HW2 ECE 719 Optimal systems

Spring 2016
Electrical engineering department
University of Wisconsin, Madison
Instructor: Professor B Ross Barmish

BY
Nasser M. Abbasi

December 30, 2019

Contents

0.1 Problem 1 3
0.2 Problem 2 5
0.3 Problem 3 6
0.4 Problem 4 8
0.5 Problem 5 10
0.5.1 Appendix 11
List of Figures
List of Tables

0.1 Problem 1

PROBLEM DESCRIPTION

Barmish

ECE 719 - Homework Epigraph

Give a function $J: \mathbf{R}^{n} \rightarrow \mathbf{R}$, we recall that its epigraph is the a set in \mathbf{R}^{n+1} given by

$$
\text { epi } J=\left\{(u, \alpha) \in \mathbf{R}^{n+1}: \alpha \geq J(u)\right\} .
$$

Now prove that J is a convex function if and only if epi J is a convex set.

SOLUTION The following diagram illustrates epi J for $n=1$. In words, it is the set of all points above the curve of the function $J(u)$

This is an iff proof, hence we need to show the following

1. Given J is convex function, then show that epi J is a convex set.
2. Given that epi J is a convex set, then show that J is a convex function.

Proof of first direction We pick any two arbitrary points in epi J, such as $p_{0}=\left(u^{0}, y^{0}\right)$ and $p_{1}=\left(u^{1}, y^{1}\right)$. To show epi J is a convex set, we need now to show that any point on the line between p_{0}, p_{1} is also in epi J. The point between them is given by $p_{\lambda}=\left(u^{\lambda}, y^{\lambda}\right)$ where $\lambda \in[0,1]$. The following diagram helps illustrates this for $n=1$.

The point p_{λ} is given by

$$
\begin{aligned}
\left(u^{\lambda}, y^{\lambda}\right) & =(1-\lambda) p_{0}+\lambda p_{1} \\
& =(1-\lambda)\left(u^{0}, y^{0}\right)+\lambda\left(u^{1}, y^{1}\right) \\
& =\left((1-\lambda) u^{0}+\lambda u^{1},(1-\lambda) y^{0}+\lambda y^{1}\right)
\end{aligned}
$$

Therefore $y^{\lambda}=(1-\lambda) y^{0}+\lambda y^{1}$. Since p_{0}, p_{1} are in epi J, then by the definition of epi J, we know that $y^{0} \geq J\left(u^{0}\right)$ and $y^{1} \geq J\left(u^{1}\right)$. Therefore we conclude that

$$
\begin{equation*}
y^{\lambda} \geq(1-\lambda) J\left(u^{0}\right)+\lambda J\left(u^{1}\right) \tag{1}
\end{equation*}
$$

But since we assumed J is a convex function, then we also know that $(1-\lambda) J\left(u^{0}\right)+\lambda J\left(u^{1}\right) \geq$ $J\left(u^{\lambda}\right)$ where $u^{\lambda}=(1-\lambda) u^{0}+\lambda u^{1}$. Therefore (1) becomes

$$
y^{\lambda} \geq J\left(u^{\lambda}\right)
$$

This implies the arbitrary point p_{λ} is in epi J.

We now need to proof the other direction. Given that epi J is a convex set, then show that J is a convex function. Since epi J is a convex set, we pick two arbitrary points in epi J, such as p_{0}, p_{1}. We can choose $p_{0}=\left(u^{0}, J\left(u^{0}\right)\right)$ and $p_{1}=\left(u^{1}, J\left(u^{1}\right)\right)$. These are still in epi J, but on the lower bound, on the edge with $J(u)$ curve.

Since p_{0}, p_{1} are two points in a convex set, then any point p^{λ} on a line between them is also in epi J (by definition of a convex set). And since $p^{\lambda}=(1-\lambda) p_{0}+\lambda p_{1}$ this implies

$$
\begin{align*}
p^{\lambda} & =\left(u^{\lambda}, y^{\lambda}\right) \\
& =\left((1-\lambda) p_{0}+\lambda p_{1}\right) \\
& =\left((1-\lambda)\left(u^{0}, J\left(u^{0}\right)\right)+\lambda\left(u^{1}, J\left(u^{1}\right)\right)\right) \\
& =((1-\lambda) u^{0}+\lambda u^{1}, \overbrace{(1-\lambda) J\left(u^{0}\right)+J\left(u^{1}\right)}^{y^{\lambda}}) \tag{1}
\end{align*}
$$

Since p^{λ} is in epi J then by definition of epi J

$$
\begin{equation*}
y^{\lambda} \geq J\left(u^{\lambda}\right) \tag{2}
\end{equation*}
$$

But from (1) we see that $y^{\lambda}=(1-\lambda) J\left(u^{0}\right)+J\left(u^{1}\right)$, therefore (2) is the same as writing

$$
\begin{equation*}
(1-\lambda) J\left(u^{0}\right)+J\left(u^{1}\right) \geq J\left(u^{\lambda}\right) \tag{3}
\end{equation*}
$$

But $u^{\lambda}=(1-\lambda) u^{0}+\lambda u^{1}$, hence the above becomes

$$
(1-\lambda) J\left(u^{0}\right)+J\left(u^{1}\right) \geq J\left((1-\lambda) u^{0}+\lambda u^{1}\right)
$$

But the above is the definition of a convex function. Therefore $J(u)$ is a convex function. QED.

0.2 Problem 2

PROBLEM DESCRIPTION

Barmish

ECE 719 - Homework Unique Minimum

Suppose $J: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is strictly convex. Then prove the following: If a minimizing element $u^{*} \in \mathbf{R}^{n}$ exists, it must be unique.

SOLUTION Let u_{0}^{*} and u_{1}^{*} be any two different minimizing elements in \Re^{n} such that $J\left(u_{0}^{*}\right)<J\left(u_{1}^{*}\right)$. We will show that this leads to contradiction. Since u_{0}^{*} is a minimizer, then there exists some $R>0$, such that all points u that satisfy $\left\|u^{*}-u\right\| \leq R$ also satisfy

$$
J\left(u_{0}^{*}\right) \leq J(u)
$$

We will consider all points along the line joining u_{0}^{*}, u_{1}^{*}, and pick one point u^{λ} that satisfies $\left\|u^{*}-u^{\lambda}\right\| \leq R$, where $\lambda \in[0,1]$ is selected to make the convex mixture $u^{\lambda}=(1-\lambda) u_{0}^{*}+\lambda u_{1}^{*}$ satisfied. Therefore any $\lambda \leq \frac{R}{\left\|u_{0}^{*}-u_{1}^{*}\right\|}$ will put u^{λ} inside the sphere of radius R.

Hence now we can say that

$$
\begin{equation*}
J\left(u_{0}^{*}\right) \leq J\left(u^{\lambda}\right) \tag{1}
\end{equation*}
$$

But given that $J(u)$ is a strict convex function, then

$$
\begin{equation*}
J\left(u^{\lambda}\right)<(1-\lambda) J\left(u_{0}^{*}\right)+\lambda J\left(u_{1}^{*}\right) \tag{2}
\end{equation*}
$$

Since we assumed that $J\left(u_{0}^{*}\right)<J\left(u_{1}^{*}\right)$, then if we replace $J\left(u_{1}^{*}\right)$ by $J\left(u_{0}^{*}\right)$ in the RHS of (2), it will change from $<$ to \leq resulting in

$$
\begin{align*}
& J\left(u^{\lambda}\right) \leq(1-\lambda) J\left(u_{0}^{*}\right)+\lambda J\left(u_{0}^{*}\right) \\
& J\left(u^{\lambda}\right) \leq J\left(u_{0}^{*}\right) \tag{3}
\end{align*}
$$

We see that equations (3) and (1) are a contradiction. Therefore our assumption is wrong and there can not be more than one minimizing element and u_{0}^{*} must be the same as u_{1}^{*}.

0.3 Problem 3

PROBLEM DESCRIPTION

Barmish

ECE 719 - Homework Global Minimum

Preamble: Suppose $J: \mathbf{R}^{n} \rightarrow \mathbf{R}$. A point $u^{*} \in \mathbf{R}^{n}$ is said to be a local minimum of J if there exists some suitably small $\delta>0$ leading to satisfaction of the following condition:

$$
J\left(u^{*}\right) \leq J(u)
$$

for all u such that $\left\|u-u^{*}\right\|<\delta$. Said another way, u^{*} is a minimizing element over a suitably small open neighborhood. For the case when $J\left(u^{*}\right) \leq J(u)$ for all u, we call u^{*} a global minimum of J.

The Homework Problem: Suppose $J: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex. Prove that every local minimum of J is a global minimum.

SOLUTION We are given that $J\left(u^{*}\right) \leq J(u)$ for all u such that $\left\|u^{*}-u\right\|<\delta$. Let us pick any arbitrary point u^{1}, outside ball of radius δ. Then any point on the line between u^{*} and u^{1} is given by

$$
u^{\lambda}=(1-\lambda) u^{*}+\lambda u^{1}
$$

In picture, so far we have this setup

We now need to show that $J\left(u^{*}\right) \leq J\left(u^{1}\right)$ even though u^{1} is outside the ball. Since J is a convex function, then

$$
\begin{equation*}
J\left(u^{\lambda}\right) \leq(1-\lambda) J\left(u^{*}\right)+\lambda J\left(u^{1}\right) \tag{1}
\end{equation*}
$$

We can now select λ to push u^{λ} to be inside the ball. We are free to change λ as we want while keeping u^{1} fixed, outside the ball. If we do this we then we have

$$
J\left(u^{*}\right) \leq J\left(u^{\lambda}\right)
$$

Hence (1) becomes

$$
\begin{equation*}
J\left(u^{*}\right) \leq(1-\lambda) J\left(u^{*}\right)+\lambda J\left(u^{1}\right) \tag{2}
\end{equation*}
$$

Where we replaced $J\left(u^{\lambda}\right)$ by $J\left(u^{*}\right)$ in (1) and since $J\left(u^{*}\right) \leq J\left(u^{\lambda}\right)$ the \leq relation remained
valid. Simplifying (2) gives

$$
\begin{aligned}
J\left(u^{*}\right) & \leq J\left(u^{*}\right)-\lambda J\left(u^{*}\right)+\lambda J\left(u^{1}\right) \\
\lambda J\left(u^{*}\right) & \leq \lambda J\left(u^{1}\right)
\end{aligned}
$$

For non-zero λ this means $J\left(u^{*}\right) \leq J\left(u^{1}\right)$. This completes the proof, since u^{1} was arbitrary point anywhere. Hence u^{*} is global minimum. QED

0.4 Problem 4

PROBLEM DESCRIPTION

Barmish

ECE 719 - Homework Multiple Combinations

For a convex function $J: \mathbf{R}^{n} \rightarrow \mathbf{R}$, prove the following condition is satisfied: Given any points $u^{1}, u^{2}, \ldots, u^{N} \in \mathbf{R}^{n}$ and any scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \geq 0$ such that

$$
\sum_{i=1}^{N} \lambda_{i}=1
$$

it follows that

$$
J\left(\sum_{i=1}^{N} \lambda_{i} u^{i}\right) \leq \sum_{i=1}^{N} \lambda_{i} J\left(u^{i}\right)
$$

SOLUTION

We need to show that $J\left(\sum_{i=1}^{N} \lambda_{i} u^{i}\right) \leq \sum_{i=1}^{N} \lambda_{i} J\left(u^{i}\right)$ where $\sum_{i=1}^{N} \lambda_{i}=1$. Proof by induction. For $N=1$ and since $\lambda_{1}=1$, then we have

$$
J\left(u^{1}\right)=J\left(u^{1}\right)
$$

The case for $N=2$ comes for free, from the definition of J being a convex function

$$
\begin{equation*}
J\left((1-\lambda) u^{1}+\lambda u^{2}\right) \leq(1-\lambda) J\left(u^{1}\right)+\lambda J\left(u^{2}\right) \tag{A}
\end{equation*}
$$

By making $(1-\lambda) \equiv \lambda_{1}, \lambda \equiv \lambda_{2}$, the above can be written as

$$
J\left(\lambda_{1} u^{1}+\lambda_{2} u^{2}\right) \leq \lambda_{1} J\left(u^{1}\right)+\lambda_{2} J\left(u^{2}\right)
$$

We now assume it is true for $N=k-1$. In other words, the inductive hypothesis below is given as true

$$
\begin{equation*}
J\left(\sum_{i=1}^{k-1} \lambda_{i} u^{i}\right) \leq \sum_{i=1}^{k-1} \lambda_{i} J\left(u^{i}\right) \tag{*}
\end{equation*}
$$

Now we have to show it will also be true for $N=k$, which is

$$
\begin{align*}
\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) & =\lambda_{1} J\left(u^{1}\right)+\lambda_{1} J\left(u^{1}\right)+\cdots+\lambda_{k} J\left(u^{k}\right) \\
& =\left(1-\lambda_{k}\right)\left(\frac{\lambda_{1}}{\left(1-\lambda_{k}\right)} J\left(u^{1}\right)+\frac{\lambda_{1}}{\left(1-\lambda_{k}\right)} J\left(u^{1}\right)+\cdots+\frac{\lambda_{k-1}}{\left(1-\lambda_{k}\right)} J\left(u^{k-1}\right)+\frac{\lambda_{k}}{\left(1-\lambda_{k}\right)} J\left(u^{k}\right)\right) \\
& =\left(1-\lambda_{k}\right)\left(\frac{\lambda_{1}}{\left(1-\lambda_{k}\right)} J\left(u^{1}\right)+\frac{\lambda_{1}}{\left(1-\lambda_{k}\right)} J\left(u^{1}\right)+\cdots+\frac{\lambda_{k-1}}{\left(1-\lambda_{k}\right)} J\left(u^{k-1}\right)\right)+\lambda_{k} J\left(u^{k}\right) \\
& =\left(1-\lambda_{k}\right)\left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} J\left(u^{i}\right)\right)+\lambda_{k} J\left(u^{k}\right) \tag{1}
\end{align*}
$$

Now we take advantage of the inductive hypothesis Eq. (*) on $k-1$, which says that $J\left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}\right) \leq \sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} J\left(u^{i}\right)$. Using this in (1) changes it to \geq relation

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) \geq\left(1-\lambda_{k}\right) J\left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}\right)+\lambda_{k} J\left(u^{k}\right) \tag{2}
\end{equation*}
$$

We now take advantage of the case of $N=2$ in (A) by viewing RHS of (2) as $\left(1-\lambda_{k}\right) J\left(u^{1}\right)+$ $\lambda_{k} J\left(u^{2}\right)$, where we let $u^{1} \equiv \sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}, u^{2} \equiv u^{k}$. Hence we conclude that

$$
\begin{equation*}
\left(1-\lambda_{k}\right) J\left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}\right)+\lambda_{k} J\left(u^{k}\right) \geq J\left(\left(1-\lambda_{k}\right) \sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}+\lambda_{k} u^{k}\right) \tag{3}
\end{equation*}
$$

Using (3) in (2) gives (the \geq relation remains valid, even more now, since we replaced
something in RHS of (2), by something smaller)

$$
\begin{aligned}
\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) & \geq J\left(\left(1-\lambda_{k}\right) \sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i}+\lambda_{k} u^{k}\right) \\
& =J\left(\left(\sum_{i=1}^{k-1} \lambda_{i} u^{i}\right)+\lambda_{k} u^{k}\right)
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) \geq J\left(\sum_{i=1}^{k} \lambda_{i} u^{i}\right)
$$

QED.

0.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 719 - Homework Hessian

For $u \in \mathbf{R}^{n}$, define

$$
J(u)=-\left(u_{1} u_{2} u_{3} \cdots u_{n}\right)^{1 / n}
$$

Prove that $J(u)$ is convex on the positive orthant; i.e., the set defined by $u_{i}>0$ for $i=1,2, \ldots, n$.

SOLUTION

Assuming $J(u)$ is twice continuously differentiable $\left(C^{2}\right)$ in $u_{1}, u_{2}, \cdots, u_{n}$, then if we can show that the Hessian $\nabla^{2} J(u)$ is positive semi-definite on $u_{i}>0$, then this implies $J(u)$ is convex. The first step is to determined $\nabla^{2} J(u)$.

$$
\begin{aligned}
\frac{\partial J}{\partial u_{i}} & =-\frac{1}{n}\left(u_{1} u_{2} \cdots u_{n}\right)^{\frac{1}{n}-1} \prod_{k=1, k \neq i}^{n} u_{k}=\frac{1}{n} \frac{J(u)}{\left(u_{1} u_{2} \cdots u_{n}\right)} \prod_{k=1, k \neq i}^{n} u_{k}=\frac{1}{n} \frac{J(u)}{\prod_{k=1}^{n} u_{k}} \prod_{k=1, k \neq i}^{n} u_{k} \\
& =\frac{1}{n} \frac{J(u)}{u_{i}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial^{2} J}{\partial u_{i}^{2}} & =\frac{1}{n} \frac{\left(\frac{1}{n} \frac{J(u)}{u_{i}}\right)}{u_{i}}-\frac{1}{n} \frac{J(u)}{u_{i}^{2}} \\
& =\frac{1}{n^{2}} \frac{J(u)}{u_{i}^{2}}-\frac{1}{n} \frac{J(u)}{u_{i}^{2}} \\
& =\frac{1}{n} \frac{J(u)}{u_{i}^{2}}\left(\frac{1}{n}-1\right)
\end{aligned}
$$

And the cross derivatives are

$$
\begin{aligned}
\frac{\partial^{2} J}{\partial u_{i} \partial u_{j}} & =\frac{\partial}{\partial u_{j}}\left(\frac{1}{n} \frac{J(u)}{u_{i}}\right) \\
& =\frac{1}{n} \frac{\frac{1}{n} \frac{(u)}{u_{j}}}{u_{i}} \\
& =\frac{1}{n^{2}} \frac{J(u)}{u_{i} u_{j}}
\end{aligned}
$$

Therefore

$$
\nabla^{2} J(u)=\left(\begin{array}{cccc}
\frac{1}{n^{2}} \frac{J(u)}{u_{1}^{2}}(1-n) & \frac{1}{n^{2}} \frac{J(u)}{u_{1} u_{2}} & \cdots & \frac{1}{n^{2}} \frac{J(u)}{u_{1} u_{n}} \\
\frac{1}{n^{2}} \frac{J(u)}{u_{2} u_{1}} & \frac{1}{n^{2}} \frac{J(u)}{u_{2}^{2}}(1-n) & \cdots & \frac{1}{n^{2}} \frac{J(u)}{u_{2} u_{n}} \\
\vdots & \cdots & \ddots & \vdots \\
\frac{1}{n^{2}} \frac{J(u)}{u_{n} u_{1}} & \frac{1}{n^{2}} \frac{J(u)}{u_{n} u_{2}} & \cdots & \frac{1}{n^{2}} \frac{J(u)}{u_{n}^{2}}(1-n)
\end{array}\right)
$$

Now we need to show that $\nabla^{2} J(u)$ is positive semi-definite. For $n=1$, the above reduces to

$$
\nabla^{2} J(u)=\frac{J(u)}{u_{1}^{2}}(1-1)=0
$$

Hence non-negative. This is the same as saying the second derivative is zero. For $n=2$

$$
\nabla^{2} J(u)=\left(\begin{array}{ll}
\frac{1}{4} J(u) \frac{1-2}{u_{1}^{2}} & \frac{1}{u_{1} u_{2}} \frac{1}{4} J(u) \\
\frac{1}{u_{2} u_{1}} \frac{1}{4} J(u) & \frac{1}{4} J(u) \frac{1-2}{u_{2}^{2}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{-1}{u_{1}^{2}} J J(u) & \frac{1}{u_{1} u_{2}} \frac{1}{4} J(u) \\
\frac{1}{u_{2} u_{1}} \frac{1}{4} J(u) & \frac{-1}{u_{2}^{2}} \frac{1}{4} J(u)
\end{array}\right)
$$

The first leading minor is $\frac{-1}{4 u_{1}^{2}} J(u)$, which is positive, since $J(u)<0$ and $u_{i}>0$ (given). The
second leading minor is

$$
\Delta_{2}=\left|\begin{array}{ll}
\frac{-1}{u_{1}^{2}} \frac{1}{4} J(u) & \frac{1}{u_{1} u_{2}} \frac{1}{4} J(u) \\
\frac{1}{u_{2} u_{1}} \frac{1}{4} J(u) & \frac{-1}{u_{2}^{2}} \frac{1}{4} J(u)
\end{array}\right|=0
$$

Hence all the leasing minors are non-negative. Which means $\nabla^{2} J(u)$ is semi-definite. We will look at $n=3$

$$
\nabla^{2} J(u)=\left(\begin{array}{lll}
\frac{-2}{u_{2}^{2}} \frac{1}{9} J(u) & \frac{1}{u_{1} u_{2}} \frac{1}{9} J(u) & \frac{1}{u_{1} u_{3}} \frac{1}{9} J(u) \\
\frac{1}{u_{2} u_{1}} \frac{1}{9} J(u) & \frac{-2}{u_{2}^{2}} \frac{1}{9} J(u) & \frac{1}{u_{2} u_{3}} \frac{1}{9} J(u) \\
\frac{1}{u_{3} u_{1}} \frac{1}{9} J(u) & \frac{1}{u_{3} u_{2}} \frac{1}{9} J(u) & \frac{-2}{u_{3}^{2}} \frac{1}{9} J(u)
\end{array}\right)
$$

The first leading minor is $\frac{-2}{9 u_{1}^{2}} J(u)$, which is positive again, since $J(u)<0$ for $u_{i}>0$ (given).
And the second leading minor is $\frac{1}{27} J^{2} \frac{u^{2}}{u_{1}^{2} u_{2}^{2}}$
which is positive, since all terms are positive. The third leading minor is

$$
\Delta_{3}=\left|\begin{array}{lll}
\frac{-2}{u_{1}^{2}} \frac{1}{9} J(u) & \frac{1}{u_{1} u_{2}} \frac{1}{9} J(u) & \frac{1}{u_{1} u_{3}} \frac{1}{9} J(u) \\
\frac{1}{u_{2} u_{1}} \frac{1}{9} J(u) & \frac{-2}{u_{2}^{2}} \frac{1}{9} J(u) & \frac{1}{u_{2} u_{3}} \frac{1}{9} J(u) \\
\frac{1}{u_{3} u_{1}} \frac{1}{9} J(u) & \frac{1}{u_{3} u_{2}} \frac{1}{9} J(u) & \frac{-2}{u_{3}^{2}} \frac{1}{9} J(u)
\end{array}\right|=0
$$

Hence non-of the leading minors are negative. Therefore $\nabla^{2} J(u)$ is semi-definite. The same pattern repeats for higher values of n. All leading minors are positive, except the last leading minor will be zero.

0.5.1 Appendix

Another way to show that $\nabla^{2} J(u)$ is positive semi-definite is to show that $x^{T}\left(\nabla^{2} J(u)\right) x \geq 0$ for any vector x. (since $\nabla^{2} J(u)$ is symmetric).

$$
x^{T}\left(\nabla^{2} J(u)\right) x=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{ccccc}
\frac{1}{n} \frac{J(u)}{u_{1}^{2}}\left(\frac{1}{n}-1\right) & \frac{1}{u^{2}} \frac{J(u)}{u_{1} u_{2}} & \cdots & \frac{1}{n^{2}} \frac{J(u)}{u_{1} u_{n}} \\
\frac{1}{n^{2}} \frac{J(u)}{u_{2} u_{1}} & \frac{1}{n} \frac{J(u)}{u_{2}^{2}}\left(\frac{1}{n}-1\right.
\end{array}\right)
$$

Now the idea is to set $n=1,2,3, \cdots$ and show that the resulting values ≥ 0 always. For $n=1$, we obtain 0 as before. For $n=2$, let

$$
\left.\begin{array}{rl}
\Delta=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{n} \frac{J(u)}{u_{1}^{2}}\left(\frac{1}{n}-1\right) & \frac{1}{n^{2}} \frac{J(u)}{u_{1} u_{2}} \\
\frac{1}{n^{2}} \frac{J(u)}{u_{2} u_{1}} & \frac{1}{n} \frac{J(u)}{u_{2}^{2}}\left(\frac{1}{n}-1\right.
\end{array}\right)
\end{array}\right)\binom{x_{1}}{x_{2}} . \text { Expanding gives } \quad \begin{aligned}
\Delta & =\left(x_{1} \frac{1}{n} \frac{J(u)}{u_{1}^{2}}\left(\frac{1}{n}-1\right)+x_{2} \frac{1}{n^{2}} \frac{J(u)}{u_{2} u_{1}} \quad x_{1} \frac{1}{n^{2}} \frac{J(u)}{u_{1} u_{2}}+x_{2} \frac{1}{n} \frac{J(u)}{u_{2}^{2}}\left(\frac{1}{n}-1\right)\right)\binom{x_{1}}{x_{2}} \\
& =x_{1}^{2} \frac{1}{n} \frac{J(u)}{u_{1}^{2}}\left(\frac{1}{n}-1\right)+x_{1} x_{2} \frac{1}{n^{2}} \frac{J(u)}{u_{2} u_{1}}+x_{2} x_{1} \frac{1}{n^{2}} \frac{J(u)}{u_{1} u_{2}}+x_{2}^{2} \frac{1}{n} \frac{J(u)}{u_{2}^{2}}\left(\frac{1}{n}-1\right) \\
& =x_{1}^{2} \frac{1 J(u)}{2}\left(\frac{1}{u_{1}^{2}}-1\right)+x_{1} x_{2} \frac{1}{4} \frac{J(u)}{u_{2} u_{1}}+x_{2} x_{1} \frac{1}{4} \frac{J(u)}{u_{1} u_{2}}+x_{2}^{2} \frac{1}{2} \frac{J(u)}{u_{2}^{2}}\left(\frac{1}{2}-1\right)
\end{aligned}
$$

The RHS above becomes, and by replacing $J(u)=-\sqrt{u_{1} u_{2}}$ for $n=2$

$$
\begin{aligned}
-\frac{1}{4} x_{1}^{2} \frac{J(u)}{u_{1}^{2}}+x_{1} x_{2} \frac{1}{2} \frac{J(u)}{u_{2} u_{1}}-\frac{1}{4} x_{2}^{2} \frac{J(u)}{u_{2}^{2}} & =\frac{1}{4} x_{1}^{2} \frac{\sqrt{u_{1} u_{2}}}{u_{1}^{2}}-x_{1} x_{2} \frac{1}{2} \frac{\sqrt{u_{1} u_{2}}}{u_{2} u_{1}}+\frac{1}{4} x_{2}^{2} \frac{\sqrt{u_{1} u_{2}}}{u_{2}^{2}} \\
& =\left(\frac{1}{\sqrt{4}} \frac{\left(u_{1} u_{2}\right)^{\frac{1}{4}}}{u_{1}} x_{1}-\frac{1}{\sqrt{4}} \frac{\left(u_{1} u_{2}\right)^{\frac{1}{4}}}{u_{2}} x_{2}\right)^{2}
\end{aligned}
$$

Where we completed the square in the last step above. Hence $x^{T}\left(\nabla^{2} J(u)\right) x \geq 0$. The same process can be continued for n higher. Hence $\nabla^{2} J(u)$ is positive semi-definite.

