=1;
   yN=1;
                 yO=1;
                              yP=−1;
                                               yQ=0;
14
                                                             yR=1;
15
   yS=0;
                 yT=−1;
                              yU=0;
                                               yV=1;
                                                             yW=0;
                 yY=−1;
                              yZ=1;
16
   yX=-1;
                                               yA=1;
                                                             yB=−1;
17
   yCoordinates=[yI,yJ,yK,yL,yM,yN,yO,yP,yQ,yR,yS,yT,yU,yV,yW,...
18
                 yX,yY,yZ,yA,yB];
19
20 zI=-1;
                   zJ=-1;
                               zK=-1;
                                         zL=-1;
                                                     zM=1:
21
   zN=1;
                   z0=1;
                              zP=1;
                                         zQ=−1;
                                                    zR=-1;
22 zS=-1;
                   zT=-1;
                              zU=1;
                                         zV=1;
                                                    zW=1;
23
   zX=1;
                   zY=0;
                              zZ=0;
                                         zA=0;
                                                     zB=0;
24
   zCoordinates=[zI,zJ,zK,zL,zM,zN,zO,zP,zQ,zR,zS,zT,zU,zV,...
25
                  zW, zX, zY, zZ, zA, zB];
26
27
    %to collect sum of integrals at each node
28
   the_sum = zeros(20,1);
29
30
    %find the volume first, to use for verification.
31
    for i=1:3
32
        s = gs(i);
33
        for j=1:3
34
            t = gs(j);
35
            for k=1:3
36
              r = gs(k);
37
              J = get_jacobian(r,s,t,xCoordinates,yCoordinates,zCoordinates);
38
              detJ = det(J);
39
              fprintf('|J|= %3.3f at Gaussian point [r=%3.3f,s=%3.3f,t=%3.3f]\n',
       detJ,r,s,t);
40
              for ii=1:length(xCoordinates)
41
                  the_sum(ii)=the_sum(ii)+ wt(i)*wt(j)*wt(k)*f(ii,r,s,t)*detJ;
42
              end
43
            end
44
        end
45
    end
46
47
    fprintf('volume for test is [%3.3f] (is it 8?)\n',sum(the_sum));
48
    end
```

The output of the above is given below, with the rest of the program output.

The program nma_EMA_471_HW5_problem_3.m implements the main solution to this problem and included in the zip file. It runs both the Jacobian verification and the load calculations after that.

The main loop of the Matlab function iterates over three indices i, j, k from 1 to 3 each. In the inner most loop, it finds the determinant of the Jacobian, the mass density, and evaluates the shape function at the Gaussian points, then sums the result. At the end it prints the work-equivalent conversion for each of the twenty nodes. The following shows the main core of the program

```
1 for i=1:3
2 s = gs(i);
3 for j=1:3
4 t = gs(j);
5 for k=1:3
6 r = gs(k);
```

```
7
                J = get_jacobian(r,s,t,xCoordinates,...
 8
                                 yCoordinates,zCoordinates);
 9
                detJ = det(J);
10
                mg = find_mass_density(r,s,t,xCoordinates,zCoordinates);
11
12
                for ii=1:length(xCoordinates)
13
                    the_sum(ii)=the_sum(ii)+...
14
                             wt(i)*wt(j)*wt(k)*mg*g*f(ii,r,s,t)*detJ;
15
                end
16
            end
17
        end
18
   end
```

The final result is in the following table

Corner	work-equivalent load (z direction) $\frac{\text{gram-cm}}{\text{sec}^2}$	Newton units
Ι	-0.1097835	-0.000001934
J	-0.1336398	-0.000001990
K	-0.1159590	-0.000002
L	-0.1143340	-0.000001928
M	-0.1373666	-0.000001927
N	-0.1611689	-0.000001984
Ο	-0.1418730	-0.00000198
Р	-0.1160910	-0.000001924
Q	0.1701952	0.000002614
R	0.1812529	0.000002739
S	0.0808510	0.000002592
Т	0.0741811	0.000002513
U	0.2242564	0.000002589
V	0.2374809	0.000002728
W	0.1905987	0.000002589
X	0.1802555	0.000002476
Y	0.1723161	0.000002482
Z	0.2334560	0.000002734
A	0.1929484	0.000002710
В	0.0986489	0.000002487

Table 5: work-equivalent conversion at each corner, problem 3

We also see that the load on the corners is negative while on the middle nodes it is positive. This agrees with what one would expect as per class notes on the 8-node element. Only difference is that this is a 3D element.

The following is the console output from running the above program. It is implemented using Matlab 2016a. It starts with the Jacobian verification then it will run the main task next only if the verification passes. >>nma_EMA_471_HW5_problem_3()

starting verification of Jacobian....
|J|= 1.000 at Gaussian point [r=-0.775,s=-0.775,t=-0.775]

```
|J|= 1.000 at Gaussian point [r=0.000,s=-0.775,t=-0.775]
  |J|= 1.000 at Gaussian point [r=0.775,s=-0.775,t=-0.775]
  |J|= 1.000 at Gaussian point [r=-0.775,s=-0.775,t=0.000]
  |J|= 1.000 at Gaussian point [r=0.000,s=-0.775,t=0.000]
  |J|= 1.000 at Gaussian point [r=0.775,s=-0.775,t=0.000]
  |J|= 1.000 at Gaussian point [r=-0.775,s=-0.775,t=0.775]
  |J|= 1.000 at Gaussian point [r=0.000,s=-0.775,t=0.775]
  |J|= 1.000 at Gaussian point [r=0.775,s=-0.775,t=0.775]
  |J|= 1.000 at Gaussian point [r=-0.775,s=0.000,t=-0.775]
  |J|= 1.000 at Gaussian point [r=0.000,s=0.000,t=-0.775]
  |J|= 1.000 at Gaussian point [r=0.775,s=0.000,t=-0.775]
  |J|= 1.000 at Gaussian point [r=-0.775,s=0.000,t=0.000]
  |J|= 1.000 at Gaussian point [r=0.000,s=0.000,t=0.000]
  |J|= 1.000 at Gaussian point [r=0.775,s=0.000,t=0.000]
  |J|= 1.000 at Gaussian point [r=-0.775,s=0.000,t=0.775]
  |J|= 1.000 at Gaussian point [r=0.000,s=0.000,t=0.775]
  |J|= 1.000 at Gaussian point [r=0.775,s=0.000,t=0.775]
  |J|= 1.000 at Gaussian point [r=-0.775,s=0.775,t=-0.775]
  |J|= 1.000 at Gaussian point [r=0.000,s=0.775,t=-0.775]
  |J|= 1.000 at Gaussian point [r=0.775,s=0.775,t=-0.775]
  |J|= 1.000 at Gaussian point [r=-0.775,s=0.775,t=0.000]
  |J|= 1.000 at Gaussian point [r=0.000,s=0.775,t=0.000]
  |J|= 1.000 at Gaussian point [r=0.775,s=0.775,t=0.000]
  |J|= 1.000 at Gaussian point [r=-0.775,s=0.775,t=0.775]
  |J|= 1.000 at Gaussian point [r=0.000,s=0.775,t=0.775]
  |J|= 1.000 at Gaussian point [r=0.775,s=0.775,t=0.775]
  volume for test is [8.000] (is it 8?)
  !! passed Jacobian test. Will run main program now
  volume is 0.001426 \text{ cm}^3
  load at corner I = -0.1934002 [gram-cm/sec<sup>2</sup>] = -0.000001934 N
  load at corner J = -0.1990333 [gram-cm/sec<sup>2</sup>] = -0.000001990 N
  load at corner K = -0.2000363 [gram-cm/sec^2] = -0.000002000 N
  load at corner L = -0.1928213 [gram-cm/sec<sup>2</sup>] = -0.000001928 N
  load at corner M = -0.1927113 [gram-cm/sec<sup>2</sup>] = -0.000001927 N
  load at corner N = -0.1984265 [gram-cm/sec<sup>2</sup>] = -0.000001984 N
  load at corner 0 = -0.1980087 [gram-cm/sec<sup>2</sup>] = -0.000001980 N
  load at corner P = -0.1923718 [gram-cm/sec<sup>2</sup>] = -0.000001924 N
  load at corner Q = 0.2614284 [gram-cm/sec<sup>2</sup>] = 0.000002614 N
  load at corner R = 0.2739156 [gram-cm/sec<sup>2</sup>] = 0.000002739 N
  load at corner S = 0.2592383 [gram-cm/sec^2] = 0.000002592 N
  load at corner T = 0.2513418 [gram-cm/sec^2] = 0.000002513 N
  load at corner U = 0.2589067 [gram-cm/sec<sup>2</sup>] = 0.000002589 N
  load at corner V = 0.2727979 [gram-cm/sec<sup>2</sup>] = 0.000002728 N
  load at corner W = 0.2588535 [gram-cm/sec<sup>2</sup>] = 0.000002589 N
  load at corner X = 0.2475648 [gram-cm/sec<sup>2</sup>] = 0.000002476 N
  load at corner Y = 0.2481743 [gram-cm/sec<sup>2</sup>] = 0.000002482 N
  load at corner Z = 0.2733760 [gram-cm/sec<sup>2</sup>] = 0.000002734 N
  load at corner A = 0.2710102 [gram-cm/sec^2] = 0.000002710 N
  load at corner B = 0.2487254 [gram-cm/sec^2] = 0.000002487 N
  >>
 function nma_EMA_471_HW5_problem_3()
1
  %Solves problem 3, HW5, EMA 471
2
  %Nasser M. Abbasi
3
4
  close all; clc;
5
6
7
  status = do_jacobian_test();
```

```
8 if ~status
```

```
error('failed jacobian test. Internal code error\n');
9
10
   else
      fprintf('!! passed Jacobian test. Will run main program now\n\n');
11
12
      do_main_program();
13
   end
14
15
   end
   16
   function status = do_jacobian_test()
17
   %This function checks that |J|=1 at each Gaussian point.
18
   %This verifies the code is ok before
19
   %running the main program. This also checkes that volume is
20
   \% 2*2*2=8 cm<sup>3</sup> since we are using a cube with nodal coordinates
21
   \% with side length = 2 cm and it is aligned along the natural
22
   % coordinates and centered at the natural coordinates origin also.
23
   %
24
25
   status = true;
26
27
                        wt(2) = 8/9;
   wt(1) = 5/9;
                                       wt(3) = 5/9;
28
   gs(1) = -sqrt(3/5); gs(2) = 0;
                                       gs(3) = sqrt(3/5);
29
30
   %set nodal coordinates as cube of side 2,
31
   %centered with natural coordinates origin
32
33
   xI=1:
               xJ=1;
                           хK=-1;
                                         xL=-1:
                                                       xM=1:
34
   xN=1:
               x0=-1;
                            xP=-1;
                                          xQ=1;
                                                        xR=0:
   xS=-1;
                                                      xW=-1;
35
               xT=0;
                          xU=1:
                                        xV=0:
36
   xX=0;
               xY=1;
                           xZ=1;
                                         xA=−1;
                                                       xB=-1:
37
38
   xCoordinates=[xI,xJ,xK,xL,xM,xN,xO,xP,xQ,xR,xS,xT,xU,xV, ...
39
                 xW, xX, xY, xZ, xA, xB];
40
   yI=-1;
                              yK=1;
                                               yL=-1;
41
                yJ=1;
                                                             yM=-1;
                              yP=-1;
   yN=1;
                                               yQ=0;
42
                yO=1;
                                                             yR=1;
   yS=0;
                yT=-1;
                              yU=0;
                                                            yW=0;
43
                                               yV=1;
   yX=-1;
                yY=−1;
                              yZ=1;
                                                            yB=-1;
44
                                               yA=1;
   yCoordinates=[yI,yJ,yK,yL,yM,yN,yO,yP,yQ,yR,yS,yT,yU,yV,yW,...
45
46
                 yX,yY,yZ,yA,yB];
47
48
   zI=-1;
                  zJ=−1;
                              zK=-1;
                                        zL=-1;
                                                    zM=1:
49
   zN=1;
                  z0=1;
                              zP=1;
                                        zQ=−1;
                                                    zR=-1;
50
   zS=-1;
                  zT=-1;
                              zU=1;
                                        zV=1;
                                                    zW=1;
51
   zX=1;
                  zY=0;
                              zZ=0;
                                        zA=0;
                                                    zB=0;
   zCoordinates=[zI,zJ,zK,zL,zM,zN,zO,zP,zQ,zR,zS,zT,zU,zV,zW,...
52
                 zX,zY,zZ,zA,zB];
53
54
   the_sum = zeros(20,1); %to collect sum of integrals at each node
55
56
   %find the volume first, to use for verification.
57
   format short;
58
   format compact;
59
   fprintf('starting verification of Jacobian....\n');
60
   for i=1:3
61
       s = gs(i);
62
63
64
       for j=1:3
65
           t = gs(j);
66
67
           for k=1:3
68
               r = gs(k);
69
70
               J = get_jacobian(r,s,t,xCoordinates,...
                                 yCoordinates,zCoordinates);
71
```

```
72
                detJ = det(J);
73
                 fprintf('|J|= %3.3f at Gaussian point [r=%3.3f,s=%3.3f,t=%3.3f]\n',...
74
                     detJ,r,s,t);
                 if detJ <=0</pre>
75
                     status = false; %FAILED TEST
76
77
                     return;
78
                end
                 for ii=1:length(xCoordinates)
79
                     the_sum(ii)=the_sum(ii)+ ...
80
                                    wt(i)*wt(j)*wt(k)*f(ii,r,s,t)*detJ;
81
                 end
82
            end
83
        end
84
    end
85
86
    fprintf('volume for test is [%3.3f] (is it 8?)\n',sum(the_sum));
87
88
89
    end
90
    91
    function do_main_program()
92
    wt(1) = 5/9; wt(2) = 8/9;
                                       wt(3) = 5/9;
93
    gs(1) = -sqrt(3/5); gs(2) = 0;
                                        gs(3) = sqrt(3/5);
94
95
96
    xI=1;
               xJ=1.1;
                             xK=1.09066;
                                             xL=0.99692;
                                                            xM=1.0077;
    xN=1.1069; xO=1.1035;
97
                             xP=1.0046:
                                             xQ=1.05;
                                                            xR=1.0992:
    xS=1.0468; xT=0.9923;
                             xU=1.0573;
                                             xV=1.1061;
                                                            xW=1.0540;
98
99
    xX=1.0069; xY=1.0051;
                             xZ=1.1046;
                                             xA=1.1012;
                                                            xB=1.0020;
100
101
    xCoordinates=[xI,xJ,xK,xL,xM,xN,xO,xP,xQ,xR,xS,xT,xU,...
102
                  xV, xW, xX, xY, xZ, xA, xB];
103
    yI=0;
                              yK=0;
104
                yJ=0;
                                               yL=0;
                                                             yM=0.16559;
    yN=0.17203; yO=0.17202;
                              yP=0.16557;
105
                                               yQ=0;
                                                             yR=0;
    yS=0;
                yT=0;
                              yU=0.16881;
                                               yV=0.17202; yW=0.16880;
106
    yX=0.16558; yY=0.082737; yZ=0.085964;
107
                                               yA=0.085938; yB=0.082709;
    yCoordinates=[yI,yJ,yK,yL,yM,yN,yO,yP,yQ,yR,yS,yT,yU,yV,yW,...
108
109
                  yX,yY,yZ,yA,yB];
110
    zI=0;
                  zJ=0;
                                 zK=-0.086305;
                                                   zL=-0.078459;
                                                                    zM=0;
111
    zN=0;
                  zO=-0.08663; zP=-0.07882;
                                                   zQ=0;
                                                                    zR=-0.043186;
112
    zS=-0.082382; zT=-0.039260; zU=0;
                                                   zV=-0.043328;
                                                                    zW=-0.082725;
113
    zX=-0.039418; zY=0;
                                 zZ=0;
                                                   zA=-0.086550;
                                                                    zB=-0.078731;
114
    zCoordinates=[zI,zJ,zK,zL,zM,zN,zO,zP,zQ,zR,zS,zT,zU,zV,zW,zX,...
115
                 zY, zZ, zA, zB];
116
117
    the_sum = zeros(20,1);
118
          = 9.81*100; %acceleration g in cm per sec<sup>2</sup>
119
    g
120
    %find the volume first, to use for verification.
121
    for i=1:3
122
        s = gs(i);
123
124
        for j=1:3
125
126
            t = gs(j);
127
128
            for k=1:3
129
                r = gs(k);
130
131
                 J = get_jacobian(r,s,t,xCoordinates,...
132
                                  yCoordinates,zCoordinates);
                detJ = det(J);
133
                if detJ <=0</pre>
134
```

```
135
                    error('code internal error, invalid jacobian det. %7.6f\n',detJ);
136
                 end
                 for ii=1:length(xCoordinates)
137
                     the_sum(ii)=the_sum(ii)+ ...
138
                                  wt(i)*wt(j)*wt(k)*f(ii,r,s,t)*detJ;
139
140
                 end
             end
141
        end
142
    end
143
144
    fprintf('volume is %7.6f cm<sup>3</sup>\n', sum(the_sum));
145
146
    for i=1:3
147
        s = gs(i);
148
149
        for j=1:3
150
            t = gs(j);
151
152
            for k=1:3
153
                 r = gs(k);
154
155
                 J = get_jacobian(r,s,t,xCoordinates,...
156
                                             yCoordinates,zCoordinates);
157
                 detJ = det(J);
158
159
                 if detJ <=0</pre>
                    error('code internal error, invalid jacobian det. %7.6f\n',detJ);
160
161
                 end
162
                 mg = find_mass_density(r,s,t,xCoordinates,zCoordinates);
163
164
                 for ii=1:length(xCoordinates)
165
                     the_sum(ii)=the_sum(ii)+...
                                wt(i)*wt(j)*wt(k)*mg*g*f(ii,r,s,t)*detJ;
166
167
                 end
168
             end
169
        end
170
    end
171
172
    map_node={'I','J','K','L','M','N','O','P','Q','R','S',...
173
                       'T','U','V',...
174
                       'W', 'X', 'Y', 'Z', 'A', 'B'};
175
176
    for i=1:length(xCoordinates)
177
      fprintf('load at corner %c = %9.7f [gram-cm/sec^2] = %10.9f N\n',...
178
         map_node{i},the_sum(i),the_sum(i)*10^(-3)*10^(-2));
179
180
    end
    end
181
    182
    function mass_density = find_mass_density(r,s,t,...
183
                                             xCoordinates, zCoordinates)
184
185
            p0 = 1;
186
            X = 0;
187
            for i=1:20
188
                 X = X + xCoordinates(i)*f(i,r,s,t);
189
190
            end
191
            Z = 0;
192
193
            for i=1:20
                 Z = Z + zCoordinates(i)*f(i,r,s,t);
194
195
             end
196
            mass_density = p0*(X<sup>2</sup>+Z<sup>2</sup>);
197
```

198	end
199	%=======
200	<pre>function the_shape_function=f(idx,r,s,t)</pre>
201	switch idx
202	case 1 $\%$
203	the_shape_function= $(1/8)*(1-r)*(1-s)*(1-t)*(-r-s-t-2);$
204	case 2 $\%$
205	the_snape_function= $(1/8)*(1-r)*(s+1)*(1-t)*(-r+s-t-2);$
206	case 3 $\%$
207	the_snape_function= $(1/8)*(1-r)*(s+1)*(t+1)*(-r+s+t-2);$
208	case 4 h
209	$c_{1} = c_{1} = c_{1$
210	the shape function= $(1/8)*(r+1)*(1-s)*(1-t)*(r-s-t-2)$.
211	case 6 XN
212	the shape function= $(1/8)*(r+1)*(s+1)*(1-t)*(r+s-t-2)$:
214	case 7 %D
215	the shape function=(1/8)*(r+1)*(s+1)*(t+1)*(r+s+t-2):
216	case 8 %P
217	the_shape_function= $(1/8)*(r+1)*(1-s)*(t+1)*(r-s+t-2);$
218	case 9 %Q
219	the_shape_function= $(1/4)*(1-r)*(1-s^2)*(1-t);$
220	case 10 %R
221	the_shape_function= $(1/4)*(1-r)*(s+1)*(1-t^2);$
222	case 11 %S
223	the_shape_function=(1/4)*(1-r)*(1-s^2)*(t+1);
224	case 12 %T
225	the_snape_function= $(1/4)*(1-r)*(1-s)*(1-t 2);$
226 997	Case 15 $\sqrt{0}$ the shape function= $(1/4)*(1+r)*(1-s^2)*(1-t)$.
227	case 14 $%V$
229	the shape function= $(1/4)*(r+1)*(s+1)*(1-t^2)$;
230	case 15 %W
231	the_shape_function= $(1/4)*(r+1)*(1-s^2)*(t+1);$
232	case 16 %X
233	the_shape_function= $(1/4)*(r+1)*(1-s)*(1-t^2);$
234	case 17 %Y
235	the_shape_function= $(1/4)*(1-r^{-2})*(1-s)*(1-t);$
236	case 18 $\%$ the shape function=(1/4)*(1-r^2)*(z+1)*(1-t).
237	case 19 %
230	the shape function= $(1/4)*(1-r^2)*(s+1)*(t+1)$:
240	case 20 %B
241	the shape function=(1/4)*(1-r^2)*(1-s)*(t+1);
242	end
243	end
244	
245	% internal function
246	<pre>function the_result=dds(c,r,s,t)</pre>
247	%find dx/ds or dy/ds or dz/ds. These all have same
248	%form, except for the multiplier c, which is the nodal
249	$\frac{1}{2}$ coordinates, passed in.
20U 951	c(2)*(-(1/8)*(r-1)*(t-1)*(r-2)*(t+1))+
251	c(3)*((1/8)*(r-1)*(t+1)*(r-2*s-t+1))+
252	c(4)*(-(1/8)*(r-1)*(t+1)*(r+2*s-t+1))+
254	c(5)*((1/8)*(r+1)*(t-1)*(r-2*s-t-1))+
255	c(6)*(-(1/8)*(r+1)*(t-1)*(r+2*s-t-1))+
256	c(7)*((1/8)*(r+1)*(t+1)*(r+2*s+t-1))+
257	c(8)*(-(1/8)*(r+1)*(t+1)*(r-2*s+t-1))+
258	c(9)*(-(1/2)*(r-1)*s*(t-1))+
259	$c(10)*((1/4)*(r-1)*(t^2-1))+$
260	c(11)*((1/2)*(r-1)*s*(t+1))+

```
c(12)*(-(1/4)*(r-1)*(t^2-1))+...
261
262
        c(13)*((1/2)*(r+1)*s*(t-1))+...
        c(14)*(-(1/4)*(r+1)*(t^2-1))+...
263
        c(15)*(-(1/2)*(r+1)*s*(t+1))+...
264
        c(16)*((1/4)*(r+1)*(t<sup>2</sup>-1))+...
265
        c(17)*(-(1/4)*(r^2-1)*(t-1))+...
266
        c(18)*((1/4)*(r^2-1)*(t-1))+...
267
        c(19)*(-(1/4)*(r^2-1)*(t+1))+...
268
        c(20)*((1/4)*(r^2-1)*(t+1));
269
    end
270
    %---
                            ----- internal function
271
272
    function the result=ddt(c,r,s,t)
    %find dx/dt or dy/dt or dz/dt. These all have same form,
273
    %except for the multiplier c, which is the nodal coordinates,
274
275
    %passed in.
276
    the_result=c(1)*((1/8)*(r-1)*(s-1)*(r+s+2*t+1))+...
277
        c(2)*(-(1/8)*(r-1)*(s+1)*(r-s+2*t+1))+...
278
        c(3)*((1/8)*(r-1)*(s+1)*(r-s-2*t+1))+...
279
        c(4)*(-(1/8)*(r-1)*(s-1)*(r+s-2*t+1))+...
280
        c(5)*((1/8)*(r+1)*(s-1)*(r-s-2*t-1))+...
281
        c(6)*(-(1/8)*(r+1)*(s+1)*(r+s-2*t-1))+...
282
        c(7)*((1/8)*(r+1)*(s+1)*(r+s+2*t-1))+...
283
        c(8)*(-(1/8)*(r+1)*(s-1)*(r-s+2*t-1))+...
284
285
        c(9)*(-(1/4)*(r-1)*(s^2-1))+...
        c(10)*((1/2)*(r-1)*(s+1)*t)+...
286
287
        c(11)*((1/4)*(r-1)*(s^2-1))+...
288
        c(12)*(-(1/2)*(r-1)*(s-1)*t)+...
        c(13)*((1/4)*(r+1)*(s^2-1))+...
289
        c(14)*(-(1/2)*(r+1)*(s+1)*t)+...
290
        c(15)*(-(1/4)*(r+1)*(s^2-1))+...
291
        c(16)*((1/2)*(r+1)*(s-1)*t)+...
292
293
        c(17)*(-(1/4)*(r^2-1)*(s-1))+...
        c(18)*((1/4)*(r^2-1)*(s+1))+...
294
        c(19)*(-(1/4)*(r^2-1)*(s+1))+...
295
        c(20)*((1/4)*(r<sup>2</sup>-1)*(s-1));
296
297
    end
    %---
                           ----- internal function
298
    function the_result=ddr(c,r,s,t)
299
    %find dx/dr or dy/dr or dz/dr. These all have same form,
300
    %except for the multiplier c, which is the nodal coordinates,
301
    %passed in.
302
303
    the result=c(1)*((1/8)*(s-1)*(t-1)*(2*r+s+t+1))+...
304
        c(2)*((1/8)*(s+1)*(t-1)*(-2*r+s-t-1))+...
305
        c(3)*(-(1/8)*(s+1)*(t+1)*(-2*r+s+t-1))+...
306
        c(4)*(-(1/8)*(s-1)*(t+1)*(2*r+s-t+1))+...
307
        c(5)*(-(1/8)*(s-1)*(t-1)*(-2*r+s+t+1))+...
308
        c(6)*(-(1/8)*(s+1)*(t-1)*(2*r+s-t-1))+...
309
        c(7)*((1/8)*(s+1)*(t+1)*(2*r+s+t-1))+...
310
        c(8)*((1/8)*(s-1)*(t+1)*(-2*r+s-t+1))+...
311
        c(9)*(-(1/4)*(s^2-1)*(t-1))+...
312
        c(10)*((1/4)*(s+1)*(t<sup>2</sup>-1))+...
313
        c(11)*((1/4)*(s<sup>2</sup>-1)*(t+1))+...
314
        c(12)*(-(1/4)*(s-1)*(t^2-1))+\ldots
315
316
        c(13)*((1/4)*(s^2-1)*(t-1))+...
317
        c(14)*(-(1/4)*(s+1)*(t^2-1))+...
318
        c(15)*(-(1/4)*(s^2-1)*(t+1))+...
319
        c(16)*((1/4)*(s-1)*(t^2-1))+...
        c(17)*(-(1/2)*r*(s-1)*(t-1))+...
320
        c(18)*((1/2)*r*(s+1)*(t-1))+...
321
        c(19)*(-(1/2)*r*(s+1)*(t+1))+...
322
        c(20)*((1/2)*r*(s-1)*(t+1));
323
```

```
324
   \quad \text{end} \quad
   325
   function J=get_jacobian(r,s,t,xCoordinates,yCoordinates,zCoordinates)
326
327
   J = [ddr(xCoordinates,r,s,t),ddr(yCoordinates,r,s,t),...
328
329
        ddr(zCoordinates,r,s,t);
        dds(xCoordinates,r,s,t),dds(yCoordinates,r,s,t),...
330
331
        dds(zCoordinates,r,s,t);
332
        ddt(xCoordinates,r,s,t),ddt(yCoordinates,r,s,t),...
        ddt(zCoordinates,r,s,t)
333
        ];
334
335 end
```