
This in place to keep some study notes, and other items to remember while taking this hard course.

1 Some HOWTO questions

1.1 How to show that sum of two convex functions is also convex function?

Let G (u) = g (u) + f (u) where we know g, f are two convex functions. We need to show G
(
uλ
)

is also
convex. Then, pick point uλ ∈ U therefore

But the set U is convex (it must be, these are convex functions, so their domain is convex by definition).
Pick a point uλ = (1− λ)u1 + λu2 where λ ∈ [0, 1] and u1, u2 ∈ U . Hence we can write

G
(
uλ
)

= g
(
uλ
)

+ f
(
uλ
)

G
(
(1− λ)u1 + λu2

)
= g

(
(1− λ)u1 + λu2

)
+ f

(
(1− λ)u1 + λu2

)
But g

(
(1− λ)u1 + λu2

)
≤ (1− λ) g

(
u1
)

+ λg
(
u2
)

and the same for f . Then the above reduces to

G
(
(1− λ)u1 + λu2

)
≤ (1− λ) g

(
u1
)

+ λg
(
u2
)

+ (1− λ) f
(
u1
)

+ fg
(
u2
)

= (1− λ)
(
g
(
u1
)

+ f
(
u1
))

+ λ
(
g
(
u2
)

+ f
(
u2
))

But G (u) = g (u) + f (u), then the RHS above becomes

G
(
(1− λ)u1 + λu2

)
≤ (1− λ)G

(
u1
)

+ λG
(
u2
)

Therefore G is a convex function.

1.2 What is convex Hull?

Smallest set that contains all the sets inside it, such that it is also convex. (put a closed convex "container"
around everything)

1.3 Is convex full same as Polytope?

No. Polytope is region which has straight edges (flat sides) and also be convex. But http://mathworld.
wolfram.com/Polytope.html says "The word polytope is used to mean a number of related, but
slightly different mathematical objects. A convex polytope may be defined as the convex hull of a finite
set of points" And https://en.wikipedia.org/wiki/Polytope says "In elementary geometry,
a polytope is a geometric object with flat sides, and may exist in any general number of dimensions n as an
n-dimensional polytope or n-polytope"

1.4 What is difference between polytope and polyhedron?

https://en.wikipedia.org/wiki/Polytope says "In elementary geometry, a polyhedron (plural
polyhedra or polyhedrons) is a solid in three dimensions with flat polygonal faces, straight edges and sharp
corners or vertices."

Polyhedron can be convex or not. But polyhedron can be open? While polytope not. Need to check.

2 Some things to remember

1. Principle of optimality, by Bellman: "An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an optinal policy with regard to the
state resulting from the first decision" Proof is by contradiction. See page 54, optimal contrl theory
by Donald kirk. Simplist proof I’ve seen. An important case is when the performance index J is
quadratic as with LQR. We only looked at case where is no coupling term in the LQR in this course.
J = minu

∑∞
k=0 x

TQx + uTRu. This is solved for steady state by solving Riccati equation. For
discrete case, use Matlab dare() function. See Introduction to Dynamic Programming: International
Series in Modern Applied Mathematics and Computer Science, Volume 1 (Pergamon International
Library ... Technology, Engineering & Social Studies)

2. Remember difference between state variables, and descision variable. There can be more than one state
variable in the problem, but the number of decisions to make at each state is different. see problem 1,
HW 7 for example. The fire stations allocation problem. In that problem, we had one state variable,
which is the number of stations available. There more state variables there are, the harder it will be to
solve by hand.

1

http://mathworld.wolfram.com/Polytope.html
http://mathworld.wolfram.com/Polytope.html
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope


3.

lim
λ→0

J (u + λd)− J (u)

λ
= [∇J (u)]T · d

Remember, ∇J (u) is column vector. ∇J (u) =


∂J(u)
∂u1

...
∂J(u)
∂un

. This vector is the direction along which

function J (u) will increase the most, among all other directions, at the point it is being evaluated at.

4. For polytope, this is useful trick.

u =

m∑
i=1

λiv
i

‖u‖ =

∥∥∥∥∥
m∑
i=1

λiv
i

∥∥∥∥∥
≤

m∑
i=1

∥∥λivi∥∥
The last step was done using triangle inequality.

5. Definition of continuity: If uk → u∗ then J
(
uk
)
→ J (u∗). We write limk→∞ J

(
uk
)

= J (u∗).
This is for all uk sequences. See real analysis handout. If uk → u∗ then this is the same as
limk→∞

∥∥uk − u∗∥∥ = 0

6. closed sets is one which include all its limits points. (includes it boundaries). Use [0, 1] for closed. Use
(0, 1) for open set. A set can be both open and closed at same time (isn’t math fun?, wish life was this
flexible).

7. Intersection of closed sets is also closed set. If sets are convex, then the intersection is convex. But the
union of convex sets is not convex. (example, union of 2 circles).

8. B-W, tells us that a sequence uk that do not converge, as long as it is in a compact set, it will contain at
least one subsequence in it, uk,i which does converge to u∗. So in a compact set, we can always find at
least one subsequence that converges to u∗ even inside non-converging sequences.

9. If a set is not compact, then not all is lost. Assume set is closed but unbounded. Hence not compact.
What we do, it set some R large enough, and consider the set of all elements ‖u‖ ≤ R. Then the new
set is compact.

10. J (u) = au2 + bu+ c is coercive for a > 0. Note, the function J (u) to be coercive, has to blow up
in all directions. For example, eu is not coercive. If A is positive definite matrix and b ∈ <n and
c ∈ <, then J (u) = uTAu + bTu + c is coercive function. To establish this, convert to scalar. Use
λmin ‖u‖2 ≤ uTAu and use bTu ≤‖b‖ ‖u‖, then J (u) ≤ λmin ‖u‖2 + ‖b‖ ‖u‖ + c. Since P.D.
matrix, then λmin > 0. Hence this is the same as J (u) = au2 + bu+ c for a > 0. So coercive.

11. If in J (u) = uTAu + bTu + c the matrix A is not symmetric., write as J (u) = 1
2u

T
(
AT +A

)
u +

bTu + c. Now it expressions becomes symmetric.

12.
∑

i,j xixj = (
∑

i xi)
2

13. If ᾱ = 1
n

∑
i αi then

∑
i (αi − ᾱ)2 ≥ 0. Used to show Hessian is P.D. for given J (u). See HW 2, last

problem.

14. xTAx =
∑

ij Aijxixj

15. To find a basic solution xB which is not feasible, just find basic solution with at least one entry negative.
Since this violates the constraints (we also use x ≥ 0) for feasibility, then xB solves Ax = b but not

feasible. i.e.
[
I B

] [xB
0

]
= b with some elements in xB negative. For basic solution to also be

feasible, all its entries have to be positive. (verify).

16. Solution to Ax = b are all of the form xp + xh where xh is solution to Ax = 0 and xp is a particular
solution to Ax = b. This is similar to when we talk about solution to ODE. We look for homogeneous
solution to the ODE (when the RHS is zero) and add to it a particular solution to original ODE with the
rhs not zero, and add them to obtain the general solution.

17. difference between Newton method and conjugate gradient, is that CG works well from a distance,
since it does not need the Hessian. CG will converge in N steps if J(u) was quadratic function.
Newton will converge in one step for quadratic, but it works well only if close to the optimal since it
uses the Hessian as per above.

2



18. CG has superlinear convergence. This does not apply to steepest descent.

19. difference betwen steepest descent and conjugate direction is this: In SD, we use ∇J(uk) as the
direction to move at each step. i.e we use

uk+1 = uk − h ∇J(uk)

‖∇J(uk)‖

Where h above is either fixed step or optimal. But In CD we use vk which is the mutual conjugate
vector to all previous vi. See my table of summary for this below as they can get confusing to know
the difference.

20. To use Dynamic programming, the problem should have optimal substructure, and also should have an
overlaping sub-problems. Sometimes hard to see or check for this.

21. Steepest descent with optimal step size has quadratic convergence property.

22. For symmetric Q, then
∂(xTQx)

∂x = 2Qx

3 Example using conjugate directions

This example is solved in number of ways. Given quadratic function J (x1, x2) = 1
2x

TAx + bxT where

x =

[
x1
x2

]
. To find x∗, which minimizes J (x). Let A =

[
4 2
2 2

]
and b =

[
−1
1

]

3.1 First method, Direct calculus

∇J (x) = 0

Ax+ b =

[
0
0

]
[
4 2
2 2

] [
x1
x2

]
+

[
−1
1

]
=

[
0
0

]
[
4x1 + 2x2 − 1
2x1 + 2x2 + 1

]
=

[
0
0

]
Solving gives

x∗ =

[
x1
x2

]
=

[
1
−3

2

]

3.2 Second method, basic Conjugate direction

Since A is of size n = 2, then this will converge in 2 steps using conjugate directions. let x0 =

[
0
0

]
. Let first

direction be

v0 =

[
1
0

]
Then

h0 =
−
(
v0
)T ∇J (x0)

(v0)T Av0
=
−
(
v0
)T (

Ax0 + b
)

(v0)T Av0
=

−
[
1 0

] [−1
1

]
[
1 0

] [4 2
2 2

] [
1
0

] =
1

4

Hence

x1 = x0 + h0v
0

=

[
0
0

]
+

1

4

[
1
0

]
=

[
1
4
0

]
Second step. We need to find v1. Using conjugate mutual property of A, we solve for v1 using(

v0
)T
Av1 = 0[

1 0
] [4 2

2 2

] [
v1
v2

]
= 0

4v1 + 2v2 = 0

3



Let v1 = 1 then v2 = −2 and hence

v1 =

[
1
−2

]
Now we find the next optimal step

h1 =
−
(
v1
)T ∇J (x1)

(v1)T Av1
=
−
(
v1
)T (

Ax1 + b
)

(v1)T Av1
=

−
[
1 −2

]([4 2
2 2

] [
1
4
0

]
+

[
−1
1

])
[
1 −2

] [4 2
2 2

] [
1
−2

] =
3

4

Hence

x2 = x1 + h1v
1

=

[
1
4
0

]
+

3

4

[
1
−2

]
=

[
1
−3

2

]
Which is x∗ that we found in first method. Using n = 2 steps as expected. In implementation, we will have
to check we converged by looking at∇J

(
x2
)

which will be

∇J
(
x2
)

= Ax2 + b

=

[
4 2
2 2

] [
1
−3

2

]
+

[
−1
1

]
=

[
0
0

]
As expected.

3.3 Third method. Conjugate gradient

The difference here is that we find vi on the fly after each step. Unlike the conjugate direction method, where

vi are all pre-computed. Let v0 = ∇
(
J
(
x0
))

=

[
−1
1

]
. In this method, we always pick v0 = ∇

(
J
(
x0
))

,

where x0 is the starting guess vector. First step

h0 =
−
(
v0
)T ∇J (x0)

(v0)T Av0
=
−
(
v0
)T (

Ax0 + b
)

(v0)T Av0
=

−
[
−1 1

] [−1
1

]
[
−1 1

] [4 2
2 2

] [
−1
1

] =
−2

2
= −1

Hence

x1 = x0 + h0v
0

=

[
0
0

]
− 1

[
−1
1

]
=

[
1
−1

]
Now we find the mutual conjugate v1 as follows

β0 =

(
∇J

(
x1
))T

Av0

(v0)T Av0
=

(
Ax1 + b

) (
Av0

)
(v0)T Av0

=

([
4 2
2 2

] [
1
−1

]
+

[
−1
1

])T ([
4 2
2 2

] [
−1
1

])
[
−1 1

] [4 2
2 2

] [
−1
1

]

=

[
1
1

]T [−2
0

]
2

=
−2

2
= −1

Hence

v1 = −∇J
(
x1
)

+ β0v
0

= −
([

4 2
2 2

] [
1
−1

]
+

[
−1
1

])
− (1)

[
−1
1

]
=

[
0
−2

]

4



Now that we found v1, we repeat the process.

h1 =
−
(
v1
)T ∇J (x1)

(v1)T Av1
=
−
(
v1
)T (

Ax1 + b
)

(v1)T Av1
=

−
[
0 −2

]([4 2
2 2

] [
1
−1

]
+

[
−1
1

])
[
0 −2

] [4 2
2 2

] [
0
−2

] =
2

8
=

1

4

Hence

x2 = x1 + h1v
1

=

[
1
−1

]
+

(
1

4

)[
0
−2

]
=

[
1
−3

2

]
Which is the same as with conjugate direction method. Converged in 2 steps also.

3.4 Fourth method. Conjugate gradient using Fletcher-Reeves

In this method

βk =
∇J

(
uk+1

)T ∇J (uk+1
)

∇J (uk)
T ∇J (uk)

=

∥∥∇J (uk+1
)∥∥2

‖∇J (uk)‖2

We also start here with v0 = ∇J
(
u0
)

=

[
−1
1

]
in this example.

h0 =
−
(
v0
)T ∇J (x0)

(v0)T Av0
=
−
(
v0
)T (

Ax0 + b
)

(v0)T Av0
=

−
[
−1 1

] [−1
1

]
[
−1 1

] [4 2
2 2

] [
−1
1

] =
−2

2
= −1

Hence

x1 = x0 + h0v
0

=

[
0
0

]
− 1

[
−1
1

]
=

[
1
−1

]
Now find the mutual conjugate v1 as follows, using Fletcher-Reeves formula

β0 =

∥∥∇J (u1)∥∥2
‖∇J (u0)‖2

=

∥∥Ax1 + b
∥∥2

‖Ax0 + b‖2
=

∥∥∥∥([4 2
2 2

] [
1
−1

]
+

[
−1
1

])∥∥∥∥2∥∥∥∥([4 2
2 2

] [
0
0

]
+

[
−1
1

])∥∥∥∥2
=

∥∥∥∥[11
]∥∥∥∥2∥∥∥∥[−1

1

]∥∥∥∥2
=

(√
2
)2(√

2
)2 = 1

v1 = −∇J
(
x1
)

+ β0v
0

= −
([

4 2
2 2

] [
1
−1

]
+

[
−1
1

])
+ (1)

[
−1
1

]
=

[
−2
0

]
Now that we found v1, we repeat the process.

h1 =
−
(
v1
)T ∇J (x1)

(v1)T Av1
=
−
(
v1
)T (

Ax1 + b
)

(v1)T Av1
=

−
[
−2 0

]([4 2
2 2

] [
1
−1

]
+

[
−1
1

])
[
−2 0

] [4 2
2 2

] [
0
−2

] =
2

8
=

1

4

Hence

x2 = x1 + h1v
1

=

[
1
−1

]
+

(
1

4

)[
0
−2

]
=

[
1
−3

2

]
Which is the same as with conjugate direction method. It converges in 2 steps also.

5



3.5 Fifth method. Conjugate gradient using Polak-Ribiere

In this method

βk =
∇J

(
uk+1

)T (∇J (uk+1
)
−∇J

(
uk
))

∇J (uk)
T ∇J (uk)

We also start here with v0 = ∇J
(
u0
)

=

[
−1
1

]
in this example.

h0 =
−
(
v0
)T ∇J (x0)

(v0)T Av0
=
−
(
v0
)T (

Ax0 + b
)

(v0)T Av0
=

−
[
−1 1

] [−1
1

]
[
−1 1

] [4 2
2 2

] [
−1
1

] =
−2

2
= −1

Hence

x1 = x0 + h0v
0

=

[
0
0

]
− 1

[
−1
1

]
=

[
1
−1

]
Now we find the mutual conjugate v1 direction as follows, using Polak-Ribiere formula

β0 =
∇J

(
u1
)T (∇J (u1)−∇J (u0))
∇J (u0)T ∇J (u0)

But

∇J
(
u1
)

=

[
4 2
2 2

] [
1
−1

]
+

[
−1
1

]
=

[
1
1

]
∇J

(
u0
)

=

[
4 2
2 2

] [
0
0

]
+

[
−1
1

]
=

[
−1
1

]
Hence

β0 =

[
1 1

]([1
1

]
−
[
−1
1

])
[
−1 1

] [−1
1

] =
2

2
= 1

Hence

v1 = −∇J
(
x1
)

+ β0v
0

= −
([

4 2
2 2

] [
1
−1

]
+

[
−1
1

])
+ (1)

[
−1
1

]
=

[
−2
0

]
Now that we found v1, we repeat the process.

h1 =
−
(
v1
)T ∇J (x1)

(v1)T Av1
=
−
(
v1
)T (

Ax1 + b
)

(v1)T Av1
=

−
[
−2 0

]([4 2
2 2

] [
1
−1

]
+

[
−1
1

])
[
−2 0

] [4 2
2 2

] [
0
−2

] =
2

8
=

1

4

Hence

x2 = x1 + h1v
1

=

[
1
−1

]
+

(
1

4

)[
0
−2

]
=

[
1
−3

2

]
Which is the same as with conjugate direction method. Converges in 2 steps also as expected

6



4 collection of defintions

Basic solution for LP This is solution ~x which has non zero entries that correspond to linearly independent
column in A. Where the constraints are Ax = b.

feasible solution for LP This is solution ~x which is in the feasible region. The region that satisfy the
constraints. Feasible solution do not have to be basic.

basic and feasible solution for LP This is solution ~x which is both feasible and basic. Once we get to one
of these, then simplex algorithm will jump from one basic feasible to the next, while reducing the J(u)
objective function until optimal is found.

Basic but not feasible solution is there one? Need example.

Newton Raphon method Iteration is

uk+1 = uk − ∇J(uk)

∇2J(uk)

where∇2J(uk) is the hessian. This is a A matrix in the quadratic expression

J(u) =
1

2
uTAu+ bTu+ c

Ofcourse we can’t divide by matrix, this is the inverse of the Hessian. So the above is

uk+1 = uk −
[
∇2J(uk)

]−1
∇J(uk)

See handout Newton for example with J(u) given and how to use this method to iterate to u∗. If J(u)
was quadratic, this will converge in one step.

Quadratic expression An expression is quadratic if it can be written as

∑
i

∑
j

aijuiuj +
∑
i

biui + c

For example, x21 + 9x1x2 + 14x22 becomes

x21 + 9x1x2 + 14x22 = a11x1x1 + a21x2x1 + a12x1x2 + a22x2x2 + b1x1 + b2x2 + c

= a11x
2
1 + a21x2x1 + a12x1x2 + a22x

2
2 + b1x1 + b2x2 + c

comparing both sides, we see that by setting a11 = 1, a21 = 9
2 , a21 = 9

2 , a22 = 14 and by setting
b1 = 0, b2 = 0 and c = 0 we can write it in that form. Hence it is quadratic and

A =

(
1 9

2
9
2 14

)
, b =

(
0 0

)
Therefore

x21 + 9x1x2 + 14x22 = xTAx+ bTx+ c

=
(
x1 x2

)(1 9
2

9
2 14

)(
x1
x2

)
+
(
0 0

)(x1
x2

)
+ 0

Since we are able to write x21 + 9x1x2 + 14x22 = xTAx+ bTx+ c it is quadratic. Notice that the A
matrix is always symmetric.

superlinear convergence A sequence {uk} in <n is said to converge superlinearly to u∗ if the following
holds. Given any θ ∈ (0, 1] then

lim
k→∞

‖uk − u∗‖
θk

→ 0

Example is uk = e−k
2

Since u∗ = 0 then e−k2

θk
→ 0 no matter what θ ∈ (0, 1] is. Remember, it has to

go to zero for any θ

Quadratic convergence theorem Given quadratic

J(u) =
1

2
uTAu+ bTu+ c

And given N set of mutually conjugate vectors (with respect to A) {v0, v2, . . . , vN−1} then the
conjugate direction algorithm converges to the optimal u∗ = −A−1b in N steps of less. Proof in
lecture 3/1/2016 (long)

A-conjugate vectors There are mutually conjugate vectors with respect toA. The directions {v0, v1, . . . , vN−1}
are said to be mutually conjugate with respect to A if

(vi)TAvj = 0

For all i 6= j

7



5 Summary of iterative search algorithms

5.1 steepest descent

5.1.1 steepest descent, any objective function J(x)

The input is x(0) the initial starting point and J(x) itself.
1. init x0 = x(0), k = 0
2. gk = ∇J(xk)

3. αk = minα J
(
xk − α gk

‖gk‖

)
(line search)

4. xk+1 = xk − αk gk

‖gk‖
5. k = k + 1
6. goto 2

5.1.2 steepest descent, Quadratic objective function J(x)

If the objective function J(x) is quadratic J(x) = xTAx − bTx + c then there is no need to do the line
search.

The input is x(0) the initial starting point and A, b. The algorithm becomes
1. Init x0 = x(0), k = 0
2. gk = ∇J(xk) = Axk − b

3. αk =
[gk]

T
gk

[gk]
T
Agk

4. xk+1 = xk − αkgk
5. k = k + 1
6. goto 2

5.2 conjugate direction, Quadratic function J(x)

For quadratic J(x) = xTAx− bTx+ c the conjugate direction algorithm is as follows.
Input x(0) starting point, and A, b and set of n mutually conjugate vectors {v0, v1, . . . , vn−1} with

respect to A, where n is the size of A. In otherwords, (vi)TAvj = 0 for i 6= j.
These vi vectors have to be generated before starting the algorithm. With the conjugate gradient (below),

these A-conjugate vectors are generated on the fly inside the algorithm as it iterates. This is the main
difference between conjugate direction and conjugate gradient.

1. init u0 = x(0), k = 0
2. gk = ∇J(xk) = Axk − b

3. αk =
[gk]

T
vk

[gk]
T
Avk

4. xk+1 = xk − αkvk
5. k = k + 1
6. goto 2

We see the difference between the above and the steepest descent before it, is in line 3,4. Where now vk

replaces gk in two places.

5.3 conjugate gradient, Quadratic function J(x)

Conjugate direction required finding set of v vectors before starting the algorithm. This algorithm generates
these vectors as it runs.

Input x(0) starting point, and A, b.
1. Init u0 = x(0), k = 0, g0 = ∇J(x0) = Ax0 − b, v0 = −g0

2. αk =
[gk]

T
vk

[gk]
T
Avk

4. xk+1 = xk + αkv
k

5. gk+1 = ∇J(xk+1) = Axk+1 − b

6. β =
[gk+1]

T
Avk

[vk]
T
Avk

7. vk+1 = −gk+1 + βvk

8. k = k + 1
9. goto 2

8



5.4 conjugate gradient, None quadratic function J(x), Hestenses-Stiefel

If we do not have quadratic function, then we can not use A, b to generate β. The above algorithm becomes
using Hestenses-Stiefel

Input x(0) starting point.
1. Init u0 = x(0), k = 0, g0 = ∇J(x0), v0 = −g0
2. αk = minα J

(
xk + αvk

)
(line search)

3. xk+1 = xk + αkv
k

4. gk+1 = ∇J(xk+1)

5. β =
[gk+1]

T
[gk+1−gk]

[vk]
T
[gk+1−gk]

6. vk+1 = −gk+1 + βvk

7. k = k + 1
8. goto 2

5.5 conjugate gradient, None quadratic function J(x), Polak-Ribiere

If we do not have quadratic function, then we can not useA, b to generate β. The conjugate gradient algorithm
becomes using Polak-Ribiere as follows

Input x(0) starting point.
1. Init u0 = x(0), k = 0, g0 = ∇J(x0), v0 = −g0
2. αk = minα J

(
xk + αvk

)
(line search)

3. xk+1 = xk + αkv
k

4. gk+1 = ∇J(xk+1)

5. β =
[gk+1]

T
[gk+1−gk]

[gk]
T
gk

6. vk+1 = −gk+1 + βvk

7. k = k + 1
8. goto 2

5.6 conjugate gradient, None quadratic function J(x), Fletcher-Reeves

If we do not have quadratic function, then we can not useA, b to generate β. The conjugate gradient algorithm
becomes using Fletcher-Reeves as follows

Input x(0) starting point.
1. Init u0 = x(0), k = 0, g0 = ∇J(x0), v0 = −g0
2. αk = minα J

(
xk + αvk

)
(line search)

3. xk+1 = xk + αkv
k

4. gk+1 = ∇J(xk+1)

5. β =
[gk+1]

T
gk+1

[gk]
T
gk

6. vk+1 = −gk+1 + βvk

7. k = k + 1
8. goto 2

9


	Some HOWTO questions
	How to show that sum of two convex functions is also convex function?
	What is convex Hull?
	Is convex full same as Polytope?
	What is difference between polytope and polyhedron?

	Some things to remember
	Example using conjugate directions
	First method, Direct calculus
	Second method, basic Conjugate direction
	Third method. Conjugate gradient
	Fourth method. Conjugate gradient using Fletcher-Reeves
	Fifth method. Conjugate gradient using Polak-Ribiere

	collection of defintions
	Summary of iterative search algorithms
	steepest descent
	steepest descent, any objective function J(x)
	steepest descent, Quadratic objective function J(x)

	conjugate direction, Quadratic function J(x)
	conjugate gradient, Quadratic function J(x)
	conjugate gradient, None quadratic function J(x), Hestenses-Stiefel
	conjugate gradient, None quadratic function J(x), Polak-Ribiere
	conjugate gradient, None quadratic function J(x), Fletcher-Reeves


