HW3 ECE 719 Optimal systems

Spring 2016
Electrical engineering department
University of Wisconsin, Madison
Instructor: Professor B Ross Barmish

BY
Nasser M. Abbasi

December 30, 2019

Contents

0.1 Problem 1 3
0.1.1 Appendix 3
0.2 Problem 2 4
0.3 Problem 3 5
0.4 Problem 4 6
0.5 Problem 5 7
0.5.1 Part (a) 7
$0.5 .2 \quad \operatorname{Part}(\mathrm{~b})$ 8
$0.5 .3 \quad$ Part(c) 11
List of Figures
List of Tables

0.1 Problem 1

PROBLEM DESCRIPTION

Barmish

ECE 719 - Homework Hyperplane

Given a continuously differentiable convex function J and any pair of points u^{1}, u^{2} in \mathbf{R}^{n}, prove that the inequality

$$
J\left(u^{2}\right) \geq J\left(u^{1}\right)+\left[\nabla J\left(u^{1}\right)\right]^{T}\left(u^{2}-u^{1}\right)
$$

must hold.

SOLUTION

Since $J(u)$ is a convex function $J: \mathfrak{R}^{n} \rightarrow \mathfrak{R}$, then by definition of convex functions we write

$$
J\left((1-\lambda) u^{1}+\lambda u^{2}\right) \leq(1-\lambda) J\left(u^{1}\right)+\lambda J\left(u^{2}\right)
$$

Where $\lambda \in(0,1)$. Rewriting the above as follows

$$
\begin{aligned}
J\left(u^{1}-\lambda u^{1}+\lambda u^{2}\right) & \leq J\left(u^{1}\right)-\lambda J\left(u^{1}\right)+\lambda J\left(u^{2}\right) \\
J\left(u^{1}+\lambda\left(u^{2}-\boldsymbol{u}^{1}\right)\right)-J\left(u^{1}\right) & \leq \lambda\left(J\left(u^{2}\right)-J\left(u^{1}\right)\right)
\end{aligned}
$$

Dividing both sides by $\lambda \neq 0$ gives

$$
\frac{J\left(u^{1}+\lambda\left(u^{2}-u^{1}\right)\right)-J\left(u^{1}\right)}{\lambda} \leq J\left(u^{2}\right)-J\left(u^{1}\right)
$$

Taking the limit $\lambda \rightarrow 0$ results in

$$
\lim _{\lambda \rightarrow 0} \frac{J\left(u^{1}+\lambda\left(u^{2}-u^{1}\right)\right)-J\left(u^{1}\right)}{\lambda} \leq \lim _{\lambda \rightarrow 0} J\left(u^{2}\right)-J\left(u^{1}\right)
$$

But $\lim _{\lambda \rightarrow 0} \frac{J\left(u^{1}+\lambda\left(u^{2}-u^{1}\right)\right)-J\left(u^{1}\right)}{\lambda}=\left.\frac{\partial J(u)}{\partial\left(u^{2}-u^{1}\right)}\right|_{u^{1}}=\left[\nabla J\left(u^{1}\right)\right]^{T}\left(u^{2}-u^{1}\right)$ (appendix below shows how this came about). Therefore the above becomes

$$
\begin{aligned}
{\left[\nabla J\left(u^{1}\right)\right]^{T}\left(u^{2}-\boldsymbol{u}^{1}\right) } & \leq J\left(u^{2}\right)-J\left(\boldsymbol{u}^{1}\right) \\
J\left(u^{2}\right) & \geq J\left(\boldsymbol{u}^{1}\right)+\left[\nabla J\left(\boldsymbol{u}^{1}\right)\right]^{T}\left(\boldsymbol{u}^{2}-\boldsymbol{u}^{1}\right)
\end{aligned}
$$

QED.

0.1.1 Appendix

More details are given here on why

$$
\lim _{\lambda \rightarrow 0} \frac{J\left(\boldsymbol{u}^{1}+\lambda\left(u^{2}-\boldsymbol{u}^{1}\right)\right)-J\left(u^{1}\right)}{\lambda}=\left[\nabla J\left(\boldsymbol{u}^{1}\right)\right]^{T}\left(u^{2}-\boldsymbol{u}^{1}\right)
$$

Let $u^{2}-u^{1}=d$. This is a directional vector, its tail starts at u^{1} going to tip of \boldsymbol{u}^{2} point. Evaluating $\lim _{\lambda \rightarrow 0} \frac{J\left(u^{1}+\lambda d\right)-J\left(u^{1}\right)}{\lambda}$ is the same as saying

$$
\begin{aligned}
\left.\frac{\partial J(u)}{\partial d}\right|_{u^{1}} & =\lim _{\lambda \rightarrow 0} \frac{J\left(u^{1}+\lambda d\right)-J\left(u^{1}\right)}{\lambda} \\
& =\left.\frac{d}{d \lambda} J\left(u^{1}+\lambda d\right)\right|_{\lambda=0}
\end{aligned}
$$

Using the chain rule gives

$$
\begin{aligned}
\left.\frac{d}{d \lambda} J\left(u^{1}+\lambda d\right)\right|_{\lambda=0} & =\left.\left[\nabla J\left(u^{1}+\lambda d\right)\right]^{T} \frac{d}{d \lambda}\left(u^{1}+\lambda d\right)\right|_{\lambda=0} \\
& =\left.\left[\nabla J\left(u^{1}+\lambda d\right)\right]^{T} d\right|_{\lambda=0} \\
& =\left[\nabla J\left(\boldsymbol{u}^{1}\right)\right]^{T} \boldsymbol{d}
\end{aligned}
$$

Replacing $u^{2}-u^{1}=d$, the above becomes

$$
\begin{aligned}
\lim _{\lambda \rightarrow 0} \frac{J\left(u^{1}+\lambda\left(u^{2}-u^{1}\right)\right)-J\left(u^{1}\right)}{\lambda} & =\left.\frac{\partial J(u)}{\partial\left(u^{2}-u^{1}\right)}\right|_{u^{1}} \\
& =\left[\nabla J\left(u^{1}\right)\right]^{T}\left(u^{2}-u^{1}\right)
\end{aligned}
$$

Where $\nabla J\left(u^{1}\right)$ is the gradient vector of $J(u)$ evaluated at $u=u^{1}$.

0.2 Problem 2

PROBLEM DESCRIPTION

Barmish

ECE 717 - Homework Eigenvalue

Let $M(q)$ be an $n \times n$ symmetric matrix with entries $M_{i, j}(q)$ which depend convexly on a vector $q \in \mathbf{R}^{n}$. Show that the largest eigenvalue of $M(q)$, call it $\lambda_{\max }(q)$, also depends convexly on q.

SOLUTION

Since each $m_{i j}(q)$ is convex function in q, then

$$
\begin{equation*}
m_{i j}\left((1-\alpha) q^{1}+\alpha q^{2}\right) \leq(1-\alpha) m_{i j}\left(q^{1}\right)+\alpha m_{i j}\left(q^{2}\right) \tag{1}
\end{equation*}
$$

For $\alpha \in[0,1]$. We also know by Rayleigh quotient theorem which applies for symmetric matrices that largest eigenvalue of a symmetric matrix is given by

$$
\lambda_{\max }=\max _{x \in \mathfrak{R}^{n},\|x\|=1} x^{T} M x
$$

Therefore, evaluated at point $q^{\alpha}=(1-\alpha) q^{1}+\alpha q^{2}$, the above become

$$
\begin{equation*}
\lambda_{\max }\left((1-\alpha) q^{1}+\alpha q^{2}\right)=\max _{\|x\|=1} \sum_{i, j}^{n} m_{i j}\left((1-\alpha) q^{1}+\alpha q^{2}\right) x_{i} x_{j} \tag{2}
\end{equation*}
$$

Applying (1) in RHS (2) changes $=$ to \leq giving

$$
\begin{align*}
\lambda_{\max }\left((1-\alpha) q^{1}+\alpha q^{2}\right) & \leq \max _{\|x\|=1} \sum_{i, j}^{n}\left((1-\alpha) m_{i j}\left(q^{1}\right)+\alpha m_{i j}\left(q^{2}\right)\right) x_{i} x_{j} \\
& =\max _{\|x\|=1}\left(\sum_{i, j}^{n}(1-\alpha) m_{i j}\left(q^{1}\right) x_{i} x_{j}+\sum_{i, j}^{n} \alpha m_{i j}\left(q^{2}\right) x_{i} x_{j}\right) \\
& =(1-\alpha)\left(\max _{\|x\|=1} \sum_{i, j}^{n} m_{i j}\left(q^{1}\right) x_{i} x_{j}\right)+\alpha\left(\max _{\|x\|=1} \sum_{i, j}^{n} m_{i j}\left(q^{2}\right) x_{i} x_{j}\right) \tag{3}
\end{align*}
$$

Since

$$
\max _{\|x\|=1} \sum_{i, j}^{n} m_{i j}\left(q^{1}\right) x_{i} x_{j}=\lambda_{\max }\left(q^{1}\right)
$$

And

$$
\max _{\|x\|=1} \sum_{i, j}^{n} m_{i j}\left(q^{2}\right) x_{i} x_{j}=\lambda_{\max }\left(q^{2}\right)
$$

Then (3) becomes

$$
\lambda_{\max }\left((1-\alpha) q^{1}+\alpha q^{2}\right) \leq(1-\alpha) \lambda_{\max }\left(q^{1}\right)+\alpha \lambda_{\max }\left(q^{2}\right)
$$

This is the definition of convex function, therefore $\lambda_{\max }$ is a convex function in q.
Note: I tried also to reduce this to a problem where I could argue that the pointwise maximum of convex functions is also a convex function to solve it. I could not get a clear way to do this, so I solved it as above. I hope I did not violate the cardinal rule by using $\lambda_{\text {max }}=\max _{x \in \Re^{n},\|x\|=1} x^{T} M x$.

0.3 Problem 3

PROBLEM DESCRIPTION

Barmish
ECE 717 - Homework Polytope

Let U be a polytope in \mathbf{R}^{n} with generators $u^{1}, u^{2}, \ldots, u^{m}$. We often describe U by writing

$$
U=\operatorname{conv}\left\{u^{1}, u^{2}, \ldots, u^{m}\right\}
$$

and say the U is the convex hull of the u^{i}. Show that U is compact.

SOLUTION

We need to show U is compact

To show U is bounded, a proof by induction is used. From the definition of constructing U

$$
U=\left\{x \in \mathfrak{R}^{n}: x=\sum_{i=1}^{m} \lambda_{i} u^{i}\right\}
$$

Where $\sum_{i=1}^{m} \lambda_{i}=1$ and $\lambda_{i} \geq 0$.
For $m=1, x=\lambda u^{1}$. So U contains just one element u^{1}. Since $\lambda=1$ and u^{1} is given and bounded, then this is closed and bounded set with one element. Hence compact. Now we assume U is compact for $m=k-1$ and we need to show it is compact for $m=k$. In other words, we assume that each $x^{*} \in U$ generated using

$$
x^{*}=\sum_{i=1}^{k-1} \lambda_{i} u^{i}
$$

Is such that $\left\|x^{*}\right\|<\infty$ and $x^{*} \in U$. Now we need to show that U is bounded when generator contains k elements. Now

$$
\begin{aligned}
x & =\sum_{i=1}^{k} \lambda_{i} u^{i} \\
& =\lambda_{1} u^{1}+\lambda_{2} u^{2}+\cdots+\lambda_{k-1} u^{k-1}+\lambda_{k} u^{k}
\end{aligned}
$$

Multiply and divide by $\left(1-\lambda_{k}\right)$

$$
\begin{aligned}
x & =\left(1-\lambda_{k}\right)\left(\frac{\lambda_{1} u^{1}}{\left(1-\lambda_{k}\right)}+\frac{\lambda_{2}}{\left(1-\lambda_{k}\right)} u^{2}+\cdots+\frac{\lambda_{k-1} u^{k-1}}{\left(1-\lambda_{k}\right)}+\frac{\lambda_{k}}{\left(1-\lambda_{k}\right)} u^{k}\right) \\
& =\left(1-\lambda_{k}\right)\left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}+\frac{\lambda_{k}}{\left(1-\lambda_{k}\right)} u^{k}\right) \\
& =\left(1-\lambda_{k}\right)\left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}\right)+\lambda_{k} u^{k}
\end{aligned}
$$

But $\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}=x^{*}$ which we assumed in U. Hence the above becomes

$$
x=\left(1-\lambda_{k}\right) x^{*}+\lambda_{k} u^{k}
$$

Since u^{k} is element in the generator set G and it is in U by definition, then the above is convex combination of two elements in U. Hence x in also in U (it is on a line between x^{*} and u^{k}, both in U). Therefore U is closed and bounded for any m in the generator set. Hence U is compact.

0.4 Problem 4

PROBLEM DESCRIPTION

Barmish
ECE 717 - Homework Maximum

Let P be a polytope in \mathbf{R}^{n} with generators $v^{1}, v^{2}, \ldots, v^{N}$ and assume $J(u)$ is convex. Prove that the maximum of J subject to $u \in P$ is attained at one of the generators.

Note: this type of result does not hold for the minimum as evidenced by the simple example $J(u)=u^{2}$ on $[-1,1]$.

SOLUTION

The extreme points of P are subset of G. They are the points used to generate P. The set P is compact (by problem 3) and convex set (by construction, since it is convex combinations of its extreme points). If we can show that J^{*} is at an extreme point of P, then we are done, since an extreme point of P is in G.

Let $u^{*} \in P$ be the point where $J(u)$ is maximum. u^{*} is a convex combinations of all extreme points of P, (these are also subset from G but they can be the whole set G also if there were no redundant generators), Therefore

$$
u^{*}=\sum_{i=1}^{k} \lambda_{i} v^{i}
$$

where $k \leq N$ and $v^{i} \in G$. If it happens that all points in G are extreme points of P, then $k=N$. Therefore

$$
J^{*}=J\left(u^{*}\right)=J\left(\sum_{i=1}^{k} \lambda_{i} v^{i}\right)
$$

Where $\sum_{i=1}^{k} \lambda_{i}=1$ and $\lambda_{i} \geq 0$. But J is convex function (given). Hence by definition of convex function

$$
\begin{equation*}
J^{*}=J\left(\sum_{i=1}^{k} \lambda_{i} v^{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} J\left(v^{i}\right) \tag{1}
\end{equation*}
$$

The above is generalization of $J\left((1-\lambda) u^{1}+\lambda u^{2}\right) \leq(1-\lambda) J\left(u^{1}\right)+\lambda J\left(u^{2}\right)$ applied to convex mixtures. Now we look at $J\left(v^{i}\right)$ term in the above. We pick the maximum of J over all v^{i}. There must be a point in G where $J(v)$ is largest. We call this value J_{G}^{*}. This is the value of
J where it attains its maximum over generator elements $v^{i}: i=1 \cdots k$. Eq (1) becomes

$$
J^{*} \leq \sum_{i=1}^{k} \lambda_{i} J_{G}^{*}
$$

Where we replaced $J\left(v^{i}\right)$ by one value, the maximum J_{G}^{*}. But J_{G}^{*} does not depend on i now, and can take it outside the sum

$$
J^{*} \leq J_{G}^{*}\left(\sum_{i=1}^{k} \lambda_{i}\right)
$$

But $\sum_{i=1}^{k} \lambda_{i}=1$ by definition. Therefore the above becomes

$$
J^{*} \leq J_{G}^{*}
$$

We now see that the maximum of $J(u)$ over P is smaller (or equal) than the maximum of $J(u)$ over the generator set G. Hence a maximum occurs at one of the extreme points v^{i}, since these are by definition taken from G. which is what we are asked to show.

0.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 717 - Homework Optimal Gain

In this homework problem, we consider a modification of the optimal gain scenario defined in class. Now, the performance index includes weighting not only on the state $x(t)$ but also on the on the control $u(t)$. That is, we consider

$$
J=\int_{0}^{\infty} x^{T}(t) x(t)+\lambda u^{T}(t) u(t) d t
$$

where $\lambda>0$ is a given weighting factor.
(a) Generalizing upon the approach taken in class, find an expression for the performance $J(K)$ and the associated Lyapunov function which must be satisfied.
(b) Now, using the result from Part (a), we revisit the double integrator problem from class with weighting $\lambda=1$, initial condition given by $x_{1}(0)=1, x_{2}(0)=0$ and feedback $K=\left[k_{1} k_{2}\right]$ to be found by optimization. Assuming the two feedback gains are equal (that is, $k_{1}=k_{2}=k$), find the optimum $k=k^{*}$, the associated cost J^{*} and verify that your controller stabilizes the system.
(c) Consider the scenario in Part (b) with the following change: Instead of taking initial condition $x(0)$ as given, assume that each of its components $x_{1}(0)$ and $x_{2}(0)$ are independent random variables which are uniformly distributed over $[-1,1]$. Now find the optimal gain $k=k^{*}$ minimizing $J(K)$ and the associated optimal cost J^{*}.

SOLUTION

0.5.1 Part (a)

Let us look at the closed loop. Let $v=0$ and we have, since $u(t)=k x(t)$

$$
\begin{aligned}
\dot{x} & =A x+B k x \\
& =(A+B k) x \\
& =A_{c} x
\end{aligned}
$$

Where A_{c} is the closed loop system matrix. Since $J(k)=\int_{0}^{\infty} x^{T}(t) x(t)+\lambda u^{T}(t) u(t) d t$, where $u(t)=k x(t)$, then

$$
\begin{aligned}
J(k) & =\int_{0}^{\infty} x^{T} x+\lambda(k x)^{T}(k x) d t \\
& =\int_{0}^{\infty} x^{T} x+\lambda x^{T}\left(k^{T} k\right) x d t
\end{aligned}
$$

Let us find a matrix P, if possible such that

$$
d\left(x^{T} P x\right)=-\left(x^{T} x+\lambda x^{T}\left(k^{T} k\right) x\right)
$$

Can we find P ? Since

$$
d\left(x^{T} P x\right)=x^{T} P \dot{x}+\dot{x}^{T} P x
$$

Then we need to solve

$$
\begin{aligned}
x^{T} P \dot{x}+\dot{x}^{T} P x & =-\left(x^{T} x+\lambda x^{T}\left(k^{T} k\right) x\right) \\
x^{T} P\left(A_{c} x\right)+\left(A_{c} x\right)^{T} P x & =-\left(x^{T} x+\lambda x^{T}\left(k^{T} k\right) x\right) \\
x^{T} P\left(A_{c} x\right)+\left(x^{T} A_{c}^{T}\right) P x & =-\left(x^{T} x+\lambda x^{T}\left(k^{T} k\right) x\right)
\end{aligned}
$$

Bring all the x to LHS then

$$
\begin{aligned}
x^{T} x+\lambda x^{T}\left(k^{T} k\right) x+x^{T} P\left(A_{c} x\right)+\left(x^{T} A_{c}^{T}\right) P x & =0 \\
\lambda\left(k^{T} k\right)+P A_{c}+A_{c}^{T} P & =-I
\end{aligned}
$$

Hence the Lyapunov equation to solve for P is

$$
\lambda\left(k^{T} k\right)+P A_{c}+A_{c}^{T} P=-I
$$

Where I is the identity matrix. This is the equation to determine matrix P. Without loss of generality, we insist on P being symmetric matrix. Using this P, now we write

$$
\begin{aligned}
J(k) & =\int_{0}^{\infty} x^{T} x+\lambda(k x)^{T}(k x) d t \\
& =-\int_{0}^{\infty} d\left(x^{T} P x\right) \\
& =\left.x^{T} P x\right|_{\infty} ^{0} \\
& =x^{T}(0) P x(0)-x^{T}(\infty) \operatorname{Px}(\infty)
\end{aligned}
$$

For stable system, $x(\infty) \rightarrow 0$ (since we set $v=0$, there is no external input, hence if the system is stable, it must end up in zero state eventually). In part (b) we check for k range so that the roots are in the left hand side. Therefore

$$
J(k)=x^{T}(0) P(k) x(0)
$$

With $P(k)$ satisfying solution of Lyapunov equation found above.

0.5.2 Part (b)

For $k=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right], x(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and system $y^{\prime \prime}=u$. Hence $x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=u$. Since

$$
u=\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

The system $\dot{x}=A x+B u$ becomes

$$
\begin{aligned}
& x^{\prime}=A x+B u \\
&=A x+B k x \\
&=\left(\begin{array}{l}
\left.x_{1}^{\prime}+B k\right) x \\
x_{2}^{\prime}
\end{array}\right] \\
&=(\overbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}^{A}+\overbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}^{\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]}]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
&=\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
k_{1} & k_{2}
\end{array}\right]\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
&=\overbrace{\left[\begin{array}{ll}
0 & 1 \\
k_{1} & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}
\end{aligned}
$$

For stable system, we need $k_{1}, k_{2}<0$ from looking at the roots of the characteristic equation. Now we solve the Lyapunov equation.

$$
\begin{aligned}
\lambda\left(k^{T} k\right)+P A_{c}+A_{c}^{T} P & =-I \\
\lambda\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]+\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
k_{1} & k_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
k_{1} & k_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right] & =\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
\lambda\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]+\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
k_{1} & k_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & k_{1} \\
1 & k_{2}
\end{array}\right]\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right] & =\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
\lambda\left[\begin{array}{cc}
k_{1}^{2} & k_{1} k_{2} \\
k_{1} k_{2} & k_{2}^{2}
\end{array}\right]+\left[\begin{array}{ll}
k_{1} p_{12} & p_{11}+k_{2} p_{12} \\
k_{1} p_{22} & p_{21}+k_{2} p_{22}
\end{array}\right]+\left[\begin{array}{cc}
k_{1} p_{21} & k_{1} p_{22} \\
p_{11}+k_{2} p_{21} & p_{12}+k_{2} p_{22}
\end{array}\right] & =\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
{\left[\begin{array}{cc}
k_{1}\left(p_{12}+p_{21}+\lambda k_{1}\right) & p_{11}+k_{1} p_{22}+k_{2} p_{12}+\lambda k_{1} k_{2} \\
p_{11}+k_{1} p_{22}+k_{2} p_{21}+\lambda k_{1} k_{2} & \lambda k_{2}^{2}+2 p_{22} k_{2}+p_{12}+p_{21}
\end{array}\right] } & =\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Hence we have 4 equations to solve for $p_{11,}, p_{12}, p_{21,} p_{22}$. (but we know also that $p_{12}=p_{21}$). Now let $\lambda=1$ per the problem, and we obtain the four equations from above as

$$
\begin{aligned}
k_{1}^{2}+k_{1} p_{12}+k_{1} p_{21} & =-1 \\
p_{11}+k_{1} k_{2}+k_{1} p_{22}+k_{2} p_{12} & =0 \\
p_{11}+k_{1} k_{2}+k_{1} p_{22}+k_{2} p_{21} & =0 \\
k_{2}^{2}+2 p_{22} k_{2}+p_{12}+p_{21} & =-1
\end{aligned}
$$

Solution is (Using Matlab syms)

```
clear;
syms k1 k2 p11 p12 p21 p22;
k = [k1,k2];
A = [0,1;0,0];
B = [0;1];
Ac = A+B*k;
P = [p11 p12;p21 p22];
lam = 1;
eq = lam*(k.')*k + (Ac.')*P + P*Ac == -eye(2);
sol = solve(eq,{p11,p12,p21,p22});
P = simplify(subs(P,sol))
x0 = [1;0];
J1 = simplify(x0'*P*x0)
```

```
Gives
P =
[ -(k1^3 - k1^2 + k1 - k2^2)/(2*k1*k2), -(k1^2 + 1)/(2*k1)]
[-(k1^2 + 1)/(2*k1), -(- k1^2 + k1*k2^2 + k1 - 1)/(2*k1*k2)]
J1 =
-(k1^3 - k1^2 + k1 - k2^2)/(2*k1*k2)
```

$$
P=\left[\begin{array}{cc}
-\frac{k_{1}-k_{1}^{2}+k_{1}^{3}-k_{2}^{2}}{2 k_{1} k_{2}} & -\frac{k_{1}^{2}+1}{2 k_{1}} \\
-\frac{k_{1}^{2}+1}{2 k_{1}} & -\frac{k_{1}+k_{1} k_{2}^{2}-k_{1}^{2}-1}{2 k_{1} k_{2}}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
J(k) & =x^{T}(0) P(k) x(0) \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-\frac{k_{1}-k_{1}^{2}+k_{1}^{3}-k_{2}^{2}}{2 k_{2} k_{2}} & -\frac{k_{1}^{2}+1}{2 k_{1}} \\
-\frac{k_{1}^{2}+1}{2 k_{1}} & -\frac{k_{1}+k_{1} k_{2}^{2}-k_{1}^{2}-1}{2 k_{1} k_{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Therefore

$$
J(k)=-\frac{1}{2 k_{1} k_{2}}\left(k_{1}^{3}-k_{1}^{2}+k_{1}-k_{2}^{2}\right)
$$

For $k_{1}=k_{2}=k$, the above becomes

$$
\begin{aligned}
J(k) & =-\frac{\left(k^{3}-2 k^{2}+k\right)}{2 k^{2}} \\
& =-\frac{\left(k^{2}-2 k+1\right)}{2 k}
\end{aligned}
$$

Or

$$
J(k)=-\frac{1}{2 k}(k-1)^{2}
$$

Now we find the optimal J^{*}. Since

$$
\frac{d J(k)}{d k}=\frac{(k-1)^{2}}{2 k^{2}}-\frac{(2 k-2)}{2 k}
$$

Then $\frac{d J(k)}{d k}=0$ gives

$$
k=1,-1
$$

Since k must be negative for stable system, we pick

$$
k^{*}=-1
$$

And

$$
\frac{d^{2} J(k)}{d k^{2}}=\frac{(k-1)^{2}}{k^{3}}-\frac{2(1-k)}{k^{2}}-\frac{1}{k}
$$

At $k^{*}=-1$

$$
\frac{d^{2} J(k)}{d k^{2}}=1>0
$$

Hence this is a minimum. Therefore

$$
J^{*}=-\left.\frac{1}{2 k}(k-1)^{2}\right|_{k=-1}
$$

Hence

$$
J^{*}=2
$$

J^{*} do not get to zero. (same as in the class problem we did without $\lambda u^{T} u$ term. I thought we will get $J^{*}=0$ now since this I thought it was the reason for using $\lambda u^{T} u$. I hope I did not make mistake, but do not see where if I did. Below is a plot of $I(k)$.

```
clear k;
close all;
reset(0);
set(groot,'defaulttextinterpreter','Latex');
set(groot, 'defaultAxesTickLabelInterpreter','Latex');
set(groot, 'defaultLegendInterpreter','Latex');
f=@(k) (-1./(2*k).*(k-1).^2)
k=-4:.1:4;
plot(k,f(k));
text(-1,f(-1),'o','color','red')
title('$J(k)$ cost function and location of optimal $k$');
```

```
xlabel('$k$'); ylabel('$J(k)$')
grid;
```


At $k=1$ then $J(1)=0$, but we can not use $k=1$ since this will make the system not stable. The system now using $k^{*}=-1$ becomes

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
k_{1} & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

To verify it is stable. Since

$$
\left|\left(\lambda I-A_{c}\right)\right|=\lambda^{2}+\lambda+1
$$

The roots are

$$
-\frac{1}{2} \pm \frac{1}{2} i \sqrt{3}
$$

Hence the system is stable since real part of roots are negative. If we had used $k=1$, the roots will be $-0.618,1.618$, and the system would have been unstable.

0.5.3 Part (c)

From last part, we obtained P

$$
P=\left[\begin{array}{cc}
-\frac{k_{1}-k_{1}^{2}+k_{1}^{3}-k_{2}^{2}}{2 k_{1} k_{2}} & -\frac{k_{1}^{2}+1}{2 k_{1}} \\
-\frac{k_{1}^{2}+1}{2 k_{1}} & -\frac{k_{1}+k_{1} k_{2}^{2}-k_{1}^{2}-1}{2 k_{1} k_{2}}
\end{array}\right]
$$

When $k_{1}=k_{2}=k$ the above becomes

$$
P=\left[\begin{array}{cc}
\frac{-k+2 k^{2}-k^{3}}{2 k^{2}} & -\frac{k^{2}+1}{2 k} \\
-\frac{k^{2}+1}{2 k} & \frac{1-k-k^{3}+k^{2}}{2 k^{2}}
\end{array}\right]
$$

Now since $x(0)$ is random variable, then

$$
\begin{align*}
J(k) & =E\left(x^{T}(0) P x(0)\right) \\
& =E\left(\left[\begin{array}{ll}
x_{1}(0) & \left.\left.x_{2}(0)\right]\left[\begin{array}{cc}
\frac{-k+2 k^{2}-k^{3}}{2 k^{2}} & -\frac{k^{2}+1}{2 k} \\
-\frac{k^{2}+1}{2 k} & \frac{1-k-k^{3}+k^{2}}{2 k^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]\right) \\
& =E\left(-\frac{1}{2 k^{2}}\left(k^{3} x_{1}^{2}(0)+2 k^{3} x_{1}(0) x_{2}(0)+k^{3} x_{2}^{2}(0)-2 k^{2} x_{1}^{2}(0)-k^{2} x_{2}^{2}(0)+k x_{1}^{2}(0)+2 k x_{1}(0) x_{2}(0)+k x_{2}^{2}(0)-x_{2}^{2}(0\right.\right.
\end{array}\right) .\right.
\end{align*}
$$

Let $E\left(x_{1}(0)\right)=\bar{x}_{1}$ and $E\left(x_{2}(0)\right)=\bar{x}_{2}$ Then

$$
J(k)=-\frac{1}{2 k^{2}}\left(k^{3} \bar{x}_{1}^{2}+2 k^{3} \bar{x}_{1} \bar{x}_{2}+k^{3} \bar{x}_{2}^{2}-2 k^{2} \bar{x}_{1}^{2}-k^{2} \bar{x}_{2}^{2}+k \bar{x}_{1}^{2}+2 k \bar{x}_{1} \bar{x}_{2}+k \bar{x}_{2}^{2}-\bar{x}_{2}^{2}\right)
$$

But $E\left(x_{1}(0)\right)=0$, hence $\bar{x}_{1}=0$ and similarly $\bar{x}_{2}=0$, but $\bar{x}_{1}^{2}=\frac{1}{3}$ since

$$
\int_{-1}^{1} x^{2} p(x) d x=\frac{1}{2} \int_{-1}^{1} x^{2} d x=\frac{1}{2}\left(\frac{x^{3}}{3}\right)_{-1}^{1}=\frac{1}{3}
$$

Similarly $\bar{x}_{2}^{2}=\frac{1}{3}$ and $\bar{x}_{1} \bar{x}_{2}=0$ (since i.i.d, then $E\left(x_{1}(0) x_{2}(0)\right)=E\left(x_{1}(0)\right) E\left(x_{2}(0)\right)=0$. Using these values of expectations, Eq (1) becomes

$$
J(k)=-\frac{1}{2 k^{2}}\left(k^{3} \frac{1}{3}+k^{3} \frac{1}{3}-2 k^{2} \frac{1}{3}-k^{2} \frac{1}{3}+k \frac{1}{3}+k \frac{1}{3}-\frac{1}{3}\right)
$$

Or

$$
\begin{equation*}
J(k)=\frac{-2 k^{3}+3 k^{2}-2 k+1}{6 k^{2}} \tag{2}
\end{equation*}
$$

To find the optimal:

$$
\frac{d J(k)}{d k}=-\frac{1}{3}-\frac{1}{3 k^{3}}+\frac{1}{3 k^{2}}
$$

$\frac{d J(k)}{d k}=0$ gives 3 roots. The only one which is real and negative (the other two are complex) is

$$
k^{*}=-1.325
$$

At this k^{*}, we check $\frac{d^{2} J(k)}{d k^{2}}$ and find it is $0.611>0$, hence J is minimum at k^{*}. The value J^{*} at k^{*} is found to be from substituting k^{*} in (2)

$$
J^{*}=1.28817
$$

We now check if the system is stable. (it should be, since $k^{*}<1$). The system now is

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
k_{1} & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 1 \\
-1.325 & -1.325
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\left|\left(\lambda I-A_{c}\right)\right|=\lambda^{2}+1.325 \lambda+1.325
$$

The roots are

$$
-0.6625 \pm i 0.941
$$

The system is stable since real part of roots are negative. The following is the step response for system in part(b) and part(c) to compare.

```
%show step responses
```

close all;
figure();
close all
$\mathrm{A}=[01 ;-1-1] ;$
$\mathrm{B}=[1 ; 0]$
sys $=$ ss (A, B, [1 0],[0])
step(sys)
hold on;
18

```
```

```
11 | = [0 1;-1.325 -1.325];
```

```
11 | = [0 1;-1.325 -1.325];
12 B = [1;0]
12 B = [1;0]
13 sys = ss(A,B,[1 0],[0])
13 sys = ss(A,B,[1 0],[0])
14 step(sys)
14 step(sys)
15 legend('part(b) step response','part(c) step response')
15 legend('part(b) step response','part(c) step response')
16 xlabel('time');
16 xlabel('time');
1 7 ~ y l a b e l ( ' y ( t ) ' ) ; ~
1 7 ~ y l a b e l ( ' y ( t ) ' ) ; ~
```

grid

```
```

grid

```
```

