
HW1 EMA 471 Intermediate Problem Solving for Engineers

Spring 2016
Engineering Mechanics Department
University of Wisconsin, Madison

Instructor: Professor Robert J. Witt

By

Nasser M. Abbasi

December 30, 2019

Contents

0.1 Problem 1 . 3
0.1.1 Euler method . 3
0.1.2 Modified Euler method . 3
0.1.3 Second order Runge-Kutta . 4
0.1.4 Results . 4
0.1.5 Discussion of results . 5
0.1.6 Source code listing . 5

0.2 Problem 2 . 8
0.2.1 Results . 9
0.2.2 Source code listing . 11

0.3 Problem 3 . 12
0.3.1 Results . 14
0.3.2 Source code listing . 14

2

3

0.1 Problem 1

problem description

(1) (12 pts) Consider the first order IVP

dy
dt
= t2 − t, y(0) =1

This is a relatively straightforward ODE that has an analytical solution. Find the analytical
solution first to serve as a comparison with your numerical solutions. Using a step size h = 0.1,
advance this solution to t = 4 using the Euler, Modified Euler and 2nd order Runge-Kutta methods
we discussed in Exercise 1. Compare your numerical results to the analytical solution.

solution

𝑦′ (𝑡) = 𝑓(𝑡)
= 𝑡2 − 𝑡 (1)

This ODE is separable. Integrating both sides gives

𝑦 =
𝑡3

3
−
𝑡2

2
+ 𝐶

Where 𝐶 is the constant of integration which is found from the initial conditions. At 𝑡 = 0, we are
given 𝑦 (0) = 1. This results in 𝐶 = 1. The solution becomes

𝑦 = 1 + 𝑡3

3 − 𝑡2

2

Matlab program was written to implements Euler, modified Euler and Runge-Kutta using time
spacing of 0.1 and was run to 4 seconds.

0.1.1 Euler method

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦′𝑛 + 𝑂�ℎ2�

In the above, 𝑦0 was taken from given initial conditions and 𝑦′𝑛 = 𝑓𝑛 is the RHS of (1) evaluated at
each time step. ℎ is the time step used (which is 0.1 seconds in this problem). Hence 𝑡𝑛 = 𝑛ℎ. Euler
method has local error (per step) 𝑂�ℎ2� and an overall global error 𝑂 (ℎ).

0.1.2 Modi�ed Euler method

𝑦𝑛+1 = 𝑦𝑛 + ℎ �
𝑦′𝑛 + 𝑦′𝑛+1

2 � + 𝑂 �ℎ3�

Modified Euler method has local error (per step) 𝑂�ℎ3� and overall global error 𝑂�ℎ2�, therefore it
is more accurate than the standard Euler method. In this problem, the RHS 𝑦′𝑛 = 𝑓𝑛 (𝑡) only depends
on 𝑡 and not on 𝑦𝑛.

4

0.1.3 Second order Runge-Kutta

This method has local error 𝑂�ℎ3� and global error 𝑂�ℎ2�

𝑡𝑛 = 𝑛ℎ

𝑘1 = ℎ𝑓 �𝑡𝑛, 𝑦𝑛�

𝑘2 = ℎ𝑓 �𝑡𝑛 + 𝛼ℎ, 𝑦𝑛 + 𝛽𝑘1�

𝑦𝑛+1 = 𝑦𝑛 + 𝑎𝑘1 + 𝑏𝑘2
In this problem 𝑦 do not appear in the RHS (hence 𝛽 is not used). The above reduces to

𝑘1 = ℎ𝑓 (𝑡𝑛)
𝑘2 = ℎ𝑓 (𝑡𝑛 + 𝛼ℎ)

𝑦𝑛+1 = 𝑦𝑛 + 𝑎𝑘1 + 𝑏𝑘2

Using 𝑎 = 2
3 , 𝑏 =

1
3 , 𝛼 = 3

2 , 𝛽 = 3
2 , (as was done in exercise one handout) the above now becomes

𝑘1 = ℎ𝑓 (𝑛ℎ)

𝑘2 = ℎ𝑓 �𝑛ℎ +
3
2
ℎ� = ℎ𝑓 ��𝑛 +

3
2�

ℎ�

𝑦𝑛+1 = 𝑦𝑛 +
2
3
ℎ𝑓 (𝑛ℎ) +

1
3
ℎ𝑓 ��𝑛 +

3
2�

ℎ�

= 𝑦𝑛 +
2
3
ℎ �𝑓 (𝑛ℎ) +

1
2
𝑓 ��𝑛 +

3
2�

ℎ��

The following is a summary table of the three methods.

scheme name main computation global error

Euler 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦′𝑛 𝑂(ℎ)
Modified Euler 𝑦𝑛+1 = 𝑦𝑛 +

ℎ
2
�𝑦′𝑛 + 𝑦′𝑛+1� 𝑂(ℎ2)

RK2 𝑦𝑛+1 = 𝑦𝑛 +
2
3ℎ �𝑦

′
𝑛 +

1
2𝑦

′
𝑛+ 3

2
� 𝑂(ℎ2)

0.1.4 Results

Four plots were generated. three plots to show the solution by each scheme next to the exact solution.
The fourth plot shows the relative error of each scheme. The relative error was found by calculating
|exact solution-numerical|

|exact| at each time instance.

5

time (sec)
0 0.5 1 1.5 2 2.5 3 3.5 4

y(
t)

0

5

10

15
comparing solution between Euler and exact

Euler
Exact

time (sec)
0 0.5 1 1.5 2 2.5 3 3.5 4

y(
t)

0

5

10

15
comparing solution between Modified Euler and exact

Modified Euler
Exact

time (sec)
0 0.5 1 1.5 2 2.5 3 3.5 4

y(
t)

0

5

10

15
comparing solution between RK2 and exact

RK2
Exact

time step
0 0.5 1 1.5 2 2.5 3 3.5 4

re
la

tiv
e

er
ro

r

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
relative error of each scheme

Euler
Modified Euler
RK2

0.1.5 Discussion of results

Euler method was least accurate as expected since it has global error 𝑂(ℎ). There is no large di�erence
between RK2 and modified Euler since both have global error 𝑂(ℎ2).

0.1.6 Source code listing� �
1 function nma_EMA_471_HW1_part_a
2 %This function solves HW1, part(a). EMA 471, spring 2016, UW Madison
3 %Please see report for detailed information about the problem
4 %by Nasser M. Abbasi
5

6 clear; close all;
7

8 %First call is to initialize data before each scheme run is made
9 [h,t,yExact,y] = initializeData();
10 yEuler = Euler(h,t,y,yExact);
11

12 [h,t,yExact,y] = initializeData();
13 yModifiedEuler = modifiedEuler(h,t,y,yExact);

6

14

15 [h,t,yExact,y] = initializeData();
16 yRK2 = RK2(h,t,y,yExact);
17

18 %Now we Plot the relative error for each scheme, using returned results
19 figure();
20 plot(t,abs(yEuler-yExact)./abs(yExact),'r',�...
21 t,abs(yModifiedEuler-yExact)./abs(yExact),'k',...
22 t,abs(yRK2-yExact)./abs(yExact),'b');
23

24 title('relative error of each scheme');
25 xlabel('time (sec)'); ylabel('relative error');
26 legend('Euler','Modified Euler','RK2','Location','NorthWest');
27 grid;
28 end
29

30 %---------------------------------------
31 %Implements basic Euler method
32 function y = Euler(h,t,y,yExact)
33 %y(1) has been initialized to correct value by caller
34 %
35 % o---------o-----------o----.....
36 % t=0 t=h t=2h
37 % y(1) y(2) y(3)
38 %
39 %This function starts computing y(2),y(3),....
40

41 currentTime = 0;
42 for n = 2:length(y)
43 f = rhs(currentTime); %RHS of the ODE
44 y(n) = y(n-1)+h*f; %Euler scheme
45 currentTime = currentTime + h;
46 end
47

48 makePlots(t,y,yExact,'Euler');
49 end
50

51 %---------------------------------------
52 %Implements Modified Euler solver
53 function y = modifiedEuler(h,t,y,yExact)
54 currentTime = 0;
55

56 %y(1) has been initialized to correct value by caller
57 for n = 2:length(y)
58 fn1 = rhs(currentTime);
59 fn2 = rhs(currentTime+h);
60 f = (fn1+fn2)/2;
61 y(n) = y(n-1)+h*f;
62 currentTime = currentTime + h;
63 end
64

65 makePlots(t,y,yExact,'Modified Euler');
66 end
67

7

68 %---------------------------------------
69 %Implements RK2 solver
70 function y = RK2(h,t,y,yExact)
71 currentTime = 0;
72 a = 2/3;
73 b = 1/3;
74 alpha = 3/2; %RK2 parameters used
75 %beta = 3/2; %not needed, since RHS f(.) do not depend on y.
76

77 %y(1) has been initialized to correct value by caller
78 for n = 2:length(y)
79 k1 = h*rhs(currentTime);
80 k2 = h*rhs(currentTime+alpha*h);
81 y(n) = y(n-1)+a*k1+b*k2;
82 currentTime = currentTime + h;
83 end
84

85 makePlots(t,y,yExact,'RK2');
86 end
87

88 %----------------------------------
89 %Called to initialize data and counters before each solver is called
90 function [h,t,yExact,y] = initializeData()
91

92 h = 0.1; %time step we are asked to use
93 t = (0:h:4)';
94 y = zeros(length(t),1);
95 y(1) = 1; %initial conditions, from problem statement
96 yExact = 1+t.^3/3-t.^2/2;
97 end
98

99 %-------------------------
100 %Called to generate plots from each solver
101 function makePlots(t,y,yExact,schemeName)
102

103 figure();
104 plot(t,y,'ok',t,y); hold on;
105 plot(t,yExact,'r');
106 legend(schemeName,'Exact','Location','NorthWest');
107 title(sprintf('comparing solution between %s and exact',schemeName));
108 xlabel('time (sec)'); ylabel('y(t)');
109 grid;
110

111 end
112

113 %---------------
114 %RHS function, called by each scheme solver. Notice only t appears in RHS
115 function v = rhs(t)
116 v = t^2-t;
117 end� �

8

0.2 Problem 2

problem description

(2) (12 pts) Consider the second order system of equations:

dx
dt
= xy+ t, x(0) =1

dy
dt
= ty+ x, y(0) = −1

As this is a non-linear system of equations, it’s unlikely that you will be able to find an analytical
solution. You can, however, construct a Taylor series expansion in the neighborhood of t = 0 that
will be a reasonable approximation of the solution as long we include enough terms in the
expansion and don’t wander too far away from t = 0. Construct Taylor series expansions out to
terms t5 for x(t) and y(t) and plot these approximate solutions over the interval 0 ≤ t ≤ 0.5 . Then
use ode45 to solve the system over the interval 0 ≤ t ≤ 2 . Plot your numerical solutions on the
same plot as the Taylor series expansions and discuss your results.

solution

𝑥′ (𝑡) = 𝑥𝑦 + 𝑡
𝑦′ (𝑡) = 𝑡𝑦 + 𝑥

With 𝑥 (0) = 1, 𝑦 (0) = −1.

The following calculation shows the evaluation of all the derivatives needed for use with Taylor
expansion. The expansion is around 𝑡 = 0. This table gives the result.

derivative

𝑥′ (𝑡) = 𝑥𝑦 + 𝑡
𝑦′ (𝑡) = 𝑡𝑦 + 𝑥
𝑥′′ (𝑡) = 𝑥′𝑦 + 𝑥𝑦′ + 1
𝑦′′ (𝑡) = 𝑦 + 𝑡𝑦′ + 𝑥′

𝑥′′′ (𝑡) = 𝑥′′𝑦 + 𝑥′𝑦′ + 𝑥′𝑦′ + 𝑥𝑦′′

𝑦′′′ (𝑡) = 𝑦′ + 𝑦′ + 𝑡𝑦′′ + 𝑥′′

𝑥(4) (𝑡) = 𝑥′′′𝑦 + 𝑥′′𝑦′ + 𝑥′′𝑦′ + 𝑥′𝑦′′ + 𝑥′′𝑦′ + 𝑥′𝑦′′ + 𝑥′𝑦′′ + 𝑥𝑦′′′

𝑦(4) (𝑡) = 𝑦′′ + 𝑦′′ + 𝑦′′ + 𝑡𝑦′′′ + 𝑥′′′

𝑥(5) (𝑡) = 𝑥(4)𝑦 + 𝑥′′′𝑦′ + 𝑥′′′𝑦′ + 𝑥′′𝑦′′ + 𝑥′′′𝑦′ + 𝑥′′𝑦′′ + 𝑥′′𝑦′′ + 𝑥′𝑦′′′ + 𝑥′′′𝑦′ + 𝑥′′𝑦′′ + 𝑥′′𝑦′′ + 𝑥′𝑦′′′ + 𝑥′′𝑦′′ + 𝑥′𝑦′′′ + 𝑥′𝑦′′′ + 𝑥′𝑦(4)

𝑦(5) (𝑡) = 𝑦′′′ + 𝑦′′′ + 𝑦′′′ + 𝑦′′′ + 𝑡𝑦(4) + 𝑥(4)

The numerical value of the above derivatives at 𝑡 = 0 is now calculated and given in another table
below

9

derivative at 𝑡 = 0 value

𝑥′ (0) (1) (−1) + 0 −1
𝑦′ (0) (0) (−1) + 1 1
𝑥′′ (0) (−1) (−1) + (1) (1) + 1 = 1 + 1 + 1 3
𝑦′′ (0) (−1) + 0 (1) − 1 −2
𝑥′′′ (0) (3) (−1) + (−1) (1) + (−1) (1) + (1) (−2) −7
𝑦′′′ (0) 1 + 1 + 0 + 2 4
𝑥(4) (0) (−7) (−1) + 2 + 2 + (−1) (−2) + 2 + (−1) (−2) + (−1) (−2) + 4 23
𝑦(4) (0) (−2) + (−2) + (−2) + 0 + (−7) −13
𝑥(5) (0) (−13) (−1) + 4 + 4 + (2) (−2) + (−7) + (2) (−2) + (2) (−2) + (−1) (4) + (−7) + (2) (−2) + (2) (−2) + 4 + (2) (−2) + 4 + 4 − 13 −22
𝑦(5) (0) (4) + (4) + (4) + (4) + 0 + 23 39

The Taylor expansion for 𝑥 (𝑡) , 𝑦 (𝑡) is

𝑥 (𝑡) = 𝑥 (0) + 𝑡𝑥′ (0) +
𝑡2

2
𝑥′′ (0) +

𝑡3

3!
𝑥′′′ (0) +

𝑡4

4!
𝑥(4) +

𝑡5

5!
𝑥(5) + 𝑂�𝑡6�

𝑦 (𝑡) = 𝑦 (0) + 𝑡𝑦′ (0) +
𝑡2

2
𝑦′′ (0) +

𝑡3

3!
𝑦′′′ (0) +

𝑡4

4!
𝑦(4) +

𝑡5

5!
𝑦(5) + 𝑂�𝑡6�

Applying values from the table above gives

𝑥 (𝑡) = 1 − 𝑡 +
3
2
𝑡2 − 7

𝑡3

3!
+ 23

𝑡4

4!
− 22

𝑡5

5!
+ 𝑂 �𝑡6�

= 1 − 𝑡 +
3
2
𝑡2 −

7
6
𝑡3 +

23
24

𝑡4 −
22
120

𝑡5 + 𝑂�𝑡6�

𝑦 (𝑡) = −1 + 𝑡 − 𝑡2 + 4
𝑡3

3!
− 13

𝑡4

4!
+ 39

𝑡5

5!
+ 𝑂 �𝑡6�

= −1 + 𝑡 − 𝑡2 +
2
3
𝑡3 −

13
24

𝑡4 +
39
120

𝑡5 + 𝑂�𝑡6�

0.2.1 Results

The following diagram shows the solution using Taylor series approximation and using ODE45

10

time (sec)
0 0.5 1 1.5 2

x(
t)

 a
nd

 y
(t

)

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Comparing Taylor series approximation to ODE45

x(t) Taylor
y(t) Taylor
x(t) ODE45
y(t) ODE45

We see from the above that Taylor series approximation was good for only small distance from the
expansion point, 𝑡 = 0. The 𝑥 (𝑡) solution using Taylor became worst faster than the 𝑦 (𝑡) solution did.
The relative error was computed and plotted for up to 𝑡 = 0.5 to better compare the results.

The relative error for both 𝑥 (𝑡) and 𝑦 (𝑡) was computed using

�ODE45 solution-Taylor solution�
|ODE45 solution|

time (sec)
0 0.1 0.2 0.3 0.4 0.5

re
la

tiv
e

er
ro

r
in

 x
(t

)
an

d
y(

t)

0

0.005

0.01

0.015

0.02

0.025

0.03
Relative error between Taylor series approximation and ODE45

x(t) relative error
y(t) relative error

11

The above plot shows that the error compared to ODE45 increased as the distance from the expansion
point becomes larger with 𝑦 (𝑡) solution showing a worst approximation than 𝑦 (𝑡).

0.2.2 Source code listing� �
1 function nma_EMA_471_HW1_part_b
2 %This function solves HW1, problem 2. EMA 471, spring 2016,
3 %UW Madison see report for detailed information about the problem
4 %by Nasser M. Abbasi
5

6 close all;
7

8 h = 0.05; %step size
9 t1 = 0:h:0.5; %time for the Taylor series
10 t2 = 0:h:2; %for ODE45 we are asked to go for 2 seconds.
11

12 [xApprox,yApprox] = doTaylorApproximation(t1);
13 [xODE45,yODE45] = doODE45(t2);
14

15 %done, now plot and compare.
16 compare(t1,xApprox,yApprox,t2,xODE45,yODE45);
17 end
18

19 %---------------------------------
20 %Do the Taylor series approximation
21 function [xApprox,yApprox] = doTaylorApproximation(t)
22 xApproxF = @(t) 1 - t + (3/2)* t.^2 - 7/6 * t.^3 + 23/24 *�...
23 t.^4 -22/120 * t.^5;
24 yApproxF = @(t)-1 + t - t.^2 + 2/3 * t.^3 - 13/24 *...
25 t.^4 +39/120 * t.^5;
26

27 xApprox = xApproxF(t);
28 yApprox = yApproxF(t);
29 end
30

31 %--
32 %Do ODE45. This uses Matlab's ode45 to solve the problem.
33 function [xODE45,yODE45] = doODE45(t)
34 xInitial = 1;
35 yInitial = -1;
36

37 [~,v] = ode45(@rhs, t, [xInitial yInitial]);
38 %extract solutions
39 xODE45 = v(:,1);
40 yODE45 = v(:,2);
41

42 %internal function, for RHS
43 function v = rhs(t,X)
44 x = X(1);
45 y = X(2);
46 v = [x*y+t;t*y+x];
47 end
48 end
49

12

50 %--
51 %function to compare Taylor series with ODE 45 output
52 function compare(t1,xApprox,yApprox,t2,xODE45,yODE45)
53

54 figure();
55 plot(t1,xApprox,'bo',t1,yApprox,'ro'); hold on;
56 plot(t2,xODE45,'b',t2,yODE45,'r');
57

58 legend('x(t) Taylor','y(t) Taylor','x(t) ODE45','y(t) ODE45',...
59 'Location','NorthWest');
60

61 title('Comparing Taylor series approximation to ODE45');
62 xlabel('time (sec)'); ylabel('x(t) and y(t)');
63 grid;
64

65 figure();
66 plot(t1,abs(xODE45(1:length(t1))-xApprox')./...
67 abs(xODE45(1:length(t1))),'b',...
68 t1,abs(yODE45(1:length(t1))-yApprox')./...
69 abs(yODE45(1:length(t1))),'r');
70 title('Relative error between Taylor series approximation and ODE45');
71 xlabel('time (sec)');
72 ylabel('relative error in x(t) and y(t)');
73 legend('x(t) relative error','y(t) relative error',...
74 'Location','NorthWest');
75 grid;
76 end� �

0.3 Problem 3

problem description

(3) (16 pts) Note: This is a problem you might encounter in EMA 545. A machine tool is
mounted on two nonlinear elastic mounts, as shown in the figure at the top of the next page. The
equations of motion, in terms of the coordinates x(t) and θ(t), are given by:

m&&x + k11(x − l1θ)+ k12 (x − l1θ)
3 + k21(x + l2θ)+ k22 (x + l2θ)

3 = 0
Jo &&θ − k11(x − l1θ)l1 − k12 (x − l1θ)

3l1 + k21(x + l2θ)l2 + k22 (x + l2θ)
3l2 = 0

Here m is the mass and Jo is the mass moment of inertia about G of the machine tool. Using
ode45, find x(t) and θ(t) over the interval 0 ≤ t ≤10 s using the initial conditions:

x(0) = 0, &x(0) =10 mm/s, θ(0) = 0, &θ(0) =10 mrad/s

13

Parameters in the governing equations have values: m = 1000 kg, Jo = 2500 kg-m2, l1 = 1 m,
 l2 = 1.5 m, k11 = 40 kN/m, k12 = 10 kN/m3, k21 = 50 kN/m, k22 = 5 kN/m3.

NOTE: The governing equations are equations of motion based on ΣF =maG, ΣMG = Iα , so
units are important. The values for the parameters given are in SI units, so be sure everything
you input into your script is consistent with that system of units.

Plot x and θ over the interval with x in [mm] and θ in [mrad]. What are the peak amplitudes of x
and θ over the interval?

solution

𝑚𝑥′′ + 𝑘11 (𝑥 − 𝑙1𝜃) + 𝑘12 (𝑥 − 𝑙1𝜃)
3 + 𝑘21 (𝑥 + 𝑙2𝜃) + 𝑘22 (𝑥 + 𝑙2𝜃)

3 = 0 (1)

𝐽0𝜃′′ − 𝑘11 (𝑥 − 𝑙1𝜃) 𝑙1 − 𝑘12 (𝑥 − 𝑙1𝜃)
3 𝑙1 + 𝑘21 (𝑥 + 𝑙2𝜃) 𝑙2 + 𝑘22 (𝑥 + 𝑙2𝜃)

3 𝑙2 = 0

The first step is to convert the two second order di�erential equations to a set of four first order
di�erential equations, since ODE numerical solvers work with first order ode’s. We need to select
the states to use. Using

𝑥1 = 𝑥
𝑥2 = 𝑥′

𝑥3 = 𝜃
𝑥4 = 𝜃′

14

After taking time derivatives, the above becomes

�̇�1 = 𝑥′ = 𝑥2

�̇�2 = 𝑥′′ = −
1
𝑚

�𝑘11 (𝑥1 − 𝑙1𝑥3) + 𝑘12 (𝑥1 − 𝑙1𝑥3)
3 + 𝑘21 (𝑥1 + 𝑙2𝑥3) + 𝑘22 (𝑥1 + 𝑙2𝑥3)

3�

�̇�3 = 𝜃′ = 𝑥4

�̇�4 = 𝜃′′ = −
1
𝐽0
�−𝑘11 (𝑥1 − 𝑙1𝑥3) 𝑙1 − 𝑘12 (𝑥1 − 𝑙1𝑥3)

3 𝑙1 + 𝑘21 (𝑥1 + 𝑙2𝑥3) 𝑙2 + 𝑘22 (𝑥1 + 𝑙2𝑥3)
3 𝑙2�

The above vector �̇� in the LHS, is what the Matlab ode45 function will return when called. The
following shows the Matlab implementation and the plots generated. It was found that maximum

displacement is 𝑥max = 2.032 mm and occurred at 𝑡 = 5.14 seconds. For the angle, the maximum

angular displacement was 𝜃max = 1.213 mrad (or 0.069 degree) and occurred at 𝑡 = 2.02 seconds.

0.3.1 Results

The following are the 𝑥 and 𝜃 solutions plots for 𝑡 = 10 seconds. The Matlab source code used is
given in the next section.

time (sec)
0 2 4 6 8 10

x
in

 m
m

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x vs. time. Maximum is [2.032] mm at time [5.140] sec

time (sec)
0 2 4 6 8 10

th
et

a
in

 m
ra

di
an

s

-1.5

-1

-0.5

0

0.5

1

1.5
theta vs. time. Maximum is [1.213] mrad at time [2.020] sec

0.3.2 Source code listing� �
1 function nma_EMA_471_HW1_part_c
2 %This function solves HW1, part c. EMA 471, spring 2016,
3 %UW Madison report contains detailed information about the problem
4 %by Nasser M. Abbasi
5

6 close all;
7

8 %physical paramters of problem
9 m = 1000; %kg
10 J0 = 2500; %kg-m^3
11 L1 = 1; %meter
12 L2 = 1.5; %meter
13 k11 = 40*10^3; %N/m
14 k12 = 10*10^3; %N/m^3

15

15 k21 = 50*10^3; %N/m
16 k22 = 5*10^3; %N/m
17

18 %initialization parameters and initial conditions
19 h = 0.01; %step size. ODE45 did not work
20 %well with large step
21 t = 0:h:10; %time for ODE45
22 xInitial = 0; %meter
23 xVInitial = 10*10^(-3); %10 mm/sec
24 thetaInitial = 0; %radians
25 thetaVInitial = 10*10^(-3); %mrad/sec
26

27 %call ODE45 to numerically solve the equations of motions
28 [t,sol] = ode45(@rhs, t,�...
29 [xInitial xVInitial thetaInitial thetaVInitial]);
30

31 %Extract the first and third columns. These represet x
32 %and theta solutions
33 x = sol(:,1);
34 [value,I] = max(x);
35

36 %make x(t) vs. time plot
37 figure();
38 plot(t,x*1000); grid;
39 title(sprintf(...
40 'x vs. time. Maximum is [%3.3f] mm at time [%3.3f] sec',...
41 value*1000,t(I)));
42 xlabel('time (sec)'); ylabel('x in mm');
43

44 theta = sol(:,3);
45 [value,I] = max(theta);
46

47 %make theta(t) vs. time plot
48 figure();
49 plot(t,theta*1000); grid;
50 title(sprintf(...
51 'theta vs. time. Maximum is [%3.3f] mrad at time [%3.3f] sec',...
52 value*1000,t(I)));
53 xlabel('time (sec)'); ylabel('theta in mradians');
54

55 %internal function, for RHS. Since this is internal, it will
56 %see all the physical parameters defined in its parent function,
57 %hence no need to pass them or make them global
58

59 function v = rhs(~,x)
60 f1 = x(2);
61 f2 = (-k11*(x(1)-L1*x(3))- k12*(x(1)-L1*x(3))^3 - ...
62 k21*(x(1)+L2*x(3)) - k22*(x(1)+L2*x(3))^3)/m;
63 f3 = x(4);
64 f4 =(k11*(x(1)-L1*x(3))*L1 + k12*(x(1)-L1*x(3))^3*L1 - ...
65 k21*(x(1)+L2*x(3))*L2 - k22*(x(1)+L2*x(3))^3*L2)/J0;
66

67 v = [f1;f2;f3;f4];
68 end

16

69 end� �

	Problem 1
	Euler method
	Modified Euler method
	Second order Runge-Kutta
	Results
	Discussion of results
	Source code listing

	Problem 2
	Results
	Source code listing

	Problem 3
	Results
	Source code listing

