
Class notes, ECE 719. University of Wisconsin,
Madison

Nasser M. Abbasi

December 30, 2019 Compiled on December 30, 2019 at 11:20pm [public]

mailto:nma@12000.org

Contents

1 Class notes 7
1.1 Lecture 1. Tuesday, January 19, 2016 . 10

1.1.1 Objective functions, constraints and variables 10
1.1.2 Constrained and Unconstrained problems 12

1.2 Lecture 2. Thursday, January 21, 2016 . 13
1.2.1 Existence of optimal solution, explicit and implicit 𝐽(𝑢) 13
1.2.2 Farming problem . 13

1.3 Lecture 3. Tuesday, January 26, 2016 . 15
1.3.1 Multilinear functions, level sets, contours 15
1.3.2 Pareto optimality . 18
1.3.3 compact and bounded sets, open and closed sets 18
1.3.4 B-W (The Bolzano-Weierstrass) theorem 19

1.4 Lecture 4. Thursday, January 28, 2016 . 20
1.4.1 Existence of optimal solutions . 20
1.4.2 Classical existence theorem . 20
1.4.3 Coercive functions and Coercivity theorem 20
1.4.4 Convex sets and Coercivity theorem 21

1.5 Lecture 5. Tuesday, February 2, 2016 . 22
1.5.1 Polytope . 23
1.5.2 Convex functions . 24

1.6 Lecture 6. Thursday, February 4, 2016 . 26
1.6.1 Convex functions and convex sets . 26
1.6.2 convex functions and convex sets relation 26
1.6.3 Criterion for convexity, Gradient and Hessian 26
1.6.4 Hessian theorem . 27

1.7 Lecture 7, Tuesday, February 9, 2016 . 28
1.7.1 The Bridging Lemma . 28
1.7.2 The Hessian Theorem, strong local minimum 30

1.8 Lecture 8. Thursday, February 11, 2016 . 31
1.8.1 gradient based optimization and line searches 31
1.8.2 Optimal gain control problems, Lyapunov equation 31

1.9 Lecture 9. Tuesday, February 16, 2016 . 35
1.9.1 keywords for next exam 1 . 35
1.9.2 Gradient based optimization . 35

1.10 Lecture 10. Thursday, February 18, 2016 (Exam 1) 37

2

3

1.11 Lecture 11. Tuesday, February 23, 2016 . 37
1.11.1 Steepest descent . 37
1.11.2 Classifications of Convergence . 38

1.12 Lecture 12. Thursday, February 25, 2016 . 39
1.12.1 Quadratic optimization, superlinear convergence 39
1.12.2 Quadratic convergence . 41
1.12.3 Superlinear convergence . 41

1.13 Lecture 13. Tuesday, March 1, 2016 . 42
1.13.1 Conjugate direction algorithms . 42
1.13.2 Quadratic convergence theorem . 44

1.14 Lecture 14. Thursday, March 3, 2016 . 46
1.14.1 Constraints and linear programming 46
1.14.2 History of linear programming . 47
1.14.3 Polytopes . 48

1.15 Lecture 15. Tuesday, March 8, 2016 . 49
1.15.1 Mechanism of linear programming . 49
1.15.2 Example, the sector patrol problem . 51
1.15.3 Basic and Feasible solutions . 52

1.16 Lecture 16. Thursday, March 10, 2016 . 52
1.16.1 Linear programming feasible and basic solutions 54

1.17 Lecture 17. Tuesday, March 15, 2016 . 56
1.17.1 Optimality theorem . 56
1.17.2 The extreme point theorem . 57
1.17.3 Mechanism the simplex method . 58

1.18 Lecture 18. Thursday, March 17, 2016 . 60
1.18.1 Simplex method examples . 61

1.19 Lecture 19. Tuesday, March 22, 2016 (No class) 64
1.20 Lecture 20. Thursday, March 24, 2016 (No class) 64
1.21 Lecture 21. Tuesday, March 29, 2016 . 64

1.21.1 Second exam keywords . 65
1.21.2 Application of Linear programming to control problems 65
1.21.3 Starting dynamic programming . 67

1.22 Lecture 22. Thursday, March 31, 2016. Second midterm exam 68
1.23 Lecture 23. Tuesday, April 5, 2016 . 68

1.23.1 First dynamic programming problem, trip from NY to SFO 68
1.23.2 Subproblem in dynamic programming 71
1.23.3 Bellman principle of optimality . 71

1.24 Lecture 24. Thursday, April 7, 2016 (No class) 71
1.25 Lecture 25. Tuesday, April 12, 2016 . 71

1.25.1 Dynamic programming state equation 72
1.25.2 Subproblems and principle of optimality (POO) 72

1.26 Lecture 26. Thursday, April 14, 2016 . 73
1.26.1 Stages in dynamic programming . 73
1.26.2 Allocation problem, applying DP to investment problem 77

1.27 Lecture 27. Tuesday, April 19, 2016 . 80

1.27.1 LQR and dynamic programming . 80
1.27.2 Example LQR using dynamic programming 86

1.28 Lecture 28. Thursday, April 21, 2016 . 94
1.28.1 Variations of dynamic programming, floor and ceiling 94

1.29 Lecture 29. Tuesday, April 26, 2016 . 97
1.29.1 Detailed example for a floor problem 97
1.29.2 Functional equations in dynamic programming 99

1.30 Lecture 30. Thursday, April 28, 2016 . 99
1.30.1 Steady state and functional equations 99

1.31 Lecture 31. Tuesday, May 3, 2016 . 101
1.31.1 Final review for final exam . 101

1.32 Lecture 32. Thursday, May 5, 2016 . 102

List of Figures

1.1 Set 𝑈 with constraints . 11
1.2 Lecture one, set 𝑈 second diagram . 11
1.3 Complicated RLC . 13
1.4 Level sets . 16
1.5 Convex sets . 22
1.6 Intersection of constraints . 22
1.7 𝐿1 and 𝐿∞ norms . 23
1.8 Bridging lemma . 29
1.9 State feedback . 31
1.10 Steepest descent diagram . 38
1.11 Hessian and optimal solution diagram . 41
1.12 Search path near constraint . 47
1.13 Increasing 𝐽(𝑢) diagram . 48
1.14 Verification of number of vertices using Maple 49
1.15 Simplex solver diagram . 50
1.16 Patrol problem . 52
1.17 Patrol problem solution . 53
1.18 Unit simplex . 58
1.19 decision tree . 68
1.20 NY to SF tree one . 69
1.21 NY to SF tree two . 70
1.22 Showing dynamic programming block diagram 72
1.23 Solution to the oil and real estate problem using Branch and Bound graph

method . 79
1.24 Goal is to track desired path . 80

4

5

List of Tables

6

Chapter 1

Class notes

Local contents
1.1 Lecture 1. Tuesday, January 19, 2016 . 10
1.2 Lecture 2. Thursday, January 21, 2016 . 13
1.3 Lecture 3. Tuesday, January 26, 2016 . 15
1.4 Lecture 4. Thursday, January 28, 2016 . 20
1.5 Lecture 5. Tuesday, February 2, 2016 . 22
1.6 Lecture 6. Thursday, February 4, 2016 . 26
1.7 Lecture 7, Tuesday, February 9, 2016 . 28
1.8 Lecture 8. Thursday, February 11, 2016 . 31
1.9 Lecture 9. Tuesday, February 16, 2016 . 35
1.10 Lecture 10. Thursday, February 18, 2016 (Exam 1) 37
1.11 Lecture 11. Tuesday, February 23, 2016 . 37
1.12 Lecture 12. Thursday, February 25, 2016 . 39
1.13 Lecture 13. Tuesday, March 1, 2016 . 42
1.14 Lecture 14. Thursday, March 3, 2016 . 46
1.15 Lecture 15. Tuesday, March 8, 2016 . 49
1.16 Lecture 16. Thursday, March 10, 2016 . 52
1.17 Lecture 17. Tuesday, March 15, 2016 . 56
1.18 Lecture 18. Thursday, March 17, 2016 . 60
1.19 Lecture 19. Tuesday, March 22, 2016 (No class) 64
1.20 Lecture 20. Thursday, March 24, 2016 (No class) 64
1.21 Lecture 21. Tuesday, March 29, 2016 . 64
1.22 Lecture 22. Thursday, March 31, 2016. Second midterm exam 68
1.23 Lecture 23. Tuesday, April 5, 2016 . 68
1.24 Lecture 24. Thursday, April 7, 2016 (No class) . 71
1.25 Lecture 25. Tuesday, April 12, 2016 . 71
1.26 Lecture 26. Thursday, April 14, 2016 . 73
1.27 Lecture 27. Tuesday, April 19, 2016 . 80
1.28 Lecture 28. Thursday, April 21, 2016 . 94

7

8

1.29 Lecture 29. Tuesday, April 26, 2016 . 97
1.30 Lecture 30. Thursday, April 28, 2016 . 99
1.31 Lecture 31. Tuesday, May 3, 2016 . 101
1.32 Lecture 32. Thursday, May 5, 2016 . 102

9

Summary table

These are my class lecture notes written from the lectures of ECE 719 optimal systems
course given by Professor B. Ross Barmish at University of Wisconsin, Madison in Spring
2016. Any errors in these notes, then all blames to me and not to the instructor.

date event Topic

1 Tuesday, 1/19/2016 First class Introduction, handouts

2 Thursday, 1/21/2016 Multilinear Tractable, Farming example, Multilinear, det(M)
example

3 Tuesday, 1/26/2016 Real analysis Reader on Farming, level sets, Pareto, Existence
of optimal, real analysis, B-W, sub-sequences

4 Thursday, 1/28/2016 Quadratic
forms

Coercivity, classical existence theorem, Quadratic
forms, starting convex sets

5 Tuesday, 2/2/2016 Mixtures Polytope, Mixtures, Extreme points, Started con-
vex functions, maximum of collection of convex
functions is convex function. epi graph.

6 Thursday, 2/4/2016 Convex Convex functions, properties, indexed collection,
Hessian theorem: 𝐽(𝑢) is convex i�, the Hessian is
positive semi-definite.

7 Tuesday, 2/9/2016 Hessian Bridging lemma. Proof of Hessian theorem for 𝑛 >
1. Strong local minimum theorem.

8 Thursday, 2/11/2016 optimal gain optimal gain problem.

9 Tuesday, 2/16/2016 Gradient Gradient based optimization

10 Thursday, 2/18/2016 Exam 1

11 Tuesday, 2/23/2016 Steepest Handout amplifier. Finish Steepest descent. Start
on Newton-Raphson

12 Thursday, 2/26/2016 Convergence Handout Newton. Derivation of step size for
Newton-Raphson. Super-linear convergence.

13 Tuesday, 3/1/2016 Gradient direc-
tion

Gradient direction, quadratic convergence, mutu-
ally conjugate vectors, quadratic convergence the-
orem

14 Thursday, 3/3/2016 LP Starting linear programming

15 Tuesday, 3/8/2016 LP patrol sector problem, mechanics of LP

16 Thursday, 3/10/2016 LP Squeeze method, basic and feasible solutions

17 Tuesday, 3/15/2016 LP simplex optimality theorem, extreme point theorem, unit
simplex, mechanism of simplex

18 Thursday, 3/17/2016 Complete LP Tableau method with optimality

19 Tuesday, 3/22/2016 No class. Thanks giving

20 Thursday, 3/24/2016 No class. Thanks giving

21 Tuesday, 3/29/2016 LP in control Example using LP in control, minimum fuel. End-
ing LP, starting dynamic programming, review.

10

22 Thursday, 3/31/2016 Exam 2

23 Tuesday, 4/5/2016 Dynamic pro-
gramming

First example in dynamic programming, trip from
NY to San Francisco. Toll fee optimization.

24 Thursday, 4/7/2016 No class

25 Tuesday, 4/12/2016 D.P. and spe-
cial problem

describe special problem. Dynamic programming.

26 Thursday, 4/14/2016 D.P. LQR example. Oil and real estate example

27 Tuesday, 4/19/2016 D.P. and LQR LQR using D.P., long example

28 Thursday, 4/21/2016 D.P. floor func-
tion

D.P. examples for variation of dynamic program-
ming

29 Tuesday, 4/26/2016 Steady state Finish Floor problem. Start on steady state, itera-
tive method

30 Thursday, 4/28/2016 Steady state,
Riccati

Closed form, guess method, infinite time LQR, Ric-
cati.

31 Tuesday, 5/3/2016 Review of
course

Special problem review, class review and prep for
final exam

32 Thursday, 5/5/2016 Final exam Exam

1.1 Lecture 1. Tuesday, January 19, 2016

This course is on finite dimensional optimization, which means having finite number of
parameters. We now went over the syllabus. Here is a summary:

1. Convex sets and functions

2. How to certify your solution?

3. Linear programming.

4. Dynamic programming (at end of course)

5. Three exams and a final special project/problem.

Homeworks will be graded using E,S,U grades. Most will get S, few will get E. Matlab will
be used.

Cardinal rule Develop an answer using given material in class only. Can use other basic
things like Laplace transform, etc...

A wise person once said: “Fundamental di�culties are invariant under reformulation”.

1.1.1 Objective functions, constraints and variables

In a problem, identify the objective function, constraints and variables. Optimization prob-
lems from di�erent fields can be formulated into a common framework for solving using
optimization methods.

11

Ingredients in this case: Set 𝑈 ⊆ ℜ𝑛, the constraint set. Problem has 𝑛 parameters (the
decision variables). Therefore 𝑢 ∈ 𝑈. One dimensional problem has 𝑛 = 1. An example is to
find optimal resistor value where 𝑈 = 100⋯200 Ohms. For 𝑛 = 2, an example is to find two

resistors 𝑢 =
⎡
⎢⎢⎢⎢⎣
𝑢1
𝑢2

⎤
⎥⎥⎥⎥⎦ with 100 ≤ 𝑢1 ≤ 200 and 300 ≤ 𝑢2 ≤ 400.

Reader Often we describe 𝑈 graphically in ℜ𝑛. Typically for only 𝑛 = 1, 2, 3. Do this for the
above example.

400

300

100 200

u1

u2

set U

Figure 1.1: Set 𝑈 with constraints

Reader design a bandpass filter with passband from 𝜔1 to 𝜔2 with 𝜔1, 𝜔2 > 0. Describe
graphically the set 𝑈.

ω2

ω1

set U

Figure 1.2: Lecture one, set 𝑈 second diagram

Reader Often 𝑈 is sphere in ℜ𝑛 described by
𝑛
�
𝑖=0
�𝑢𝑖 − 𝑢𝑖,0�

2
≤ 𝑅 where 𝑢𝑖,0 are coordinates

of center of sphere.

Reader Suppose we are designing an input voltage 𝑢 (𝑡) on 𝑡 ∈ [0, 1] such that ∫
1

0
𝑢2 (𝑡) 𝑑𝑡 ≤ 5.

This does not fit in above framework. This is function space problem.

An important class of 𝑈: A generalization of rectangle in 2D to hypercube in ℜ𝑛 with
�𝑢𝑖 − 𝑢𝑖,0� ≤ 𝑟𝑖 for 𝑖 = 1⋯𝑛.

Reader For 𝑛 = 3 and 𝑢0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1,0
𝑢2,0
𝑢3,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝑟1 = 1, 𝑟2 = 2, 𝑟3 = 3, then sketch 𝑈.

12

1.1.2 Constrained and Unconstrained problems

Unconstrained problem is one when we say 𝑈 = ℜ𝑛. There are no constraints on 𝑈. These
are easier to solve than constrained problems. In practice, there will always be constraints. 𝑈
is sometimes called the set of decision variables, or also called the input. The other criteria,
is the objective function 𝐽 (𝑢), or more formally 𝐽 ∶ ℜ𝑛 → ℜ. The objective function 𝐽 (𝑢) is
obtained from your goals.

Example we want to go from 𝐴 to 𝐵 in least time. Often the selection of 𝐽 (𝑢) is not straight
forward. Selection of 𝐽 (𝑢) can be di�cult in areas such as social or environmental science.

In stock markets, 𝐽(𝑢) is given and we just use it. Example is 𝐽(𝑢) = 𝑢2 + 6𝑢+ 𝑒−𝑢 in ℜ𝑛. Often
we test the algorithm first in ℜ1 or ℜ2 before going to higher dimensions. In ℜ4 an example
is

𝐽(𝑢) = 𝑢1𝑢2 − 3𝑢1𝑢3𝑢4 + 6𝑢2𝑢3 − 6𝑢1 − 4𝑢2 − 𝑢3𝑢4 + 12

This has 16 vertices.

Reader Can you find max 𝐽(𝑢) subject to 𝑈 described by |𝑢𝑖| ≤ 𝑖 using common sense?

Answer It will be on the vertices of hypercube.

In VLSI, with hundreds of resistors, there are 2𝑛 vertices, so the problem becomes computa-
tionally harder to solve very quickly. To proof that the optimal value is at a vertex, the idea
is to freeze all other variables except for one at a time. This gives a straight line in the free
variable. Hence the optimal is at ends of the line.

min here

max here

J(u)

ui

The main case problem: Find 𝑢∗ that minimizes 𝐽 (𝑢) with the constraints 𝑢 ∈ 𝑈. 𝑢∗ might
not exist. When it exists, then

𝐽 (𝑢∗) = 𝐽∗ = min
𝑢∈𝑈

𝐽 (𝑢)

When we begin, we do not know if 𝑢∗ exist. We write

𝐽 (𝑢∗) = inf
𝑢∈𝑈

𝐽 (𝑢)

Example 𝑈 = ℜ𝑛, 𝐽 (𝑢) = 𝑒−𝑢. So 𝑢∗ do not exist. We do not allow 𝑢∗ to take values ±∞. But
we allow 𝐽 (𝑢∗) itself to become ±∞. For example, if 𝐽 (𝑢) = 𝑢2 then 𝑢∗ = 0.

13

1.2 Lecture 2. Thursday, January 21, 2016

1.2.1 Existence of optimal solution, explicit and implicit 𝐽(𝑢)
Tractability. 𝑈 ⊆ ℜ𝑛, the decision variables. 𝐽 ∶ ℜ𝑛 → ℜ. Problem: find 𝑢∗ such that 𝐽 (𝑢∗) =
inf𝑢∈𝑈 𝐽 (𝑢).

𝑢∗, when it exists, is called the optimal element. We do not allow 𝑢∗ = ±∞, but allow
𝐽 (𝑢∗) = ±∞. For example. 𝐽 (𝑢) = 1

𝑢 on 𝑈 = (0,∞). We say sup𝑢∈𝑈 𝐽 (𝑢) = 𝐽∗ = 0 but 𝑢∗ = ∞
do not exist. Hence 𝐽∗ is a limiting supremum value. Another example is 𝐽 (𝑢) = −𝑢 on ℜ.
Therefore 𝐽∗ = −∞ but 𝑢∗ do not exist.

Reader: We can consider max𝑢∈𝑈 𝐽 (𝑢) ≡ sup𝑢∈𝑈 𝐽 (𝑢). Note that

max
𝑢∈𝑈

𝐽 (𝑢) = −min
𝑢∈𝑈

𝐽 (𝑢)

But 𝑢∗min ≠ 𝑢∗max.

Some problems will be tractable and some are not. Some problems will not have defined
algorithms and some might not have certified algorithms. Some problems have algorithms
but are not tractable. NP hard problems can be either tractable or not tractable. What about
stochastic problems? If 𝑢 is random variable, we can not write 𝐽 (𝑢). But instead we work with
̃𝐽 (𝑢) = 𝐸 (𝐽 (𝑢)) where 𝐸 is expectation. So now ̃𝐽 (𝑢) fits in the frameworks we used earlier.

We also need to make distinction between explicit and implicit 𝐽 (𝑢). When we write 𝐽 (𝑢) =
𝑢21+𝑒𝑢2 cos 𝑢1+𝑢2, then 𝐽 (𝑢) here is explicit. But if we have a circuit as below, where 𝐽 (𝑢) = 𝑉𝑜𝑢𝑡,
then here 𝐽 (𝑢) is implicit, since we have to solve the complicated RLC circuit to find 𝐽 (𝑢), so
we implicitly assume 𝐽 (𝑢) exists.

J(u) = Vout

load
complicated RLCVin

Figure 1.3: Complicated RLC

1.2.2 Farming problem

First detailed example Optimal farming example. Let 𝑦 (𝑘) be the annual crop value where
𝑘 is the year. This is the end of year value of the crop. At end of year, we use some of this
to invest and the rest we keep as profit. Let 𝑢 (𝑘) ∈ [0, 1] be the fraction of 𝑦 (𝑘) invested
back. Therefore (1 − 𝑢 (𝑘)) is the fraction of 𝑦 (𝑘) which is taken out as profit. Dynamics of

14

the problem are: 𝑦 (𝑘 + 1) = 𝑦 (𝑘) if we invest nothing (i.e. 𝑢 = 0). But if we invest, then

𝑦 (𝑘 + 1) = 𝑦 (𝑘) + 𝜔 (𝑘)
amount invested

�����������𝑢 (𝑘) 𝑦 (𝑘)

Where 𝜔 (𝑘) is an independent and identically distributed (i.i.d.) random variable which
depends on the weather and other variables. Let 𝐸 (𝜔 (𝑘)) = 𝜛. We have 𝑁 years planning
horizon. What about 𝐽 (𝑢)? If we model things as a convex problem, we can solve it, but if
we do not, it becomes hard to solve.

𝐽 (𝑢) = 𝐸 �𝑦 (𝑘) +
𝑁−1
�
𝑘=0
𝑦 (𝑘) (1 − 𝑢 (𝑘))� (1)

The set 𝑈 here is {𝑢 (0) , 𝑢 (1) ,⋯ , 𝑢 (𝑁 − 1)}. In this example 𝐽 (𝑢) is implicit. We need to make
𝐽 (𝑢) explicit. Let us now calculate 𝐽 (𝑢) for 𝑁 = 2

𝑦1 = 𝑦0 + 𝜔0𝑢0𝑦0
= 𝑦0 (1 + 𝜔0𝑢0)

In class, we assumed that 𝑦0 = 1. But will keep it here as 𝑌, which is the initial conditions.

𝑦1 = 𝑌 (1 + 𝜔0𝑢0) (2)

Now for the second year, we have

𝑦2 = 𝑦1 + 𝜔1𝑢1𝑦1
= 𝑦1 (1 + 𝜔1𝑢1)

Substituting (2) into the above gives

𝑦2 = 𝑌 (1 + 𝜔0𝑢0) (1 + 𝜔1𝑢1)
= 𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1

Therefore from (1) we have for 𝑁 = 2

𝐽 (𝑢) = 𝐸 �𝑦2 +
1
�
𝑘=0
𝑦𝑘 (1 − 𝑢𝑘)�

= 𝐸

⎛
⎜⎜⎜⎜⎜⎝

𝑦

���𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1
2

+ �𝑌 (1 − 𝑢0) + 𝑦1 (1 − 𝑢1)�

⎞
⎟⎟⎟⎟⎟⎠

= 𝐸 (𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1 + [𝑌 (1 − 𝑢0) + 𝑌 (1 + 𝜔0𝑢0) (1 − 𝑢1)])
= 𝐸 (𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1 + 𝑌 − 𝑌𝑢0 + 𝑌 − 𝑌𝑢1 + 𝑌𝜔0𝑢0 − 𝑌𝜔0𝑢0𝑢1)

= 𝑌 �3 + 𝜛𝑢0 + 𝜛𝑢1 + 𝜛2𝑢0𝑢1 − 𝑢0 − 𝑢1 + 𝜛𝑢0 − 𝜛𝑢0𝑢1�

= 𝑌 �3 + 2𝜛𝑢0 + 𝑢1 (𝜛 − 1) + 𝜛2𝑢0𝑢1 − 𝑢0 − 𝜛𝑢0𝑢1�

= 𝑌 �3 + 𝑢0 (2𝜛 − 1) + 𝑢1 (𝜛 − 1) + 𝑢0𝑢1 �𝜛2 − 𝜛��

Reader Use syms to find 𝐽 (𝑢) for 𝑁 = 4.

If we want maximum profit, then common sense says that 𝜛 should be large (good weather).
Then 𝑢∗ = (1, 1). This says 𝑢0 = 1 and 𝑢1 = 1. In other words, we invest everything back into
the crop each year. The above was obtained by maximizing term by term since all terms
are positive. If 𝜛 < 1

2 (bad weather), then 𝑢∗ = (0, 0) and all coe�cients are negative.

15

In the above, 𝐽 (𝑢) is multilinear function in 𝑢0, 𝑢1. If all 𝑢𝑘 are held constant except for one
at a time, then 𝐽 (𝑢) becomes linear in the free parameter. In HW 1, we need to proof that
extreme point of a multilinear function is at a vertex. So for this problem, the possible
solutions are (0, 0) , (0, 1) , (1, 0) , (1, 1).

Reader Is there a value of 𝜛 that gives (1, 0) and (0, 1)?

For arbitrary 𝑁 there are 2𝑁 vertices in hypercube for a multilinear 𝐽 (𝑢) where 𝑢 ∈ ℜ𝑛.So for
large 𝑛, a multilinear problem is much harder to solve than a convex optimization problem.
Even simple problems demonstrate intractability. Let 𝑀 = 𝑁 × 𝑁 matrix. Let each every
𝑚𝑖𝑗 be known within bounds 𝑚−

𝑖𝑗 ≤ 𝑚𝑖𝑗 ≤ 𝑚+
𝑖𝑗 . The question is: What are the bounds on the

determinant of matrix 𝑀?

Reader ponder this question in the context of multilinear problem. To determine this for
small 𝑛 in Matlab, here is some code for 𝑛 = 4 (uses allcomb which is a file exchange file)� �

1 a = repmat({[-1 1]},16,1);
2 v = allcomb(a{:});
3 r = arrayfun(@(i) det(reshape(v(i,:),4,4)),1:size(v,1));
4 max(r)
5 min(r)� �

˙

Running the above gives
ans =

16

ans =
-16

1.3 Lecture 3. Tuesday, January 26, 2016

1.3.1 Multilinear functions, level sets, contours

Today will be on multilinear functions, then back to infimum of 𝐽 (𝑢). Then we will go over
real analysis to see when a min is reached. We need to find first if there exists a minimum
before starting to search for it. For the farming problem we looked at, say 𝜛 = 2. We want
to look at contours in ℜ2 and ℜ3. Try first in ℜ2.

Reader Obtain level sets, contour lines, defined as Λ𝛾 = �𝑢 ∶ 𝐽 (𝑢) = 𝛾�. In words, contour
line is curve of equal values of 𝐽 (𝑢). For farming problem, show contour lines of 𝐽 (𝑢) looks
like

16

1

1
u∗

u(0)

u(1)

Figure 1.4: Level sets

For 𝜛 = 2, and using results from last lecture, where we had

𝐽 (𝑢) = 𝑌 �3 + 𝑢0 (2𝜛 − 1) + 𝑢1 (𝜛 − 1) + 𝑢0𝑢1 �𝜛2 − 𝜛��

Where 𝑌 = 𝑦 (0) = 1, the above becomes

𝐽 (𝑢) = 3 + 𝑢0 (2𝜛 − 1) + 𝑢1 (𝜛 − 1) + 𝑢0𝑢1 �𝜛2 − 𝜛� (1)

Reader Use Matlab syms to obtain 𝐽 (𝑢) for any 𝑁

Answer Below is a function which generates 𝐽 (𝑢) for any𝑁. Function called nma_farm(N,y0),
takes in 𝑁, which is how many years and 𝑦 (0), the initial value. 𝜔0 below is 𝜛, the mean of
the 𝜔 random variable).� �

1 function nma_farm(N,initial)
2 %reader anwer for farming problem, lecture 1/21/16, ECE 719
3 %N is number of years
4 %Initial, is y(0). See class notes for ECE 719 for
5 %description of the problem. Second lecture.
6 %Nasser M. Abbasi
7

8 y = []; w=[]; u=[];
9 idx = [];
10 syms y(idx) w(idx) u(idx)
11 tot = 0;
12

13 for k = 0:N-1 %main loop
14 tot = tot + Y(k)*(1-u(k));
15 end
16 J = Y(N)+ tot;
17

18 for i = 0:N %use mean
19 J = subs(J,w(i),'w0');

17

20 end
21

22 J=subs(J,y(0),initial);
23 expand(J)
24

25 %--------------------------
26 % recursive function internal function
27 function r = Y(k)
28 if k ==0
29 r = y(0);
30 else
31 r = Y(k-1)*(1+w(k-1)*u(k-1));
32 end
33 end
34

35 end� �
Here are example run outputs
>> nma_farm(2,1)
2*w0*u(0) - u(1) - u(0) + w0*u(1) + w0^2*u(0)*u(1) - w0*u(0)*u(1) + 3

>> nma_farm(4,1)
4*w0*u(0) - u(1) - u(2) - u(3) - u(0) + 3*w0*u(1) + 2*w0*u(2)
+ w0*u(3) + 3*w0^2*u(0)*u(1) + 2*w0^2*u(0)*u(2) + w0^2*u(0)*u(3)
+ 2*w0^2*u(1)*u(2) + w0^2*u(1)*u(3) + w0^2*u(2)*u(3) -
w0*u(0)*u(1) - w0*u(0)*u(2) - w0*u(0)*u(3) - w0*u(1)*u(2) -
w0*u(1)*u(3) - w0*u(2)*u(3) - w0^2*u(0)*u(1)*u(2) -
w0^2*u(0)*u(1)*u(3) + 2*w0^3*u(0)*u(1)*u(2) - w0^2*u(0)*u(2)*u(3)
+ w0^3*u(0)*u(1)*u(3) - w0^2*u(1)*u(2)*u(3) + w0^3*u(0)*u(2)*u(3)
+ w0^3*u(1)*u(2)*u(3) - w0^3*u(0)*u(1)*u(2)*u(3) +
w0^4*u(0)*u(1)*u(2)*u(3) + 5
>> nma_farm(5,1)

5*w0*u(0) - u(1) - u(2) - u(3) - u(4) - u(0) + 4*w0*u(1)
+ 3*w0*u(2) + 2*w0*u(3) + w0*u(4) + 4*w0^2*u(0)*u(1) +
3*w0^2*u(0)*u(2) + 2*w0^2*u(0)*u(3) + 3*w0^2*u(1)*u(2) +
w0^2*u(0)*u(4) + 2*w0^2*u(1)*u(3) + w0^2*u(1)*u(4) +
2*w0^2*u(2)*u(3) + w0^2*u(2)*u(4) + w0^2*u(3)*u(4) - w0*u(0)*u(1)
- w0*u(0)*u(2) - w0*u(0)*u(3) - w0*u(1)*u(2) - w0*u(0)*u(4)
- w0*u(1)*u(3) - w0*u(1)*u(4) - w0*u(2)*u(3) - w0*u(2)*u(4)
- w0*u(3)*u(4) - w0^2*u(0)*u(1)*u(2) - w0^2*u(0)*u(1)*u(3) +
3*w0^3*u(0)*u(1)*u(2) - w0^2*u(0)*u(1)*u(4) - w0^2*u(0)*u(2)*u(3)
+ 2*w0^3*u(0)*u(1)*u(3) - w0^2*u(0)*u(2)*u(4) - w0^2*u(1)*u(2)*u(3)
+ w0^3*u(0)*u(1)*u(4) + 2*w0^3*u(0)*u(2)*u(3) - w0^2*u(0)*u(3)*u(4)
- w0^2*u(1)*u(2)*u(4) + w0^3*u(0)*u(2)*u(4) + 2*w0^3*u(1)*u(2)*u(3)

18

- w0^2*u(1)*u(3)*u(4) + w0^3*u(0)*u(3)*u(4) + w0^3*u(1)*u(2)*u(4)
- w0^2*u(2)*u(3)*u(4) + w0^3*u(1)*u(3)*u(4) + w0^3*u(2)*u(3)*u(4)
- w0^3*u(0)*u(1)*u(2)*u(3) - w0^3*u(0)*u(1)*u(2)*u(4)
+ 2*w0^4*u(0)*u(1)*u(2)*u(3) - w0^3*u(0)*u(1)*u(3)*u(4)
+ w0^4*u(0)*u(1)*u(2)*u(4) - w0^3*u(0)*u(2)*u(3)*u(4)
+ w0^4*u(0)*u(1)*u(3)*u(4) - w0^3*u(1)*u(2)*u(3)*u(4) +
w0^4*u(0)*u(2)*u(3)*u(4) + w0^4*u(1)*u(2)*u(3)*u(4)
- w0^4*u(0)*u(1)*u(2)*u(3)*u(4) + w0^5*u(0)*u(1)*u(2)*u(3)*u(4) + 6

At 𝑢∗ = (𝑢0, 𝑢1) = (1, 1) then (1) becomes

𝐽∗ = 3 + (4 − 1) + (2 − 1) + (4 − 2)
= 9

Reader Look at 𝐽 (𝑢) in ℜ3 for the farming problem. Today’s topic: When does the optimal
element 𝑢∗ exist?

1.3.2 Pareto optimality

When we have more than one objective function, 𝐽𝑖 (𝑢) ∶ 𝑈 ⊆ ℜ𝑛 → ℜ, for 𝑖 = 1⋯𝑚. We call
𝑢∗ ∈ 𝑈 a Pareto optimal, if the following holds: Given any other 𝑢 ∈ 𝑈, we can not have the
following two relations be true at the same time:

1. 𝐽𝑖 (𝑢) ≤ 𝐽𝑖 (𝑢∗) , 𝑖 = 1⋯𝑚

2. 𝐽𝑘 (𝑢) < 𝐽𝑘 (𝑢∗) for some 𝑘.

This is related to e�ciency in economics. So something that is not Pareto optimal, can be
eliminated.

Reader Say 𝑈 = (0,∞), 𝐽1 (𝑢) = 𝑢+1, 𝐽2 (𝑢) =
1

𝑢+1 , describe the set of Pareto optimal solutions.

Reader By creating 𝐽 (𝑢) = 𝛼1𝐽1 (𝑢) + 𝛼2𝐽2 (𝑢), with 𝛼𝑖 ≥ 0, show the solution (optimal 𝐽 (𝑢)),
depends on 𝛼𝑖 which reflects di�erent utility functions.

1.3.3 compact and bounded sets, open and closed sets

Now we will talk about existence of optimal element 𝑢∗. We will always assume that 𝐽 (𝑢) is
continuous function in 𝑢 ∈ 𝑈. Two di�erent conditions on the set 𝑈 can be made

1. Is the set compact?

2. Is the set Unbounded?

In both cases, we still want conditions on 𝐽 (𝑢) itself as well. We begin with the definition of

𝐽∗ = inf
𝑢∈𝑈

𝐽 (𝑢)

Remember that we do not allow 𝑢 = ±∞, but 𝐽∗ can be ±∞.

19

Example 𝐽 (𝑢) = −𝑢 on ℜ. Then 𝐽∗ = −∞, but there is no optimal element 𝑢∗ = −∞. But it is
always true that there is a sequence �𝑢𝑘�

∞

𝑘=1
= 𝑢𝑘 such that 𝐽 �𝑢𝑘� → 𝐽∗ even though there is no

𝑢∗ element. We write

lim
𝑘→∞

𝐽 �𝑢𝑘� = 𝐽∗

A bad set 𝑈 is often one which is not closed. Example is of a gas pedal which when pressed
to the floor will cause the car to malfunction, but the goal is to obtain the shortest travel
time, which will require one to press the gas pedal to the floor in order to obtain the highest
car speed.

This shows that there is no optimal 𝑢∗ but we can get as close to it as we want. This is an
example of a set 𝑈 that is not closed on one end. We always prefer to work with closed sets.
An open set is one such as 𝑈 = (0, 𝜋4], and a closed set is one such as 𝑈 = �0, 𝜋4 �.

Definition of continuity If 𝑢𝑘 → 𝑢0 then 𝐽 �𝑢𝑘� → 𝐽 (𝑢0), we write 𝐽 �𝑢0� = lim𝑘→∞ 𝐽 �𝑢𝑘�. This is
for every sequence 𝑢𝑘.

Equivalent definition: There is continuity at 𝑢0 if the following holds: Given any 𝜀 ≥ 0 there
exists 𝛿 such that �𝐽 (𝑢) − 𝐽 �𝑢0�� < 𝜀, whenever �𝑢 − 𝑢0� < 𝛿.

Closed sets Includes all its limit points. Examples:

1. [0, 1] is closed set.

2. [0, 1) not closed. Because we can approach 1 as close as we want, but never reach it.

3. [0,∞) is closed. Since it includes all its limit points. Remember we are not allowed to
use 𝑢∗ = ∞.

4. ℜ is closed and open at same time.

A set can be both open and closed. ℜ is such a set. To show a set is closed, we need to show
that the limit of any sequence is also in the set.

The intersection of closed sets remains closed, but the union can be an open set. This
is important in optimization. If 𝑈𝑖 represent constraint sets, then the intersection of the
constraints remain a closed set. Closed sets also contain its boundaries.

Now we will talk about boundness of set. A set is bounded if we can put it inside a sphere
of some radius. We always use the Euclidean norm. If a set is bounded, using one norm,
then it is bounded in all other definitions of norms. There is more than one definition of a
norm. But we will use Euclidean norm.

We like to work with compact sets. A Compact set is one which is both bounded and closed.
These are the best for optimization.

1.3.4 B-W (The Bolzano-Weierstrass) theorem

Each bounded sequence in ℜ𝑛 has a convergent sub-sequence. This is useful, since it says if
the sequence is bounded, then we can always find at least one sub-sequence in it, which is

20

convergent. For example 𝑢𝑘 = cos 𝑘. This does not converge, but is has a subsequence in it
which does converge. The same for 𝑢𝑘 = (−1)𝑘.

1.4 Lecture 4. Thursday, January 28, 2016

1.4.1 Existence of optimal solutions

We will spend few minutes to review existence of optimal solutions then we will talk about
computability and convexity. We know now what 𝐽 (𝑢) being continuous means. Closed sets
are very important for well posed optimization problems. Typical closed set is 𝑢 ≤ 𝑘, where
𝑘 is constant. If the function 𝐽 (𝑢) where 𝑢 ∈ 𝑈, is a continuous function, then the set 𝑈 must
be closed.

Reader Give a proof.

We talked about 𝑈 being closed and bounded (i.e. compact). Compact sets are best for
optimization. We talked about sequence �𝑢𝑘�

∞

𝑘=1
= 𝑢𝑘 and a subsequence in this sequence

�𝑢𝑘𝑖�
∞

𝑖=1
= 𝑢𝑘𝑖. If 𝑢𝑘 converges to 𝑢∗ then we say lim𝑘→∞ �𝑢𝑘 − 𝑢∗� = 0. Finally, we talked about

Bolzano-Weierstrass theorem.

1.4.2 Classical existence theorem

Suppose 𝐽 ∶ 𝑈 → ℜ is continuous and assume 𝑈 is compact (i.e. bounded and closed) and
non-empty, then there exists an optimal element 𝑢∗ ∈ 𝑈 such that 𝐽 (𝑢∗) = 𝐽∗ = min𝑢∈𝑈 𝐽 (𝑢).
This does not say that 𝑢∗ is unique. Just that it exists.

Proof Let 𝑢𝑘 ∈ 𝑈 be a sequence such that 𝐽 �𝑢𝑘� → 𝐽∗, then by Bolzano-Weierstrass 𝑢𝑘𝑖 be a
convergent subsequence with limit 𝑢∗ ∈ 𝑈.

Reader Show that 𝐽 �𝑢𝑘𝑖� also converges to 𝐽∗. Note: 𝐽 �𝑢𝑘𝑖� is sequence of real numbers, which
converges to a real number 𝐽∗.

Example 𝑢𝑘 = (−1)𝑘. Let 𝐽 (𝑢) = 𝑒−𝑢2 then 𝐽 (𝑢) converges, but 𝑢𝑘 does not. Hence we need to
look for subsequence 𝑢𝑘𝑖 in 𝑢𝑘. Now, by continuity, 𝐽 (𝑢∗) = lim𝑖→∞ 𝐽 �𝑢𝑘𝑖� = 𝐽∗.

There are many problems where the set is open, as in unconstrained problems. These are
called open cone problems.

1.4.3 Coercive functions and Coercivity theorem

Coercive function Suppose 𝑈 ⊂ ℜ𝑛 and 𝐽 ∶ 𝑈 → ℜ̸. We say that 𝐽 is positive coercive if

lim
‖𝑢‖→∞

𝐽 (𝑢) = ∞ (*)

Initially, think of 𝑈 as the whole ℜ𝑛 space. So 𝐽 (𝑢) blows up at ∞. Note: there is a type of
uniform continuity implied by Eq (*). What Eq (*) means is that given any 𝛾⋙ 0, arbitrarily

21

large, there exists radius 𝑅 such that 𝐽 (𝑢) > 𝛾, whenever ‖𝑢‖ > 𝑅. This basically says that for
a Coercive function we can always find a sphere, where all values of this function are larger
than some value for any ‖𝑢‖ > 𝑅. This is useful, if we are searching for a minimum, in that
we can obtain a cut o� on the values in 𝑈 to search for.

Example 𝐽 (𝑢) = 𝑢2 is positive coercive, but 𝐽 (𝑢) = 𝑒𝑢 is not (since we can’t find a sphere to
limit values within it to some number), since as 𝑢 → −∞, the function 𝑒𝑢 does not blow up.

𝐽 (𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐

Is coercive only when 𝑎 > 0. The most famous coercive function is the positive definite
quadratic form. Let 𝐴 be 𝑛 × 𝑛 symmetric and positive definite matrix and let 𝑏 ∈ ℜ𝑛. Let
𝑐 be any real number, then 𝐽 (𝑢) = 𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐 is coercive. This is essential to quadratic
programming.

Why is 𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐 coercive? From matrix algebra, if 𝐴 is 𝑛 × 𝑛 symmetric and 𝑥 ∈ ℜ𝑛,

then 𝜆min ‖𝑥‖
2 ≤ 𝑥𝑇𝐴𝑥 ≤ 𝜆max ‖𝑥‖

2. For 𝑥, 𝑦 ∈ ℜ𝑛, by Schwarz inequality, ��𝑥, 𝑦��2 ≤ ⟨𝑥, 𝑥⟩ �𝑦, 𝑦�
or 𝑥𝑇𝑦 ≤ ‖𝑥‖ �𝑦�, to establish 𝐽 (𝑢) = 𝑢𝑇𝐴𝑢+𝑏𝑇𝑢+𝑐 notice then 𝐽 (𝑢) ≥ 𝜆min (𝐴) ‖𝑢‖

2 −‖𝑏‖ ‖𝑢‖+𝑐.
Since 𝐴 is positive definite, then 𝜆min (𝐴) > 0 (smallest eigenvalue must be positive). So this
is the same as scalar problem 𝑎𝑢2 + 𝑏𝑦 + 𝑐. Hence 𝐽 (𝑢) is coercive function in 𝑢.

ReaderWhat if we have a physical problem, leading to 𝑢𝑇𝐴𝑢+𝑏𝑇𝑢+𝑐, but 𝐴 is not symmetric,
what to do? Solution: We can always work with the symmetrical part of 𝐴 using 𝑢𝑇𝐴𝑢 =
1
2𝑢

𝑇 �𝐴 + 𝐴𝑇� 𝑢, hence we work with

𝐽 (𝑢) =
1
2
𝑢𝑇 �𝐴 + 𝐴𝑇� 𝑢 + 𝑏𝑇𝑢 + 𝑐

Instead.

1.4.4 Convex sets and Coercivity theorem

Coercivity theorem Suppose 𝐽 ∶ 𝑈 → ℜ is a continuous function and coercive. And 𝑈 ⊆ ℜ𝑛

is closed. Then an optimal element 𝑢∗ ∈ 𝑈 exist minimizing 𝐽 (𝑢). Reader Consider the
maximization problem instead of minimization.

Now we start on a new topic: Convexity. Toward finding optimal. A set 𝑈 ⊆ ℜ𝑛 is said to
be convex set if the following holds: For any 𝑢0, 𝑢1 ∈ 𝑈, and 𝜆 ∈ [0, 1] then it follows that
𝜆𝑢0+(1 − 𝜆) 𝑢1 ∈ 𝑈. In words, this says that all points on the straight line between any points
in the set, are also in the set. Examples:

22

convex convex
not convex

Figure 1.5: Convex sets

Reader If 𝑈1, 𝑈2 are both convex then show the intersection is also convex.

What about countable intersections ∩∞
𝑖=1𝑈𝑖 ?

Answer Yes. Example 𝑈𝑖 = �𝑢 ∈ ℜ𝑛 ∶ ‖𝑢‖ ≤ 𝑒−𝑖�. The union is not a convex set.

Constraints using OR are union. So harder to work with OR constraints, since union of
convex sets is not convex.

Reader Describe all possible convex sets on ℜ1.

Reader Suppose 𝑈𝑖 is defined by set of inequalities 𝑎𝑇𝑖 𝑢 ≤ 𝑏𝑖, 𝑖 = 1⋯𝑚, these are intersections
of sets. This is used in Linear programming.

interesection of constraints

Figure 1.6: Intersection of constraints

1.5 Lecture 5. Tuesday, February 2, 2016

Back to the most important topic in optimization, which is convexity. We want to build on
convex sets.

Definition A set 𝑈 ⊆ ℜ𝑛 is convex if the following holds: Given any 𝑢0, 𝑢1 ∈ 𝑈 and 𝜆 ∈ [0, 1],
then 𝑢𝜆 = (1 − 𝜆) 𝑢0 + 𝜆𝑢1 is also in 𝑈. We will discuss convex function also soon.

Reader Show that the set {𝑢 ∈ ℜ𝑛, ‖𝑢‖ ≤ 𝑟} is convex.

23

Answer: Let ‖𝑢1‖ ≤ 𝑟, ‖𝑢2‖ ≤ 𝑟. Then ‖(1 − 𝜆) 𝑢1 + 𝜆𝑢2‖ ≤ ‖(1 − 𝜆) 𝑢1‖ + ‖𝜆𝑢2‖ by triangle
inequality. Hence

‖(1 − 𝜆) 𝑢1 + 𝜆𝑢2‖ ≤ (1 − 𝜆) ‖𝑢1‖ + 𝜆 ‖𝑢2‖

If some center point, say 𝑢̂ is given, then {𝑢 ∶ ‖𝑢 − 𝑢̂‖ ≤ 𝑟} is convex set. The translation

𝑢 + 𝑢̂ is also convex set. Other norms on ℜ𝑛 are important. ‖𝑢‖1 =
𝑛
�
𝑖=1
|𝑢𝑖| and ‖𝑢‖∞ =

max {|𝑢1| , |𝑢2| ,⋯ , |𝑢𝑛|}.

Reader In ℜ2, sketch unit ball {𝑢 ∶ ‖𝑢‖ ≤ 𝑟} using norms ‖𝑢‖1 and ‖𝑢‖∞

1

1

−1

−1

L1 norm

1

1

−1

−1

L∞ norm

Figure 1.7: 𝐿1 and 𝐿∞ norms

Reader Do the above for ℜ3.

Reader Suppose 𝑈 is convex, and 𝑢0, 𝑢1,⋯ , 𝑢𝑚 ∈ 𝑈 and 𝜆0, 𝜆1,⋯ , 𝜆𝑚 ≥ 0 with
𝑚
�
𝑖=1
𝜆𝑖 = 1, then

show that
𝑚
�
𝑖=1
𝜆𝑖𝑢𝑖 ∈ 𝑈. (See HW 2). For three points, 𝑢0, 𝑢1, 𝑢2, then

𝑚
�
𝑖=1
𝜆𝑖𝑢𝑖 is the mixture,

which is convex set between all the three points:

u0

u2u1

The set of
all points
λ0u

0 +
λ1u

1 + λ2u
2

1.5.1 Polytope

In words, these are flat sided shapes, which are convex. Let 𝑣1, 𝑣2,⋯ , 𝑣𝑚 ∈ ℜ𝑛 be given. We
call set 𝑈 a polytope generated by 𝑣𝑖 if 𝑈 is a set of mixtures of 𝑣𝑖. That is,

𝑈 = �
𝑚
�
𝑖=1
𝜆𝑖𝑣𝑖 ∶ 𝜆𝑖 ≥ 0 and

𝑚
�
𝑖=1
𝜆𝑖 = 1�

24

The following are some illustration. Given these points

v1 v2

v3

v4
v5

v7
v6

The generated polytope is

v1 v2

v3

v4
v5

v7
v6

Notice that the points 𝑣6, 𝑣7 are redundant and have not been used. In higher dimensions,
it will be harder to know which are the vertices of the extreme points.

Extreme points Let 𝑈 ⊆ ℜ𝑛 be convex set. A point 𝑢 ∈ 𝑈 is said to be an extreme point if
the following holds: 𝑢 can not be written as a convex combination of other points 𝑢0, 𝑢1,⋯.
Examples:

All boundary
points are
extreme points

All points on this
edge are points

1.5.2 Convex functions

So far we talked about convex sets. Now we will talk about convex functions. 𝐽 (𝑢) ∶ ℜ𝑛 → ℜ
is said to be convex function is the following is satisfied. Given any 𝑢0, 𝑢1 ∈ 𝑈 ⊆ ℜ𝑛 and
𝜆 ∈ [0, 1] then

𝐽 �(1 − 𝜆) 𝑢0 + 𝜆𝑢1� ≤ (1 − 𝜆) 𝐽 �𝑢0� + 𝜆𝐽 �𝑢1�

25

In words, it means the function value 𝐽 (𝑢) between 2 points, is always below the straight
cord points joining 𝐽 �𝑢0� and 𝐽 �𝑢1�

u0 u1uλ

J(uλ)

J(u)

u

For example, the following is not a convex function.

J(u)

u

But the above is convex over some regions. But overall, it is not a convex function. We can
not use this definition to check if a function is convex for higher dimensions. In that case,
we have to use the Hessian to check.

Reader A function 𝐽 (𝑢) is concave if −𝐽 (𝑢) is convex. Example: 𝑒𝛼𝑢 is convex. Any linear
function is convex function. 𝑎𝑇𝑢 + 𝑏 is convex. Also − log (𝑢) is a convex function. And
𝐽 (𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐 with 𝑎 > 0 is a convex function. What about the following?

max {𝐽1, 𝐽2} = max �(𝑎1)𝑇 𝑢 + 𝑏1, (𝑎2)𝑇 𝑢 + 𝑏2�
Is it convex function? The pointwise maximum of two or more convex functions is a convex
function.

J(u)

u

J1

J2

Max of J1, J2 is convex function

Reader Suppose 𝐽𝑖 ∶ ℜ𝑛 → ℜ are convex functions, not necessarily linear, for 𝑖 = 1,⋯𝑚 , then
𝐽 (𝑢) = max {𝐽1 (𝑢) ,⋯ , 𝐽𝑚 (𝑢)} is convex function. Hint, use (1 − 𝜆) 𝐽 (𝑢)+𝜆𝐽 (𝑢) = (1 − 𝜆)max (⋯)+
⋯.

26

Next is to connect convex functions to convex sets.

1.6 Lecture 6. Thursday, February 4, 2016

1.6.1 Convex functions and convex sets

An interpretation of convex function in 1D is bowl shaped. But pictures are only for low
dimensions. Convex applications have taken o� in the last 15 years. For example, CVX
software. Why is convex so great? There are useful properties of convex functions

1. Every local minimum is also global. This is important, since once we converge to a
minimum, we can stop, as there will not be any better.

2. If the objective function is strict convex, then the minimum found is unique. If it is not
strict convex, then there are other minimums of the same value, hence the minimum
is not unique.

3. In quadratic programming, positive definite is the same as convex.

Reader Suppose 𝑈 ⊆ ℜ𝑛 is convex set, and 𝐽 ∶ 𝑈 → ℜ is convex function. Then show the
set of minimizer elements 𝑈∗ = �𝑢 ∈ 𝑈, 𝐽 (𝑢) = min𝑢∈𝑈 𝐽 (𝑢)� is a convex set.

Other nice properties of convex functions is that point wise maximum of convex functions is
also a convex function. The maximum over an indexed collection is also a convex function.
Let 𝐼 be a set, perhaps uncountable, for each 𝑖 ∈ 𝐼, suppose we have a convex function
𝐽𝑖 ∶ ℜ𝑛 → ℜ is convex. Let 𝐽 (𝑢) = sup𝑖∈𝐼 𝐽𝑖 (𝑢) and assume 𝐽 (𝑢) < ∞.

Reader Show that 𝐽 (𝑢) is convex function. Example: 𝐽𝑞 (𝑢) = 6𝑢2 + �6𝑞 − cos 𝑞� + 𝑒−𝑞. Where
�𝑞� ≤ 1. Then 𝐽 (𝑢) = max�𝑞�≤1 𝐽𝑞 (𝑢).

1.6.2 convex functions and convex sets relation

Given 𝐽 ∶ ℜ𝑛 → ℜ, define 𝑒𝑝𝑖𝐽 as set

�(𝑢, 𝑣) ∈ ℜ𝑛+1 ∶ 𝑣 ≥ 𝐽 (𝑢)�

𝐽 (𝑢) is convex function and 𝑒𝑝𝑖𝐽 is a convex set. See HW2 𝑒𝑝𝑖 problem.

1.6.3 Criterion for convexity, Gradient and Hessian

Begin with 𝐽 ∶ ℜ𝑛 → ℜ. How to check 𝐽 (𝑢) is convex? We assume 𝐽 (𝑢) is twice di�erentiable,
called 𝐶2. And also assume 𝑈 is open and convex set.

Definition: Gradient ∇𝐽 (𝑢) = � 𝜕𝐽
𝜕𝑢1

𝜕𝐽
𝜕𝑢1

⋯ 𝜕𝐽
𝜕𝑢𝑛
�
𝑇
∈ ℜ𝑛.

27

The Hessian

∇ 2𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽2

𝜕𝑢21

𝜕2𝐽
𝜕𝑢1𝜕𝑢2

⋯ 𝜕2𝐽
𝜕𝑢1𝜕𝑢𝑛

𝜕2𝐽
𝜕𝑢2𝜕𝑢1

𝜕𝐽2

𝜕𝑢22
⋯ 𝜕2𝐽

𝜕𝑢2𝜕𝑢𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝐽
𝜕𝑢𝑛𝜕𝑢1

𝜕2𝐽
𝜕𝑢𝑛𝜕𝑢2

⋯ 𝜕𝐽2

𝜕𝑢2𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Reader Why the Hessian is always symmetric? (Order of di�erentiation does not matter).

Positive definite Hessian is the same as saying second derivative is greater than zero.

1.6.4 Hessian theorem

Suppose 𝐽 ∶ ℜ𝑛 → ℜ is 𝐶2. Then 𝐽 is convex function in 𝑈 i� ∇ 2𝐽 (𝑢) is positive semi-definite
matrix for all 𝑢 ∈ 𝑈.

Proof We first proof for 𝑛 = 1. Su�ciency: Suppose ∇ 2𝐽 (𝑢) ≥ 0 for all 𝑢 ∈ 𝑈, (i.e. this is the
same as saying 𝜕2𝐽

𝜕𝑢2 > 0, and let 𝑢0, 𝑢1 be given in 𝑈. We need to show that for 𝜆 ∈ [0, 1], that
𝐽 �𝜆𝑢0 + (1 − 𝜆) 𝑢1� ≤ 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�. We write

𝐽 �𝑢𝜆� = 𝐽 �𝑢0� +�
𝑢𝜆

𝑢0
𝐽′ (𝜉) 𝑑𝜉

Since 𝐽′ (𝜉) non-decreasing and 𝐽′′ (𝜉) > 0, so the above can be upper bounded as

𝐽 �𝑢𝜆� ≤ 𝐽 �𝑢0� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢0� (1)

Similarly,

𝐽 �𝑢1� = 𝐽 �𝑢𝜆� +�
𝑢1

𝑢𝜆
𝐽′ (𝜉) 𝑑𝜉

𝐽 �𝑢1� ≥ 𝐽 �𝑢𝜆� + 𝐽′ �𝑢𝜆� �𝑢1 − 𝑢𝜆�

𝐽 �𝑢𝜆� ≤ 𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1� (2)

Therefore 𝜆
(1)
�𝐽�𝑢𝜆� + (1 − 𝜆)

(2)
�𝐽�𝑢𝜆� using (1) and (2) gives

𝜆𝐽 �𝑢𝜆� + (1 − 𝜆) 𝐽 �𝑢𝜆� ≤ 𝜆 �𝐽 �𝑢0� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢0�� + (1 − 𝜆) �𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1��

Hence

𝐽 �𝑢𝜆� ≤ 𝜆 �𝐽 �𝑢0� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢0𝐽′ �𝑢𝜆�� + �𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1�� − 𝜆 �𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1��

28

Therefore

𝐽 �𝑢𝜆� = 𝜆𝐽 �𝑢0� + 𝜆𝑢𝜆𝐽′ �𝑢𝜆� − 𝜆𝑢0𝐽′ �𝑢𝜆� + 𝐽 �𝑢1� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢1𝐽′ �𝑢𝜆� − �𝜆𝐽 �𝑢1� + 𝜆𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1��

= 𝜆𝐽 �𝑢0� + 𝜆𝑢𝜆𝐽′ �𝑢𝜆� − 𝜆𝑢0𝐽′ �𝑢𝜆� + 𝐽 �𝑢1� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢1𝐽′ �𝑢𝜆� − 𝜆𝐽 �𝑢1� − 𝑢𝜆𝜆𝐽′ �𝑢𝜆� + 𝑢1𝜆𝐽′ �𝑢𝜆�

= 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1� − 𝜆𝑢0𝐽′ �𝑢𝜆� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢1𝐽′ �𝑢𝜆� + 𝑢1𝜆𝐽′ �𝑢𝜆�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1�

But 𝑢𝜆 = 𝜆𝑢0 + (1 − 𝜆) 𝑢1, hence the above becomes

𝐽 �𝑢𝜆� ≤ �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝜆𝑢0 + (1 − 𝜆) 𝑢1 − 𝑢1�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝜆𝑢0 + 𝑢1 − 𝜆𝑢1 − 𝑢1�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝜆𝑢0 − 𝜆𝑢1�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� − 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0�

= 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�

Hence we showed that 𝐽 �𝑢𝜆� ≤ 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1� . Same idea can be used to establish
necessity. We now establish ∇ 2𝐽 (𝑢) > 0 and convexity next time. We carry this to 𝑛 dimen-
sions.

1.7 Lecture 7, Tuesday, February 9, 2016

For 𝑛 = 1, Let 𝐽 ∶ 𝑈 → ℜ𝑛, where 𝑈 is open set (so that we can di�erentiate on it), and

convex set. Let 𝐽 is 𝐶2. 𝐽 is convex i� 𝑑2𝐽
𝑑𝑢2 ≥ 0 for all 𝑢 ∈ 𝑈. We are trying to establish the

Hessian theorem. Now we want to show the above for 𝑛 > 1. We start with the bridging
lemma, which will use to proof the Hessian theorem.

1.7.1 The Bridging Lemma

Given 𝐽 ∶ 𝑈 → ℜ𝑛, and 𝑈 is convex set, we want to know if 𝐽 is a convex function. The lemma
says that 𝐽 is convex i� the following condition holds:

Given any 𝒖 ∈ 𝑈, 𝒛 ∈ ℜ𝑛, then the function ̃𝐽 (𝜆) = 𝐽 (𝒖 + 𝜆𝒛) is convex on the set Λ =
{𝒖, 𝜆𝒛 ∈ 𝑼}. Notice that the function ̃𝐽 (𝜆) is scalar valued. It depends on scalar 𝜆. Hence we
say ̃𝐽 (𝜆) + ℜ → ℜ. This lemma says that the function ̃𝐽 (𝜆) is convex in any direction we
move to from 𝒖 in the direction of 𝒛 within the set 𝑈 i� 𝐽 is convex function.

29

convex set U

~u

λ1~z

λ2~z

J̃(λ) = J(~u+ λ~z)

Bridging
lemma: function
J̃ is convex in
any direction, iff
J is convex.

Figure 1.8: Bridging lemma

Proof See also the handout. Necessity: Assume 𝐽 is convex function. We must show that ̃𝐽 is
convex function. Pick 𝒛 ∈ ℜ and 𝜆 ∈ [0, 1] and any scalars 𝛼0, 𝛼1 ∈ Λ. We must show that

̃𝐽 �𝜆𝛼0 + (1 − 𝜆) 𝛼1� ≤ 𝜆 ̃𝐽 �𝛼0� + (1 − 𝜆) ̃𝐽 �𝛼1�

Indeed, from ̃𝐽 (𝜆) + 𝐽 (𝒖 + 𝜆𝒛), then
̃𝐽 �𝜆𝛼0 + (1 − 𝜆) 𝛼1� + 𝐽 �𝒖 + �𝜆𝛼0 + (1 − 𝜆) 𝛼1� 𝒛� (1)

+ 𝐽 �𝜆 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) �𝒖 + 𝛼1𝒛�� (2)

Reader Going from (1) to (2) above is just a rewriting and manipulation only. Now since 𝐽
is assumed convex, then

𝐽 �𝜆 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) �𝒖 + 𝛼1𝒛�� ≤ 𝜆𝐽 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) 𝐽 �𝒖 + 𝛼1𝒛�

Therefore (1) becomes
̃𝐽 �𝜆𝛼0 + (1 − 𝜆) 𝛼1� ≤ 𝜆𝐽 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) 𝐽 �𝒖 + 𝛼1𝒛�

≤ 𝜆 ̃𝐽 �𝛼0� + (1 − 𝜆) ̃𝐽 �𝛼1�

Hence ̃𝐽 is convex function. QED. Now to proof su�ciency. Assume that ̃𝐽 is convex, we
need to show that this implies that 𝐽 is convex on 𝑈. Since ̃𝐽 then

̃𝐽 �(1 − 𝜆) 𝛼0 + 𝜆𝛼1� ≤ (1 − 𝜆) ̃𝐽 �𝛼0� + 𝜆 ̃𝐽 �𝛼1�

= (1 − 𝜆) 𝐽 �𝑢 + 𝛼0𝑧� + 𝜆𝐽 �𝑢 + 𝛼1𝑧� (3)

But
̃𝐽 �(1 − 𝜆) 𝛼0 + 𝜆𝛼1� = 𝐽 �𝑢 + �(1 − 𝜆) 𝛼0 + 𝜆𝛼1� 𝑧� (4)

= 𝐽 �(1 − 𝜆) �𝑢 + 𝛼0𝑧� + 𝜆 �𝑢 + 𝛼1𝑧�� (5)

Where the main trick was going from (4) to (5) by just rewriting, so it match what we have
in (3). Now replacing (5) into LHS of (3) we find

𝐽 �(1 − 𝜆) �𝑢 + 𝛼0𝑧� + 𝜆 �𝑢 + 𝛼1𝑧�� ≤ (1 − 𝜆) 𝐽 �𝑢 + 𝛼0𝑧� + 𝜆𝐽 �𝑢 + 𝛼1𝑧�

30

Let �𝑢 + 𝛼0𝑧� ≡ 𝑢0, 𝑢 + 𝛼1𝑧 ≡ 𝑢1, both in 𝑈, then the above becomes

𝐽 �(1 − 𝜆) 𝑢0 + 𝜆𝑢1� ≤ (1 − 𝜆) 𝐽 �𝑢0� + 𝜆𝐽 �𝑢1�

Hence 𝐽 is convex function. QED. Now the bridging lemma is proved. we use it to proof the
Hessian theorem.

1.7.2 The Hessian Theorem, strong local minimum

Let 𝐽 = 𝑈 → ℜ, where 𝑈 is open set in ℜ𝑛. Hessian theorem says that 𝐽 is convex function
on 𝑈 i� ∇ 2𝐽 (𝑢) is PSD (positive semi-definite) evaluated at each 𝑢 ∈ 𝑈.

Reader Suppose ∇ 2𝐽 (𝑢) is PSD, does this imply strict convexity on 𝐽 (𝑢)? Answer: No. Need
an example.

See handout Hessian for proof.

Algorithms We will now start new chapter. Looking at algorithms to find optimal of 𝐽 (𝑢).
Preliminaries: Begin with 𝐽 ∶ ℜ𝑛 → ℜ.

Strong local minimum 𝑢∗ is strong local minimum if there exists 𝛿 > 0 such that 𝐽 (𝑢∗) < 𝐽 (𝑢)
for all 𝑢 such that ‖𝑢∗ − 𝑢‖ < 𝛿.

We say 𝑢∗ is global minimum if 𝐽 (𝑢∗) ≤ 𝐽 (𝑢) for all 𝑢. Henceforth, 𝐽 (𝑢) is 𝐶2. From undergrad-
uate calculus, 𝑢∗ is strong local minimum if the following is satisfied: (for 𝑛 = 2)

1. 𝜕𝐽
𝜕𝑢1
�
𝑢∗
= 0, 𝜕𝐽

𝜕𝑢2
�
𝑢∗
= 0

2. 𝜕2𝐽
𝜕𝑢21
�
𝑢∗
> 0, � 𝜕

2𝐽
𝜕𝑢21
� � 𝜕

2𝐽
𝜕𝑢21
� − � 𝜕2𝐽

𝜕𝑢1𝜕𝑢2
�
2
> 0

For 𝐽 ∶ ℜ𝑛 → ℜ, in other words, in higher dimensions, define gradient

(∇𝐽 (𝑢))𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽
𝜕𝑢1
𝜕𝐽
𝜕𝑢2
⋮
𝜕𝐽
𝜕𝑢𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Normally we consider gradient as column vector. Then we say that a point 𝑢∗ ∈ ℜ𝑛 is strong
local min. if ∇𝐽 (𝑢) = 0, and ∇ 2𝐽 (𝑢) > 0.

Proof: Suppose 𝑢∗ is strong local min. Then looking at neighborhood of 𝑢∗, let 𝑣 ∈ ℜ𝑛 be
arbitrary. Look at 𝐽 (𝑢∗ + 𝑣) and expand in Taylor series.

𝐽 (𝑢∗ + 𝑣) = 𝐽 (𝑢∗) + ∇𝐽 (𝑢∗) 𝑣 + 𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 + 𝐻.𝑂.𝑇 �𝑂 �‖𝑣‖3��

Since 𝑢∗ is strong local min. then ∇𝐽 (𝑢∗) = 0. Hence 𝐽 (𝑢∗ + 𝑣) = 𝐽 (𝑢∗) + 𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 + 𝐻.𝑂.𝑇.
Since 𝐽 (𝑢∗ + 𝑣) > 𝐽 (𝑢∗) (since strong local minimum), then this implies that

𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 > 0

31

Since 𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 dominate over 𝐻.𝑂.𝑇.. This complete the proof.

1.8 Lecture 8. Thursday, February 11, 2016

Reminder, test 1 next Thursday Feb. 18, 2016. Up to and including HW 3. Today’s lecture
on gradient based optimization. We developed two conditions. 𝑢∗ is strong local minimum
when ∇𝐽 (𝑢∗) = 0 and ∇ 2𝐽 (𝑢∗) < 0.

1.8.1 gradient based optimization and line searches

We mention line searches. It is about optimization for one variable functions only. There
will be reading assignment on line search. Some methods used are

1. Golden section.

2. Fibonacci.

3. Bisection

And more.

1.8.2 Optimal gain control problems, Lyapunov equation

We will now set up application areas. Optimal gain control and circuit analysis problems.
In general we have

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

Where 𝑥̇ is 𝑛× 1,𝐴 is 𝑛× 𝑛, 𝐵 is 𝑛×𝑚 and 𝑢 is 𝑚× 1. System has 𝑛 states. 𝑢 is the input. This
can be voltage or current sources. 𝑢 is the control and 𝑥 is the state. We want to select 𝑢 so
that 𝑥 (𝑡) behaves optimally. Classical setup is to use state feedback

𝑢 = 𝑘𝑥 + 𝑣

Where 𝑘 is 𝑚 × 𝑛 is called the feedback gain matrix and 𝑣 is extra input but we will not use
it. It is there for extra flexibility if needed. We use optimization to determine 𝑘. Entries of
𝑘𝑖𝑗 are our optimization variables.

∑
x

K

+
v u

Figure 1.9: State feedback

32

Often, with 𝑢 = 0, the system 𝑥̇ = 𝐴𝑥 may be unstable or have overshoot. We will set up a
performance objective aimed at reducing or eliminating the badness of the original response
(with no feedback control). Let

𝐽 (𝑘) = �
∞

0

‖𝑥‖2

�����������𝑥𝑇 (𝑡) 𝑥 (𝑡)𝑑𝑡

In the above, 𝐽 (𝑘) is implicit function of 𝑘. This cost function was found to work well in
practice. We now want to make 𝐽 (𝑘) explicit in 𝑘. We can solve for 𝑥 (𝑡) from

𝑥̇ = (𝐴 + 𝐵𝑘) 𝑥
𝑥 = 𝑥 (0) 𝑒(𝐴+𝐵𝑘)𝑡

Then 𝐽 (𝑘) = ∫
∞

0
𝑥𝑇 (0) 𝑒(𝐴+𝐵𝑘)

𝑇𝑡𝑑𝑡. But this is not practical to use. This is not closed form and
hard to compute. So how can we come up with closed form for 𝐽 (𝑘) which is easier to work
with? Let us look at the closed loop. Let 𝑣 = 0 and we have

𝑥̇ = 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥
= 𝐴𝑐𝑥

Where 𝐴𝑐 is the closed loop system matrix. Let us find a matrix 𝑃 if possible such that

𝑑 �𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)� = −𝑥𝑇 (𝑡) 𝑥 (𝑡)

So that now

𝐽 (𝑘) = �
𝑏

𝑎
𝑥𝑇 (𝑡) 𝑥 (𝑡) 𝑑𝑡

= −�
𝑏

𝑎
𝑑 �𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)�

= �
𝑎

𝑏
𝑑 �𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)�

= 𝑥𝑇 (𝑎) 𝑃𝑥 (𝑎) − 𝑥𝑇 (𝑏) 𝑃𝑥 (𝑏)

Can we find 𝑃?

𝑑 �𝑥𝑇𝑃𝑥� = 𝑥𝑇𝑃𝑥̇ + 𝑥̇𝑇𝑃𝑥 ?= −𝑥𝑇𝑥

= 𝑥𝑇𝑃 (𝐴𝑐𝑥) + (𝐴𝑐𝑥)
𝑇 𝑃𝑥 ?= −𝑥𝑇𝑥

= 𝑥𝑇𝑃 (𝐴𝑐𝑥) + �𝑥𝑇𝐴𝑇
𝑐 � 𝑃𝑥

?= −𝑥𝑇𝑥

Bring all the 𝑥 to LHS then

𝐴𝑇
𝑐 𝑥 + 𝑃𝐴𝑐 = −𝐼

Where 𝐼 is the identity matrix. This is called the Lyapunov equation. This is the equation to
determine 𝑃. Without loss of generality, we insist on 𝑃 being symmetric matrix. Using this

33

𝑃, now we write

𝐽 (𝑘) = �
∞

0
𝑥𝑇 (𝑡) 𝑥 (𝑡) 𝑑𝑡

= −�
∞

0
𝑑 �𝑥𝑇𝑃𝑥�

= 𝑥𝑇𝑃𝑥�0
∞

= 𝑥𝑇 (0) 𝑃𝑥 (0) − 𝑥𝑇 (∞) 𝑃𝑥 (∞)

For stable system, 𝑥 (∞) → 0 (remember that we set 𝑣 = 0, so there is no external input,
hence if the system is stable, it must end up in zero state eventually). Therefore

𝐽 (𝑘) = 𝑥𝑇 (0) 𝑃𝑥 (0)

With 𝑘 satisfying

𝐴𝑇
𝑐 (𝑘) 𝑥 + 𝑃𝐴𝑐 (𝑘) = −𝐼

Example Let 𝑦′′ = 𝑢. Hence 𝑥′1 = 𝑥2, 𝑥′2 = 𝑢. Note, this is not stable with 𝑢 = 0. Using linear
state feedback,

𝑢 = 𝑘𝑥

𝑢 = �𝑘1 𝑘2�
⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

Hence

𝑥′ = 𝐴𝑥 + 𝐵𝑢
= 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥

⎡
⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴

�������⎡
⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎦ +

𝐵
⏞⎡⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎦

𝑘

����������𝑘1 𝑘2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

=
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0 0
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

=

𝐴𝑐

���������⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦

For stable closed loop, we need 𝑘1 < 0, 𝑘2 < 0 by looking at characteristic polynomial roots.

34

Now we solve the Lyapunov equation.

𝐴𝑇
𝑐 𝑃 + 𝑃𝐴𝑐 = −𝐼

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0 𝑘1
1 𝑘2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

Solving for 𝑃 gives

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑘22−𝑘1+𝑘
2
1

2𝑘1𝑘2
− 1
2𝑘1

− 1
2𝑘1

1−𝑘1
2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎦

With 𝑥 (0) =
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦, then

𝐽 (𝑘) = 𝑥 (0)𝑇 𝑃𝑥 (0)

= �1 1�

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑘22−𝑘1+𝑘
2
1

2𝑘1𝑘2
− 1
2𝑘1

− 1
2𝑘1

1−𝑘1
2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

=
𝑘21 + 𝑘22 − 2𝑘1 − 2𝑘2 + 1

2𝑘1𝑘2

Here is Matlab script to generate the above� �
1 syms k1 k2 p11 p12 p21 p22;
2 Ac = [0 1;k1 k2];
3 P = [p11 p12;p21 p22];
4 eq = Ac.'*P+P*Ac==-eye(2);
5 sol = solve(eq,{p11,p12,p21,p22});
6 P = subs(P,sol)
7 x0 = [1;1];
8 J = simplify(x0'*P*x0)� �

˙
Let 𝑘1 = 𝑘2 = 𝑘 < 0, we obtain

𝐽 (𝑘) =
2𝑘2 − 4𝑘 + 1

2𝑘2
As 𝑘 → −∞ then 𝐽∗ → 1. Therefore 𝐽∗ can never get to zero. This means there is no 𝑘∗1, 𝑘∗2
such that ∇𝐽 (𝑘∗) = 0. Set 𝑘 is not compact. Not coercive either. This is ill posed problem.
This can be remedied by changing the control to

𝐽 (𝑘) = �
∞

0
𝑥𝑇𝑥𝑑𝑡 + 𝜆�

∞

0
𝑢𝑇𝑢𝑑𝑡

35

1.9 Lecture 9. Tuesday, February 16, 2016

1.9.1 keywords for next exam 1

1. Common sense optimization. Farming problem. Explicit vs. Implicit.

2. Minimizing 𝐽 (𝑢), inf, sup

3. We want to know ahead of time if minimum can be attained. 𝐽∗ but 𝑢∗ might not exist.

4. Multilinear function. 𝑢∗ is at a vertex. But they grow as 2𝑛 where 𝑛 is number of
variables.

5. When can we be sure 𝑢∗ exist? if the set is compact, we talked about W-B theory, which
is used to show 𝑢∗ exist always for compact sets. If the set is not compact but coercive,
then we can compact it.

6. Convex sets and convex functions. For convex sets, when we find 𝑢∗ then the local
minimum is also a global minimum.

7. Special case of convex sets is polytope. Polyhedron is a polytope but can be unbounded.

8. Strong local minimum is when ∇𝐽 (𝑢) = 0 and ∇ 2𝐽 (𝑢) > 0. To test for convexity, find
the Hessian. If the Hessian is semi positive definite, then it is convex.

9. Optimal gain control, Lyapunov equation.

10. If there are proofs, they will be simple, such as show the sum of two convex functions
is also convex function.

1.9.2 Gradient based optimization

Starting new chapter. Gradient based optimization. Many algorithms involve line searches.
In other words, optimization in ℜ𝑛 is often solved by performing many optimization (line
searches) in ℜ.

Optimization algorithm: Starting with 𝒖𝑘 and direction 𝒗 we study 𝐽 �𝒖𝑘 + ℎ𝒗� where ℎ is
the step size. This is called line search. ℎ ∈ [0, ℎmax]. We want to use optimal step size ℎ∗.
Once found, then

𝒖𝑘+1 = 𝒖𝑘 + ℎ∗𝒗

Reader Read and learn about line search. Bisection, Golden section, Fibonacci and many
more. We will not cover this in this course. We also want to minimize the number of function
evaluations, since these can be expensive.

One way to do line search, is to do ℎ = 0 𝛿 ℎmax and then evaluate 𝐽 (ℎ) and pick the minimizing
ℎ∗. For stopping criteria, we can check for the following

1. �𝑢𝑘+1 − 𝑢𝑘� ≤ 𝛿

36

2. �𝐽 �𝑢𝑘+1� − 𝐽 �𝑢𝑘�� ≤ 𝛿

3. �
𝐽�𝑢𝑘+1�−𝐽�𝑢𝑘�

𝐽�𝑢𝑘+1�
� ≤ 𝛿

4. �∇𝐽 �𝑢𝑘�� ≤ 𝛿

We also need to pick a starting point for the search. This is 𝒖0. What if we do not know
where to start? We can pick multiple starting locations. And pick the best result obtained.

Reader Find min‖𝒗‖=1 𝐽 (𝒖 + 𝒗). Show optimal 𝒗 is

𝑣∗ =
−∇𝐽 (𝑢)
‖∇𝐽 (𝑢)‖

This is called myopic local terrain. Gets us to local minimum. The steepest descent algorithm
is the following:

1. Select 𝑢0 (starting point)

2. Find step size ℎ

3. Iterate. While �∇𝐽 �𝑢𝑘�� > 𝛿 then 𝑢𝑘+1 = 𝑢𝑘 − ℎ
∇𝐽 (𝑢)
‖∇𝐽 (𝑢)‖

4. Update counter and go back to step 3 above.

See my class study notes for detailed algorithm of all search methods we did in this course.

Later we will study conjugate gradient methods.

Example: Let 𝑢0 = [1, 1]. Let ℎ = 0.1. Let 𝐽 (𝑢) = 𝑢21 + 2𝑢22 − 6𝑢1𝑢2 + 2𝑢1 + 𝑢2 + 4. Then

∇𝐽 (𝑢) =
⎡
⎢⎢⎢⎢⎣
2𝑢1 − 6𝑢2 + 2
6𝑢2 − 6𝑢1 + 1

⎤
⎥⎥⎥⎥⎦

So ∇𝐽 �𝑢0� =
⎡
⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎦ and �∇𝐽 �𝑢

0�� = 1

√5
. Hence

𝑢1 = 𝑢0 − ℎ
⎡
⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎦
1

√5

=
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦ − 0.1

⎡
⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎦
1

√5

=
⎡
⎢⎢⎢⎢⎣
1.0894
0.95528

⎤
⎥⎥⎥⎥⎦

Reader Find 𝑢2.

37

1.10 Lecture 10. Thursday, February 18, 2016 (Exam 1)

Exam 1

1.11 Lecture 11. Tuesday, February 23, 2016

Watch for HW4 going out today. Implementation of steepest descent with optimal step size.
See handout circuit for 2 stage amplifier.

1.11.1 Steepest descent

As the number of stages increases it becomes harder to analytically determine the optimal
capacitance of each stage to produce maximum power. For two stages, by direct circuit
analysis we obtain

𝐽 (𝑢) = (11 − 𝑢1 − 𝑢2)
2 + (1 + 𝑢1 + 10𝑢2 − 𝑢1𝑢2)

2

Where 𝑢𝑖 is capacitance. There are two optimal values, they are 𝑢∗ = (10, 1) which is a
maximum and 𝑢∗ = (13, 4) which is a minimum. There is also a minimum at (7, −2).

Geometric insight on what might go wrong with steepest descent: Gradient algorithms work
best from a far but as they get close to the optimal point, there are better algorithms such
as the generalized Newton Raphson method which works best when close to the optimal
point. If the step size ℎ is big, we approach the optimal fast, but because the step size is
large, we can overshoot and will end up oscillating around the optimal point. If ℎ is too
small, the search will become very slow. Hence we use steepest descent but with optimal
step size, where the step size is calculated at each step. Ingredients of the steepest descent
algorithm are:

1. Initial guess 𝑢0

2. maximum step size 𝐻. Here we have ℎ𝑘 which is the step size used at each iteration.

3. Iteration step. When at 𝑢𝑘 define ̃𝐽 (ℎ) = 𝐽

⎛
⎜⎜⎜⎜⎜⎝𝑢

𝑘 − ℎ
∇𝐽 �𝑢𝑘�

�∇𝐽 �𝑢𝑘��

⎞
⎟⎟⎟⎟⎟⎠ and carry a line search

to find optimal ℎ which minimized ̃𝐽 (ℎ), then ℎ𝑘 = ℎ∗

4. 𝑢𝑘+1 = 𝑢𝑘 − ℎ𝑘
∇𝐽�𝑢𝑘�

�∇𝐽�𝑢𝑘��

5. Stopping criteria. Decide how to stop the search. �∇𝐽 �𝑢𝑘�� ≤ 𝜀

Reader: Consider oscillation issue.

Convergence result. From Polak. Let 𝐽 (𝑢) be smooth and di�erentiable. Let 𝑢∗ be strong
local minimum. Assume constant 0 ≤ 𝑚 ≤ 𝑀 s.t.

38

𝑚𝑢𝑇𝑚 ≤ 𝑢𝑇∇ 2𝐽 (𝑢) 𝑢 ≤ 𝑀𝑢𝑇𝑀

In neighborhood of 𝑢∗. This criteria says that there is a good convexity and a bad convexity.
What does this mean? We’ll say more about this. In the neighborhood of 𝑢∗ let 𝜃 = 𝑚

𝑀 .
Interpretation:

good for steepest descent

bad for steepest descent

J(u)

θ = 1

θ small

small θ is better for steepest descent

Figure 1.10: Steepest descent diagram

Define 𝐸 = 𝐽 �𝑢0� − 𝐽 (𝑢∗) then Polak says

0 ≤ 𝐽 �𝑢𝑘� − 𝐽 (𝑢∗) ≤ 𝐸𝜃𝑘

Best case is when 𝐸 is small and 𝜃 is small. This is local result.

1.11.2 Classi�cations of Convergence

Convergence can be

1. Linear

2. Quadratic

3. Superlinear

These are the three convergence types we will cover. The second algorithm has quadratic
convergence, which is the generalized Newton-Raphson method. We will start on this now
but will cover it fully next lecture.

The idea is to approximate 𝐽 (𝑢) as quadratic at each step and obtain ℎ𝑘. By assuming 𝐽 (𝑘)
is quadratic locally, we approximate 𝐽 (𝑢) using Taylor and drop all terms after the Hessian.
Now we find where the minimum is and use the step size to find 𝑢𝑘+1. More on this next
lecture.

39

1.12 Lecture 12. Thursday, February 25, 2016

1.12.1 Quadratic optimization, superlinear convergence

We will start the class with a reader problem. Consider

𝐽 (𝑢) =
1
2
𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐 (1)

∇𝐽 (𝑢) = 𝐴𝑢𝑘 + 𝑏 (2)

with 𝐴 being symmetric positive definite (PSD) matrix. This is classic quadratic objective
function. You can take a complete course on quadratic optimization. The global optimal is
at the solution for ∇𝐽(𝑢) = 0. Hence we write

∇𝐽(𝑢) = 0
𝐴𝑢∗ + 𝑏 = 0

𝑢∗ = −𝐴−1𝑏 (3)

Note that since 𝐴 is PSD (the Hessian is PSD), then we know that 𝐽 (𝑢) is convex. Hence the
local minimum is also a global minimum. Now we imagine we are doing steepest descent
on this function and we are at iterate 𝑢𝑘 with optimal step size, which we can make as large
as we want. Hence we need to optimize

̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 − ℎ [∇𝐽 (𝑢)]�

for ℎ. Notice we did not divide by ‖∇𝐽 (𝑢)‖ here, since the step size is free to be as large as
needed. Expanding the above using (2) gives

̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 − ℎ �𝐴𝑢𝑘 + 𝑏��

= 𝐽 �(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏�

Using (1) for RHS of the above gives

̃𝐽 (ℎ) =
1
2
�(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏�

𝑇
𝐴�(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏� + 𝑏𝑇 �(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏� + 𝑐

The above is quadratic in ℎ. The optimal ℎ we are solving for. Simplifying gives

̃𝐽 (ℎ) =
1
2
�𝐴𝑢𝑘 + 𝑏�

𝑇
𝐴�𝐴𝑢𝑘 + 𝑏� ℎ2 − �𝐴𝑢𝑘 + 𝑏�

𝑇
�𝐴𝑢𝑘 + 𝑏� ℎ + constant terms

To find optimal ℎ, then
𝑑 ̃𝐽 (ℎ)
𝑑ℎ

= 0

�𝐴𝑢𝑘 + 𝑏�
𝑇
𝐴�𝐴𝑢𝑘 + 𝑏� ℎ − �𝐴𝑢𝑘 + 𝑏�

𝑇
�𝐴𝑢𝑘 + 𝑏� = 0

ℎ∗ =
�𝐴𝑢𝑘 + 𝑏�

𝑇
�𝐴𝑢𝑘 + 𝑏�

�𝐴𝑢𝑘 + 𝑏�
𝑇
𝐴�𝐴𝑢𝑘 + 𝑏�

In practice, we would need to check 𝑑2 ̃𝐽(ℎ)
𝑑ℎ2 also to make sure ℎ is minimizer.

Reader Why does it take multiple iterations to get the common sense answer 𝑢∗ = −𝐴−1𝑏?

40

For quadratic objective function 𝐽 (𝑢) we can obtain 𝑢∗ in one step, using 𝑢∗ = −𝐴−1𝑏. This is
the idea behind the generalized Newton-Raphson method. 𝐽 �𝑢𝑘� is approximated as quadratic
function at each step, and ℎ∗ is found from above. To elaborate, expanding by Taylor

𝐽 �𝑢𝑘 + Δ𝑢� = 𝐽 �𝑢𝑘� + ∇𝐽 �𝑢𝑘�
𝑇
Δ𝑢 +

1
2
Δ𝑢𝑇∇ 2𝐽 �𝑢𝑘� Δ𝑢 + 𝐻𝑂𝑇

We approximate as quadratic by dropping higher order terms and optimize for Δ𝑢 (same
as ℎ used earlier), and here ∇ 2𝐽 �𝑢𝑘� is same as the 𝐴 above also. Therefore we find

Δ𝑢∗ = − �∇ 2𝐽 �𝑢𝑘��
−1
∇𝐽 �𝑢𝑘�

This converges in one step Δ𝑢∗ if 𝐽 (𝑢) was actually a quadratic function. Notice that Newton
method is expensive if used repeatedly, as it requires finding Hessian at each step and also
finding the inverse of it. The algorithm is: Initialize 𝑢0. Then iterate, where

𝑢𝑘+1 = 𝑢𝑘 − �∇ 2𝐽 �𝑢𝑘��
−1
∇𝐽 �𝑢𝑘� (4)

Then check for convergence. If Hessian fails to be PSD, in this case 𝐽 �𝑢𝑘+1� can end up

increasing not decreasing. How to stop? We can try more iterations to see if 𝐽 �𝑢𝑘� will
decrease again.

Example Let

𝐽 (𝑢) = (11 − 𝑢1 − 𝑢2)
2 + (1 + 10𝑢2 + 𝑢1 − 𝑢1𝑢2)

2

Pick 𝑢0 = (18, 3) then

∇𝐽 �𝑢0� =
⎡
⎢⎢⎢⎢⎣
40
100

⎤
⎥⎥⎥⎥⎦

∇ 2𝐽 �𝑢0� =
⎡
⎢⎢⎢⎢⎣
10 44
44 130

⎤
⎥⎥⎥⎥⎦

We see here that ∇ 2𝐽 �𝑢0� is not PSD (determinant is negative). Now we do the iterate
equation (4), obtaining

𝑢1 = 𝑢0 −
⎡
⎢⎢⎢⎢⎣
10 44
44 130

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
40
100

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
18
3

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
10 44
44 130

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
40
100

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
19.3
1.8

⎤
⎥⎥⎥⎥⎦

If we look at the contour plot, we will see this point made 𝐽 (𝑢) larger (away from optimal)
but if we let it iterate more, it will turn and move back to the optimal point.

41

u∗

u0

u1

optimal If Hessian not
PSD, we can end
up moving away
from u0

Figure 1.11: Hessian and optimal solution diagram

Now we will start on the third algorithm. Conjugate gradient algorithms (CG) are family of
algorithms with property of superlinear convergence. It also has quadratic convergence.

1.12.2 Quadratic convergence

Quadratic convergence says the following: If 𝐽 (𝑢) is positive definite quadratic form, the
iterate 𝑢𝑘 → 𝑢∗ completes in finite number of steps 𝑁. This means if we give the algorithm a
quadratic form function, it will converge in 𝑁 steps to the optimal. The di�erence between
this and Newton-Raphson, is that there is no Hessian to be calculated using this algorithm
as the case was with Newton-Raphson. The conjugate direction algorithms work well from
far away and also when close to the optimal point. (note: Steepest descent worked well from
a far, but not when getting close to the optimal point 𝑢∗). The CG algorithms also have the
property of superlinear convergence. This property do not apply to steepest descent.

1.12.3 Superlinear convergence

What is superlinear convergence? A sequence �𝑢𝑘� in ℜ𝑛 is said to converge super-linearly

to 𝑢∗ if the following holds: Given any 𝜃 ∈ (0, 1], then �𝑢𝑘−𝑢∗�
𝜃𝑘

→ 0. The important part of this
definition is that the above should go to zero for any 𝜃 ∈ (0, 1] and not some 𝜃. Examples

below illustrate this. Let �𝑢𝑘� = 1
𝑘 . Hence the sequence is �1, 12 ,

1
3 ,⋯�. Clearly this sequence

goes to 𝑢∗ = 0. Does it converge super-linearly to 𝑢∗? Applying the definition

�1𝑘 − 0�
𝜃𝑘

=
1
𝑘𝜃𝑘

If we can find one 𝜃 that do not converge to zero, then we are done. Trying 𝜃 = 3
4 , then the

above becomes 4𝑘

𝑘3𝑘
which do not go to zero as 𝑘 → ∞. Hence this is not superlinear. How

about �𝑢𝑘� = 1
𝑘2 . This is still not superlinear. Similarly �𝑢𝑘� = 1

𝑘𝑚 . What about �𝑢𝑘� = 1
𝑒𝑘
. Here

we get

�1𝑘 − 0�
𝜃𝑘

=
𝑒−𝑘

𝜃𝑘

42

Trying 𝜃 = 1
2 gives 2𝑘

𝑒𝑘
which is not superlinear (do not go to zero for large 𝑘). But if 𝜃 = 2

3 it

will converge. But it has to converge for all 𝜃, so 1
𝑒𝑘
is not superlinear. How about �𝑢𝑘� = 1

𝑒𝑘2

here we find it is superlinear. We obtain 𝑒−𝑘2

𝜃𝑘
and this goes to zero for any 𝜃. To show this,

use log on it and simplify. (Reader).

Next time we will go over conjugate direction algorithm in more details.

1.13 Lecture 13. Tuesday, March 1, 2016

1.13.1 Conjugate direction algorithms

Today lecture will be devoted to conjugate direction (C.D.) algorithms. We will start by
remembering that there are many C.D. algorithms. From last lecture, be aware of: Superlinear
convergence and quadratic convergence. The quadratic convergence concept is that on a
P.S.D. (positive symmetric definite) form, the algorithm will converge in 𝑛 steps or less
(where 𝑛 is the size 𝐴). Using exact arithmetic (not counting for floating point errors). We
will proof this today. We will some preliminaries, then go over ingredients and go over
examples, then go over properties of conjugate gradient.

Preliminaries: Let 𝐴𝑛×𝑛 be positive definite symmetric, then the pair of vectors 𝑢, 𝑣 are said
to be mutually conjugate w.r.t. 𝐴 if

𝑢𝑇𝐴𝑣 = 0

This is generalization of orthogonality. Because we can take 𝐴 = 𝐼𝑛 which is PSD.

Reader A set of distinct mutually conjugate vectors always exist for 𝐴. These are the
eigenvectors of 𝐴. The proof starts with writing 𝐴𝑣 = 𝜆1𝑣 and 𝐴𝑢 = 𝜆2𝑢, then applying
𝑢𝑇𝐴𝑣 = 0.

We will use this set of vectors as search directions. We will generate these vectors on the fly
during the search and do line search along these directions. So instead of using ∇𝐽 (𝑢) as the
direction we did line search on when using steepest descent, we will now use the conjugate
vectors instead.

Properties: Suppose 𝑣0, 𝑣1,⋯ , 𝑣𝑛−1 is a set of mutually conjugate vectors w.r.t 𝐴. (𝐴 is PSD).
First step is to show these vectors are linearly independent.

Lemma: 𝑣𝑖 are linearly independent. Proof: Suppose
𝑛−1
�
𝑖=0
𝛼𝑖𝑣𝑖 = 0 (1)

For scalars 𝛼𝑖. We must show that all 𝛼𝑖 = 0. Let use consider 𝛼𝑘. If we can show that 𝛼𝑘 = 0

43

for any 𝑘, then we are done. Multiply (1) by �𝑣𝑘�
𝑇
𝐴. Then

�𝑣𝑘�
𝑇
𝐴
𝑛−1
�
𝑖=0
𝛼𝑖𝑣𝑖 = 0

𝑛−1
�
𝑖=0
𝛼𝑖 �𝑣𝑘�

𝑇
𝐴𝑣𝑖 = 0

By mutual conjugate property, then all terms above vanish except 𝛼𝑘 �𝑣𝑘�
𝑇
𝐴𝑣𝑘. Hence

𝛼𝑘 �𝑣𝑘�
𝑇
𝐴𝑣𝑘 = 0

But 𝐴 is PSD and 𝑣𝑘 ≠ 0, therefore 𝛼𝑘 = 0 is only choice. QED. We have proved that
𝑣0, 𝑣1,⋯ , 𝑣𝑛−1 are linearly independent So we can expand any vector 𝑢 ∈ ℜ𝑛 using these as
basis vectors

𝑢 =
𝑛−1
�
𝑖=0
𝑎𝑖𝑣𝑖 (2)

Let us find the coe�cients 𝑎𝑖. Premultiply by �𝑣𝑘�
𝑇
𝐴 both sides

�𝑣𝑘�
𝑇
𝐴𝑢 =

𝑛−1
�
𝑖=0
𝑎𝑖 �𝑣𝑘�

𝑇
𝐴𝑣𝑖

As before, by mutual conjugate, the RHS becomes 𝑎𝑘 �𝑣𝑘�
𝑇
𝐴𝑣𝑘. Solving for 𝑎𝑘 gives

𝑎𝑘 =
�𝑣𝑘�

𝑇
𝐴𝑢

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

Hence (2) becomes

𝑢 =
𝑛−1
�
𝑖=0

�𝑣𝑖�
𝑇
𝐴𝑢

�𝑣𝑖�
𝑇
𝐴𝑣𝑖

𝑣𝑖

This gives any vector 𝑢 in terms of set of vectors 𝑣𝑖 that are linearly independent

Conjugate directions algorithm ingredients are:

1. Initially given 𝑢0. The starting guess vector

2. Iterative step 𝑢𝑘: Generate 𝑣𝑘 a mutual conjugate vector to previous 𝑛 − 1 vectors 𝑣𝑖.
For 𝑣0 use −∇𝐽 (𝑢). Same as steepest descent.

3. Form line search with Max step 𝐻. To minimize ̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 + ℎ𝑣𝑘�. Notice there we
used + sign and not − as with steepest descent. The direction takes care of the sign
in this case.

4. Stopping criteria.

44

Example: Fletcher Reeves.

𝑣0 = −∇𝐽 (𝑢)

𝑣𝑘+1 = −∇𝐽 �𝑢𝑘+1� +
�∇𝐽 �𝑢𝑘+1��

2

�∇𝐽 �𝑢𝑘��
2 𝑣𝑘

Reader Normalize above for implementation.

Reader What is 𝐴 above? Where are these 𝑣𝑘 vectors mutually conjugate? 𝐴 is the Hessian.
Note: These algorithms (C.D.) converge for convex 𝐽 (𝑢). If 𝐽 (𝑢) is not convex or we do not
know, we need to put conditions to make sure it is converging.

For Polyak-Ribieve, see homework.

1.13.2 Quadratic convergence theorem

Consider quadratic form

𝐽 (𝑢) =
1
2
𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐

With 𝐴 = 𝐴𝑇 and positive definite 𝑛×𝑛 matrix. Let 𝑣0,⋯ , 𝑣𝑛+1 be mutually conjugate w.r.t. 𝐴.
Let step size be as large as we want. The conjugate direction algorithm converges to optimal
𝑢∗ = −𝐴−1𝑏 in 𝑛 steps or less

Proof

Let 𝑢𝑘 be the 𝑘𝑡ℎ iterate. If 𝑢𝑘 = 𝑢∗ and 𝑘 ≤ 𝑛 then we are done. Without loss of generality,
assume 𝑢𝑘 ≠ 𝑢∗. We must show that 𝑢𝑛 = 𝑢∗. We first find ℎ𝑘, the step size at iterate 𝑘. From

̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 + ℎ𝑣𝑘�

=
1
2
�𝑢𝑘 + ℎ𝑣𝑘�

𝑇
𝐴�𝑢𝑘 + ℎ𝑣𝑘� + 𝑏𝑇 �𝑢𝑘 + ℎ𝑣𝑘� + 𝑐

This is quadratic in ℎ.

̃𝐽(ℎ) =
1
2
(𝑣𝑘)𝑇𝐴𝑣𝑘ℎ2 + �(𝑣𝑘)𝑇𝐴𝑢𝑘 + 𝑏𝑇𝑣𝑘� ℎ +

constant term

���������������1
2
𝑢𝑘𝐴𝑢𝑘 + 𝑐

Now taking derivative gives

𝑑 ̃𝐽 (ℎ)
𝑑ℎ

= �𝑣𝑘�
𝑇
𝐴𝑣𝑘ℎ + ��𝑣𝑘�

𝑇
𝐴𝑢𝑘 + 𝑏𝑇𝑣𝑘�

Setting this to zero and solving for ℎ gives

ℎ∗ = −
�𝑣𝑘�

𝑇
𝐴𝑢𝑘 + 𝑏𝑇𝑣𝑘

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

= −
�𝑣𝑘�

𝑇
�𝐴𝑢𝑘 + 𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

(3)

45

Hence

𝑢𝑛 = 𝑢0 + ℎ0𝑣0 +⋯+ ℎ𝑛−1𝑣𝑛−1

= 𝑢0 +
𝑛−1
�
𝑘=0
ℎ𝑘𝑣𝑘

Using (3) in the RHS of above, replacing each ℎ𝑘 with the optimal ℎ at each iterate gives

𝑢𝑛 = 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
�𝐴𝑢𝑘 + 𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

= 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝐴𝑢𝑘

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

Replacing 𝑢𝑘 in the second term above in the RHS with 𝑢0 +
𝑘−1
�
𝑖=0
ℎ𝑖𝑣𝑖 gives

𝑢𝑛 = 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘 −
𝑛−1
�
𝑘=0

�𝑣𝑘�
𝑇
𝐴�𝑢0 +

𝑘−1
�
𝑖=0
ℎ𝑖𝑣𝑖�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

𝑣𝑘 (4)

But

�𝑣𝑘�
𝑇
𝐴�𝑢0 +

𝑘−1
�
𝑖=0
ℎ𝑖𝑣𝑖� = �𝑣𝑘�

𝑇
𝐴𝑢0 +

𝑘−1
�
𝑖=0
ℎ𝑖 �𝑣𝑘�

𝑇
𝑣𝑖

= �𝑣𝑘�
𝑇
𝐴𝑢0

Since all terms in
𝑘−1
�
𝑖=0
ℎ𝑖 �𝑣𝑘�

𝑇
𝑣𝑖 vanish by mutual conjugate property. Using this to simplify

(4) gives

𝑢𝑛 = 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝐴𝑢0

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

= 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
�𝐴𝑢0 + 𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

Reader �𝑣𝑘�
𝑇
𝐴𝑢0 is expansion of 𝑢0. Using this in the above reduces it to

𝑢𝑛 = −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

46

Insert 𝐴𝐴−1 into the above gives

𝑢𝑛 = −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝐴𝐴−1𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

= −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

��𝑣𝑘�
𝑇
𝐴� �𝐴−1𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑣𝑘

= −𝐴−1𝑏

But −𝐴−1𝑏 = 𝑢∗. QED.

Following some extra remarks added later from An introduction to optimization by Ching
and Zak, 1996:

1. Conjugate direction algorithms solve quadratics of 𝑛 variables in 𝑛 steps

2. Algorithm does not require calculation of Hessian.

3. Algorithm requires no matrix inverse and no storage for the 𝐴𝑛×𝑛 matrix.

4. C.D. Algorithms perform better than steepest descent but not as well as Newton-
Raphson (when close to optimal).

5. For quadratic 𝐽 (𝑢) = 1
2𝑥

𝑇𝐴𝑥 − 𝑥𝑇𝑏, the best direction at each step is the mutually
conjugate direction w.r.t. 𝐴.

See Example 10.1, page 133 of the above text for illustrations how to determine each of 𝑣𝑖
vectors for given 𝐴 matrix.

1.14 Lecture 14. Thursday, March 3, 2016

1.14.1 Constraints and linear programming

We are about to enter new phase of the course with constraints and linear programming.
Until now we used iterative methods to solve unconstrained problems. These are gradient
based. Also looked at Newton-Raphson. We used steepest descent and conjugate directions.
These methods are mainly applied to problem without constraints. i.e. 𝑢 is free, where 𝑢
are the variables. But in HW4 we had problem where 𝑢 was the capacitance. This can not
be negative. But we did not account for this. When we have constraints and want to use
the above iterative methods, there are ad hoc methods to handle this, but we will not cover
these ad-hoc methods in this course, but will mention some of them.

We can check that no constraint is violated during the search and start a new search. There
are literature on what is called “projection methods” and other names.

47

constraint boundary

search path

Figure 1.12: Search path near constraint

One good method is called the “penalty function method”. This works as follows

̃𝐽 (𝑢) = 𝐽 (𝑢) + 𝐽𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢)

The original objective function is 𝐽 (𝑢) and 𝐽𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢) is function we add such that it becomes
very large when 𝑢 constraint is violated (𝑢 ∉ 𝑈). (assuming we are minimizing 𝐽(𝑢)).

This method works on many problems. For example, if we do not want 𝑢1 to be negative,
we can add

𝐽𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢) = −100min (0, 𝑢1)
This way, when 𝑢1 ≤ 0, the result will be very large and positive. Hence ̃𝐽 (𝑢) will become
very large and the search will avoid this region and turn away during the line search.

But a theory with name of “Kohn Tucker” is the main way to handle such problems under
heading of “non-linear programming”.

Now we go back to linear programming which we will cover over the next 4–5 lectures. key
points of linear programming are

1. Objective function is linear in 𝑢𝑖

2. Linear inequality constraints on 𝑢𝑖

1.14.2 History of linear programming

1. Dantzing introduced simplex algorithm. Matlab linprog implements this to find solu-
tion to L.P. problems.

2. Simplex algorithm has some problems related to what is called “klee-type pathologies”.
These days, L.P. have millions of variables. These days we want to solve many large
scale L.P. The “Klee-type pathologies” says that there are some bad input to L.P. which
causes it to become very slow. L.P. visits vertices of polytopes. We can do billion and
more vertices these days on the PC with no problem. 1030 vertices is a small L.P.
problem these days.

48

L.P. works fast by not visiting each vertex. But with some input L.P. can become slow
and force it to visit all vertices.

3. Khachian: 1970’s. Front page of NY times. Introduced ellipsoidal algorithm to solve
L.P. (Faster than L.P. on the worst case problems). But it turns out that in real world
problems, simplex was still faster, unless the problem had “Klee-type pathologies”.

4. Small. Gave a probabilistic explanation of the “magic of simplex algorithm”. Consid-
ering average probabilities. In computer science, computational complexity is defined
in terms of worst case.

5. Kharmarker, from Bell Labs. Came up with new approach. Developed scaling to L.P.

1.14.3 Polytopes

Polytopes are central to L.P since polytopes are described by constraints. See handout
“Polytopes” taken from textbook Barmish, Robust Control.

Polytope is convex hull of finite point set. These are the generators 𝑣1,⋯ , 𝑣𝑁. Polytopes have
extreme vertices. L.P. visits vertices. If the set is bounded, we call it polytope, else we call it
polyhedron. So with linear inequalities constraints and bounded, we have polytopes.

Reader A linear function 𝐽 (𝑢) = 𝑎𝑇𝑢 on polytope 𝑃 achieves its Max. or Min. at an extreme
point. We showed that the Max. of convex function is at a vertex. we can also show that
Min. of concave is at a vertex. Linear functions are both concave and convex. QED.

J(u) increasing

max

min

Figure 1.13: Increasing 𝐽(𝑢) diagram

Often we do not have list of vertices. Need to first generate them. They are generated from
the constraint inequalities.

How many vertices to search? McMullen’s Upper Bound Theorem gives us the answer.
Assuming we have 𝑚 constraints and 𝑛 variables, where 𝑚 ≥ 𝑛. Then

𝑉 (𝑚, 𝑛) =

⎛
⎜⎜⎜⎜⎜⎝
𝑚 − �12 (𝑛 + 1)�

𝑚 − 𝑛

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
𝑚 − �12 (𝑛 + 2)�

𝑚 − 𝑛

⎞
⎟⎟⎟⎟⎟⎠

49

Example for 𝑚 = 20, 𝑛 = 10 we get 4004 vertices. So this is a small problem.

Reader Consider 𝑛 = 500,𝑚 = 2000 which is very modest in terms of current technology,
assuming it takes 1 microsecond per vertex, then it will take order of 10296 years to search
all the vertices.

Figure 1.14: Verification of number of vertices using Maple

Up to last few years, L.P. was considered a completed research. But in the last 5–10 years,
there is new L.P. research starting. Modern L.P. solvers use linear inequalities description
as input. This is expressed and formulated as 𝐴𝑥 = 𝑏. What if vertices or some vertices
generating mechanism was given as input instead of the constraints themselves? How to
convert the vertices to constraints? This is a di�cult problem.

1.15 Lecture 15. Tuesday, March 8, 2016

1.15.1 Mechanism of linear programming

Today we will begin the mechanism of doing L.P. (linear programming). We know the
extreme points is where the optimal will occur. But searching all extreme points is not
practical for large 𝑁 as shown before. One can take a whole course just on L.P. but here
we will cover the main ideas. We basically have a linear objective function in 𝑢 and linear
constraints in 𝑢 where 𝑢 are the variables. This is called the raw L.P. formulation. This is
converted to standard form L.P. and solved using the simplex method.

50

LP solver
simplex

raw L.P.

create standard
form LP and
solve

x∗

solution

Figure 1.15: Simplex solver diagram

The solver finds the first vertex then in a clever way moves to another until it finds the
optimal one. The solver solves two linear programming problems and these are:

1. First finds a feasible solution (basic)

2. moves from one vertex to another.

Standard form LP is

min 𝑐𝑇𝑥
𝑠𝑡 𝐴𝑥 = 𝑏

Notice that solution might be infimum above. Example.

min 𝑥1

𝑠𝑡
𝑥2 ≤ 5
𝑥1 < 0

The solution is 𝑥1 = −∞. This is closed by unbounded.

Ingredients of Linear programming are:

1. 𝑛 > 𝑚 (number of variable is larger than number of constraints.). The matrix 𝐴 is of
order 𝑚 by 𝑛. So 𝐴 matrix is fat matrix and not thin.

2. No columns of 𝐴 can all be zeros (non-degenerate).

3. Rank of 𝐴 is 𝑚

4. 𝑏 ≥ 0

5. 𝑥 ≥ 0

What if we have some variables 𝑥𝑖 which we want to be negative? We replace 𝑥𝑖 with new
variable 𝑥𝑗 = −𝑥𝑖. Now 𝑥𝑗 ≥ 0. Now in each place we have 𝑥𝑖 which is negative and can’t use,
then we replace it with −𝑥𝑗. This is now the same as before, but 𝑥𝑖 is gone and replaced with
−𝑥𝑗 and 𝑥𝑗 is now positive. So it is standard form.

At the end, when we obtain the solution, we replace 𝑥𝑗 back to −𝑥𝑖. (what about free vari-

51

ables?).

What if we have inequality in the raw L.P.? how to convert to equality for standard form?
We use Slack variables and Surplus variables .

Example given 𝑥1 + 2𝑥2 − 𝑥3 ≤ 6, then introduce new slack variable 𝑥4 and rewrite the
constraint as 𝑥1 + 2𝑥2 − 𝑥3 + 𝑥4 = 6.

If we have constraint 𝑥1 + 2𝑥2 − 𝑥3 ≥ 6, then we need surplus variable 𝑥4. Rewrite as 𝑥1 +
2𝑥2 − 𝑥3 − 𝑥4 = 6. Once we solve the LP problem and obtain 𝑥∗, we need to recover from
this solution the actual variables of the raw LP (these are the 𝑢 variables) and these do not
contain any slack nor surplus variables.

1.15.2 Example, the sector patrol problem

See also handout sector patrol. The objective function is 𝐸 (𝑇) =
𝑢1
3
10 +

𝑢2
3
5 = 𝑢1

30+
𝑢2
15 . Constraints

are 𝑢1 ≥ 0, 𝑢2 ≥ 0 and

2𝑢1 + 2𝑢2 ≥ 4
2𝑢1 + 2𝑢2 ≤ 10

And as per handout, we need to add this constraint in order to obtain a realistic solution

𝑢2 ≥ 1.5𝑢1
The above is the raw LP. Convert to standard form, using 𝑥 as variables. It becomes

2𝑥1 + 2𝑥2 − 𝑥4 = 4
2𝑥1 + 2𝑥2 + 𝑥3 = 10

−1.5𝑥1 + 𝑥2 − 𝑥5 = 0

Where 𝑥3, 𝑥4, 𝑥5 above were added to make it standard form. Writing it as 𝐴𝑥 = 𝑏, the
constraint equation is (we put the slack variables first by convention)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0
2 2 0 −1 0
−1.5 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

And 𝑐𝑇𝑥 becomes (this is the objective function, notice we added the slack and surplus
variables to it, but they are all zeros).

� 1
30

1
15 0 0 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

52

Reader find common sense solution working in 𝑢1, 𝑢2 domain. (will do this next lecture).

1.15.3 Basic and Feasible solutions

We will define two solutions: The basic solution, and basic feasible solution.

A vector 𝑥 is said to be basic solution if it solves 𝐴𝑥 = 𝑏 and the non-zeros elements of 𝑥
correspond to the linearly independent columns of 𝐴.

Reader Is there a basic infeasible solution?

1.16 Lecture 16. Thursday, March 10, 2016

Recall, the standard LP problem is

min 𝑐𝑇𝑥
𝑠𝑡 𝐴𝑥 = 𝑏

We talked about transforming the problem from raw LP to standard LP. The patrol sector
problem, solved using common sense graphical approach is given below

2

2

5

5

u2 = 1.5u1

2u1 + 2u2 = 10

2u1 + 2u2 = 4

feasible

u1

u2

Figure 1.16: Patrol problem

The optimal 𝑢∗ has to be at one of the vertices of the feasible region. It will be at the vertex
shown

53

2

2

5

5

feasible

u1

u2

u∗ = (0.8, 1.2)
optimal

Figure 1.17: Patrol problem solution

Using Matlab, the above is solved as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0
2 2 0 −1 0
−1.5 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

And 𝑐𝑇𝑥 becomes (this is the objective function, notice we add the slack and surplus variables
to it, but they are all zeros).

� 1
30

1
15 0 0 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The code is� �
1 f=[1/30,1/15,0,0,0];
2 A=[2,2,1,0,0,;
3 2,2,0,-1,0,;
4 -1.5,1,0,0,-1];
5 b=[10,4,0];
6 [X,FVAL,EXITFLAG,OUTPUT]=linprog(f,[],[],A,b,zeros(size(f)),[])� �

Result of above run
Optimization terminated.
X =
0.799999999994766
1.20000000008299
5.99999999984448
1.55520543353025e-10
9.08450336982967e-11

54

FVAL =
0.106666666672025
EXITFLAG =
1
OUTPUT =
iterations: 7
algorithm: 'interior-point-legacy'
cgiterations: 0
message: 'Optimization terminated.'
constrviolation: 8.88178419700125e-16
firstorderopt: 5.07058939341966e-12

In the above, we only need to map 𝑥(1) to 𝑢1 and 𝑥(2) to 𝑢2 to read the result. We see that
Matlab result matches the graphical solution.

definition For LP, we say 𝒙 is feasible if 𝒙 satisfies the constraints.

For example, for the sector patrol, let 𝑈 be the feasible set in ℜ2 (raw LP). However, in
standard LP, the feasible set is in ℜ5.

Reader Obtain feasible set in ℜ5. Obtain feasible point with either 𝑥3, 𝑥4, 𝑥5 nonzero.

Basic solution A vector 𝑥 is basic solution if the non-zero components of 𝑥 corresponds to
the linearly independent columns of 𝐴. We do not require feasibility to be basic solution).

The di�erence in LP and standard 𝐴𝒙 = 𝒃 solution we have seen before many times in linear
algebra, is that in LP, we want to solve 𝐴𝒙 = 𝒃 but with 𝒙 ≥ 0 and at same time have 𝒙 be
optimal. This what makes LP di�erent from standard methods of solving this problem.

The algorithm takes a solution which is feasible and makes it feasible basic solution. Then
after that, we move from one basic feasible solution to another basic feasible solution while
at the same time making 𝐽 (𝑢) smaller until it reaches the optimal value.

Reader LP has at least one basic solution.

𝐴 has 𝑚 linearly independent columns, since it has rank 𝑚.

𝐴𝒙 = 𝒃

�𝐴𝑏𝑎𝑠𝑖𝑐 𝐴𝑛𝑜𝑡𝑏𝑎𝑠𝑖𝑐�
⎡
⎢⎢⎢⎢⎣
𝑥𝑏𝑎𝑠𝑖𝑐
𝑥𝑛𝑜𝑡𝑏𝑎𝑠𝑖𝑐

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
𝑏𝑏𝑎𝑠𝑖𝑐
𝑏𝑛𝑜𝑡𝑏𝑎𝑠𝑖𝑐

⎤
⎥⎥⎥⎥⎦

1.16.1 Linear programming feasible and basic solutions

Theorem Suppose LP has feasible solution, then it has a basic feasible solution. Remember:
𝒙 is feasible if it is in the feasible region (satisfies constraints), and 𝒙 is basic solution if the
non-zero elements of 𝒙 correspond to linearly independent columns of 𝐴.

Proof say 𝒙 is feasible. Let 𝑎1, 𝑎2,⋯ , 𝑎𝑝 denote columns of 𝐴 corresponding to nonzero entries
of 𝒙. Without loss of generality, say the first 𝑝 columns of 𝐴. (we can always rearrange 𝐴 to

55

make it so). There are two cases:

case one The 𝑎𝑖 above are linearly independent. We are done. 𝑥 is therefore basic by
definition.

case two The 𝑎𝑖 are linearly dependent. Therefore there exist scalars 𝑦𝑖, not all zero, such
that ∑𝑝

𝑖=1 𝑦𝑖𝑎
𝑖 = 0. (this is the definition of linearly dependent columns).

Now we do the squeezing process. For 𝜀 > 0 define vector 𝜂𝜀 with components

𝜂𝜀 =
𝑥𝑖 − 𝜀𝑦𝑖 for 𝑖 ≤ 𝑝
0 𝑖 > 𝑝

Reader 𝜂𝜀 is feasible for small 𝜀. Hence

𝐴𝜂𝜀 = 𝐴𝒙 − 𝜀𝐴

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1
𝑦2
⋮
𝑦𝑝
0
⋮
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝜀 = min �𝑥𝑖𝑦𝑖 ; 𝑦𝑖 > 0�. Reader 𝜂
𝜀 is basic and has at least one more zero entry than 𝒙. So

now 𝒙 has 𝑝−1 columns of 𝐴 corresponding to non-zero entries in 𝒙. Continuing this process,
we keep finding other basic feasible solutions.

example

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 2 0
1 1 1 2 1
2 −1 1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let starting 𝒙 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is feasible since it satisfies 𝐴𝒙 = 𝒃 with 𝒙 ≥ 0. But not basic, since

the last 3 columns are not linearly independent. (the last three columns of 𝐴. Since these
are the ones that correspond to non-zero elements of 𝒙. we now write

𝑦3𝑎3 + 𝑦4𝑎4 + 𝑦5𝑎5 = 0

Where 𝑎3, 𝑎4, 𝑎5 represent the last three columns of 𝐴 and 𝑦𝑖 are the scalars we want to solve

56

for. Solving, gives

𝑦3 = 2
𝑦4 = −1
𝑦5 = 0

Hence, first find 𝜀 = min �𝑥𝑖𝑦𝑖 ; 𝑦 > 0�, which we find to be 𝜀 = 1
2 . Now we find

𝒙𝑛𝑒𝑤 = 𝜂𝜀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 − 𝜀𝑦1
𝑥2 − 𝜀𝑦2
𝑥3 − 𝜀𝑦3
𝑥4 − 𝜀𝑦4
𝑥5 − 𝜀𝑦5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
2
(0)

0 − 1
2
(0)

1 − 1
2
(2)

1 − 1
2
(−1)

1 − 1
2
(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
3
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since now 𝑎4, 𝑎5 are linearly independent (these are the fourth and fifth columns of 𝐴) and
these correspond to the non zero of the new 𝒙 = 𝜂𝜀, then the new 𝒙 is basic and feasible. So
we have started with feasible solution, and from it obtained a basic feasible solution. This
is not the final optimal solution 𝒙 but we repeat this process now.

1.17 Lecture 17. Tuesday, March 15, 2016

If we have a feasible solution, we can obtain a basic feasible solution from it using the
squeezing method. We have not talked about optimality yet. The next thing to consider
is optimality. We will proof if we have an optimal feasible solution, then by obtaining a
basic solution from it, the basic solution will remain optimal. This is called the optimality
theorem. Then we will talk about extreme points.

1.17.1 Optimality theorem

If an optimal feasible solution exist, then an optimal feasible and basic solution exist as
well.

Proof Suppose 𝒙 is optimal and feasible. If 𝒙 is basic, we are done. If not, now we need to
do the squeeze process to make it basic, but now we have to do the squeeze making sure it
remains optimal. Say 𝑎1, 𝑎2,⋯ , 𝑎𝑝 are the columns associated with non-zero entries in 𝒙. As
before, we way, WLOG these are the first 𝑝 columns in 𝐴. Hence there exist scalars 𝑦𝑖, not
all zero, such that ∑𝑝

𝑖=1 𝑦𝑖𝑎
𝑖 = 0. Define 𝜂𝜀 for scalar 𝜀 such that

𝜂𝜀 =
𝑥𝑖 − 𝜀𝑦𝑖 for 𝑖 ≤ 𝑝
0 𝑖 > 𝑝

Reader For small 𝜀, say |𝜀| ≤ 𝛿, then 𝜂𝜀 is still feasible. Claim: For 𝜀 suitable small, 𝜂𝜀 is
optimal. It su�ce to show that 𝑐𝑇𝑦 = 0 with 𝑦𝑖 = 0 for 𝑖 > 𝑝. This being the case, then
𝑐𝑇𝜂𝜀 = 𝑐𝑇𝒙 = 𝐽∗. By contradiction: Say 𝑐𝑇𝑦 ≠ 0. Let 𝜀 = 𝛿𝑠𝑔𝑛 �𝑐𝑇𝑦�. Let us show that 𝜂𝜀 is better

57

than 𝒙. This contradicts optimality. Now

𝑐𝑇𝜂𝜀 = 𝑐𝑇 �𝑥 − 𝜀𝑦�

= 𝑐𝑇𝑥 − 𝑐𝑇 �𝛿𝑠𝑔𝑛 �𝑐𝑇𝑦�� 𝑦

= 𝑐𝑇𝑥 − 𝛿𝑠𝑔𝑛 �𝑐𝑇𝑦� �𝑐𝑇𝑦�

= 𝐽∗ − 𝛿 �𝑐𝑇𝑦�
< 𝐽∗

This contradicts optimality. QED.

Now we will talk about extreme points. Extreme points and basic feasible solution are the
same thing.

1.17.2 The extreme point theorem

Let 𝑃 = {𝑥 ∈ ℜ𝑛, 𝑥 ≥ 0,𝐴𝑥 ≤ 𝑏}. This polyhedron is the feasible set. The set of extreme points
of 𝑃 are the basic feasible solution.

Proof See handout extreme send today. We need to get to the first feasible solution. This
can be hard to obtain. Once we find a feasible solution, then we use it to find the first basic
feasible solution, and from them we repeat the process (using the squeeze method). As we
move from one basic feasible solution to another, we do this by making 𝐽 (𝑢) smaller.

Example Consider LP with constraints

𝑥𝑖 ≥ 0, 𝑖 = 1, 2, 3
2𝑥1 + 3𝑥2 = 1

𝑥1 + 𝑥2 + 𝑥3 = 1

Note that 𝑥1 + 𝑥2 + 𝑥3 = 1 is common in LP optimization. It is called unit simplex. Here is a
plot of the above.

58

Out[430]=

2 x1 + 3 x2 ⩵ 1
x1 + x2 + x3 ⩵ 1

Figure 1.18: Unit simplex

Reader Plane for 2𝑥1 + 3𝑥2 = 1 intersect the unit simplex else no feasible region exist. So

there are two basic feasible solutions at �0, 13 ,
2
3
� and �12 , 0,

1
2
�. These are the two red points

shown in the above plot.

1.17.3 Mechanism the simplex method

We will use the sector patrol problem to show the mechanisms of simplex.

𝐴𝑥 = 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0
2 2 0 −1 0
−1.5 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 1. Form partial tableau.

�𝐴 𝑏� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0 10
2 2 0 −1 0 4
−1.5 1 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1
𝑟2
𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We need to identify an identify matrix. By row operations we obtain
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1
−𝑟2
−𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0 10
−2 −2 0 1 0 −4
1.5 −1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟′1
𝑟′2
𝑟′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

59

Now we can read out 𝒙1 and we see that 𝑥3 = 10, 𝑥4 = −4, 𝑥5 = 0. These are the entries in
𝑥 which corresponds to the columns of the unit matrix inside 𝐴. All other entries in 𝑥 are
assumed zero. Hence

𝒙1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
10
−4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note this is not feasible but basic. Now we go to next step. We have to remove an entry from
𝑥1 and move in its place another entry. Let us pick 𝑥3 to kick out and move in 𝑥1. By row
operations applied to (1) we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟′1
2

𝑟′2 + 2𝑟′′1
𝑟′3 − 1.5𝑟′′1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2 0 0 5

0 0 1 1 0 6
0 −2.5 −0.75 0 1 −7.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟′′1
𝑟′′2
𝑟′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the new identity matrix is 𝑎1, 𝑎4, 𝑎5 and therefore 𝑥1 = 5, 𝑥4 = 6, 𝑥5 = −7.5, These are
the entries in 𝑥 which corresponds to the columns of the unit matrix inside 𝐴. All other
entries in 𝑥 are assumed zero. Hence

𝒙2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
0
0
6

−7.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the second basic 𝒙 we found.

Reader Find basic solution via pivoting row operations. Now we want to redo the above,
with feasibility in mind which we did not consider above when moving elements out and
selecting which one to move in.

Example

60

𝐴𝑥 = 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 4 3 2
0 1 0 2 −1 2
0 0 1 −1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�𝐴 𝑏� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 4 3 2 1
0 1 0 2 −1 2 2
0 0 1 −1 2 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we need to start with feasible solution. Last example we did not care about this, but
now we need the first solution to be feasible. Here 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3 (read out, from
the identity matrix, since the first three columns are linearly independent). We we use the
squeeze process, to decide which one to kick out and which to move in. Let us for now
choose arbitrarily 𝑥4 (fourth column) to move in and we have to kick out a column. Need
𝜀∗ to decide.

𝜀∗ = min�
1
4
,
1
2�

=
1
4

Hence it is the first column to kick out. Remember that when doing the above to determine
which 𝑥 to kick out, we only divide by those entries in the column which are positive. If
there is a negative entry, then do not use it. That is why in the above, we did not write

𝜀∗ = min �14 ,
1
2 ,

3
−1�. We will continue next lecture.

1.18 Lecture 18. Thursday, March 17, 2016

Class planning:

1. special problem towards end of course

2. Test 2 after spring break. Up to and including LP.

3. HW 6 will be send soon, due right after spring break.

Exercise to do

61

A good exercise, to be done by hand, is the following: For the sector patrol
problem which we considered in class, solve the Phase One LP to obtain
a basic feasible solution.
Then, use this first basic feasible solution as a starting point for the original
LP and solve it via a sequence of tableau. Since you already know the
answer, you will get feedback whether your calculations produce the right
result.

1.18.1 Simplex method examples

We still need to know how to find first feasible solution. In the following example

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b

1 0 0 2 4 6 4
0 1 0 1 2 3 3
0 0 1 −1 2 1 1

A solution which is basic and feasible is 𝑥1 = 4, 𝑥2 = 3, 𝑥3 = 1 and all others 𝑥𝑖 = 0, 𝑖 = 4⋯6.

𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This was just read out from the identity matrix in the first 3 columns above. Let us now
assume we want fourth column to be in the basis. We have to remove one of the current
columns in the basis in order to let another column in. min �42 ,

3
1� = 2. This means the first

row is the pivot row. Notice we do not consider 1
−1 when doing the minimum operation. Any

negative value in a column is bypassed. Now we know that first row is pivot row and that
we want fourth column in. This is all what we need to go to the next step. We know need to
normalize entry (1, 4) to one. (before it was 2). After normalizing the pivot row (by dividing
the whole row by 2) we obtain

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b
1
2 0 0 1 2 3 2
0 1 0 1 2 3 3
0 0 1 −1 2 1 1

Only now we start applying row operations, with row one as pivot row, we make all other
entries in fourth column below (1, 4) zero, This gives the following

62

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b

𝑟1
1
2 0 0 1 2 3 2

𝑟2−𝑟1 −1
2 1 0 0 0 0 1

𝑟3 + 𝑟1
1
2 0 1 0 4 4 3

Now that we have a new identity matrix, we read out the new solution which is 𝑥2 = 1, 𝑥4 =
2, 𝑥3 = 3 and all other 𝑥 entries zero.

𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
3
2
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We will now revisit this, with optimality in mind. This means we need to know which column
to bring into the basis. The question is, which 𝑥𝑖 to bring in. Set up this tableau1

𝐴

���⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋯ 0 𝑎 (1,𝑚 + 1) ⋯ 𝑎 (1, 𝑛)
⋮ ⋱ ⋮ ⋮ ⋱ ⋯
0 ⋯ 1 𝑎 (𝑚,𝑚 + 1) ⋯ 𝑎 (𝑚, 𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏

�����������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦 (1, 0)
𝑦 (2, 0)
⋮

𝑦 (𝑚, 0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, the current feasible and basic solution is 𝑥1 = 𝑦 (1, 0) , 𝑥2 = 𝑦 (2, 0) ,⋯ , 𝑥𝑚 = 𝑦 (𝑚, 0).
All other 𝑥𝑖 = 0. We need now to do a feasibility preserving perturbation.

Allow 𝑥𝑚+1, 𝑥𝑚+2,⋯ , 𝑥𝑛 to be part of the solution.

𝑥1 +

we allow this in

�����������������𝑛
�

𝑖=𝑚+1
𝑎 (1, 𝑖) 𝑥𝑖 = 𝑦 (1, 0)

𝑥2 +
𝑛
�

𝑖=𝑚+1
𝑎 (2, 𝑖) 𝑥𝑖 = 𝑦 (2, 0)

⋮

𝑥𝑚 +
𝑛
�

𝑖=𝑚+1
𝑎 (𝑚, 𝑖) 𝑥𝑖 = 𝑦 (2, 0)

Now 𝑥 = �𝑥1 𝑥2 ⋯ 𝑥𝑚 0 ⋯ 0�
𝑇
is still feasible, but no longer basic. We know that

1in class, we used 𝑦 (1,𝑚 + 1) etc.. for entries in 𝐴 matrix. I changed it in these notes to 𝑎 (1,𝑚 + 1) etc... not
to confuse myself with the RHS 𝑦 (1, 0), etc.. entries in the 𝑏 vector.

63

𝐽 = 𝑐𝑇𝑥, hence

𝐽 = 𝑐1 �𝑦(1, 0) −
𝑛
�

𝑖=𝑚+1
𝑎(1, 𝑖)𝑥𝑖� + 𝑐2 �𝑦(2, 0) −

𝑛
�

𝑖=𝑚+1
𝑎(2, 𝑖)𝑥𝑖� +⋯ + 𝑐𝑚 �𝑦(𝑚, 0) −

𝑛
�

𝑖=𝑚+1
𝑎(𝑚, 𝑖)𝑥𝑖� + 𝑐𝑚+1𝑥𝑚+1 +⋯+ 𝑐𝑛𝑥𝑛

Hence

𝐽 =

current 𝐽0value

�������������𝑚
�
𝑖=1
𝑐𝑖𝑦(𝑖, 0) −𝑐1

𝑚
�
𝑖=1
𝑎(1, 𝑖)𝑥𝑖 − 𝑐2

𝑚
�
𝑖=1
𝑎(2, 𝑖)𝑥𝑖 −⋯ − 𝑐𝑚

𝑚
�
𝑖=1
𝑎(𝑚, 𝑖)𝑥𝑖 + 𝑐𝑚+1𝑥𝑚+1 +⋯+ 𝑐𝑛𝑥𝑛

Therefore

𝐽 = 𝐽0 − (−𝑐𝑚+1 + 𝑐1𝑎 (1,𝑚 + 1) + 𝑐2𝑎 (2,𝑚 + 1) +⋯ + 𝑐𝑚𝑎 (𝑚,𝑚 + 1)) 𝑥𝑚+1 − (−𝑐𝑚+1 + 𝑐1𝑎 (2,𝑚 + 1) +⋯ + 𝑐𝑚𝑎 (𝑚,𝑚+)) 𝑥𝑚+2 −⋯ − (−𝑐𝑛 + 𝑐1𝑎 (1, 𝑛) + 𝑐2𝑎 (2, 𝑛) +⋯ + 𝑐𝑚𝑎 (𝑚, 𝑛)) 𝑥𝑛
Define cost coe�cients, for 𝑗 = 𝑚 + 1,⋯ , 𝑛

𝑟𝑗 = 𝑐𝑗 −
𝑚
�
𝑖=1
𝑐𝑖𝑎(𝑖, 𝑗)

Hence

𝐽 = 𝐽0 +
𝑛
�

𝑗=𝑚+1
𝑟𝑗𝑥𝑗

To minimize 𝐽 we need to pick the most negative 𝑟𝑗. This tells us which 𝑥𝑗 we need to bring
into the basis in order to reduce 𝐽. Now we add extra row (last row) which is 𝐽 (𝑢) to the
table, to keep cost in it. Here is the table with the cost coe�cient row added

𝐴

���⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋯ 0 𝑎 (1,𝑚 + 1) ⋯ 𝑎 (1, 𝑛)
⋮ ⋱ ⋮ ⋮ ⋱ ⋯
0 ⋯ 1 𝑎 (𝑚,𝑚 + 1) ⋯ 𝑎 (𝑚, 𝑛)
0 0 0 𝑟𝑚+1 ⋯ 𝑟𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏

�����������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦 (1, 0)
𝑦 (2, 0)
⋮
−𝐽0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

state street vendor example Selling rings and bracelets. Ring has 3 oz. gold., 1 oz. silver.
Bracelet has 1 oz. gold, 2 oz. silver. Profit on ring is $4 and profit on bracelet is $5. Initially
we have 8 oz. gold and 9 0z silver. How many rings and bracelets to produce to maximize
profit? This is the heart of many production problems. Note: we need integer LP to solve
this. But if the quantities are very large, it will make little di�erence. So for now we can
ignore the issue of integer programming.

𝑢1 = number of rings

𝑢2 = number of bracelets

𝐽 (𝑢) = 4𝑢1 + 5𝑢2
Since we want to maximize this, then

𝐽 (𝑢) = −4𝑢1 − 5𝑢2
With 𝑢𝑖 ≥ 0. Constraints are 3𝑢1 + 𝑢2 ≤ 8 and 𝑢1 + 2𝑢2 ≤ 9. We convert to standard LP with
slack variables and make the first table

64

𝑥1 𝑥2 𝑥3 𝑥4 𝑏

row 1 3 2 1 0 8
row 2 1 2 0 1 9

𝐽 (𝑢) −4 −5 0 0 0

The first basic feasible solution is 𝑥3 = 8, 𝑥4 = 9. To decide which column to bring in, we see
the most negative is column 2 (last row is −5). To find the pivot row, we see it is first row

since min �82 ,
9
2� = {4, 4.5} = 4. Now we do the first stage.

Reader obtain the following

𝑥1 𝑥2 𝑥3 𝑥4 𝑏

row 1 2.5 0 1 −0.5 3.5
row 2 0.5 1 0 0.5 4.5

𝐽 (𝑢) −1.5 0 0 2.5 22.5

Hence 𝑥2 = 4.5, 𝑥3 = 3.5. Since there is still a negative entry in the last row we need to repeat
the process again. We Keep doing this until there are no negative entries in the last (third)
row.

Now we will now talk about how to find the first basic feasible solution. There are two cases.
If the number of slack variables is 𝑚 then first basic feasible solution can be read out. This
means there is no phase one LP. Case two. The number of slack variables is 𝑧 < 𝑚. Now we
need to solve the first phase LP. Then use its result to solve second phase LP. In phase one,
we introduce new artificial variables 𝑦𝑖 as many as 𝑚− 𝑧 and new artificial cost function 𝐽 �𝑦�
which we want to minimize to zero.

See HW6, first problem for an example of how to solve first phase LP.

1.19 Lecture 19. Tuesday, March 22, 2016 (No class)

No class.

1.20 Lecture 20. Thursday, March 24, 2016 (No class)

No class.

1.21 Lecture 21. Tuesday, March 29, 2016

Coming up soon is the special problem. It is like one HW but can count up to two HW’s
weight. Note: Possible rescheduling for April 6, 2016 remain in place.

65

1.21.1 Second exam keywords

1. Test two will be more application oriented.

2. local minimum. Strong and weak. We had su�cient conditions. Gradient, Hessian.

3. If we have convexity, we can do much better. If not, we need iterative algorithms. Line
search is central to iterative search. Step size, optimal step size.

4. we looked at steepest descent with and without optimal step size. For simple problems
we can easily find optimal step size.

5. We talked about convergence for iterative algorithms. For steepest descent we talked
about 𝐸𝜃𝑘.

6. We talked about generalized Newton-Raphson. We talked about quadratic conver-
gence. Conjugate direction method has quadratic convergence (we proved this). It will
converge in 𝑁 steps or less, where 𝑁 is A matrix size. Newton-Raphson will converge
in one step for quadratic function. We also talked about superlinear convergence.

7. This brought us to the end of iterative algorithms. Then we went to Linear program-
ming. The number of vertices is large. So trying to check them all is not possible.
Polytope is central to LP. The basic theory of LP

(a) Feasible solutions

(b) Basic solutions

(c) basic and feasible solutions

(d) The method of squashing using 𝜂𝜖

(e) Basic feasible ⇔ extreme points.

(f) Relative cost coe�cients.

8. Then we talked about simplex algorithm.

Now we will start on today lecture. Often a problem is given to you, but it is not an LP
problem. Sometimes it is not obvious how to convert it to an LP problem. Sometime we need
algebra or cleaner reformulation of the problem to make it an LP problem. For example, in
HW6, we had a min-max problem but it is was possible to convert it to an LP problem. See
key solution for HW6.

1.21.2 Application of Linear programming to control problems

Another application area for LP is control. Example is the minimum fuel problem. In this,
we want to go from some state to final state with minimum control e�ort. The control e�ort
is generic name which can mean many things depending on the problem itself. We also
want to do this in minimal time. We begin with the discrete state equation

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

66

With 𝑥(0) given as the initial state. In the above, 𝑥 is an 𝑛 × 1 vector, and 𝐴 is 𝑛 × 𝑛 and 𝐵 is
𝑛 × 𝑚 where 𝑚 is number of inputs, and 𝑢 is 𝑚 × 1 input vector.

We want to select 𝑢(𝑘) sending 𝑥(0) to some target 𝑥∗ at some future time 𝑘 = 𝑁. With 𝑁
being minimal, and control e�ort minimum. Assume for now that 𝑢 is scalar, which means
one input, then an energy measure is

𝑁−1
�
𝑘=0

|𝑢(𝑘)|2

On the other hand, a peak measure is

max{𝑢(𝑘), 𝑘 = 0,… ,𝑁 − 1}

But we will consider the fuel measure given by
𝑁−1
�
𝑘=0

|𝑢(𝑘)|

We will use fuel measure in the LP problem. The constraint is

|𝑢(𝑘)| ≤ 𝑈 (∗)

Which says that control is bounded. Note that is (𝐴, 𝐵) is controllable, we can get from initial
state to final state in one step if we want, but the e�ort will be very large. We also want
𝑥(𝑁) = 𝑥∗. The above two are the constraints in this problem. The objective function is

𝐽(𝑢) =
𝑁−1
�
𝑘=0

|𝑢(𝑘)|

Therefore

𝑥(1) =𝐴𝑥(0) + 𝐵𝑢(0)
𝑥(2) =𝐴2𝑥(0) + 𝐴𝐵𝑢(0) + 𝐵𝑢(1)
𝑥(3) =𝐴3𝑥(0) + 𝐴2𝐵𝑢(0) + 𝐴𝐵𝑢(1) + 𝐵𝑢(2)

⋮

𝑥(𝑁) =𝐴𝑁𝑥(0) +
𝑁−1
�
𝑘=0

𝐴𝑁−1−𝑘𝐵𝑢(𝑘)
�����������������������������������
𝑥∗This is the linear constraint

Now we rewrite the constraint |𝑢(𝑘)| ≤ 𝑈 as

𝑢(𝑘) = 𝑢𝑝(𝑘) − 𝑢𝑛(𝑘)

with 𝑢𝑝(𝑘), 𝑢𝑛(𝑘) being positive. The objective function becomes (where we now put 𝑁 as
parameter, to say this is for a specific value of 𝑁

𝐽𝑁(𝑢) =
𝑁−1
�
𝑘=0

|𝑢(𝑘)|

=
𝑁−1
�
𝑘=0

𝑢𝑝(𝑘) + 𝑢𝑛(𝑘)

67

Equation ∗ above becomes

𝑢𝑝(𝑘) ≤ 𝑈
𝑢𝑛(𝑘) ≤ 𝑈

So minimizing 𝐽𝑁(𝑢) is now an LP problem in 2𝑁 raw variables (we still need to add the
needed slack variables). So by doubling the number of variables, we were able to convert
this control problem to an LP problem. Let

𝑁∗ = inf{𝑁 ∶ 𝐿𝑃𝑁 feasible}

Reader Argue that 𝑙∞ measure also lead to an LP problem. 𝑙∞ measure is max{𝑢(0), 𝑢(1), … }.

Example Let 𝐴 =
⎛
⎜⎜⎜⎜⎝
1 1 − 𝑒−𝑇

0 𝑒−𝑇

⎞
⎟⎟⎟⎟⎠ where 𝑇 = 1 is the sample time. And let 𝐵 =

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠. The bound

on 𝑢(𝑘) = 1. This means 𝑈 = 1. Let 𝑥(0) =
⎛
⎜⎜⎜⎜⎝
−40.91
43.50

⎞
⎟⎟⎟⎟⎠ and let the target 𝑥∗ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠. Find 𝑢

∗ and 𝑁∗.

Running LP for di�erent values of 𝑁 from 1, … , 4 we find the first feasible solution at 𝑁 = 4.
These is the resulting optimal e�ort 𝑢(𝑘)

𝑢(0) = −0.3009
𝑢(1) = −1
𝑢(2) = −0.2999
𝑢(3) = −1

And the corresponding optimal objective function 𝐽∗ = 2.6008. In the above, we have priorities
on minimal time first.

1.21.3 Starting dynamic programming

Now we will start on the next topic, which is dynamic programming. This involves discrete
decisions. In this course we will cover only discrete dynamic programming and not continu-
ous dynamic programming. We will be making sequential decisions in time. For example, if
𝑢(𝑘) = {−1, 0, 1} then the decision tree will look like

68

u

1

0

−1

1

0

−1

1

0

−1

. . .

Figure 1.19: decision tree

We will get tree with potentially large number of branches. Combinatories arise. We get the
curse of dimensionality problem again. For dynamic programming, Bellman is considered
the person who originated the subject.

1.22 Lecture 22. Thursday, March 31, 2016. Second
midterm exam

Exam.

1.23 Lecture 23. Tuesday, April 5, 2016

For steepest descent problem, with optimal step size, max is 1, need to use ‖𝑢𝑘+1 − 𝑢𝑘‖ ≤ 1.

Next we will have special problem. Expect it next week.

Back to dynamic programming. Bellman secret is simple but theory is powerful. Main things
to take from this course are

1. Linear programming.

2. Iterative solutions to optimization problems

3. dynamic programming

1.23.1 First dynamic programming problem, trip from NY to SFO

Suppose we want to take trip from NY to San Francisco, such that the total toll is minimum.
We also must go west at each step we take once we start from NY. Not allowed to go east
direction, even if the cost might be lower.

This diagram shows the possible routes and the cost (toll) for each segment.

69

NY

DTW

ORD

NSH
8

9

6

NO

4

9

GTY
2

8

12

2

PHX

3

3

6

PTY
5

3

DEN

3

SLC

1

4

2

6

BUTE

SNY

6

LV
5

2

4
6

SFO

SEA

PORT

5

7

3

5

8

4

2

Figure 1.20: NY to SF tree one

Dynamic programming is now used to find optimal route in the above problem. (i.e. the
route with least toll (cost) from NY to SFO). Dynamic programming is based on what if
decisions. Instead of starting from NY and trying every possible route, we instead start
backwards, and ask, what if we were in PORT, which route would we take?

Clearly the only route PORT to SFO with cost of 5 exist. Then we ask, what if we were in
LV, which route would we take? we see it is LV to SFO with cost of 3. Then we ask what if
we were in SNY? Then since LV had cost 3, then the route SNY→ LV→ SFO would be the
one to take, with cost of 2+ 3 = 5. Each time we find the cost from one city to SFO, we label
the city with this cost. We keep moving back to the east, doing the same. When we arrive
all the way to JFK, then we see that the lowest cost is

𝐽∗ = JFK→ NO→ PHX→ LV→ SFO

The following diagram shows the route above, with the cost of moving from each city to
SFO given next to each city name on the diagram.

70

NY

DTW

ORD

NSH
8

9

6

NO

4

9

GTY
2

8

12

2

PHX

3

3

6

PTY
5

3

DEN

3

SLC

1

4

2

6

BUTE

SNY

6

LV
5

2

4

6
SFO

SEA

PORT

5

7

3

5

8

4

8

9

11

9

13

15

11
8

3

5
6

11

19

5

5

2

Figure 1.21: NY to SF tree two

If we were to solve the above problem using direct evaluation the number of computations is
of order (assuming even 𝑛 is (𝑛−1)!𝑛!

𝑛
2 !

𝑛
2 !

while with dynamic programming method as explained

above, it is 𝑛2

2 + 𝑛. For 20 cities, this given 220 for dynamic programming compare to over
one million computation for the direct approach (trying all the possible routes).

We will only consider discrete dynamic programming. This is an optimization problem. The
variables are not continuous. The variable take in discrete fixed values of choices each time.
These applications are useful for integrate programming problems. An integer programming
problem is much harder than continuous ones with much larger complexity.

When we are given an integer programming problem which is hard, we can try to approxi-
mate it to continuous programming problem and solve it more easily that way. For example

min
𝑥
𝑐𝑇𝑥 subject to 𝐴𝑥 = 𝑏

where 𝑥 is allowed to be integers, is a hard problem. But if we relax it and allow 𝑥 to take
any value so that the problem becomes continuous, then it will become much easier to solve
using Linear Programming.

There are papers written on when we can approximate integer programming problems as
continuous.

We will be making sequential decisions. 𝑢0, 𝑢1, … , 𝑢𝑁−1 i.e. 𝑁 decisions where 𝑢 ∈ ℝ𝑛. If we
are given a problem which is not sequential, we can treat it as one for this purpose. For
example, the car toll problem above, we formulate it to sequential but we did not have to
do this. But the final answer 𝐽∗ should come out the same no matter how it was formulated
of course.

There will be states 𝑥(𝑘), 𝑘 = 0, 1, … ,𝑁 where 𝑥(𝑁) is the terminal state. The constraints are
state dependent. Because it depends on where we are when making the decision. For the

71

car toll problem above, the decision depended on which city we were in. We denote the
decision as 𝑢(𝑘) ∈ Ω and the state equation is

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘), 𝑘)

and the objective function is

𝐽(𝑢) =
𝑁−1
�
𝑘=0

𝐽(𝑥(𝑘), 𝑢(𝑘), 𝑘)
�����������������������

stage cost

+ 𝜓(𝑥(𝑁))���������
terminal cost

The terminal cost, is a cost applied once we reach the terminal state.

1.23.2 Subproblem in dynamic programming

Now we need to define a subproblem. Notion of subproblem: Will begin at 𝑘 = 𝐿 and will
be in state 𝑥(𝐿). The cost when in state 𝐿 is therefore

𝐽𝐿(𝑢) =
𝑁−1
�
𝑘=𝐿

𝐽(𝑥(𝑘), 𝑢(𝑘), 𝑘) + 𝜓(𝑥(𝑁))

Suppose 𝑢∗ is the optimal decision when we are at state 𝑥(𝑘). Let 𝑥∗𝑘 be the optimal trajectory
from 𝑥(𝑘). i.e. 𝑥∗(𝑘) is corresponding state path beginning at given 𝑥(0). Hence

𝑥∗(𝑘 + 1) = 𝑓(𝑥∗(𝑘), 𝑢∗(𝑘), 𝑘), 𝑘 = 0, 1, … ,𝑁 − 1

1.23.3 Bellman principle of optimality

If the subproblem begins at 𝑥(𝐿) = 𝑥∗(𝐿) i.e. we being subproblem along optimal trajectory
of the original problem, then 𝑢∗(𝐿), 𝑢∗(𝐿 + 1), … , 𝑢∗(𝑁 − 1) is optimal for the subproblem.

What all this means, is that if the subproblem is optimal, then its trajectory has to be part of
the overall problem optimal trajectory. An optimal subproblem, can not become sub-optimal
when viewed as part of the main problem.

1.24 Lecture 24. Thursday, April 7, 2016 (No class)

No class.

1.25 Lecture 25. Tuesday, April 12, 2016

The first part of the lecture was on describing the special problem we have to do. This is
described in the special problem HW itself included in HW chapters, under special problem.

72

1.25.1 Dynamic programming state equation

Now we go back to dynamic programming. The state equation is

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘) , 𝑘) 𝑘 = 0, 1,⋯𝑁 and 𝑢 (𝑘) ∈ Ω𝑘

And the objective function is

𝐽 = Ψ (𝑥 (𝑁)) +
𝑁−1
�
𝑘=0

𝐽𝑘 (𝑥 (𝑘) , 𝑢 (𝑘))

Where Ψ(𝑥 (𝑁)) is the cost of the terminal stage.

N0 1 . . . k . . .
L

terminal stage

x(k)x(k − L) x(N)

x(N − 1)

We always start from this stage,
and move left, using the Ballman
dynamic equations

initial state

Figure 1.22: Showing dynamic programming block diagram

1.25.2 Subproblems and principle of optimality (POO)

A subproblem is defined at intermediate point.

P.O.O. (principle Of optimality): if initial state of a subproblem is on the optimal trajectory
of original problem, then the subproblem is also optimal.

Proof by contradiction Let

𝑢 (𝑘) =

⎧⎪⎪⎨
⎪⎪⎩

𝑢∗ (𝑘) 𝑘 = 0,⋯ , 𝐿 − 1
𝑢∗𝑛𝑒𝑤 (𝑘) 𝑘 = 𝐿,⋯𝑁 − 1

Plug the above in the original problem. We will get a suboptimal solution.

Translating POO. to dynamic programming.

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cost of one step

�����������������������������𝐽 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1)) + Ψ (𝑥 (𝑁))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The above is the optimal cost with one step to terminal stage. This is similar to what we

73

did for the routing problem from NY to San Francisco before. The above is when we are
standing in Portland and looking for the last step to take to San Francisco.

To minimize the above, we have to express everything in the same state 𝑥 (𝑁 − 1). So we
write the above, using the state equation, as

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

�𝐽 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1)) + Ψ �𝑓 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1))�� (1)

Now we find 𝑢∗ (𝑁 − 1) of the above, using
𝑑𝐼 (𝑥 (𝑁 − 1) , 1)
𝑑𝑢 (𝑁 − 1)

=
𝑑

𝑑𝑢 (𝑁 − 1)
𝐽 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1)) + Ψ �𝑓 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1))� = 0

And solve for 𝑢 (𝑁 − 1) using standard calculus. Once we find 𝑢∗ (𝑁 − 1) , we plug it back into
(1) and obtain

𝐼∗ (𝑥 (𝑁 − 1) , 1) = 𝐽 (𝑥 (𝑁 − 1) , 𝑢∗ (𝑁 − 1)) + Ψ �𝑓 (𝑥 (𝑁 − 1) , 𝑢∗ (𝑁 − 1))�

Notice now there is no min𝑢(𝑁−1)∈Ω𝑁−1 since we already done this. We now apply POO. again
to find cost from stage 𝑁 − 2

𝐼 (𝑥 (𝑁 − 2) , 2) = min
𝑢(𝑁−2)∈Ω𝑁−2

{𝐽 (𝑥 (𝑁 − 2) , 𝑢 (𝑁 − 2)) + 𝐼∗ (𝑥 (𝑁 − 1) , 1)}

Notice the di�erence now. For all stages back, beyond 𝑁 − 1, we use the cost found from the
ahead stage, which is 𝐼∗ (𝑥 (𝑁 − 1) , 1) in the above case. We now repeat the process, and find
optimal 𝑢∗ (𝑥 (𝑁 − 2) , 2). See HW 7, problem 2 for detailed example how to do this. More
generally,

𝐼 (𝑥 (𝐿) , 𝑁 − 𝐿) = min
𝑢(𝐿)∈Ω𝐿

{𝐽 (𝑥 (𝐿) , 𝑢 (𝐿)) + 𝐼∗ (𝑥 (𝐿 + 1) ,𝑁 − 𝐿 − 1)}

The above is called the dynamic programming equation.

1.26 Lecture 26. Thursday, April 14, 2016

1.26.1 Stages in dynamic programming

At stage 𝐿 the optimal cost from stage 𝐿 with 𝑁 − 𝐿 steps to go is

𝐼 (𝑥𝐿, 𝑁 − 𝐿) = min
𝑢(𝑁−𝐿)∈Ω𝐿

{𝐽 (𝑥𝐿, 𝑢 (𝐿)) + 𝐼 (𝑥𝐿+1, 𝑁 − (𝐿 + 1))}

With appropriate initialization.

74

Some comments: The trickiest part is how to use this equation. Must be careful. Think of
𝑢 (𝐿) as feedback. We call the optimal 𝑢∗ (𝐿) .

Warning. There is a constraint on 𝑢. Do not use derivative to find optimal without being
careful about the limits and constraints. For example, if |𝑢 (𝐿)| ≤ 1 and we have quadratic
form. We will now use an example to show how to use these equations. Let

𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 (1)

Where 𝑢𝑘 is free to take any value. Let the objective function be

𝐽 (𝑥𝑘, 𝑢𝑘) =
𝑁−1
�
𝑘=0

(𝑥𝑘+1 − 𝑢𝑘)
2 + 𝑢2𝑘 (2)

Reflecting a simple tracking mechanism. We always start at 𝑥 (𝑁 − 1) with one stage to go.
Hence the optimal cost from 𝑥𝑁−1 with one step to go is

𝐼 (𝑥𝑁−1, 1) = min
𝑢(𝑁−1)∈Ω1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1) + Ψ (𝑥𝑁)}

Ψ (𝑥𝑁) is the terminal cost. Let us now remove it from the rest of the computation to simplify
things. We also replace 𝐽 in the above from (2) and obtain

𝐼 (𝑥𝑁−1, 1) = min
𝑢(𝑁−1)

��𝑥((𝑁−1)+1) − 𝑢𝑁−1�
2
+ 𝑢2𝑁−1�

= min
𝑢(𝑁−1)

�(𝑥𝑁 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1�

= min
𝑢(𝑁−1)

�(𝑥𝑁 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1�

We want everything in terms of 𝑥𝑁−1. So we use (1) to write 𝑥𝑁 = 𝑥𝑁−1 − 𝑢𝑁−1 and plug it
back in the last equation above to obtain

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1

�(𝑥𝑁−1 − 𝑢𝑁−1 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1�

= min
𝑢𝑁−1

�(𝑥𝑁−1 − 2𝑢𝑁−1)
2 + 𝑢2𝑁−1� (3)

Only now to take derivative, in order to find 𝑢∗𝑁−1. therefore

𝑑𝐼 (𝑥𝑁−1, 1)
𝑢𝑁−1

= 0

2 (𝑥𝑁−1 − 2𝑢𝑁−1) (−2) + 2𝑢𝑁−1 = 0

𝑢∗𝑁−1 =
2
5
𝑥𝑁−1

Now that we found the optimal 𝑢∗𝑁−1 we go back to (3) and replace 𝑢𝑁−1 in (3) by 𝑢∗𝑁−1.
Hence

𝐼 (𝑥𝑁−1, 1) = �𝑥𝑁−1 − 2 �
2
5
𝑥𝑁−1��

2

+ �
2
5
𝑥𝑁−1�

2

=
1
5
𝑥2𝑁−1

Now we backup one step. We need to find

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

{𝐽 (𝑥𝑁−2, 𝑢𝑁−1) + 𝐼 (𝑥𝑁−1, 1)} (4)

75

Notice that we used 𝐼 (𝑥𝑁−1, 1) in place of what we had before, which was the terminal cost
Ψ(𝑥 (𝑁)). Since now we are two steps behind. All the work before was for finding optimal
𝐼 (𝑥𝑁−1, 1). So now (4) becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

�𝐽 (𝑥𝑁−1, 𝑢𝑁−1) +
1
5
𝑥2𝑁−1� (5)

But from (2)

𝐽 (𝑥𝑁−1, 𝑢𝑁−2) = (𝑥𝑁−1 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2

Hence (5) becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

�(𝑥𝑁−1 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
5
𝑥2𝑁−1�

We need to use the state equation 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to rewrite 𝑥𝑁−1 in the above, since we want
everything in 𝑁 − 2 terms. Therefore the above becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

�((𝑥𝑁−2 − 𝑢𝑁−2) − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
5
(𝑥𝑁−2 − 𝑢𝑁−2)

2�

= min
𝑢𝑁−2

�
26
5
𝑢2𝑁−2 −

22
5
𝑢𝑁−2𝑥𝑁−2 +

6
5
𝑥2𝑁−2� (6)

Now we take derivative, to find 𝑢∗𝑁−2

𝑑𝐼 (𝑥𝑁−2, 2)
𝑢𝑁−2

= 0

52
5
𝑢𝑁−2 −

22
5
𝑥𝑁−2 = 0

𝑢∗𝑁−2 =
11
26
𝑥𝑁−2

Now that we found the optimal 𝑢∗𝑁−2, we go back to (6) and replace 𝑢𝑁−2 there with 𝑢∗𝑁−2

𝐼 (𝑥𝑁−2, 2) =
26
5 �

11
26
𝑥𝑁−2�

2

−
22
5 �

11
26
𝑥𝑁−2� 𝑥𝑁−2 +

6
5
𝑥2𝑁−2

=
7
26
𝑥2𝑁−2

Reader Carry out one more stage and obtain 𝐽∗ = (𝑥 (0) , 3)

Answer

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3

{𝐽 (𝑥𝑁−3, 𝑢𝑁−3) + 𝐼 (𝑥𝑁−2, 2)}

= min
𝑢𝑁−3

�𝐽 (𝑥𝑁−3, 𝑢𝑁−3) +
7
26
𝑥2𝑁−2�

But from (2) 𝐽 (𝑥𝑁−3, 𝑢𝑁−3) = (𝑥𝑁−2 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3, hence the above becomes

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3

�(𝑥𝑁−2 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

7
26
𝑥2𝑁−2�

We need to use the state equation 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to rewrite 𝑥𝑁−2 in the above, since we want

76

everything in 𝑁 − 3 terms. Therefore the above becomes

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3

�((𝑥𝑁−3 − 𝑢𝑁−3) − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

7
26
(𝑥𝑁−3 − 𝑢𝑁−3)

2�

= min
𝑢𝑁−3

�
137
26
𝑢2𝑁−3 −

59
13
𝑢𝑁−3𝑥𝑁−3 +

33
26
𝑥2𝑁−3� (7)

Now we take derivative, to find 𝑢∗𝑁−3

𝑑𝐼 (𝑥𝑁−3, 3)
𝑢𝑁−3

= 0

274
26

𝑢𝑁−3 −
59
13
𝑥𝑁−3 = 0

𝑢∗𝑁−3 =
59
137

𝑥𝑁−3

Replace this back in (7)

𝐼 (𝑥𝑁−3, 3) =
137
26 �

59
137

𝑥𝑁−3�
2

−
59
13 �

59
137

𝑥𝑁−3� 𝑥𝑁−3 +
33
26
𝑥2𝑁−3

=
40
137

𝑥2𝑁−3

Let us do one more one, 𝑁 = 4.

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4

{𝐽 (𝑥𝑁−4, 𝑢𝑁−4) + 𝐼 (𝑥𝑁−3, 3)}

= min
𝑢𝑁−4

�𝐽 (𝑥𝑁−4, 𝑢𝑁−4) +
40
137

𝑥2𝑁−3�

But from (2) 𝐽 (𝑥𝑁−4, 𝑢𝑁−4) = (𝑥𝑁−3 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4, hence the above becomes

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4

�(𝑥𝑁−3 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

40
137

𝑥2𝑁−3�

We need to use the state equation 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to rewrite 𝑥𝑁−3 in the above, since we want
everything in 𝑁 − 4 terms. Therefore the above becomes

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4

�((𝑥𝑁−4 − 𝑢𝑁−4) − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

40
137

(𝑥𝑁−4 − 𝑢𝑁−4)
2�

= min
𝑢𝑁−4

�
725
137

𝑢2𝑁−4 −
628
137

𝑢𝑁−4𝑥𝑁−4 +
177
137

𝑥2𝑁−4� (8)

Now we take derivative, to find 𝑢∗𝑁−4

𝑑𝐼 (𝑥𝑁−4, 4)
𝑢𝑁−4

= 0

1450
137

𝑢𝑁−4 −
628
137

𝑥𝑁−4 = 0

𝑢∗𝑁−4 =
314
725

𝑥𝑁−4

77

Therefore (8) becomes

𝐼 (𝑥𝑁−4, 4) =
725
137 �

314
725

𝑥𝑁−4�
2

−
628
137 �

314
725

𝑥𝑁−4� 𝑥𝑁−4 +
177
137

𝑥2𝑁−4

=
217
725

𝑥2𝑁−4

A table of the summary

𝐿 𝐼 (𝑥𝑁−𝐿, 𝐿)
1 0.2 𝑥2𝑁−1

2 0.2692 𝑥2𝑁−2

3 0.29197 𝑥2𝑁−3

4 0.29931 𝑥2𝑁−4

So for 𝑁 = 4

𝐿 𝐼 (𝑥4−𝐿, 𝐿)
1 0.2 𝑥23
2 0.2692 𝑥22
3 0.29197 𝑥21
4 0.29931 𝑥20

Using 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to write everything in terms of 𝑥0

𝐿 𝐼 (𝑥4−𝐿, 𝐿)
1 0.2 (((𝑥0 − 𝑢0) − 𝑢1) − 𝑢2)

2

2 0.2692 ((𝑥0 − 𝑢0) − 𝑢1)
2

3 0.29197 𝑥21 (𝑥0 − 𝑢0)
2

4 0.29931 𝑥20
So total cost is

𝐼 = 0.2 (((𝑥0 − 𝑢0) − 𝑢1) − 𝑢2)
2 + 0.2692 ((𝑥0 − 𝑢0) − 𝑢1)

2 + 0.29197 𝑥21 (𝑥0 − 𝑢0)
2 + 0.29931 𝑥20

This example is special case of LQR. What happens in this example above, or more
generally when 𝑁 → ∞ ? As 𝑁 → ∞ we will see later that the feedback gains become time
invariant. This is called steady state LQR and will we arrive at the Riccati equations.

1.26.2 Allocation problem, applying DP to investment problem

Next example is allocation problem We will do it in two steps. We can solve this without
using D.P. but will use D.P. to illustrate the method. Consider two investments.

1. Invest $1 in real estate, with return of $2.

2. Invest $1 in oil, with return of $4.

78

Let say with start with fixed amount of money 𝑘 dollars. We have constraint: 𝑏𝑟 is maximum
allowed amount of investment in real estate, 𝑏𝑜 is the maximum amount allowed for oil
investment. To avoid trivial solution, assume also that 𝑏𝑟+𝑏𝑜 > 𝑘. Let 𝑢𝑟 the amount invested
in real estate, and let 𝑢𝑜 amount invested in oil.

Common sense solution is 𝑢∗0 = 𝑘−𝑏𝑜 and 𝑢∗1 = 𝑏𝑜 since investment in oil has higher return. 𝑢1
is investment in oil, and 𝑢0 is investment in real estate. Let do this using D.P. The objective
function is

𝐽 (𝑢) = 2𝑢0 + 4𝑢1
And the state equation is (we only have two states 𝑥1, 𝑥0)

𝑥1 = 𝑥0 − 𝑢0
Initial state is 𝑥0 = 𝑘 which is the money we have at the start. There are two stages. Hence
𝑁 = 2. We start with

𝐼 (𝑥𝑁−1, 1) = 𝐼 (𝑥1, 1)
= max

𝑢1∈Ω1
{𝐽 (𝑢)}

i.e. we assume we have one stage to go, and that we have made initial investment in real
estate and now we are making investment in oil. Hence

Ω1 = [0⋯min {𝑏𝑜, 𝑥1}]
Hence 𝑢∗1 = min {𝑏𝑜, 𝑥1} and

𝐼 (𝑥1, 1) = 4min {𝑏𝑜, 𝑥1}
Now backup one step.

𝐼 (𝑥0, 2) = max
𝑢0∈Ω0

{𝐽 (𝑢) + 𝐼 (𝑥1, 1)}

= max
𝑢0∈Ω0

{2𝑢0 + 4min {𝑏𝑜, 𝑥1}}

Where Ω0 = [0⋯𝑏𝑜] . Therefore since 𝑥1 = 𝑥0 − 𝑢0 the above becomes

𝐼 (𝑥0, 2) = max
𝑢0∈Ω0

{2𝑢0 + 4min {𝑏𝑜, 𝑥0 − 𝑢0}}

Let

𝐹 (𝑢0) = 2𝑢0 + 4min {𝑏𝑜, 𝑥0 − 𝑢0}
= 2𝑢0 + 4min {𝑏𝑜, 𝑘 − 𝑢0}

Find the maximum using graphics method. This gives 𝑢∗𝑜 = 𝑘 − 𝑏𝑜 which is the same using
the common sense approach.

The following diagram shows the solution of the above using the dynamic graph method.

79

stage 1 (invest in real estate)

x = k

invest nothing

0
x = k

invest all we can (b0)

2b0 x = k − b0

x = k − b1

invest nothing

0
x = k − b1

Invest all we can. What is
left must be less than or
equal than b0and it can not
be larger than b0

2(k − b1)
x = 0

x = k

stage 0 (invest in oil)

invest nothing

0

2b0

2(k − b1)invest all we can (b1)

4b1

The constriants are

b0 + b1 > k

b0 ≤ k

b1 ≤ k

Note also, if we invest b1 in stage 0, what is left is k − b1 and this amount can not be larger than b0. It can only be
equal or less than b0.
The maximum path is taken by investing b1 in stage zero, and then investing what is left in stage one. This is
becuase we had to decide if 2b0 is larger than 4b1 + 2(k − b1) to decide which path to take.
It is clear than 2b1 + 2k ≥ 2b0 since k ≥ b0, hence the path selected is the one shown.
In the above, b1 is amount to invest in oil and b0 is amount to invest in real estate, and k is maximum total amount
we allowed to invest.

Figure 1.23: Solution to the oil and real estate problem using Branch and Bound
graph method

80

1.27 Lecture 27. Tuesday, April 19, 2016

1.27.1 LQR and dynamic programming

In the following, some of the terms were re-written with the index being as subscript, as it
is easier to see on the screen, Hence instead of 𝑥 (𝑘) as was done in the lecture, it becomes
𝑥𝑘 and 𝑢 (𝑘) becomes 𝑢𝑘 and so on.

Now we start with the state equation

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

In the above, 𝐴 is 𝑛 × 𝑛 and 𝐵 is 𝑛 × 𝑚 where 𝑚 is the number of inputs, and 𝑢𝑘 is column
vector of size 𝑚, and similarly for 𝑥𝑘+1 and 𝑥𝑘. In continuous time, the above is

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)

We can also allow time varying 𝐴,𝐵 in the above, but in this discussion we assumed these
are constant matrices. The goal is to make 𝑥 (𝑘) track, or approach some desired 𝑥𝑑 (𝑘) with
as little e�ort 𝑢 (𝑘) as possible (what about also as fast as possible at same time?). 𝑢 (𝑘) is
called the control e�ort. This diagram illustrates this

k

xd(k) desired path

x(k)

actual path

0 1 N. . .

Figure 1.24: Goal is to track desired path

When 𝑥𝑑 (∞) = 0, this means we want to bring the system to stable state. We want now to
quantify the goal 𝐽 (𝑢). So the problem is to bring the state 𝑥 (𝑘) to zero using as small e�ort
𝑢 as possible. We write the cost 𝐽 (𝑢) as

𝐽 (𝑢) =
𝑁−1
�
𝑘=0

𝑥𝑇𝑘+1𝑄𝑥𝑘+1 + 𝑢𝑇𝑘𝑅𝑢𝑘

This is just something we have to accept as given. We did not derive this, but it makes sense.
Notice for example, when 𝑥 (𝑘) is small, then 𝐽 (𝑢) is small. But from now on, we just use the
above as given. In the above, 𝑄 and 𝑅 are called weighting matrices. For example, if 𝑢 (1)

81

is more important than 𝑢 (2), we adjust the values in 𝑄 to reflect di�erent weights we want
to assign. In the above, 𝑄 is 𝑛 × 𝑚 and 𝑅 is 𝑚 × 𝑚. Both 𝑄 and 𝑅 are positive definite and
symmetric. Now we start using the Bellman dynamic equations.

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1) ,Ψ (𝑥𝑁)}

= min
𝑢𝑁−1∈Ω𝑁−1

�𝑥𝑇𝑁𝑄𝑥𝑁 + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1� (1)

We ignore the terminal cost Ψ(𝑥𝑁) for now. Be careful with the indices. Notice in the above,
after replacing 𝐽 (𝑢), that 𝑥 has index 𝑁 and the 𝑢 has the 𝑁 − 1 index on it. This is due to
how 𝐽 (𝑢) is given to us to use, which has 𝑥𝑘+1 in it already. EQ (1) is our starting point. Now
we start applying the dynamic equations recursively. First , we replace the state equation in
the above and obtain

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

�(𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1)
𝑇𝑄 (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1� (2)

Notice that now all indices on 𝑥 are 𝑁−1, this is because the state equation being 𝑥𝑘+1 = 𝐴𝑥𝑘+
𝐵𝑢𝑘. Notice that (2) is quadratic in 𝑢𝑁−1. This is important. Doing one more simplification
on (2) gives (where the leading min𝑢𝑁−1∈Ω𝑁−1 is now removed, just to make the equations fit),
but it is assumed to be on each equation on what follows

𝐼 (𝑥𝑁−1, 1) = �(𝐴𝑥𝑁−1)
𝑇 + (𝐵𝑢𝑁−1)

𝑇�𝑄 (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1

= �𝑥𝑇𝑁−1𝐴𝑇 + 𝑢𝑇𝑁−1𝐵𝑇�𝑄 (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1

= �𝑥𝑇𝑁−1𝐴𝑇𝑄 + 𝑢𝑇𝑁−1𝐵𝑇𝑄� (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1

= �𝑥𝑇𝑁−1𝐴𝑇𝑄 + 𝑢𝑇𝑁−1𝐵𝑇𝑄� (𝐴𝑥𝑁−1) + �𝑥𝑇𝑁−1𝐴𝑇𝑄 + 𝑢𝑇𝑁−1𝐵𝑇𝑄� (𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1

= 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1 + 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐵𝑢𝑁−1 + 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐵𝑢𝑁−1 + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1

= �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐵𝑢𝑁−1 + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1� + 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐵𝑢𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐵𝑢𝑁−1� + �𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1�

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �(𝑄𝐵𝑢𝑁−1)
𝑇 �𝑥𝑇𝑁−1𝐴𝑇�

𝑇
�
𝑇

� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �(𝑄𝐵𝑢𝑁−1)
𝑇 (𝐴𝑥𝑁−1)�

𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + ��𝑢𝑇𝑁−1 (𝑄𝐵)
𝑇� (𝐴𝑥𝑁−1)�

𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝑇� (𝐴𝑥𝑁−1)�
𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝑇𝐴𝑥𝑁−1�
𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

But 𝑄𝑇 = 𝑄 and the above becomes

𝐼 (𝑥𝑁−1, 1) = 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1�
𝑇
�

+ 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1 (2)

Using

𝐻 =
1
2
�𝐻 + 𝐻𝑇�

82

On the middle term �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1�
𝑇
�, where 𝐻 = 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 reduces

(2) to

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

�𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + 2 �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1� (3)

The above is in the form 𝐼 = 𝑎1𝑢2 + 2𝑎2𝑢 + 𝑎3, therefore it is quadratic in 𝑢𝑁−1. Taking
derivative w.r.t. 𝑢𝑁−1 since this is what we are minimizing 𝐼 with respect to, we obtain from
(3)

𝜕𝐼 (𝑥𝑁−1, 1)
𝜕𝑢𝑁−1

= 0

0 = 2 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + 2 �𝐵𝑇𝑄𝐴𝑥𝑁−1�

𝑅 is positive definite, and 𝑄 is positive definite. Solving for 𝑢𝑁−1 gives

𝑢∗𝑁−1 = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
�𝐵𝑇𝑄𝐴𝑥𝑁−1�

= − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴𝑥𝑁−1 (4)

Reader �𝐵𝑇𝑄𝐵 + 𝑅� is the Hessian. Show it is positive definite matrix. Since the Hessian is
P.D., then 𝑢∗𝑁−1 is global min. Eq (4) is linear feedback on state (𝑁 − 1). i.e. we write

𝑢∗ (𝑁 − 1) = 𝐾 (𝑁 − 1) 𝑥 (𝑁 − 1)

Where 𝐾 (𝑁 − 1) is called the gain matrix which is

𝐾 (𝑁 − 1) = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴

In all the expressions below, we see the term �𝐵𝑇𝑄𝐵 + 𝑅� repeating. So to simplify things
and make the equations smaller, let

Φ = 𝐵𝑇𝑄𝐵 + 𝑅

Hence

𝐾 (𝑁 − 1) = −Φ−1𝐵𝑇𝑄𝐴

And therefore

𝑢∗𝑁−1 = �−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

= − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴𝑥𝑁−1

Now we go back to (3) and replace the 𝑢𝑁−1 in that expression with 𝑢∗𝑁−1 we found in (4).

83

(we remove the min𝑢𝑁−1∈Ω𝑁−1 we had in (3), since it is now the minimum)

𝐼∗ (𝑥𝑁−1, 1) = 𝑢∗𝑇𝑁−1Φ𝑢∗𝑁−1 + 2 �𝑢∗𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= ��−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1�
𝑇
Φ�−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

+ 2 ��−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1�
𝑇
�𝐵𝑇𝑄𝐴𝑥𝑁−1� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= −𝑥𝑇𝑁−1 �Φ−1𝐵𝑇𝑄𝐴�
𝑇
Φ�−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1 − 2𝑥𝑇𝑁−1 �Φ−1𝐵𝑇𝑄𝐴�

𝑇
�𝐵𝑇𝑄𝐴𝑥𝑁−1�

+ 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑥𝑇𝑁−1 ��Φ−1𝐵𝑇𝑄𝐴�
𝑇
�𝐵𝑇𝑄𝐴� − 2 �Φ−1𝐵𝑇𝑄𝐴�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 ��𝐵𝑇𝑄𝐴�
𝑇
�Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� − 2 �𝐵𝑇𝑄𝐴�

𝑇
�Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 �(𝑄𝐴)
𝑇 𝐵 �Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� − 2 (𝑄𝐴)𝑇 𝐵 �Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 �𝐴𝑇𝑄𝑇𝐵 �Φ−1�
𝑇
�𝐵𝑇𝑄𝐴� − 2𝐴𝑇𝑄𝑇𝐵 �Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

But 𝑄 = 𝑄𝑇 and �Φ−1�
𝑇
= Φ−1. Note that Φ is the Hessian matrix, and it is positive

definite, and assumed symmetric. That is why �Φ−1�
𝑇
= Φ−1. But we did not proof this. It

was a reader to show this is positive definite. The above therefore becomes

𝐼∗ (𝑥𝑁−1, 1) = 𝑥𝑇𝑁−1 �𝐴𝑇𝑄𝐵Φ−1𝐵𝑇𝑄𝐴 − 2𝐴𝑇𝑄𝑇𝐵Φ−1𝐵𝑇𝑄𝐴 + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 �𝐴𝑇𝑄 − 𝐴𝑇𝑄𝐵Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1𝐴𝑇𝑄�𝐼 − 𝐵Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴𝑥𝑁−1

Let

𝑀𝑁−1 = 𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴

Then

𝐼∗ (𝑥𝑁−1, 1) = 𝑥𝑇𝑁−1𝑀𝑁−1𝑥𝑁−1

Now that we found 𝐼∗ (𝑥𝑁−1, 1), we go back one more step

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

{𝐽 (𝑥𝑁−2, 𝑢𝑁−2) + 𝐼∗ (𝑥𝑁−1, 1)}

= min
𝑢𝑁−2∈Ω𝑁−2

�𝑥𝑇𝑁−1𝑄𝑥𝑁−1 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2 + 𝐼∗ (𝑥𝑁−1, 1)�

= min
𝑢𝑁−2∈Ω𝑁−2

�𝑥𝑇𝑁−1𝑄𝑥𝑁−1 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2 + 𝑥𝑇𝑁−1𝑀𝑁−1𝑥𝑁−1�

= min
𝑢𝑁−2∈Ω𝑁−2

�𝑥𝑇𝑁−1 (𝑄 +𝑀𝑁−1) 𝑥𝑁−1 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2� (6)

Think of (𝑄 +𝑀𝑁−1) as the new 𝑄 matrix at stage 𝑁 − 2. We need to replace everything to
be at 𝑁 − 2 stage, using the state equation 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 then

𝑥𝑁−1 = 𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2

Hence (6) becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

�(𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2)
𝑇 (𝑄 +𝑀𝑁−1) (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2�

84

As above, remove min𝑢𝑁−2∈Ω𝑁−2 in what follows so that equations fit on the page and let

𝑄′ = 𝑄 +𝑀𝑁 − 1

Then

𝐼 (𝑥𝑁−2, 2) = �(𝐴𝑥𝑁−2)
𝑇 + (𝐵𝑢𝑁−2)

𝑇�𝑄′ (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2

= �(𝐴𝑥𝑁−2)
𝑇𝑄′ + (𝐵𝑢𝑁−2)

𝑇𝑄′� (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2

= (𝐴𝑥𝑁−2)
𝑇𝑄′ (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + (𝐵𝑢𝑁−2)

𝑇𝑄′ (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2

= (𝐴𝑥𝑁−2)
𝑇𝑄′𝐴𝑥𝑁−2 + (𝐴𝑥𝑁−2)

𝑇𝑄′𝐵𝑢𝑁−2 + (𝐵𝑢𝑁−2)
𝑇𝑄′𝐴𝑥𝑁−2 + (𝐵𝑢𝑁−2)

𝑇𝑄′𝐵𝑢𝑁−2+ (1.1)

𝑢𝑇𝑁−2𝑅𝑢𝑁−2

= 𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐴𝑥𝑁−2 + 𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2

= 𝑢𝑇𝑁−2 �𝐵𝑇𝑄′𝐵 + 𝑅� 𝑢𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 + 𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 (7)

But

𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 = �𝑢𝑇𝑁−2 �𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵�
𝑇
�
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝑢𝑇𝑁−2 ��𝐴𝑇𝑄′𝐵�
𝑇
𝑥𝑁−2��

𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝑢𝑇𝑁−2 �(𝑄′𝐵)𝑇𝐴𝑥𝑁−2��
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝑢𝑇𝑁−2 �𝐵𝑇 (𝑄′)𝑇𝐴𝑥𝑁−2��
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

But 𝑄′ = (𝑄′)𝑇 since symmetric2 then the above becomes

𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 = �𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= 2 �𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2� (8)

Using 𝐻 = 1
2
�𝐻 + 𝐻𝑇�. Replacing (8) into (7) gives

𝐼 (𝑥𝑁−2, 2) = 𝑢𝑇𝑁−2 �𝐵𝑇𝑄′𝐵 + 𝑅� 𝑢𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 + 2 �𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2� (9)

We now find 𝑢∗𝑁−2

𝜕𝐼 (𝑥𝑁−2, 2)
𝜕𝑢𝑁−2

= 0

0 = 2𝑢𝑁−2 �𝐵𝑇𝑄′𝐵 + 𝑅� + 2𝐵𝑇𝑄′𝐴𝑥𝑁−2

Hence

𝑢∗𝑁−2 = �− �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴� 𝑥𝑁−2

Where 𝑄′ = 𝑄 +𝑀𝑁−1. Hence

𝐾 (𝑁 − 2) = − �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴

= − �𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐵 + 𝑅�
−1
𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐴

2Need proof

85

Now we go back to 𝐼 (𝑥𝑁−2, 2) and replace 𝑢𝑁−2 with 𝑢∗𝑁−2 we just found. From (9)

𝐼∗ (𝑥𝑁−2, 2) = �− �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅� �− �𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2� +

𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 + 2 ��− �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

𝑇
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

= �𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
�𝐵𝑇𝑄′𝐵 + 𝑅� �𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2+

𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 − 2 ��𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

𝑇
𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2

− 2 �𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2

= 𝑥𝑇𝑁−2 �𝐵𝑇𝑄′𝐴�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2

= 𝑥𝑇𝑁−2 ��𝐴𝑇𝑄′𝑇𝐵� �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴 + �𝐴𝑇𝑄′𝐴�� 𝑥𝑁−2

Reader Argue that 𝐼∗ (𝑥𝑁−2, 2) looks like

𝐼∗ (𝑥𝑁−2, 2) = 𝑥𝑇𝑁−2𝑀𝑁−2𝑥𝑁−2

Reader Find 𝑀𝑁−2

𝑀𝑁−2 = �𝐴𝑇𝑄′𝑇𝐵� �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴 + �𝐴𝑇𝑄′𝐴�

= �𝐴𝑇 (𝑄 +𝑀𝑁 − 1)
𝑇 𝐵� �𝐵𝑇 (𝑄 +𝑀𝑁 − 1) 𝐵 + 𝑅�

−1
𝐵𝑇 (𝑄 +𝑀𝑁 − 1)𝐴

+ �𝐴𝑇 (𝑄 +𝑀𝑁 − 1)𝐴�

But 𝑀𝑁 − 1 = 𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴, hence

𝑀𝑁−2 = �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴��
𝑇
𝐵� �𝐵𝑇 (𝑄 +𝑀𝑁 − 1) 𝐵 + 𝑅�

−1
𝐵𝑇

�𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴��𝐴 + �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴��𝐴�

But Φ = 𝐵𝑇𝑄𝐵 + 𝑅, hence the above becomes

𝑀𝑁−2 = �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴��

𝑇
𝐵� �𝐵𝑇 (𝑄 +𝑀𝑁 − 1) 𝐵 + 𝑅�

−1
𝐵𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�

−1
𝐵𝑇�𝑄𝐴��𝐴 + �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�

−1
𝐵𝑇�𝑄𝐴��𝐴�

Summary

𝑢∗𝑁−𝑖 = 𝐾𝑁−𝑖𝑥𝑁−𝑖

𝐼∗ (𝑥𝑁−𝑖) = 𝑥𝑇𝑁−𝑖𝑀𝑁−𝑖𝑥𝑁−𝑖

Reader Find a formula for 𝐾 (𝑁 − 3).

86

The expression for 𝐾𝑁−𝑖 is

𝐾𝑁−1 = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴

𝐾𝑁−2 = − �𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐵 + 𝑅�
−1
𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐴

= − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇𝑀𝑁−1𝐵�
−1
�𝐵𝑇𝑄𝐴 + 𝐵𝑇𝑀𝑁−1𝐴�

Where 𝑀𝑁−1 = 𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴 and Φ = 𝐵𝑇𝑄𝐵 + 𝑅, hence

𝐾𝑁−2 = − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴�𝐵�
−1

�𝐵𝑇𝑄𝐴 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴�𝐴�

= − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐵�

−1

�𝐵𝑇𝑄𝐴 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐴�

The final optimal cost will be

𝐽∗ = 𝑥𝑇0𝑀0𝑥0

1.27.2 Example LQR using dynamic programming

Reader Let 𝐴 =
⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ ,𝑄 =

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠ and 𝑅 = 1, the weight on input. For 𝑁 = 3,

find 𝐾 (2) , 𝐾 (1) , 𝐾 (0) solving for LQR problem. We will get optimal gain 𝐾 (𝑖) and these will
not be the same. We do not like time varying gains, as in this case. We like the gain matrix
to be constant, as it is easier to manger and more safe to use. If we make 𝑁 very large, then
gain will become constant. We start from very large 𝑁 and go back to zero.

Solution

𝑁 = 3,

𝐾 (𝑁 − 1) = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴

𝐾 (2) = −

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ + 1

⎞
⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

= − (2 + 1)−1 �−1 4�

=
−1
3
�−1 4�

= �1
3

−4
3
�

Hence

𝐾 (2) = �1
3

−4
3
� = �0.33333 −1.333 3�

Will do things from now on using the state equations directly, as it seems easier. Starting

87

again

𝐼 (𝑥 (3 − 1) , 1) = min
𝑢(2)

{𝐽 (𝑥2, 𝑢2)}

𝐼 (𝑥2, 1) = min
𝑢2

�𝑥𝑇3𝑄𝑥3 + 𝑢𝑇2𝑅𝑢2�

But 𝑥3 = 𝐴𝑥2 + 𝐵𝑢2 from state equation, hence the above becomes

𝐼 (𝑥2, 1) = min
𝑢2

�(𝐴𝑥2 + 𝐵𝑢2)
𝑇𝑄 (𝐴𝑥2 + 𝐵𝑢2) + 𝑢𝑇2𝑅𝑢2�

= min
𝑢2

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠ 𝑥2 +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠ 𝑥2 +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎠ + 𝑢

𝑇
2 (1) 𝑢2

⎫⎪⎪⎬
⎪⎪⎭

= min
𝑢2

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ + 𝑢

2
2

⎫⎪⎪⎬
⎪⎪⎭

= min
𝑢2

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

𝑥11 − 2𝑥21
𝑢2 − 𝑥11 + 3𝑥21

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

𝑥11 − 2𝑥21
𝑢2 − 𝑥11 + 3𝑥21

⎞
⎟⎟⎟⎟⎠ + 𝑢

2
2

⎫⎪⎪⎬
⎪⎪⎭

= min
𝑢2

�(𝑥11 − 2𝑥21) (𝑢2 + 𝑥11 − 𝑥21) + (2𝑢2 − 𝑥11 + 4𝑥21) (𝑢2 − 𝑥11 + 3𝑥21) + 𝑢22�

= min
𝑢2

�2𝑢22 − 2𝑢2𝑥11 + 8𝑢2𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221 + 𝑢22�

= min
𝑢2

�3𝑢22 − 2𝑢2𝑥11 + 8𝑢2𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221�

Hence
𝜕𝐼 (𝑥2, 1)
𝜕𝑢2

= 0

0 = 6𝑢2 − 2𝑥11 + 8𝑥21

0 = 6𝑢2 + �−2 8�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

0 = 6𝑢2 + �−2 8� 𝑥1

𝑢∗2 = −
1
6
�−2 8� 𝑥1

= �2
6

−8
6
� 𝑥1

Therefore

𝑢∗2 = �
1
3

−4
3
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

And

𝐾 (2) = �1
3

−4
3
� = �0.33333 −1.333 3�

Which is the same as above using − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴.

88

Now we find 𝐼∗ (𝑥2, 1) by using 𝑢∗2 found above back in 𝐼 (𝑥2, 1)

𝐼∗ (𝑥2, 1) =
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎠ + 𝑢

𝑇
2 (1) 𝑢2

=
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ �

1
3

−4
3
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ �

1
3

−4
3
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

+
⎛
⎜⎜⎜⎜⎝�

1
3

−4
3
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇

�1
3

−4
3
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
5
3𝑥21 −

2
3𝑥11

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
5
3𝑥21 −

2
3𝑥11

⎞
⎟⎟⎟⎟⎠

+ 𝑥11 �
1
9
𝑥11 −

4
9
𝑥21� − 𝑥21 �

4
9
𝑥11 −

16
9
𝑥21�

= (𝑥11 − 2𝑥21) �
4
3
𝑥11 −

7
3
𝑥21� + �

1
3
𝑥11 −

4
3
𝑥21� �

2
3
𝑥11 −

5
3
𝑥21�

+ 𝑥11 �
1
9
𝑥11 −

4
9
𝑥21� − 𝑥21 �

4
9
𝑥11 −

16
9
𝑥21�

=
5
3
𝑥211 −

22
3
𝑥11𝑥21 +

26
3
𝑥221

We have to convert this to 𝑥𝑇1𝑥1 to be able to use it in the next stage since we need to apply
the state equation to it. We see that

5
3
𝑥211 −

22
3
𝑥11𝑥21 +

26
3
𝑥221 = �𝑥11 𝑥21�

⎛
⎜⎜⎜⎜⎝
𝑐11 𝑐12
𝑐12 𝑐22

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

Solving gives

⎛
⎜⎜⎜⎜⎝
𝑐11 𝑐12
𝑐12 𝑐22

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

5
3 −22

6
−22

6
26
3

⎞
⎟⎟⎟⎟⎠, hence

𝐼∗ (𝑥2, 1) = 𝑥𝑇2

⎛
⎜⎜⎜⎜⎝

5
3 −22

6
−22

6
26
3

⎞
⎟⎟⎟⎟⎠ 𝑥2

89

Now we find 𝐼 (𝑥 (𝑁 − 2) , 2) = 𝐼 (𝑥 (3 − 2) , 2) = 𝐼 (𝑥1, 2)

𝐼 (𝑥1, 2) = min
𝑢1

{𝐽 (𝑥1, 𝑢1) + 𝐼∗ (𝑥2, 1)}

= min
𝑢3

�𝑥𝑇2𝑄𝑥2 + 𝑢𝑇1𝑅𝑢1 + 𝐼∗ (𝑥2, 1)�

But 𝑥2 = 𝐴𝑥1 + 𝐵𝑢1 from state equation, hence the above becomes

𝐼 (𝑥1, 2) = min
𝑢3

�(𝐴𝑥1 + 𝐵𝑢1)
𝑇𝑄 (𝐴𝑥1 + 𝐵𝑢1) + 𝑢𝑇1𝑅𝑢1 + 𝐼∗ (𝑥2, 1)�

=
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎠ + 𝑢

2
1

+ 𝑥𝑇2

⎛
⎜⎜⎜⎜⎝

5
3 − 22

6
− 22

6
26
3

⎞
⎟⎟⎟⎟⎠ 𝑥2

Now we have to use the state equations in 𝐼∗ (𝑥2, 1) to update the last term above, this is
important, since everything should be at the same state

𝐼 (𝑥1, 2) = 3𝑢21 − 2𝑢1𝑥11 + 8𝑢1𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221

+
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝

5
3 − 22

6
− 22

6
26
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎠

= 3𝑢21 − 2𝑢1𝑥11 + 8𝑢1𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝

5
3 − 22

6
− 22

6
26
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= 3𝑢21 − 2𝑢1𝑥11 + 8𝑢1𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221
26
3
𝑢21 −

74
3
𝑢1𝑥11 +

200
3
𝑢1𝑥21 +

53
3
𝑥211 −

286
3
𝑥11𝑥21 +

386
3
𝑥221

=
35
3
𝑢21 −

80
3
𝑢1𝑥11 +

224
3
𝑢1𝑥21 +

59
3
𝑥211 −

316
3
𝑥11𝑥21 +

428
3
𝑥221

Now we take derivative to find optimal 𝑢∗1
𝜕𝐼 (𝑥1, 2)
𝜕𝑢1

= 0

0 =
70
3
𝑢1 −

80
3
𝑥11 +

224
3
𝑥21

𝑢∗1 =
3
70 �

80
3
𝑥11 −

224
3
𝑥21�

=
8
7
𝑥11 −

16
5
𝑥21

= �8
7 −16

5
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

90

Hence

𝑢∗1 = �
8
7 −16

5
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

And

𝐾 (1) = �8
7 −16

5
� = �1.1429 −3.2�

Therefore, we find 𝐼∗ (𝑥1, 2) using 𝑢∗1

𝐼∗ (𝑥1, 2) =
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢

∗
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢

∗
1

⎞
⎟⎟⎟⎟⎠ + 𝑢∗𝑇1 (1) 𝑢∗1

But 𝑢∗1 = �
8
7 −16

5
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠, hence the above becomes

𝐼∗ (𝑥1, 2) =
⎛
⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
1
7𝑥11 −

1
5𝑥21

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
1
7𝑥11 −

1
5𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝�

8
7 − 16

5
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇

� 8
7 − 16

5
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

= (𝑥11 − 2𝑥21) �
15
7
𝑥11 −

21
5
𝑥21� − �

1
5
𝑥21 −

1
7
𝑥11� �

9
7
𝑥11 −

12
5
𝑥21�

+ 𝑥11 �
64
49
𝑥11 −

128
35

𝑥21� − 𝑥21 �
128
35

𝑥11 −
256
25

𝑥21�

=
178
49

𝑥211 −
82
5
𝑥11𝑥21 +

478
25

𝑥221

We have to write the above as 𝑥𝑇𝐶𝑥 in order to update the state the next stage. As before,
we solve for 𝐶 from

178
49
𝑥211 −

82
5
𝑥11𝑥21 +

478
25

𝑥221 = �𝑥11 𝑥21�
⎛
⎜⎜⎜⎜⎝
𝑐11 𝑐12
𝑐12 𝑐22

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

= 𝑐11𝑥211 + 2𝑐12𝑥11𝑥21𝑐22𝑥221

Hence 𝑐11 =
178
49 , 𝑐22 =

478
25 , 𝑐12 = −

82
10 , therefore

𝐼∗ (𝑥1, 2) = �𝑥11 𝑥21�
⎛
⎜⎜⎜⎜⎝

178
49

82
10

82
10

478
25

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

Now we back one more final step to find 𝐾 (0). We find 𝐼 (𝑥 (𝑁 − 3) , 3) = 𝐼 (𝑥 (0) , 3)

𝐼 (𝑥0, 3) = min
𝑢0

{𝐽 (𝑥0, 𝑢0) + 𝐼∗ (𝑥1, 2)}

= min
𝑢0

�𝑥𝑇1𝑄𝑥1 + 𝑢𝑇0𝑅𝑢0 + 𝐼∗ (𝑥1, 2)�

91

But 𝑥1 = 𝐴𝑥0 + 𝐵𝑢0 from state equation, hence the above becomes

𝐼 (𝑥0, 3) = min
𝑢0

�(𝐴𝑥0 + 𝐵𝑢0)
𝑇𝑄 (𝐴𝑥0 + 𝐵𝑢0) + 𝑢𝑇0𝑅𝑢0 + 𝐼∗ (𝑥1, 2)�

=
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢0

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ 𝑢0

⎞
⎟⎟⎟⎟⎠ + 𝑢

2
0

+ 𝑥𝑇1

⎛
⎜⎜⎜⎜⎝

178
49

82
10

82
10

478
25

⎞
⎟⎟⎟⎟⎠ 𝑥1

Now we have to use the state equations in 𝐼∗ (𝑥1, 2) to update the last term above, this is
important, since everything should be at the same state

𝐼 (𝑥0, 3) =
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ + 𝑢

2
0

+
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝

178
49

82
10

82
10

478
25

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
𝑢0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= (𝑥11 − 2𝑥21) (𝑢0 + 𝑥11 − 𝑥21) + 𝑢20 + (2𝑢0 − 𝑥11 + 4𝑥21) (𝑢0 − 𝑥11 + 3𝑥21)

+ (𝑥11 − 2𝑥21) �
41
5
𝑢0 −

1119
245

𝑥11 +
4247
245

𝑥21� +

�
478
25

𝑢0 −
273
25

𝑥11 +
1024
25

𝑥21� (𝑢0 − 𝑥11 + 3𝑥21)

=
553
25

𝑢20 −
596
25

𝑢0𝑥11 +
2248
25

𝑢0𝑥21 +
10 232
1225

𝑥211 −
70 132
1225

𝑥11𝑥21 +
125 208
1225

𝑥221

Now we take derivative to find optimal 𝑢∗0
𝜕𝐼 (𝑥0, 3)
𝜕𝑢0

= 0

0 = 2
553
25

𝑢0 −
596
25

𝑥11 +
2248
25

𝑥21

Hence

𝑢∗0 =
596
603

𝑥11 −
2248
603

𝑥21

Therefore

𝑢∗0 = �
596
603 −2248

603
�
⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠ = �0.98839 −3.728�

⎛
⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎠

And

𝐾 (0) = �0.988 39 −3.728�

Matlab dlqr gives a slightly di�erent result and the signs are switched. This needs to be
looked at it more. Let us verify 𝐾 (1) using the Bellman dynamic equations we derived earlier

92

which is

𝐾 (1) = − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐵�

−1

�𝐵𝑇𝑄𝐴 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐴� (10)

Let Δ = 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴� , hence

𝐾 (1) = − �𝐵𝑇𝑄𝐵 + 𝑅 + Δ𝐵�
−1
�𝐵𝑇𝑄𝐴 + Δ𝐴�

We already found 𝐾 (1) = �1.1429 −3.2� using the direct method. Just need to verify using
the dynamic equations found.

Δ =
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

−1

−
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ + 1

⎞
⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇
⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎝
1 −1
−1 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

2
3 − 1

3
− 1
3

1
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −1
−1 4

⎞
⎟⎟⎟⎟⎠

= �− 11
3

26
3
�

Hence (10) becomes

𝐾 (1) = −

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ + 1 + �− 11

3
26
3
�
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠ + �− 11

3
26
3
�
⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= − �− 8
7

16
5
�

= �1.142 9 −3.2�

Which matches the direct method used above. Similar results are obtained using Matlab.
Matlab has the signs reversed, this needs to be investigated to find out why.
>> A=[1,-2;-1,3];
>> B=[0;1];
>> Q=[2,1;1,2];
>> R=1;
>> [k,s,e]=dlqr(A,B,Q,R)
k =
-1.3195 3.6050
s =
7.0346 -10.3887
-10.3887 28.3824
e =
0.2679
0.1270

In Mathematica:
 ssm = StateSpaceModel[{{{1, -2}, {-1, 3}}, {{0}, {1}}}];
 q = {{1, -2}, {-1, 3}};
 r = {{1}};
 DiscreteLQRegulatorGains[ssm, {q, r}, 1.0]

93

 {{-1.44328, 3.8633}}

˙

Next we will talk about variations of dynamic programming. Floor and ceiling. We might
want to optimize for maximum of some variable. For economy, this could be ceiling of
unemployment. We can modify the dynamic equations to handle these problems. Floor
and ceiling violate the additive process we used in D.P. but we can still manage to use the
dynamic equations with some modifications.

94

1.28 Lecture 28. Thursday, April 21, 2016

1.28.1 Variations of dynamic programming, �oor and ceiling

Today’s lecture is on variations of dynamic programming. Many integer programming
problem can be cast as D.P. The emphasis will be heuristics more than proofs.

One such variation is when the objective function is in terms of the floor or ceiling of variable.
Another variation is steady state (this is when the number of stages becomes very large and
goes to infinity).

Floor and ceiling To begin, say that 𝑥𝑘 is scalar. We are interested in the floor of 𝑥𝑘. This is
min𝑘 𝑥𝑘. We can also talk about ceiling. This is max𝑘 𝑥 (𝑘). More formally

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘)

Where 𝑢 (𝑘) ∈ Ω. We introduce a monitoring function 𝑔 (𝑥 (𝑘)). Therefore, the floor problem
can be stated as

max
𝑢𝑘∈Ω𝑘

min
𝑘=1⋯𝑁

𝑔 (𝑥𝑘)

For example, the ceiling problem could be to minimize the maximum of unemployment,
stated as

min
𝑢𝑘∈Ω𝑘

max
𝑘=1⋯𝑁

𝑔 (𝑥𝑘)

Modeling our D.P. analysis Assume we are doing the floor problem now. Then we write

𝐼 (𝑥𝑁−1, 1) = max
𝑢𝑁−1∈Ω𝑁−1

𝑔 (𝑥𝑁)

And for the ceiling

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

𝑔 (𝑥𝑁)

From now on, we continue with the ceiling problem. For the next stage we obtain

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

�max �𝑔 (𝑥𝑁) , 𝐼∗ (𝑥𝑁−1, 1)��

And the recursion formula becomes

95

𝐼 (𝑥𝐿, 𝑁 − 𝐿) = min
𝑢𝐿∈Ω𝐿

�max �𝑔 (𝑥𝐿+1) , 𝐼∗ (𝑥𝐿+1, 𝑁 − 𝐿 − 1)��

When applying the above, we see one di�erence from previous examples of D.P., now we have
Ω𝐿 which might depends on 𝑢𝐿−1, 𝑢𝐿−2,⋯. Now we will go over one example. A simplified
economy model example. Let 𝑁 be the years of horizon planning. Let 𝑦𝑘 be the national
income for the 𝑘 year. Let 𝑐𝑘 be the consumer expenditure. Let 𝐼𝑘 be the business investment.
And let 𝑢𝑘 be the government expenditure. The constraint is

𝑁−1
�
𝑘=0

𝑢𝑘 ≤ 𝑈

Where 𝑈 is the budget given and 𝑢𝑘 ≥ 0. Hence in a given year we have

𝑦𝑘 = 𝑐𝑘 + 𝐼𝑘 + 𝑢𝑘−1 (1)

𝑐𝑘 = 𝛼𝑦𝑘−1 (2)

Where 𝛼 is propensity factor to consume.

𝐼𝑘 = 𝛽 (𝑐𝑘 − 𝑐𝑘−1) (3)

Reader Eliminate 𝑐𝑘, 𝐼𝑘 from (1,2,3) to obtain

𝑦𝑘 = �1 + 𝛽� 𝛼𝑦𝑘−1 − 𝛼𝛽𝑦𝑘−2 + 𝑢𝑘−1 (4)

Our goal is to control the output 𝑦𝑘 using the input 𝑢𝑘.

Reader Let 𝑧𝑘 = 𝑦𝑘 − 𝑦𝑘−1

Therefore, now

𝑦𝑘−2 = 𝑦𝑘−1 − 𝑧𝑘−1
Substituting the above in (4) gives

𝑦𝑘 = �1 + 𝛽� 𝛼𝑦𝑘−1 − 𝛼𝛽 �𝑦𝑘−1 − 𝑧𝑘−1� + 𝑢𝑘−1
= 𝛼𝑦𝑘−1 + 𝛼𝛽𝑧𝑘−1 + 𝑢𝑘−1

We have state equation

𝑦𝑘+1 = 𝛼𝑦𝑘 + 𝛼𝛽𝑧𝑘 + 𝑢𝑘
Next we want state equation for 𝑧𝑘

Reader

𝑧𝑘+1 = (𝛼 − 1) 𝑦𝑘 + 𝛼𝛽𝑧𝑘 + 𝑢𝑘
Now define state 𝑥1 (𝑘) = 𝑦𝑘 and 𝑥2 (𝑘) = 𝑧𝑘, hence the state equation in matrix form becomes

𝑥𝑘+1 =
⎛
⎜⎜⎜⎜⎝
𝛼 𝛼𝛽

𝛼 − 1 𝛼𝛽

⎞
⎟⎟⎟⎟⎠ 𝑥𝑘 +

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑢𝑘

96

We want to maximize the floor of the national income 𝑦𝑘 using D.P. To illustrate two stages,
i.e. 𝑁 = 2, let 𝑈 = 1 dollar, and let 𝛼 = 𝛽 = 1

2 Hence
⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑘 + 1)
𝑥2 (𝑘 + 1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
2

1
4

−1
2

1
4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑘)
𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑢𝑘

Monitor function is 𝑔 (𝑥 (𝑘)) = 𝑥1 (𝑘)

Begin with one stage to go

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈Ω1

𝑥1 (2) (5)

We know 𝑢 (1) ≤ 1 − 𝑢 (0)

Hence (5) becomes

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈[0⋯1−𝑢(0)]

�
1
2
𝑥1 (1) +

1
4
𝑥2 (1) + 𝑢 (1)�

The minimizer is 𝑢∗ (1) = 1 − 𝑢 (0), therefore

𝐼∗ (𝑥 (1) , 1) =
1
2
𝑥1 (1) +

1
4
𝑥2 (1) + 1 − 𝑢 (0)

Now we go back one more step

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min �𝑔 (𝑥 (1) , 𝐼 (𝑥 (1) , 1))�

Where Ω0 = [0… 1] since we have one dollar to start with. Hence

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈[0…1]

min�𝑥1 (1) ,
1
2
𝑥1 (1) +

1
4
𝑥2 (1) + 1 − 𝑢 (0)�

Back everything to get an equation in 𝑢 (0)

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈[0…1]

min�
1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0) ,

1
2 �

1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0)� +

1
4 �
−
1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0)� 1 − 𝑢 (0)�

This reduces to

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈[0…1]

min {𝐴 + 𝑢 (0) , 𝐵}

97

Where

𝐴 =
1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0)

𝐵 =
1
8
𝑥 (0) +

3
16
𝑥2 (0) + 1 −

1
4
𝑢 (0)

Hence the function to minimize is

𝐹 (𝑢 (0)) = min {𝐴 + 𝑢 (0) , 𝐵}

Consider case when 𝐴 ≥ 𝐵 and case 𝐴 < 𝐵.

Reader work out the di�erent cases.

1.29 Lecture 29. Tuesday, April 26, 2016

1.29.1 Detailed example for a �oor problem

We will start today with one more dynamic problem which will be useful for HW problem.
Then we will start on steady state. Example is a floor problem.

𝑥1 (𝑘 + 1) = min {𝑥1 (𝑘) , 𝑥2 (𝑘)} + 𝑢 (𝑘)
𝑥2 (𝑘 + 1) = 𝑥1 (𝑘) 𝑢 (𝑘)

And initial state is

𝑥1 (0) = 1
𝑥2 (0) = −1

And

𝐽 = min
𝑘=1,2

𝑥2 (𝑘)

With |𝑢 (𝑘)| ≤ 𝑀. One step to go is

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈Ω1

{min 𝐽}

= max
𝑢(1)∈Ω1

𝑥2 (2)

= max
|𝑢(1)|≤𝑀

𝑥1 (1) 𝑢 (1)

Hence 𝑢∗ = 𝑀 sign(𝑥1 (𝑥)), therefore

𝐼∗ (𝑥 (1) , 1) = 𝑀 𝑎𝑏𝑠 (𝑥1 (1))

98

With two steps

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

{min {𝐽 (𝑥 (1) , 𝐼 (𝑥 (1) , 1))}}

= max
𝑢(0)∈Ω0

min {𝑥2 (1) ,𝑀 |𝑥1 (1)|}

= max
𝑢(0)∈Ω0

min {𝑥1 (0) 𝑢 (0) ,𝑀 |min {𝑥1 (0) , 𝑥2 (0)} + 𝑢 (0)|}

= max
𝑢(0)∈Ω0

min {𝑢 (0) ,𝑀 |𝑢 (0) − 1|}

Where 𝐹 (𝑢) = min {𝑢 (0) ,𝑀 |𝑢 (0) − 1|}. Consider the case 0 < 𝑀 ≤ √2 and case 𝑀 > √2. See
key solution for HW 7 for the solution.

We now start talking about steady state. Notion of functional equations., then iterative
solution to steady state problem, then Riccati equation. We begin with

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘)

With a constraint on 𝑢𝑘 given by 𝑢𝑘 ∈ Ω𝑘. The branch cost is

𝐽 = Ψ (𝑥𝑁) +
𝑁−1
�
𝑘=0

𝐽𝑘 (𝑥𝑘, 𝑢𝑘)

Then let 𝑁 → ∞. We are hoping to get 𝐽𝑁 and obtain 𝑢∗𝑁 = 𝑢∗0, 𝑢∗1,⋯ , 𝑢∗𝑁−1 optimal controls
at each stage. Notice that when 𝑁 changes, then the whole sequence 𝑢∗𝑁 changes also, and
not just one term. We now ask, does 𝐽𝑁 converge? does 𝑢∗𝑁 converge? To make sense of the
above, we remove the terminal cost Ψ(𝑥𝑁) from this analysis. We also want Ω𝑘 to be fixed
for any 𝑁. This means we have the same constraints all the time.

If steady state solution exist, then it satisfies

𝐼 (𝑥) = min
𝑢∈Ω

�𝐽 (𝑥, 𝑢) + 𝐼 �𝑓 (𝑥, 𝑢)�� (1)

This is a functional equation. Solving it means finding 𝑢∗. The solution 𝑢∗ in (1) is a function
of 𝑥. i.e.. 𝑢 at state 𝑥 is a feedback. Say 𝑢∗ = 𝜎 (𝑥). Substitute this in (1) gives

𝐼 (𝑥) = min
𝑢∈Ω

�𝐽 (𝑥, 𝜎 (𝑥)) + 𝐼 �𝑓 (𝑥, 𝜎 (𝑥))��

We do not know 𝐼 (𝑥) here. Before, we knew 𝐼, but now we do not know 𝐼. So we have a
function space issue to find 𝐼 (𝑥).

Example

𝐽 (𝑥, 𝑢) = 𝑥2 + 𝑥𝑢 + 𝑢2

𝑓 (𝑥, 𝑢) = 𝑥𝑢 + 𝑥 + 𝑢
𝑥 (𝑘 + 1) = 𝑥 (𝑘) 𝑢 (𝑘) + 𝑥 (𝑘) + 𝑢 (𝑘)

Let 𝑢 be free variable with no constraints. Hence (1) becomes

𝐼 (𝑥) = min
𝑢
�𝑥2 + 𝑥𝑢 + 𝑢2 + 𝐼 (𝑥𝑢 + 𝑥 + 𝑢)�

99

1.29.2 Functional equations in dynamic programming

This is a functional equation since 𝐼 (𝑥), appears on both sides of the equation. There are
two famous methods to solve functional equations. The first is the iterative method. Begin
with initial 𝐼𝑜 (𝑥), then 𝐼𝑘+1 (𝑥) = min𝑢(𝑘) �𝐽 (𝑥, 𝑢) + 𝐼𝑘 �𝑓 (𝑥, 𝑢)��. We get sequence of solutions of
𝑢 (𝑘) and 𝐼 (𝑥 (𝑘)) and check for convergence.

Example

𝐽 (𝑥, 𝑢) = 𝑢2 + (𝑥 − 𝑢)2

𝑥 (𝑘 + 1) = 𝑥 (𝑘) − 𝑢 (𝑘)

𝐼0 (𝑥) = 0, hence

𝐼1 (𝑥) = min
𝑢
�𝑢2 + (𝑥 − 𝑢)2�

𝑑
𝑑𝑢 = 0 gives 𝑢

∗ = 𝑥
2 , hence 𝐼

∗
1 (𝑥) =

𝑥2

4 +
𝑥2

4 =
𝑥2

2 . Next stage becomes

𝐼2 (𝑥) = min
𝑢
�𝑢2 + (𝑥 − 𝑢)2 + 𝐼∗1�

= min
𝑢

⎧⎪⎨
⎪⎩𝑢

2 + (𝑥 − 𝑢)2 +
(𝑥 − 𝑢)2

2

⎫⎪⎬
⎪⎭

𝑑
𝑑𝑢 = 0 gives 𝑢

∗ = 3
5𝑥, hence 𝐼

∗
1 (𝑥) =

3
5𝑥

2.

Reader Continue this process. Does it converge? It will converge eventually leading to
𝑢∗ → 𝑘𝑥

1.30 Lecture 30. Thursday, April 28, 2016

The special problem will be returned next Tuesday.

1.30.1 Steady state and functional equations

The plan for today: we have been talking about steady state. This lead to functional equations
in D.P. so far, we talked about iterative solution. Today we will talk about closed form solution.
Analogy between di�erential equations and functional equations. In di�erential equations,
the iterative method is called Picard iterations method.

For linear state equations, we can get closed form solution for the functional equation. We
start with a guess of the solution with a parameter to find. Now we will use our main example
to illustrate this.

𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘
𝐽 = �𝑢2𝑘 + (𝑥𝑘+1 − 𝑢𝑘)

2

Notice the cross term with 𝑥 and 𝑢 in it. Now we guess a form for 𝐼. Let 𝐼 = 𝑝𝑥2 and then we
try to find 𝑝. First write 𝐽 above so that all indices are the same with the help of the state

100

equation. This will reduce the chance of error later on

𝐽 = �𝑢2𝑘 + ((𝑥𝑘 − 𝑢𝑘) − 𝑢𝑘)
2

=�𝑢2𝑘 + 𝑥2𝑘 + 4𝑢2𝑘 − 4𝑥𝑘𝑢𝑘
=�𝑥2𝑘 + 5𝑢2𝑘 − 4𝑥𝑘𝑢𝑘

Consider

𝐼 (𝑥) = min
𝑢∈Ω

�𝐽 (𝑥, 𝑢) + 𝐼 �𝑓 (𝑥, 𝑢)��

𝑝𝑥2 = min
𝑢∈Ω

��5𝑢2 + 𝑥2 − 4𝑥𝑢� + 𝑝 (𝑥 − 𝑢)2� (1)

𝑑 �5𝑢2 + 𝑥2 − 4𝑥𝑢� + 𝑝 (𝑥 − 𝑢)2

𝑑𝑢
= 0

0 = 2𝑢 − 4 (𝑥 − 2𝑢) − 2𝑝 (𝑥 − 𝑢)

Solving gives 𝑢∗ = 2+𝑝
5+𝑝𝑥. Substitute back in (1)

𝑝𝑥2 = �5𝑢2 + 𝑥2 − 4𝑥 �
2 + 𝑝
5 + 𝑝

𝑥�� + 𝑝 �𝑥 − �
2 + 𝑝
5 + 𝑝

𝑥��
2

And obtain an equation in 𝑝 and solve for 𝑝. We find roots are 𝑝 = 0.302 and 𝑝 = −3.3. If
everything was done correct, there should be a positive root. Always pick the positive one.
This is special case of LQR. In LQR there is no cross term between 𝑥, 𝑢. While in the above
there was. Reader For 𝑥 (0) = 1 find 𝐽∗.

Example Consider

𝑥 (𝑘 + 1) = 𝑥 (𝑘) + 2𝑢 (𝑘)

With constraint 𝑢 (𝑘) ∈ [−1, 1]

𝐽 =
∞
�
𝑘=0

𝑒𝑥(𝑘+1)

Guess 𝐼 = 𝑎𝑒𝑥 then

𝐼 (𝑥) = min
𝑢∈[−1,1]

�𝑒𝑥+2𝑢 + 𝑎𝑒𝑥+2𝑢�

Reader 𝑢∗ = −1

Therefore

𝑎𝑒𝑥 = �𝑒𝑥−2 + 𝑎𝑒𝑥−2�

Solving gives

𝑎 =
1

𝑒2 − 1
> 0

For LQR, the steady state is given by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘)

𝐽 =
∞
�
𝑘=0

𝑥𝑇 (𝑘 + 1)𝑄𝑥 (𝑘 + 1) + 𝑢𝑇 (𝑘) 𝑅𝑢 (𝑘)

101

Where 𝑄,𝑅 are weight matrices and are positive definite symmetric. 𝐼 should be quadratic
in the state 𝑥 (𝑘).

𝐼 (𝑥) = min
𝑢
𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢

Guess 𝐼 = 𝑥𝑇𝑃𝑥 and now solve for 𝑃, this leads to Riccati matrix equation.

𝐼 (𝑥) = min
𝑢
�𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + (𝐴𝑥 + 𝐵𝑢)𝑇 𝑃 (𝐴𝑥 + 𝐵𝑢)� (2)

Taking gradient w.r.t. 𝑢 and setting to zero, gives

2𝑅𝑢 + 2𝐵𝑇𝑃𝐵𝑢 + 2𝐵𝑇𝑃𝐴𝑥 = 0

𝑢∗ = − �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥

Back to (2) we find

𝑥𝑇𝑃𝑥 = 𝑥𝑇𝑄𝑥 + �− �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥�

𝑇
𝑅 �− �𝑅 + 𝐵𝑇𝑃𝐵�

−1
𝐵𝑇𝑃𝐴𝑥�

+ �𝐴𝑥 + 𝐵 �− �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥��

𝑇
𝑃 �𝐴𝑥 + 𝐵 �− �𝑅 + 𝐵𝑇𝑃𝐵�

−1
𝐵𝑇𝑃𝐴𝑥��

Solving to 𝑃, we obtain the Riccati matrix equation

𝑃 = 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴 + 𝑄

In Matlab, use dare() to solve this for 𝑃.

Remarks Are we sure the solution exist? i.e. does there exist positive definite 𝑃 that satisfies
the Riccati equation above? Yes, a solution exist if (𝐴, 𝐵) is controllable system. Notice that
the Riccati equation is not linear in 𝑃. This is solved numerically. Consider the special
case of LQR with one state and one input. Hence everything is scalar. We obtain

𝑝 = 𝑎2𝑝 − 𝑎𝑝𝑏
1

𝑟 + 𝑏2𝑝
𝑏𝑝𝑎 + 𝑞

Solving for 𝑝, show that there is solution 𝑝 > 0. Assume 𝑏 > 0 for controllability.

1.31 Lecture 31. Tuesday, May 3, 2016

This is the last lecture. Final exam is next lecture. Review of special problem and results
obtained by di�erent reports. General approaches to solving the special problem included:
Cluster analysis, noisy gradient and random search.

1.31.1 Final review for �nal exam

We talked about steady state. Quadratic regulator has no cross coupling terms between 𝑥
and 𝑢

𝐽 =
∞
�
𝑘=0

𝑥𝑇 (𝑥 + 1)𝑄𝑥 (𝑘 + 1) + 𝑢𝑇𝑅𝑢

102

For general regulator, one can get a cross term as in 𝐽 = 𝑎𝑥2+𝑏𝑥𝑢+𝑐𝑢 but we did not discuss
this.

Test 3, will have 4 questions on dynamic programming. With dynamic programming, one
can solve the problem using the Bellman equations or using the graphical method. If there
are finite stages, and the state 𝑥 is discrete 𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘)) and if 𝑢 is discrete, then a
graphical method can be used. If there are constraints, this will reduce the size of the tree
more.

Course review

We can take an integer linear programming problem, which is hard to solve and treat it as
continuous problem under special conditions and solve it much easier. We did not discuss
non-linear programming and kuhn-Tucker conditions. But for many non-linear programming
problem, it is possible to use the penalty method. There is also large scale linear program-
ming, where sparsity becomes important. Also parallel programming become important for
these problems. For dynamic programming, most of the books are on continuous time, and
very few discusses discrete dynamic programming problems.

1.32 Lecture 32. Thursday, May 5, 2016

Final exam

	Class notes
	Lecture 1. Tuesday, January 19, 2016
	Objective functions, constraints and variables
	Constrained and Unconstrained problems

	Lecture 2. Thursday, January 21, 2016
	Existence of optimal solution, explicit and implicit J(u)
	Farming problem

	Lecture 3. Tuesday, January 26, 2016
	Multilinear functions, level sets, contours
	Pareto optimality
	compact and bounded sets, open and closed sets
	B-W (The Bolzano-Weierstrass) theorem

	Lecture 4. Thursday, January 28, 2016
	Existence of optimal solutions
	Classical existence theorem
	Coercive functions and Coercivity theorem
	Convex sets and Coercivity theorem

	Lecture 5. Tuesday, February 2, 2016
	Polytope
	Convex functions

	Lecture 6. Thursday, February 4, 2016
	Convex functions and convex sets
	convex functions and convex sets relation
	Criterion for convexity, Gradient and Hessian
	Hessian theorem

	Lecture 7, Tuesday, February 9, 2016
	The Bridging Lemma
	The Hessian Theorem, strong local minimum

	Lecture 8. Thursday, February 11, 2016
	gradient based optimization and line searches
	Optimal gain control problems, Lyapunov equation

	Lecture 9. Tuesday, February 16, 2016
	keywords for next exam 1
	Gradient based optimization

	Lecture 10. Thursday, February 18, 2016 (Exam 1)
	Lecture 11. Tuesday, February 23, 2016
	Steepest descent
	Classifications of Convergence

	Lecture 12. Thursday, February 25, 2016
	Quadratic optimization, superlinear convergence
	Quadratic convergence
	Superlinear convergence

	Lecture 13. Tuesday, March 1, 2016
	Conjugate direction algorithms
	Quadratic convergence theorem

	Lecture 14. Thursday, March 3, 2016
	Constraints and linear programming
	History of linear programming
	Polytopes

	Lecture 15. Tuesday, March 8, 2016
	Mechanism of linear programming
	Example, the sector patrol problem
	Basic and Feasible solutions

	Lecture 16. Thursday, March 10, 2016
	Linear programming feasible and basic solutions

	Lecture 17. Tuesday, March 15, 2016
	Optimality theorem
	The extreme point theorem
	Mechanism the simplex method

	Lecture 18. Thursday, March 17, 2016
	Simplex method examples

	Lecture 19. Tuesday, March 22, 2016 (No class)
	Lecture 20. Thursday, March 24, 2016 (No class)
	Lecture 21. Tuesday, March 29, 2016
	Second exam keywords
	Application of Linear programming to control problems
	Starting dynamic programming

	Lecture 22. Thursday, March 31, 2016. Second midterm exam
	Lecture 23. Tuesday, April 5, 2016
	First dynamic programming problem, trip from NY to SFO
	Subproblem in dynamic programming
	Bellman principle of optimality

	Lecture 24. Thursday, April 7, 2016 (No class)
	Lecture 25. Tuesday, April 12, 2016
	Dynamic programming state equation
	Subproblems and principle of optimality (POO)

	Lecture 26. Thursday, April 14, 2016
	Stages in dynamic programming
	Allocation problem, applying DP to investment problem

	Lecture 27. Tuesday, April 19, 2016
	LQR and dynamic programming
	Example LQR using dynamic programming

	Lecture 28. Thursday, April 21, 2016
	Variations of dynamic programming, floor and ceiling

	Lecture 29. Tuesday, April 26, 2016
	Detailed example for a floor problem
	Functional equations in dynamic programming

	Lecture 30. Thursday, April 28, 2016
	Steady state and functional equations

	Lecture 31. Tuesday, May 3, 2016
	Final review for final exam

	Lecture 32. Thursday, May 5, 2016

