
HW7 ECE 719 Optimal systems

Spring 2016
Electrical engineering department
University of Wisconsin, Madison

Instructor: Professor B Ross Barmish

By

Nasser M. Abbasi

December 30, 2019

Contents

0.1 Problem 1 . 3
0.1.1 part a . 3
0.1.2 Part b . 5
0.1.3 appendix for problem 1 . 8

0.2 Problem 2 . 9
0.3 Problem 3 . 13
0.4 Problem 4 . 14
0.5 Problem 5 . 18

List of Figures

1 problem 1 description . 3
2 Part (a) solution using Dynamic programming 5
3 Part (b) solution . 7
4 problem 2 description . 9
5 Showing dynamic programming block diagram 10
6 problem 3 description . 14
7 problem 4 description . 15
8 problem 4 stages . 15
9 case for 0 ≤ 𝑀 ≤ √2 . 17
10 case for 𝑀 ≥ √2 . 17
11 problem 5 description . 18
12 problem 5 plot . 20

List of Tables

2

3

0.1 Problem 1

Barmish

ECE 719 – Homework City Planners

A committee of city planners are to recommend the “best” allocation of
fire stations to three districts. They will base their decision on expected
property damage which they hope will be minimal. The table below reflects
differences in districts due to factors such as population, socioeconomic
makeup, etc. The budget restricts total number of stations to five and no
more than three stations are allowed in any district.

Stations 0 1 2 3

District - - - -
1 2 0.9 0.3 0.2
2 0.5 0.3 0.2 0.1
3 1.5 1.0 0.7 0.3

Expected Property Damage in Millions of Dollars

(a) Letting u(k) be the number of stations assigned to district k, find the
optimal allocation of stations minimizing total expected damage.

(b) Suppose that the budgetary restriction is replaced by the the require-
ment 3u(0)+u(1)+2u(2) ≤ 9 (in millions of dollars) reflecting differential
costs across districts. Now find the optimal allocation of stations.

Figure 1: problem 1 description

0.1.1 part a

Before applying dynamic programming to solve the problem, the solution was first found
by brute force in order to verify that the D.P. method when completed was correct. Using
brute force, the optimal arrangement is found to be:

Assign 2 stations to the first district, and 3 stations
to third district and no stations are assigned to the
second district, for a minimum total expected property
damage of 1.1 millions.

The brute force method also generated a list of all the arrangements (44 of them) and the
cost of each. For reference, here is the complete table with the small Matlab code used
to generated it in the appendix. After this, the graphical D.P. method called branch and
bound was used to verify this result.

district 1 district 2 district 3 cost in millions

0 0 0 4.0

0 0 1 3.5

0 0 2 3.2

0 0 3 2.8

0 1 0 3.8

0 1 1 3.3

0 1 2 3.0

0 1 3 2.6

0 2 0 3.7

0 2 1 3.2

0 2 2 2.9

4

0 2 3 2.5

0 3 0 3.6

0 3 1 3.1

0 3 2 2.8

1 0 0 2.9

1 0 1 2.4

1 0 2 2.1

1 0 3 1.7

1 1 0 2.7

1 1 1 2.2

1 1 2 1.9

1 1 3 1.5

1 2 0 2.6

1 2 1 2.1

1 2 2 1.8

1 3 0 2.5

1 3 1 2.0

2 0 0 2.3

2 0 1 1.8

2 0 2 1.5

2 0 3 1.1∗

2 1 0 2.1

2 1 1 1.6

2 1 2 1.3

2 2 0 2.0

2 2 1 1.5

2 3 0 1.9

3 0 0 2.2

3 0 1 1.7

3 0 2 1.4

3 1 0 2.0

3 1 1 1.5

3 2 0 1.9

Let the state 𝑥 be the number of stations available to be assigned at each stage. For example,
if we are at stage 2 and 𝑥 = 5, this means all 5 stations are available to be assigned to district
two. Stage one was the decision to decide on district one, stage two for the decision to
assign for district two and the final stage, stage three is for district three. This is arbitrary,
any order will give the same answer. One can decide on district three first, and then district
one for example. This makes no di�erence to the final result.

The following diagram shows the result found which agrees with the brute force method
above. The branch cost is the number above the arrow itself. The number in the small
rectangle at the node, is the minimal cost of the branch leaving that node. For example, in
stage three, when 𝑥 = 5, there are 4 branches that leave that node where (0,1,2,3) stations
can be assigned. The lowest cost of these branches is the one with cost 0.3 and that is what
goes in the small square next to the node. This process continues moving backward. This
method is the graphical equivalent to the Bellman dynamic equations and can be used

5

when the number of states is finite and the number of decisions at each state is finite also.

stage 3. Decide on district 3

x = 5
(x = 5)

(x = 4)

(x = 3)

(x = 2)

1.5
1.0

0.7

0.3

x = 4
(x = 4)

(x = 3)

(x = 2)

(x = 1)

1.5
1.0

0.7

0.3

x = 3
(x = 3)

(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

0.3

x = 2
(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

x = 1
(x = 1)

(x = 0)

1.5
1.0

x = 0
(x = 0)1.5

x = 5

0.5

x = 4

0.2

x = 3

x = 2

x = 1

x = 0

stage 2. Decide on district 2

.3

.3

.3

.7

0.3

0.2
.1

.5

0.5

0.3

.1

.6

.5

0.3

0.2

.1

1.0

1.5

.8

.5

0.3

0.2
.9

.5

stage 1. Decide on district 1

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

2

0.9

0.3

0.2

1.1

2

0
3

Thick lines indicates optimal branch cost. We see that optimal
assignment is 2 stations for district 1 and 3 stations for district 3.
The numbers in the small circles is number of stations assigned in
that stage. This matches the brute force method as expected

Figure 2: Part (a) solution using Dynamic programming

0.1.2 Part b

The constraint now is

3𝑢 (0) + 𝑢 (1) + 2𝑢 (2) ≤ 9 (1)

What this means, is that 3 times the number of stations assigned to district one plus one
times the number of stations assigned to district two, plus 2 times the number of stations
assigned to district three, must be smaller than 9 stations in total (millions of dollars in
the problem was a typo).

We see that part(a) does not meet this requirement. In part(a), we found 𝑢 (0) = 2, 𝑢 (1) =
0, 𝑢 (3) = 3, which means

3𝑢 (0) + 𝑢 (1) + 3𝑢 (2) = 3 (2) + 0 + 2 (3)
= 12

Which is larger than 9. We need to find again 𝑢 (0) , 𝑢 (1) , 𝑢 (2) which still satisfies part (a)
requirements of no more than 3 stations for a district and no more than total of 5 stations,
but now with the additional constraint of (1) in place at the same time.

The search was repeated using brute force to first find the combinations that meet this
criteria, and then the one with the minimum expected damage was selected.

Here is the new table found

6

district 1 district 2 district 3 cost in millions 3𝑢0 + 𝑢1 + 2𝑢2
0 0 0 4.0 0

0 0 1 3.5 2

0 0 2 3.2 4

0 0 3 2.8 6

0 1 0 3.8 1

0 1 1 3.3 3

0 1 2 3.0 5

0 1 3 2.6 7

0 2 0 3.7 2

0 2 1 3.2 4

0 2 2 2.9 6

0 2 3 2.5 8

0 3 0 3.6 3

0 3 1 3.1 5

0 3 2 2.8 7

1 0 0 2.9 3

1 0 1 2.4 5

1 0 2 2.1 7

1 0 3 1.7 9

1 1 0 2.7 4

1 1 1 2.2 6

1 1 2 1.9 8

1 2 0 2.6 5

1 2 1 2.1 7

1 2 2 1.8 9

1 3 0 2.5 6

1 3 1 2.0 8

2 0 0 2.3 6

2 0 1 1.8 8

2 1 0 2.1 7

2 1 1 1.6∗ 9

2 2 0 2.0 8

2 3 0 1.9 9

3 0 0 2.2 9

We see that the combination with the minimum expected damage is when

two stations are assigned to district one, and one sta-
tion assigned to district two and one station assigned
to district three with expected damage of 1.6 million
dollars.

The following diagram illustrates the branch and bound graph with the new optimal path
now highlighted in the think line.

7

stage 3. Decide on district 3

x = 5
(x = 5)

(x = 4)

(x = 3)

(x = 2)

1.5
1.0

0.7

0.3

x = 4
(x = 4)

(x = 3)

(x = 2)

(x = 1)

1.5
1.0

0.7

0.3

x = 3
(x = 3)

(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

0.3

x = 2
(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

x = 1
(x = 1)

(x = 0)

1.5
1.0

x = 0
(x = 0)1.5

x = 5

0.5

x = 4

0.2

x = 3

x = 2

x = 1

x = 0

stage 2. Decide on district 2

.3

.3

.3

.7

0.3

0.2
.1

.5

0.5

0.3

.1

.6

.5

0.3

0.2

.1

1.0

1.5

.8

.5

0.3

0.2
.9

.5

stage 1. Decide on district 1

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

2

0.9

0.3

0.2

1.1

2

1

1

Thick lines indicates optimal
branch cost with new constraint
for part(b).

Figure 3: Part (b) solution

8

The code used to part(b) is in the appendix.

0.1.3 appendix for problem 1

code to generate the first table for part(a)� �
1 function nma_HW7_ECE_719_prob_1()
2 %find cost using brute force search, to verify DP method
3 %HW 7, ECE 719, APril 23,2016
4 %Nasser M. Abbasi
5 cost_table = zeros(100,4); %place to put the cost
6 count_so_far = 0;
7 for i=0:3
8 j = 0; k = 0;
9 if sum([i j k])<=5
10 for j=0:3
11 k = 0;
12 if sum([i j k])<=5
13 for k = 0:3
14 if sum([i j k])<=5
15 count_so_far = count_so_far+1;
16 fprintf('count_so_far=%d, [%d,%d,%d]\n',�...
17 count_so_far,i,j,k);
18 cost_table(count_so_far,1:3)=[i j k];
19 cost_table(count_so_far,4)=find_cost([i j k]);
20 end
21 end
22 end
23 end
24 end
25 end
26

27 for i=1:count_so_far
28 fprintf('%d & %d & %d & %2.1f \\\\ \\hline\n',cost_table(i,1),...
29 cost_table(i,2),cost_table(i,3),cost_table(i,4));
30 end
31

32 [~,J]=min(cost_table(1:count_so_far,4));
33 fprintf('optimal allocation is \n');
34 cost_table(J,:)
35 end
36 %==========================
37 function I=find_cost(x)
38 tbl=[2,.9,.3,.2;
39 .5,.3,.2,.1;
40 1.5,1,.7,.3];
41 I= tbl(1,x(1)+1) + tbl(2,x(2)+1) + tbl(3,x(3)+1);
42 end� �

code to generate the first table for part(b)� �
1 function nma_HW7_ECE_719_prob_1_part_b()
2 %finds lowest cost with constraint that
3 %3*u(0)+u(1)+2*u(2)<=9 to find optinal case using brute force,
4 %to verify DP method
5 %HW 7, ECE 719, APril 30,2016
6 %Nasser M. Abbasi
7 cost_table = zeros(100,5); %place to put the cost
8 count_so_far = 0;
9 for i=0:3 %this is district 1
10 j = 0; k = 0;
11 if sum([i j k])<=5
12 for j=0:3 %this is district 2
13 k = 0;
14 if sum([i j k])<=5

9

15 for k = 0:3 %this is district 3
16 if sum([i j k])<=5
17 %check if 3*i+j+2*k <= 9 first
18 if 3*i+j+2*k <=9
19 count_so_far = count_so_far+1;
20 fprintf('count_so_far=%d, [%d,%d,%d], (3*i+j+2*k=%d) \n',�...
21 count_so_far,i,j,k,3*i+j+2*k);
22 cost_table(count_so_far,1:3)=[i j k];
23 cost_table(count_so_far,4)=find_cost([i j k]);
24 cost_table(count_so_far,5)=3*i+j+2*k;
25 end
26 end
27 end
28 end
29 end
30 end
31 end
32

33 for i=1:count_so_far
34 fprintf('%d & %d & %d & %2.1f & %d \\\\ \\hline\n',...
35 cost_table(i,1),cost_table(i,2),cost_table(i,3),...
36 cost_table(i,4),cost_table(i,5));
37 end
38

39 [~,J]=min(cost_table(1:count_so_far,4));
40 fprintf('optimal allocation is \n');
41 cost_table(J,:)
42 end
43 %==========================
44 function I=find_cost(x)
45 tbl=[2,.9,.3,.2;
46 .5,.3,.2,.1;
47 1.5,1,.7,.3];
48 I= tbl(1,x(1)+1) + tbl(2,x(2)+1) + tbl(3,x(3)+1);
49 end� �

0.2 Problem 2

Barmish

ECE 719 – Homework Pattern

Similar to the example studied in class, consider the dynamic program
described by scalar state equation

x(k + 1) = x(k)− u(k)

with cost function

J =
N−1∑
k=0

[x(k)− u(k)]2 + u2(k)

to be minimized. Verify that the optimal solution is is of the form

u∗(k) = γ(k)x(N − k)

and find a description of the optimal gain γ(k).

Figure 4: problem 2 description

The state equation is (using indices as subscripts from now on, in all that follows as it is
easier to read. Therefore 𝑥 (𝑁) is written as 𝑥𝑁 and similarly for 𝑢 (𝑁))

𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 (1)

10

The cost function to minimize is

𝐽 =
𝑁−1
�
𝑘=0

(𝑥𝑘 − 𝑢𝑘)
2 + 𝑢2𝑘 (2)

Now we apply Bellman dynamic equation. This diagram shows the overall process.

N0 1 . . . k . . .
L

terminal stage

x(k)x(k − L) x(N)

x(N − 1)

We always start from this stage,
and move left, using the Ballman
dynamic equations

initial state

Figure 5: Showing dynamic programming block diagram

The branch cost from 𝑥𝑁−1 with one step to go is

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1) + Ψ (𝑥𝑁)}

Ψ (𝑥𝑁) is the terminal cost. Removing the terminal cost from the rest of the computation
to simplify things and replacing 𝐽 in the above from (2) gives

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1)}

= min
𝑢𝑁−1∈Ω𝑁−1

�(𝑥𝑁−1 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1� (3)

Taking derivative in order to find optimal 𝑢∗𝑁−1 results in

𝑑𝐼 (𝑥𝑁−1, 1)
𝑢𝑁−1

= 0

2 (𝑥𝑁−1 − 𝑢𝑁−1) (−1) + 2𝑢𝑁−1 = 0
4𝑢𝑁−1 − 2𝑥𝑁−1 = 0

𝑢∗𝑁−1 =
1
2
𝑥𝑁−1

Using the above 𝑢∗𝑁−1 in (3) gives

𝐼∗ (𝑥𝑁−1, 1) = �𝑥𝑁−1 −
1
2
𝑥𝑁−1�

2

+ �
1
2
𝑥𝑁−1�

2

=
1
2
𝑥2𝑁−1

Going back one step

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

{𝐽 (𝑥𝑁−2, 𝑢𝑁−2) + 𝐼∗ (𝑥𝑁−1, 1)}

= min
𝑢𝑁−2∈Ω𝑁−2

�(𝑥𝑁−2 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
2
𝑥2𝑁−1�

Before taking derivatives, we have to make all the stages to be at 𝑁 − 2, and for this we use
the state equation to write 𝑥𝑁−1 in terms of 𝑥𝑁−2 and the above becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

�(𝑥𝑁−2 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
2
(𝑥𝑁−2 − 𝑢𝑁−2)

2�

= min
𝑢𝑁−2∈Ω𝑁−2

�
5
2
𝑢2𝑁−2 − 3𝑢𝑁−2𝑥𝑁−2 +

3
2
𝑥2𝑁−2� (4)

11

Now we take derivative to find optimal 𝑢∗𝑁−2

𝑑𝐼 (𝑥𝑁−2, 1)
𝑢𝑁−2

= 0

5𝑢𝑁−2 − 3𝑥𝑁−2 = 0

𝑢∗𝑁−2 =
3
5
𝑥𝑁−2

We go back to (4) and update with the optimal control found to obtain

𝐼∗ (𝑥𝑁−2, 2) =
5
2 �

3
5
𝑥𝑁−2�

2

− 3 �
3
5
𝑥𝑁−2� 𝑥𝑁−2 +

3
2
𝑥2𝑁−2

=
3
5
𝑥2𝑁−2

Going back one more step

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3∈Ω𝑁−3

{𝐽 (𝑥𝑁−3, 𝑢𝑁−3) + 𝐼∗ (𝑥𝑁−2, 2)}

= min
𝑢𝑁−3∈Ω𝑁−3

�(𝑥𝑁−3 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

3
5
𝑥2𝑁−2�

Before taking derivatives, we have to make all the states to be at 𝑁 − 3, and for this we use
the state equation to write 𝑥𝑁−2 in terms of 𝑥𝑁−3 and the above becomes

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3∈Ω𝑁−3

�(𝑥𝑁−3 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

3
5
(𝑥𝑁−3 − 𝑢𝑁−3)

2�

= min
𝑢𝑁−2∈Ω𝑁−2

�
13
5
𝑢2𝑁−3 −

16
5
𝑢𝑁−3𝑥𝑁−3 +

8
5
𝑥2𝑁−3� (5)

Now we take derivative to find optimal 𝑢∗𝑁−3

𝑑𝐼 (𝑥𝑁−3, 3)
𝑢𝑁−3

= 0

26
5
𝑢𝑁−3 −

16
5
𝑥𝑁−3 = 0

𝑢∗𝑁−3 =
8
13
𝑥𝑁−3

We go back to (5) and update the cost to obtain

𝐼∗ (𝑥𝑁−3, 3) =
13
5 �

8
13
𝑥𝑁−3�

2

−
16
5 �

8
13
𝑥𝑁−3� 𝑥𝑁−3 +

8
5
𝑥2𝑁−3

=
8
13
𝑥2𝑁−3

Let us do one more step backward,

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4∈Ω𝑁−4

{𝐽 (𝑥𝑁−4, 𝑢𝑁−4) + 𝐼∗ (𝑥𝑁−3, 3)}

= min
𝑢𝑁−4∈Ω𝑁−4

�(𝑥𝑁−4 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

8
13
𝑥2𝑁−3�

Before taking derivatives, we have to make all the states to be at 𝑁 − 4, and for this we use
the state equation to write 𝑥𝑁−3 in terms of 𝑥𝑁−4 and the above becomes

12

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4∈Ω𝑁−4

�(𝑥𝑁−4 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

8
13

(𝑥𝑁−4 − 𝑢𝑁−4)
2�

= min
𝑢𝑁−4∈Ω𝑁−4

�
34
13

𝑢2𝑁−4 −
42
13

𝑢𝑁−4𝑥𝑁−4 +
21
13
𝑥2𝑁−4� (6)

Now we take derivative to find optimal 𝑢∗𝑁−4

𝑑𝐼 (𝑥𝑁−4, 4)
𝑢𝑁−4

= 0

68
13

𝑢𝑁−4 −
42
13

𝑥𝑁−4 = 0

𝑢∗𝑁−4 =
21
34

𝑥𝑁−4

We go back to (6) and update to obtain

𝐼∗ (𝑥𝑁−4, 4) =
34
13 �

21
34

𝑥𝑁−4�
2

−
42
13 �

21
34

𝑥𝑁−4� 𝑥𝑁−4 +
21
13
𝑥2𝑁−4

=
21
34

𝑥2𝑁−4

This is so much fun, so let us do one more step backward,

𝐼 (𝑥𝑁−5, 5) = min
𝑢𝑁−5∈Ω𝑁−5

{𝐽 (𝑥𝑁−5, 𝑢𝑁−5) + 𝐼∗ (𝑥𝑁−4, 4)}

= min
𝑢𝑁−5∈Ω𝑁−5

�(𝑥𝑁−5 − 𝑢𝑁−5)
2 + 𝑢2𝑁−5 +

21
34

𝑥2𝑁−4�

Before taking derivatives, we have to make all the states to be at 𝑁 − 5, and for this we use
the state equation to write 𝑥𝑁−4 in terms of 𝑥𝑁−5 and the above becomes

𝐼 (𝑥𝑁−5, 5) = min
𝑢𝑁−5∈Ω𝑁−5

�(𝑥𝑁−5 − 𝑢𝑁−5)
2 + 𝑢2𝑁−5 +

21
34

(𝑥𝑁−5 − 𝑢𝑁−5)
2�

= min
𝑢𝑁−5∈Ω𝑁−5

�
89
34

𝑢2𝑁−5 −
55
17

𝑢𝑁−5𝑥𝑁−5 +
55
34

𝑥2𝑁−5� (7)

Now we take derivative to find optimal 𝑢∗𝑁−5

𝑑𝐼 (𝑥𝑁−5, 5)
𝑢𝑁−5

= 0

89
17

𝑢𝑁−5 −
55
17

𝑥𝑁−5 = 0

𝑢∗𝑁−5 =
55
89

𝑥𝑁−5

We go back to (7) and update to obtain

𝐼∗ (𝑥𝑁−5, 5) =
89
34 �

55
89

𝑥𝑁−5�
2

−
55
17 �

55
89

𝑥𝑁−5� 𝑥𝑁−5 +
55
34

𝑥2𝑁−5

=
55
89

𝑥2𝑁−5

Summary table of finding

13

𝑘 𝑢∗ (𝑁 − 𝑘) 𝐼∗ (𝑥𝑁−𝑘, 𝑘)

1 1
2𝑥𝑁−1

1
2𝑥

2
𝑁−1

2 3
5𝑥𝑁−2

3
5𝑥

2
𝑁−2

3 8
13𝑥𝑁−3

8
13𝑥

2
𝑁−3

4 21
34𝑥

2
𝑁−4

21
34𝑥

2
𝑁−4

5 55
89𝑥𝑁−5

55
89𝑥

2
𝑁−5

This is generated using bisection of the Fibonacci sequence, let 𝛾 (𝑘) = 𝛽(𝑘)
𝛼(𝑘) where

1

𝛽 (𝑘) = 3𝛽 (𝑘 − 1) − 𝛽 (𝑘 − 2)
𝛽 (0) = 0
𝛽 (1) = 1

And2

𝛼 (𝑘) = 3𝛼 (𝑘 − 1) − 𝛼 (𝑘 − 2)
𝛼 (0) = 1
𝛼 (1) = 1

Here is program which generates up to 𝑘 = 20
 Clear[k];
 alpha[k_] := alpha[k] = If[k == 0 || k == 1, 1,
 3*alpha[k - 1] - alpha[k - 2]]
 beta[k_] := beta[k] = If[k == 0, 0,
 If[k == 1, 1, 3*beta[k - 1] - beta[k - 2]]];
 Table[beta[k]/alpha[k + 1], {k, 1, 20}]

˙

which gives
1
2 ,

3
5 ,

8
13 ,

21
34 ,

55
89 ,

144
233 ,

377
610 ,

987
1597 ,

2584
4181 ,

6765
10946 ,

17711
28657 ,

46368
75025 ,

121393
196418 ,

317811
514229 ,

832040
1346269 ,

2178309
3524578 ,

5702887
9227465 ,

14930352
24157817 ,

39088169
63245986 ,

102334155
165580141

or numerically

{0.5, 0.6, 0.6153846153846154, 0.6176470588235294, 0.6179775280898876, 0.6180257510729614, 0.6180327868852459, 0.6180338134001252, 0.6180339631667066, 0.618033985017358, 0.6180339882053251, 0.6180339886704432, 0.618033988738303, 0.6180339887482036}

The golden ratio is

𝜑 =
1 + √5

2
= 1.6180339887482036

Therefore in the limit, for large 𝑘

𝑢∗ (𝑁 − 𝑘) = 1
𝜑𝑥 (𝑁 − 𝑘)

0.3 Problem 3

1sequence is https://oeis.org/A001906
2sequence is https://oeis.org/A001519

https://oeis.org/A001906
https://oeis.org/A001519

14

Barmish

ECE 719 – Homework Population

A discrete-time system has two populations levels described by the state
equations

x1(k + 1) = [1 + u2(k)]x1(k);

and

x2(k + 1) =
e−u(k)x1(k)

x1(k)
+ 2x2(k); k = 0, 1, . . . , N.

For the final stage, find the feedback control law u(N − 1) minimizing the
the total population

J = x1(N) + x2(N).

Figure 6: problem 3 description

Given

𝑥1 (𝑘 + 1) = �1 + 𝑢2 (𝑘)� 𝑥1 (𝑘)

𝑥2 (𝑘 + 1) =
𝑒−𝑢(𝑘)𝑥1(𝑘)

𝑥1 (𝑘)
+ 2𝑥2 (𝑘) 𝑘 = 0, 1,⋯ ,𝑁

And the goal is to minimize the objective function at the terminal stage 𝐽 = 𝑥1 (𝑁) + 𝑥2 (𝑁).
At stage 𝑁 − 1 with one step to go

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

{Ψ (𝑥 (𝑁))} (1)

Where Ψ(𝑥 (𝑁)) = 𝐼 (𝑥 (𝑁) , 0). Hence

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

{𝑥1 (𝑁) + 𝑥2 (𝑁)}

= min
𝑢(𝑁−1)∈Ω𝑁−1

�1 + 𝑢2 (𝑁 − 1)� 𝑥1 (𝑁 − 1) +
𝑒−𝑢(𝑁−1)𝑥1(𝑁−1)

𝑥1 (𝑁 − 1)
+ 2𝑥2 (𝑁 − 1)

Therefore 𝑑𝐼(𝑥(𝑁−1))
𝑑𝑢(𝑁−1) = 0 gives

0 = 2𝑢 (𝑁 − 1) 𝑥1 (𝑁 − 1) − 𝑒−𝑢(𝑁−1)𝑥1(𝑁−1)

𝑒−𝑢(𝑁−1)𝑥1(𝑁−1) = 2𝑢 (𝑁 − 1) 𝑥1 (𝑁 − 1)

This is of the form 𝑒−𝑧𝑥 = 2𝑧𝑥 where 𝑧 → 𝑢 (𝑁 − 1) and 𝑥 → 𝑥1 (𝑁 − 1), which has root at
𝑧 = 0.35173

𝑥 (using Mathematica), hence the control law is

𝑢∗ (𝑁 − 1) = 0.35173
𝑥1(𝑁−1)

0.4 Problem 4

15

Barmish

ECE 719 – Homework Floor

For the state equations

x1(k + 1) = min{x1(k), x2(k)}+ u(k)

and
x2(k + 1) = x1(k)u(k)

with initial condition

x1(0) = 1; x2(0) = −1,

performance index
J = min

k=1,2
x2(k)

and control restraint
u(k) ∈ Ωk = [−M, M],

find the optimal control policy u∗(0), u∗(1) maximizing J .

Figure 7: problem 4 description

The following diagram shows the layout of the stages we need to use. There are three
stages. 𝑘 = 2 is the terminal stage, and 𝑘 = 0 is the initial stage.

k = 0
initial stage

k = 1 k = 2
Terminal stage

I(x(1), 1)I(x(0), 2)
branch cost

I(x(1), 1) = maxu(1){min g(x(1))}
I(x(0), 2) = maxu(0){min{g(x(0)), I∗{x(1), 1}}

u∗(1)u∗(0)

branch cost

Figure 8: problem 4 stages

We have

𝐽 = min
𝑘=1,2

𝑥2 (𝑘)

𝑥1 (𝑘 + 1) = min {𝑥1 (𝑘) , 𝑥2 (𝑘)} + 𝑢 (𝑘)
𝑥2 (𝑘 + 1) = 𝑥1 (𝑘) 𝑢 (𝑘)

𝑥1 (0) = 1
𝑥2 (0) = −1

One step to go, where 𝑁 = 2

𝐼 (𝑥 (𝑁 − 1) , 1) = 𝐼 (𝑥 (2 − 1) , 1)
= 𝐼 (𝑥 (1) , 1)
= max

𝑢(1)∈Ω1
{𝑥2 (2)}

16

But 𝑥2 (2) = 𝑥1 (1) 𝑢 (1) from the state equation, hence

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈Ω1

{𝑥1 (1) 𝑢 (1)}

We need to find 𝑢 (1) which maximizes 𝑥1 (1) 𝑢 (1). Since 𝑢 (𝑘) ∈ Ω𝑘 = [−𝑀,𝑀] then

𝑢∗ (1) = 𝑀sign (𝑥 (1))

Therefore

𝐼∗ (𝑥 (1) , 1) = 𝑥1 (1) 𝑢∗ (1)
= 𝑥1 (1)𝑀 sign (𝑥 (1))
= 𝑀 |𝑥1 (1)|

Now we go one more step backward

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min {𝑥2 (1) , 𝐼∗ (𝑥 (1) , 1)}

But from state equation, 𝑥2 (1) = 𝑥1 (0) 𝑢 (0) and since 𝑥1 (0) = 1 then 𝑥2 (1) = 𝑢 (0) and the
above becomes

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min {𝑢 (0) ,𝑀 |𝑥1 (1)|} (1)

But

𝑥1 (1) = min {𝑥1 (0) , 𝑥2 (0)} + 𝑢 (0)
= min {1, −1} + 𝑢 (0)
= −1 + 𝑢 (0)

Therefore (1) becomes

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min {𝑢 (0) ,𝑀 |−1 + 𝑢 (0)|}

Let

𝐹 (𝑢 (0)) = min {𝑢 (0) ,𝑀 |−1 + 𝑢 (0)|}

We need to find max𝑢(0) min (𝐹 (𝑢 (0))). By making small program and adjusting 𝑀, to see
all the regions, the following result was found for 𝑢∗ (0)

𝑀 range optimal

0 ≤ 𝑀 ≤ √2 𝑢∗0 =
𝑀

1+𝑀

√2 < 𝑀 𝑢∗0 = 𝑀

The following is a plot of the small program written showing 𝐹 (𝑢 (0)) for first case 0 ≤
𝑀 ≤ √2 and another plot showing the case for √2 < 𝑀. No other cases were found. The
program allows one to move a slider to adjust 𝑀 and it finds the maximizing 𝑢∗ for 𝐹 (𝑢)
at each slider change.

17

Out[55]=

M? 1

M0=1 M/(1+M)= 1
2

Max at u0= 1
2

u0

M|u0-1|

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0
min{u0,M|u0-1|}

Figure 9: case for 0 ≤ 𝑀 ≤ √2

Out[55]=

M? 1.9

1.9

M0=1.9 M/(1+M)=0.655172
Max at u0=1.9

u0

M|u0-1|

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0
min{u0,M|u0-1|}

Figure 10: case for 𝑀 ≥ √2

Source code for the above
 Manipulate[
 p0 = Plot[f[u0, M0], {u0, 0, 4}, PlotRange -> {{0, 4}, {0, 3}},
 PlotLabel -> "min{u0,M|u0-1|}",
 ImageSize -> 300, AxesLabel -> {"u0", None},
 GridLines -> Automatic, GridLinesStyle -> LightGray];

 p1 = Plot[u0, {u0, 0, 4}, PlotRange -> {{0, 4}, {0, 3}},
 PlotStyle -> Blue, ImageSize -> 300,
 AxesLabel -> {"u0", None}, GridLines -> Automatic,
 GridLinesStyle -> LightGray];

 p2 = Plot[M0*Abs[u0 - 1], {u0, 0, 4},
 PlotRange -> {{0, 4}, {0, 3}},
 PlotStyle -> Red, ImageSize -> 300];

 u0Max = ArgMax[{Min[u0, M0*Abs[u0 - 1]], u0 >= -M0 && u0 <= M0}, u0];

 p4 = Grid[{{Row[{"M0=", M0, " M/(1+M)=", M0/(1 + M0)}],
 SpanFromLeft}, {Row[{"Max at u0=", u0Max}],
 SpanFromLeft}, {Legended[Show[p1, p2],
 Placed[SwatchLegend[{Blue, Red}, {"u0", "M|u0-1|"}],
 {{0.7, 0.1}, {0, 0}}]], p0}},
 Frame -> All];

 p4,

 {{M0, 1, "M?"}, 0, 4, 0.01, Appearance -> "Labeled"},
 Initialization :> (
 f[u0_, M0_] := Min[u0, M0*Abs[u0 - 1]]

18

)
]

˙

0.5 Problem 5

Barmish

ECE 719 – Homework Steady State

A discrete time linear system is described by the state equations

x1(k + 1) = x2(k); x2(k + 1) = x1(k) + u(k)

and cost function

J =
∞∑

k=0
2x2

1(k) + 2x1(k)x2(k) + x2
2(k) + 3u2(k)

With feedback control

u(k) = K1x1(k) + K2x2(k),

find optimal gains K1 and K2 minimizing J .

Figure 11: problem 5 description

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘 + 1)
𝑥2 (𝑘 + 1)

⎞
⎟⎟⎟⎟⎟⎠ =

𝐴

�������⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)
𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠ +

𝐵
⏞⎛⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠𝑢 (𝑘)

𝐽 =
∞
�
𝑘=0

2𝑥21 (𝑘) + 2𝑥1 (𝑘) 𝑥2 (𝑘) + 𝑥22 (𝑘) + 3𝑢2 (𝑘)

Since 𝐽 has the form 𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢, then we need to find 𝑄 first. (𝑄 is symmetric), therefore

2𝑥21 (𝑘) + 2𝑥1 (𝑘) 𝑥2 (𝑘) + 𝑥22 (𝑘) = �𝑥1 (𝑘) 𝑥2 (𝑘)�

⎛
⎜⎜⎜⎜⎜⎝
𝑞11 𝑞12
𝑞12 𝑞22

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)

𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠

= �𝑥1 (𝑘) 𝑞11 + 𝑥2 (𝑘) 𝑞12 𝑥1 (𝑘) 𝑞12 + 𝑥2 (𝑘) 𝑞22�

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)

𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠

= 𝑥21 (𝑘) 𝑞11 + 2𝑞12𝑥1 (𝑘) 𝑥2 (𝑘) + 𝑥22 (𝑘) 𝑞22

Comparing coe�cients, we see that 𝑞11 = 2, 𝑞22 = 1, 𝑞12 = 1, hence

𝑄 =

⎛
⎜⎜⎜⎜⎜⎝
2 1
1 1

⎞
⎟⎟⎟⎟⎟⎠

And 𝑅 is scalar

𝑅 = 3

Therefore, the discrete algebraic Riccati equation is

𝑃 = 𝐴𝑃𝐴𝑇 − 𝐴𝑇𝑃𝐵 �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴 + 𝑄 (1)

Small note: The above is what we had in lecture notes. Matlab has the above in its help
pages slightly di�erent. The first term is written as 𝐴𝑇𝑃𝐴 instead of 𝐴𝑃𝐴𝑇 as we had.

Using Matlab
>> A=[0,1;1,0];B=[0;1];Q=[2,1;1,1];R=3;

>> [P,L,G] = dare(A,B,Q,R)

19

P =

3.7841 1.6815

1.6815 4.4022

𝑃 =

⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

Notice that 𝑃 is symmetric as expected.

Let us check it is correct first. Substituting 𝑃 in RHS of (1) gives

𝑃 =

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

𝑇

−

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝3 +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝
2 1
1 1

⎞
⎟⎟⎟⎟⎟⎠

The above gives

⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠ which is 𝑃. Yes, it satisfies DARE. Now, using

𝑢∗ = − �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥

= −

⎛
⎜⎜⎜⎜⎜⎜⎝3 +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815

1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815

1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0 1

1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)

𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠

= −0.59472𝑥1 (𝑘) − 0.22716𝑥2 (𝑘)

Therefore, comparing the above to 𝑢∗ (𝑘) = 𝐾1𝑥1 (𝑘) + 𝐾2𝑥2 (𝑘) we see that

𝐾1 = −0.59472
𝐾2 = −0.22716

To simulate the result under the new control law 𝑢∗, we need some initial condition on
state. Below is small script which simulate this up to 𝑘 = 20 stages with the plot generated� �

1 %simulate x1 and x2 states under optimal control law
2 %found in problem 5, HW 7. Plot is attached
3
4 close all; clear;
5 A=[0,1;1,0];B=[0;1];
6 k1=-0.59472; k2=-0.22716; %found using dare()
7
8 N=20;
9 x=zeros(2,20);
10 x(:,1)=[1.5;1]; %need non-zero initial state!
11 for i=2:N
12 x(:,i)=A*x(:,i-1)+B*(k1*x(1,i-1)+k2*x(2,i-1));
13 end
14 subplot(1,2,1);
15 plot(1:N,x(1,:),'r',1:N,x(1,:),'r.');
16 title('x1 using optimal u');
17 grid;
18 subplot(1,2,2);
19 plot(1:N,x(2,:),'b',1:N,x(2,:),'b.');
20 title('x2, using optimal u');
21 grid;� �

˙

20

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x1 using optimal u

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1
x2, using optimal u

Figure 12: problem 5 plot

	Problem 1
	part a
	Part b
	appendix for problem 1

	Problem 2
	Problem 3
	Problem 4
	Problem 5

