HW2 ECE 719 Optimal systems

Spring 2016 Electrical engineering department University of Wisconsin, Madison

INSTRUCTOR: PROFESSOR B ROSS BARMISH

By

NASSER M. ABBASI

December 30, 2019

Contents

0.1	Problem 1	3
0.2	Problem 2	6
0.3	Problem 3	8
0.4	Problem 4	10
0.5	Problem 5	12
	0.5.1 Appendix	14

List of Figures

List of Tables

0.1 Problem 1

PROBLEM DESCRIPTION

Barmish

ECE 719 – Homework Epigraph

Give a function $J : \mathbf{R}^n \to \mathbf{R}$, we recall that its *epigraph* is the a set in \mathbf{R}^{n+1} given by

$$epi \ J = \{(u, \alpha) \in \mathbf{R}^{n+1} : \alpha \ge J(u)\}$$

Now prove that J is a convex function if and only if epi J is a convex set.

SOLUTION The following diagram illustrates epi *J* for n = 1. In words, it is the set of all points above the curve of the function J(u)

This is an iff proof, hence we need to show the following

- 1. Given *J* is convex function, then show that epi *J* is a convex set.
- 2. Given that epi *J* is a convex set, then show that *J* is a convex function.

<u>Proof of first direction</u> We pick any two arbitrary points in epi *J*, such as $p_0 = (u^0, y^0)$ and $p_1 = (u^1, y^1)$. To show epi *J* is a convex set, we need now to show that any point on the line between p_0, p_1 is also in epi *J*. The point between them is given by $p_{\lambda} = (u^{\lambda}, y^{\lambda})$ where $\lambda \in [0, 1]$. The following diagram helps illustrates this for n = 1.

The point p_{λ} is given by

$$\begin{aligned} \left(u^{\lambda}, y^{\lambda} \right) &= (1 - \lambda) p_0 + \lambda p_1 \\ &= (1 - \lambda) \left(u^0, y^0 \right) + \lambda \left(u^1, y^1 \right) \\ &= \left((1 - \lambda) u^0 + \lambda u^1, (1 - \lambda) y^0 + \lambda y^1 \right) \end{aligned}$$

Therefore $y^{\lambda} = (1 - \lambda) y^0 + \lambda y^1$. Since p_0, p_1 are in epi *J*, then by the definition of epi *J*, we know that $y^0 \ge J(u^0)$ and $y^1 \ge J(u^1)$. Therefore we conclude that

$$y^{\lambda} \ge (1 - \lambda) J(u^{0}) + \lambda J(u^{1})$$
(1)

But since we assumed *J* is a convex function, then we also know that $(1 - \lambda)J(u^0) + \lambda J(u^1) \ge J(u^\lambda)$ where $u^\lambda = (1 - \lambda)u^0 + \lambda u^1$. Therefore (1) becomes

$$y^{\lambda} \ge J\left(u^{\lambda}\right)$$

This implies the arbitrary point p_{λ} is in epi *J*.

We now need to proof the other direction. Given that epi *J* is a convex set, then show that *J* is a convex function. Since epi *J* is a convex set, we pick two arbitrary points in epi *J*, such as p_0, p_1 . We can choose $p_0 = (u^0, J(u^0))$ and $p_1 = (u^1, J(u^1))$. These are still in epi *J*, but on the lower bound, on the edge with J(u) curve.

Since p_0, p_1 are two points in a convex set, then any point p^{λ} on a line between them is also in epi *J* (by definition of a convex set). And since $p^{\lambda} = (1 - \lambda) p_0 + \lambda p_1$ this implies

$$p^{\lambda} = (u^{\lambda}, y^{\lambda})$$

$$= ((1 - \lambda) p_{0} + \lambda p_{1})$$

$$= ((1 - \lambda) (u^{0}, J(u^{0})) + \lambda (u^{1}, J(u^{1})))$$

$$= \left((1 - \lambda) u^{0} + \lambda u^{1}, \underbrace{(1 - \lambda) J(u^{0})}_{y^{\lambda}} + J(u^{1})\right)$$
(1)

Since p^{λ} is in epi *J* then by definition of epi *J*

$$y^{\lambda} \ge J\left(u^{\lambda}\right) \tag{2}$$

But from (1) we see that $y^{\lambda} = (1 - \lambda)J(u^{0}) + J(u^{1})$, therefore (2) is the same as writing $(1 - \lambda)J(u^{0}) + J(u^{1}) \ge J(u^{\lambda})$ (3)

But $u^{\lambda} = (1 - \lambda) u^0 + \lambda u^1$, hence the above becomes

$$(1-\lambda)J(u^0) + J(u^1) \ge J((1-\lambda)u^0 + \lambda u^1)$$

But the above is the definition of a convex function. Therefore J(u) is a convex function. QED.

0.2 Problem 2

PROBLEM DESCRIPTION

 $\operatorname{Barmish}$

ECE 719 – Homework Unique Minimum

Suppose $J : \mathbf{R}^n \to \mathbf{R}$ is strictly convex. Then prove the following: If a minimizing element $u^* \in \mathbf{R}^n$ exists, it must be unique.

SOLUTION Let u_0^* and u_1^* be any two different minimizing elements in \Re^n such that $J(u_0^*) < J(u_1^*)$. We will show that this leads to contradiction. Since u_0^* is a minimizer, then there exists some R > 0, such that all points u that satisfy $||u^* - u|| \le R$ also satisfy

$$J(u_0^*) \leq J(u)$$

We will consider all points along the line joining u_0^*, u_1^* , and pick one point u^{λ} that satisfies $||u^* - u^{\lambda}|| \le R$, where $\lambda \in [0, 1]$ is selected to make the convex mixture $u^{\lambda} = (1 - \lambda) u_0^* + \lambda u_1^*$ satisfied. Therefore any $\lambda \le \frac{R}{||u_0^* - u_1^*||}$ will put u^{λ} inside the sphere of radius R.

Hence now we can say that

$$J\left(u_{0}^{*}\right) \leq J\left(u^{\lambda}\right) \tag{1}$$

But given that J(u) is a strict convex function, then

$$J(u^{\lambda}) < (1 - \lambda) J\left(u_0^*\right) + \lambda J\left(u_1^*\right)$$
⁽²⁾

Since we assumed that $J(u_0^*) < J(u_1^*)$, then if we replace $J(u_1^*)$ by $J(u_0^*)$ in the RHS of (2), it

will change from < to \leq resulting in

$$J(u^{\lambda}) \le (1 - \lambda) J(u_0^*) + \lambda J(u_0^*)$$

$$J(u^{\lambda}) \le J(u_0^*)$$
(3)

We see that equations (3) and (1) are a contradiction. Therefore our assumption is wrong and there can not be more than one minimizing element and u_0^* must be the same as u_1^* .

0.3 Problem 3

PROBLEM DESCRIPTION

Barmish

ECE 719 – Homework Global Minimum

Preamble: Suppose $J : \mathbf{R}^n \to \mathbf{R}$. A point $u^* \in \mathbf{R}^n$ is said to be a *local minimum of J* if there exists some suitably small $\delta > 0$ leading to satisfaction of the following condition:

$$J(u^*) \le J(u)$$

for all u such that $||u - u^*|| < \delta$. Said another way, u^* is a minimizing element over a suitably small open neighborhood. For the case when $J(u^*) \leq J(u)$ for all u, we call u^* a global minimum of J.

The Homework Problem: Suppose $J : \mathbb{R}^n \to \mathbb{R}$ is convex. Prove that every local minimum of J is a global minimum.

SOLUTION We are given that $J(u^*) \leq J(u)$ for all u such that $||u^* - u|| < \delta$. Let us pick any arbitrary point u^1 , outside ball of radius δ . Then any point on the line between u^* and u^1 is given by

$$u^{\lambda} = (1 - \lambda) u^* + \lambda u^1$$

In picture, so far we have this setup

We now need to show that $J(u^*) \le J(u^1)$ even though u^1 is outside the ball. Since *J* is a convex function, then

$$J\left(u^{\lambda}\right) \le (1-\lambda)J\left(u^{*}\right) + \lambda J\left(u^{1}\right) \tag{1}$$

We can now select λ to push u^{λ} to be inside the ball. We are free to change λ as we want while keeping u^1 fixed, outside the ball. If we do this we then we have

$$J(u^*) \leq J(u^{\lambda})$$

Hence (1) becomes

$$J(u^*) \le (1 - \lambda)J(u^*) + \lambda J(u^1)$$
⁽²⁾

Where we replaced $J(u^{\lambda})$ by $J(u^*)$ in (1) and since $J(u^*) \leq J(u^{\lambda})$ the \leq relation remained valid. Simplifying (2) gives

$$J(u^*) \le J(u^*) - \lambda J(u^*) + \lambda J(u^1)$$

$$\lambda J(u^*) \le \lambda J(u^1)$$

For non-zero λ this means $J(u^*) \leq J(u^1)$. This completes the proof, since u^1 was arbitrary point anywhere. Hence u^* is global minimum. QED

0.4 Problem 4

PROBLEM DESCRIPTION

 $\operatorname{Barmish}$

ECE 719 – Homework Multiple Combinations

For a convex function $J : \mathbf{R}^n \to \mathbf{R}$, prove the following condition is satisfied: Given any points $u^1, u^2, ..., u^N \in \mathbf{R}^n$ and any scalars $\lambda_1, \lambda_2, ..., \lambda_N \ge 0$ such that

$$\sum_{i=1}^{N} \lambda_i = 1,$$

it follows that

$$J\left(\sum_{i=1}^N \lambda_i u^i\right) \leq \sum_{i=1}^N \lambda_i J(u^i)$$

SOLUTION

We need to show that $J\left(\sum_{i=1}^{N} \lambda_{i} u^{i}\right) \leq \sum_{i=1}^{N} \lambda_{i} J\left(u^{i}\right)$ where $\sum_{i=1}^{N} \lambda_{i} = 1$. Proof by induction. For N = 1 and since $\lambda_{1} = 1$, then we have

$$J\left(u^{1}\right) = J\left(u^{1}\right)$$

The case for N = 2 comes for free, from the definition of *J* being a convex function

$$J\left((1-\lambda)u^{1}+\lambda u^{2}\right) \leq (1-\lambda)J\left(u^{1}\right)+\lambda J\left(u^{2}\right)$$
(A)

By making $(1 - \lambda) \equiv \lambda_1, \lambda \equiv \lambda_2$, the above can be written as

$$J\left(\lambda_1 u^1 + \lambda_2 u^2\right) \le \lambda_1 J\left(u^1\right) + \lambda_2 J\left(u^2\right)$$

We now assume it is true for N = k - 1. In other words, the inductive hypothesis below is given as true

$$J\left(\sum_{i=1}^{k-1}\lambda_{i}u^{i}\right) \leq \sum_{i=1}^{k-1}\lambda_{i}J\left(u^{i}\right)$$
(*)

Now we have to show it will also be true for N = k, which is

$$\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) = \lambda_{1} J\left(u^{1}\right) + \lambda_{1} J\left(u^{1}\right) + \dots + \lambda_{k} J\left(u^{k}\right)$$

$$= (1 - \lambda_{k}) \left(\frac{\lambda_{1}}{(1 - \lambda_{k})} J\left(u^{1}\right) + \frac{\lambda_{1}}{(1 - \lambda_{k})} J\left(u^{1}\right) + \dots + \frac{\lambda_{k-1}}{(1 - \lambda_{k})} J\left(u^{k-1}\right) + \frac{\lambda_{k}}{(1 - \lambda_{k})} J\left(u^{k}\right)\right)$$

$$= (1 - \lambda_{k}) \left(\frac{\lambda_{1}}{(1 - \lambda_{k})} J\left(u^{1}\right) + \frac{\lambda_{1}}{(1 - \lambda_{k})} J\left(u^{1}\right) + \dots + \frac{\lambda_{k-1}}{(1 - \lambda_{k})} J\left(u^{k-1}\right)\right) + \lambda_{k} J\left(u^{k}\right)$$

$$= (1 - \lambda_{k}) \left(\sum_{i=1}^{k-1} \frac{\lambda_{i}}{(1 - \lambda_{k})} J\left(u^{i}\right)\right) + \lambda_{k} J\left(u^{k}\right)$$

$$(1)$$

Now we take advantage of the inductive hypothesis Eq. (*) on k-1, which says that

$$J\left(\sum_{i=1}^{k-1} \frac{\lambda_i}{(1-\lambda_k)} u^i\right) \le \sum_{i=1}^{k-1} \frac{\lambda_i}{(1-\lambda_k)} J\left(u^i\right). \text{ Using this in (1) changes it to } \ge \text{ relation}$$
$$\sum_{i=1}^k \lambda_i J\left(u^i\right) \ge (1-\lambda_k) J\left(\sum_{i=1}^{k-1} \frac{\lambda_i}{(1-\lambda_k)} u^i\right) + \lambda_k J\left(u^k\right) \tag{2}$$

We now take advantage of the case of N = 2 in (A) by viewing RHS of (2) as $(1 - \lambda_k)J(u^1) + \lambda_k J(u^2)$, where we let $u^1 \equiv \sum_{i=1}^{k-1} \frac{\lambda_i}{(1-\lambda_k)} u^i, u^2 \equiv u^k$. Hence we conclude that

$$(1 - \lambda_k) J\left(\sum_{i=1}^{k-1} \frac{\lambda_i}{(1 - \lambda_k)} u^i\right) + \lambda_k J\left(u^k\right) \ge J\left((1 - \lambda_k) \sum_{i=1}^{k-1} \frac{\lambda_i}{(1 - \lambda_k)} u^i + \lambda_k u^k\right)$$
(3)

Using (3) in (2) gives (the \geq relation remains valid, even more now, since we replaced something in RHS of (2), by something smaller)

$$\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) \geq J\left(\left(1-\lambda_{k}\right)\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left(1-\lambda_{k}\right)} u^{i} + \lambda_{k} u^{k}\right)$$
$$= J\left(\left(\sum_{i=1}^{k-1} \lambda_{i} u^{i}\right) + \lambda_{k} u^{k}\right)$$

Hence

$$\sum_{i=1}^{k} \lambda_{i} J\left(u^{i}\right) \geq J\left(\sum_{i=1}^{k} \lambda_{i} u^{i}\right)$$

QED.

0.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 719 – Homework Hessian

For $u \in \mathbf{R}^n$, define

 $J(u) = -(u_1 u_2 u_3 \cdots u_n)^{1/n}.$

Prove that J(u) is convex on the positive orthant; i.e., the set defined by $u_i > 0$ for i = 1, 2, ..., n.

SOLUTION

Assuming J(u) is twice continuously differentiable (C^2) in u_1, u_2, \dots, u_n , then if we can show that the Hessian $\nabla^2 J(u)$ is positive semi-definite on $u_i > 0$, then this implies J(u) is convex. The first step is to determined $\nabla^2 J(u)$.

$$\frac{\partial J}{\partial u_i} = -\frac{1}{n} (u_1 u_2 \cdots u_n)^{\frac{1}{n}-1} \prod_{k=1, k \neq i}^n u_k = \frac{1}{n} \frac{J(u)}{(u_1 u_2 \cdots u_n)} \prod_{k=1, k \neq i}^n u_k = \frac{1}{n} \frac{J(u)}{\prod_{k=1}^n u_k} \prod_{k=1, k \neq i}^n u_k$$
$$= \frac{1}{n} \frac{J(u)}{u_i}$$

And

$$\frac{\partial^2 J}{\partial u_i^2} = \frac{1}{n} \frac{\left(\frac{1}{n} \frac{J(u)}{u_i}\right)}{u_i} - \frac{1}{n} \frac{J(u)}{u_i^2} \\ = \frac{1}{n^2} \frac{J(u)}{u_i^2} - \frac{1}{n} \frac{J(u)}{u_i^2} \\ = \frac{1}{n} \frac{J(u)}{u_i^2} \left(\frac{1}{n} - 1\right)$$

And the cross derivatives are

$$\frac{\partial^2 J}{\partial u_i \partial u_j} = \frac{\partial}{\partial u_j} \left(\frac{1}{n} \frac{J(u)}{u_i} \right)$$
$$= \frac{1}{n} \frac{\frac{1}{n} \frac{J(u)}{u_j}}{u_i}$$
$$= \frac{1}{n^2} \frac{J(u)}{u_i u_j}$$

$$\nabla^2 J(u) = \begin{pmatrix} \frac{1}{n^2} \frac{J(u)}{u_1^2} (1-n) & \frac{1}{n^2} \frac{J(u)}{u_1 u_2} & \cdots & \frac{1}{n^2} \frac{J(u)}{u_1 u_n} \\ \frac{1}{n^2} \frac{J(u)}{u_2 u_1} & \frac{1}{n^2} \frac{J(u)}{u_2^2} (1-n) & \cdots & \frac{1}{n^2} \frac{J(u)}{u_2 u_n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n^2} \frac{J(u)}{u_n u_1} & \frac{1}{n^2} \frac{J(u)}{u_n u_2} & \cdots & \frac{1}{n^2} \frac{J(u)}{u_n^2} (1-n) \end{pmatrix}$$

Now we need to show that $\nabla^2 J(u)$ is positive semi-definite. For n = 1, the above reduces to

$$\nabla^2 J(u) = \frac{J(u)}{u_1^2} (1-1) = 0$$

Hence non-negative. This is the same as saying the second derivative is zero. For n = 2

$$\nabla^2 J(u) = \begin{pmatrix} \frac{1}{4} J(u) \frac{1-2}{u_1^2} & \frac{1}{u_1 u_2} \frac{1}{4} J(u) \\ \frac{1}{u_2 u_1} \frac{1}{4} J(u) & \frac{1}{4} J(u) \frac{1-2}{u_2^2} \end{pmatrix} = \begin{pmatrix} \frac{-1}{u_1^2} \frac{1}{4} J(u) & \frac{1}{u_1 u_2} \frac{1}{4} J(u) \\ \frac{1}{u_2 u_1} \frac{1}{4} J(u) & \frac{-1}{u_2^2} \frac{1}{4} J(u) \end{pmatrix}$$

The first leading minor is $\frac{-1}{4u_1^2}J(u)$, which is positive, since J(u) < 0 and $u_i > 0$ (given). The second leading minor is

$$\Delta_2 = \begin{vmatrix} \frac{-1}{u_1^2} \frac{1}{4} J(u) & \frac{1}{u_1 u_2} \frac{1}{4} J(u) \\ \frac{1}{u_2 u_1} \frac{1}{4} J(u) & \frac{-1}{u_2^2} \frac{1}{4} J(u) \end{vmatrix} = 0$$

Hence all the leasing minors are non-negative. Which means $\nabla^2 J(u)$ is semi-definite. We will look at n = 3

$$\nabla^2 J(u) = \begin{pmatrix} \frac{-2}{u_1^2} \frac{1}{9} J(u) & \frac{1}{u_1 u_2} \frac{1}{9} J(u) & \frac{1}{u_1 u_3} \frac{1}{9} J(u) \\ \frac{1}{u_2 u_1} \frac{1}{9} J(u) & \frac{-2}{u_2^2} \frac{1}{9} J(u) & \frac{1}{u_2 u_3} \frac{1}{9} J(u) \\ \frac{1}{u_3 u_1} \frac{1}{9} J(u) & \frac{1}{u_3 u_2} \frac{1}{9} J(u) & \frac{-2}{u_3^2} \frac{1}{9} J(u) \end{pmatrix}$$

The first leading minor is $\frac{-2}{9u_1^2}J(u)$, which is positive again, since J(u) < 0 for $u_i > 0$ (given). And the second leading minor is $\frac{1}{27}J^2\frac{u^2}{u_1^2u_2^2}$

which is positive, since all terms are positive. The third leading minor is

$$\Delta_{3} = \begin{vmatrix} \frac{-2}{u_{1}^{2}} \frac{1}{9} J(u) & \frac{1}{u_{1}u_{2}} \frac{1}{9} J(u) & \frac{1}{u_{1}u_{3}} \frac{1}{9} J(u) \\ \frac{1}{u_{2}u_{1}} \frac{1}{9} J(u) & \frac{-2}{u_{2}^{2}} \frac{1}{9} J(u) & \frac{1}{u_{2}u_{3}} \frac{1}{9} J(u) \\ \frac{1}{u_{3}u_{1}} \frac{1}{9} J(u) & \frac{1}{u_{3}u_{2}} \frac{1}{9} J(u) & \frac{-2}{u_{3}^{2}} \frac{1}{9} J(u) \end{vmatrix} = 0$$

Hence non-of the leading minors are negative. Therefore $\nabla^2 J(u)$ is semi-definite. The same pattern repeats for higher values of *n*. All leading minors are positive, except the last leading minor will be zero.

0.5.1 Appendix

Another way to show that $\nabla^2 J(u)$ is positive semi-definite is to show that $x^T (\nabla^2 J(u)) x \ge 0$ for any vector x. (since $\nabla^2 J(u)$ is symmetric).

$$x^{T} (\nabla^{2} J(u)) x = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} \frac{1}{n} \frac{J(u)}{u_{1}^{2}} \left(\frac{1}{n}-1\right) & \frac{1}{n^{2}} \frac{J(u)}{u_{1}u_{2}} & \cdots & \frac{1}{n^{2}} \frac{J(u)}{u_{1}u_{n}} \\ \frac{1}{n^{2}} \frac{J(u)}{u_{2}u_{1}} & \frac{1}{n} \frac{J(u)}{u_{2}^{2}} \left(\frac{1}{n}-1\right) & \cdots & \frac{1}{n^{2}} \frac{J(u)}{u_{2}u_{n}} \\ \vdots & \cdots & \ddots & \vdots \\ \frac{1}{n^{2}} \frac{J(u)}{u_{n}u_{1}} & \frac{1}{n^{2}} \frac{J(u)}{u_{n}u_{2}} & \cdots & \frac{1}{n} \frac{J(u)}{u_{n}^{2}} \left(\frac{1}{n}-1\right) \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

Now the idea is to set $n = 1, 2, 3, \dots$ and show that the resulting values ≥ 0 always. For n = 1, we obtain 0 as before. For n = 2, let

$$\Delta = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} \frac{1}{n} \frac{J(u)}{u_1^2} \left(\frac{1}{n} - 1\right) & \frac{1}{n^2} \frac{J(u)}{u_1 u_2} \\ \frac{1}{n^2} \frac{J(u)}{u_2 u_1} & \frac{1}{n} \frac{J(u)}{u_2^2} \left(\frac{1}{n} - 1\right) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \text{ Expanding gives}$$

$$\Delta = \begin{pmatrix} x_1 \frac{1}{n} \frac{J(u)}{u_1^2} \left(\frac{1}{n} - 1\right) + x_2 \frac{1}{n^2} \frac{J(u)}{u_2 u_1} & x_1 \frac{1}{n^2} \frac{J(u)}{u_1 u_2} + x_2 \frac{1}{n} \frac{J(u)}{u_2^2} \left(\frac{1}{n} - 1\right) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= x_1^2 \frac{1}{n} \frac{J(u)}{u_1^2} \left(\frac{1}{n} - 1\right) + x_1 x_2 \frac{1}{n^2} \frac{J(u)}{u_2 u_1} + x_2 x_1 \frac{1}{n^2} \frac{J(u)}{u_1 u_2} + x_2^2 \frac{1}{n} \frac{J(u)}{u_2^2} \left(\frac{1}{n} - 1\right)$$

$$= x_1^2 \frac{1}{2} \frac{J(u)}{u_1^2} \left(\frac{1}{2} - 1\right) + x_1 x_2 \frac{1}{4} \frac{J(u)}{u_2 u_1} + x_2 x_1 \frac{1}{4} \frac{J(u)}{u_1 u_2} + x_2^2 \frac{1}{2} \frac{J(u)}{u_2^2} \left(\frac{1}{2} - 1\right)$$

The RHS above becomes, and by replacing $J(u) = -\sqrt{u_1 u_2}$ for n = 2

$$-\frac{1}{4}x_1^2 \frac{J(u)}{u_1^2} + x_1 x_2 \frac{1}{2} \frac{J(u)}{u_2 u_1} - \frac{1}{4}x_2^2 \frac{J(u)}{u_2^2} = \frac{1}{4}x_1^2 \frac{\sqrt{u_1 u_2}}{u_1^2} - x_1 x_2 \frac{1}{2} \frac{\sqrt{u_1 u_2}}{u_2 u_1} + \frac{1}{4}x_2^2 \frac{\sqrt{u_1 u_2}}{u_2^2}$$
$$= \left(\frac{1}{\sqrt{4}} \frac{(u_1 u_2)^{\frac{1}{4}}}{u_1} x_1 - \frac{1}{\sqrt{4}} \frac{(u_1 u_2)^{\frac{1}{4}}}{u_2} x_2\right)^2$$

Where we completed the square in the last step above. Hence $x^T (\nabla^2 J(u)) x \ge 0$. The same process can be continued for *n* higher. Hence $\nabla^2 J(u)$ is positive semi-definite.