> HW 5
> EMA 550
> Astrodynamics

Spring 2014
 University of Wisconsin, Madison

Nasser M. Abbasi

Contents

1 Problem 1 2
$1.1 \operatorname{part}(\mathrm{a})$ 2
$1.2 \quad \operatorname{part}(\mathrm{~b})$ 2
1.3 part(c) 3
$1.4 \quad \operatorname{part}(\mathrm{~d})$ 3
2 Problem 2 3
$2.1 \operatorname{part}(\mathrm{a})$ 3
2.2 part(b) 4
2.3 part(c) 4
$2.4 \quad$ part(d) 4
$2.5 \quad$ part(e) 4
$2.6 \quad \operatorname{part}(\mathrm{f})$ 4
$2.7 \quad \operatorname{part}(\mathrm{~g})$ 4
$2.8 \quad \operatorname{part}(\mathrm{~h})$ 4
$2.9 \quad \operatorname{part}(\mathrm{i})$ 4
$2.10 \operatorname{part}(\mathrm{~L})$ 5
3 Appendix 6
3.1 solution in Maple 6
3.2 solution in Mathematica 13

1 Problem 1

A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the correct position in its orbit for a flyby to occur when the spacecraft gets there.

$1.1 \operatorname{part}(a)$

Calculate the initial ΔV_{1} required to start the trip to Saturn.

$$
r_{b 0}=r_{E}+a l t
$$

Where r_{E} is radius of earth and alt is spacecraft altitude. Hence

$$
r_{b 0}=6378+300=6678 \mathrm{~km}
$$

The distance from earth to sun is $R_{E}=1.496 \times 10^{8} \mathrm{~km}$ and the distance from saturn to sun is $R_{s}=9.536 \times 1.496 \times 10^{8}=1.4266 \times 10^{9} \mathrm{~km}$ therefore $a=\frac{R_{E}+R_{s}}{2}=\frac{1.496 \times 10^{8}+1.4266 \times 10^{9}}{2}=7.8815 \times 10^{8}$ km.
The earth speed around the sun is $V_{e}=\sqrt{\frac{\mu_{s}}{r_{e}}}=\sqrt{\frac{1.327 \times 10^{11}}{1.496 \times 10^{8}}}=29.783 \mathrm{~km} / \mathrm{sec}$. When the spacecraft escape the earth it has to be at speed

$$
V_{\text {perigee }}=\sqrt{\mu_{s}\left(\frac{2}{R_{E}}-\frac{1}{a}\right)}=\sqrt{1.327 \times 10^{11}\left(\frac{2}{1.496 \times 10^{8}}-\frac{1}{7.8815 \times 10^{8}}\right)}=40.07 \mathrm{~km} / \mathrm{sec}
$$

Therefore, V_{∞} is the escape speed found from

$$
\begin{aligned}
V_{\infty} & =V_{\text {perigee }}-V_{e} \\
& =40.07-29.783 \\
& =10.287 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

Now the burn out speed is found

$$
\frac{V_{b o}^{2}}{2}-\frac{\mu_{E}}{r_{b 0}}=\frac{V_{\infty}^{2}}{2}-\frac{\mu_{E}}{r_{S O I}}
$$

Where $r_{S O I}$ is the earth sphere of influense given by $9.24 \times 10^{5} \mathrm{~km}$. Solving for $V_{b o}$

$$
\begin{aligned}
\frac{V_{b o}^{2}}{2}-\frac{3.986 \times 10^{5}}{6678} & =\frac{10.287^{2}}{2}-\frac{3.986 \times 10^{5}}{9.24 \times 10^{5}} \\
V_{b o} & =14.978 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Delta V_{1} & =V_{b o}-\sqrt{\frac{\mu_{E}}{r_{b o}}} \\
& =14.97-\sqrt{\frac{3.986 \times 10^{5}}{6678}} \\
& =7.2442
\end{aligned}
$$

1.2 part (b)

Calculate the angle past the Earth's dawn-dusk line where the ΔV should be applied.

$$
\begin{aligned}
e & =\sqrt{1+\frac{V_{\infty}^{2} V_{b o}^{2} r_{b o}^{2}}{\mu_{E}^{2}}} \\
& =\sqrt{1+\frac{\left(10.287^{2}\right)\left(14.978^{2}\right)\left(6678^{2}\right)}{\left(3.986 \times 10^{5}\right)^{2}}} \\
& =2.7683
\end{aligned}
$$

Hence

$$
\begin{aligned}
\eta & =\arccos \left(\frac{-1}{e}\right)=\arccos \left(\frac{-1}{2.7683}\right)=1.9404 \text { radian } \\
& =111.18^{0}
\end{aligned}
$$

Hence $\theta=180-111.18=68.82^{0}$

$1.3 \operatorname{part}(\mathrm{c})$

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn? (Note: you do not need to calculate the time within either planet's sphere of influence, as that will be small relative to the Hohmann transfer time, but you are welcome to do so and compare those values for yourself.)

The time is half the period of the elliptical orbit. Hence

$$
\begin{aligned}
T & =\pi \sqrt{\frac{a^{3}}{u_{s}}}=\pi \sqrt{\frac{\left(7.8815 \times 10^{8}\right)^{3}}{1.327 \times 10^{11}}}=1.9082 \times 10^{8} \mathrm{sec} \\
& =\frac{1.9082 \times 10^{8}}{60 \times 60 \times 24 \times 365}=6.051 \text { year }
\end{aligned}
$$

$1.4 \operatorname{part}(d)$

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit about Saturn with an orbital radius of $150,000 \mathrm{~km}$. Calculate the ΔV_{2} required to place the spacecraft on this orbit.
Solution completed in the Mathematica solution. See above for links.

2 Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter's orbit about the Sun enters Jupiter's sphere of influence. The spacecraft has a speed of $10 \mathrm{~km} / \mathrm{s}$ relative to the Sun at this point, which you can estimate as the Jupiter's average orbital radius about the Sun. (See the Planetary Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

2.1 part (a)

The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit about Jupiter in the patched conic method is Jupiter's SOI radius. Find that value on the Planetary Constants sheet in the course notes and enter it here for reference.
$b_{\text {max }}=R_{\text {SOI,Jupitor }}=$ Answer km
For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same direction as Jupiter when it enters Jupiter's SOI.

2.2 part (b)

What is the speed of the satellite relative to Jupiter when it enters Jupiter's SOI? $V_{\infty}=$ Answer km $/ \mathrm{s}$

2.3 part(c)

What is the smallest possible value for the impact parameter b ? This value of impact parameter will result in a burnout radius that just grazes the surface of Jupiter, $r_{b o}=r_{\text {Jupiter }}$ $b_{\text {min }}=k m$

2.4 part(d)

Select as your impact parameter the value halfway between $b_{\text {min }}$ and $b_{\max }$. Note that value here for reference and use it as your impact parameter for the rest of the problem.
$b=$ Answer km

$2.5 \operatorname{part}(\mathrm{e})$

Given the impact parameter from part (d), calculate the turning angle of the spacecraft relative to Jupiter during the flyby.
$\theta=$ Answer degrees

$2.6 \operatorname{part}(f)$

What is the spacecraft's heliocentric speed following the flyby?

$$
V_{D}=k m / s
$$

2.7 part (g)

What is the spacecraft's heliocentric flight path angle following the flyby?

$$
\gamma_{D}=d e g
$$

For the remaining parts, assume that, relative to the Sun, the spacecraft DOES NOT arrive at Jupiter's SOI moving in the same direction at Jupiter. The spacecraft still has a heliocentric speed of $10 \mathrm{~km} / \mathrm{s}$ at the distance of Jupiter's orbit from the Sun. But now it has a heliocentric eccentricity of 0.5 . (What was the heliocentric eccentricity when the spacecraft arrived in the same direction as Jupiter, assuming that point was aphelion?)

$2.8 \operatorname{part}(\mathrm{~h})$

What is the spacecraft's heliocentric flight path angle when it arrives at Jupiter's SOI?
$\gamma_{A}=\operatorname{deg}$

$2.9 \operatorname{part}(\mathbf{i})$

What is the spacecraft's speed relative to Jupiter?

```
Vm}=\textrm{km}/\textrm{s
part(j)
```

Using the same impact parameter as in part (d), calculate the turning angle of the spacecraft relative to Jupiter.
$\theta=\operatorname{deg}$
$\operatorname{part}(\mathrm{k})$
Assuming that the spacecraft flies behind Jupiter, what is the spacecraft's heliocentric speed following the flyby?
$V_{D}=\mathrm{km} / \mathrm{s}$

$2.10 \operatorname{part}(L)$

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft's heliocentric flight path angle following the flyby?
$\gamma_{D}=d e g$

3 Appendix

3.1 solution in Maple

HW5 by Nasser M. Abbasi, EMA 550

Problem 1

A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to
be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the
correct position in its orbit for a flyby to occur when the spacecraft gets there
local `~ \(:=\operatorname{proc}(f:: u n e v a l, ~ ` \$ `: i d e n t i c a l(` \$ `), ~ e x p r:: u n e v a l) ~\) local \(x\), opr:= op (procname) if opr <> '<' then return :-`~`[opr](args) end if;
x:= eval (expr);
print(op (1,
subs (
)
)) ;
assign (f,x)
end proc:

part(a)

These below are from tables
$>$ AU := 1.496*10^8;
saturn_sun_distance $:=9.537 * 1.496 * 10^{\wedge} 8$;
sun_mu $:=1.327 * 10^{\wedge} 11$
earth $\mathrm{mu} \quad:=3.986 * 10^{\wedge} 5$.
earth ${ }^{-}$soi $:=9.24 * 10^{\wedge} 5$;
satel立ite earth altitude $:=300$;
earth_radius $: \equiv 6378$;
$A U:=1.49600000010^{8}$
saturn_sun_distance $:=1.42673520010^{9}$
sun_mu $:=1.32700000010^{11}$
earth $m u:=3.9860000010^{5}$
earth_soi $:=9.240000010^{5}$
satellite_earth_altitude $:=300$
earth_radius $:=6378$
Find burn out radius
> rb0_earth <~ satellite_earth_altitude+earth_radius;

- rb0_earth $:=$ satellite_earth_altitude + earth_rādius $=6678$
ffind "a" for the Hohmann ellipse in sun centric space
> a <~ (AU+saturn_sun_distance)/2;
$a:=\frac{-1}{2} A \bar{U}+\frac{1}{2}$ saturn_sun_distance $=7.88167600010^{8}$
[Find velocity of earth relative to the sun
> earth_speed <~ sqrt(sun_mu/AU);

$$
\begin{aligned}
& \quad \text { earth_speed }:=\sqrt{\frac{\text { sun_mu }}{A U}}=29.78308388 \\
& \text { [Find velocity of spacecraft relative to earth } \\
& {\left[\begin{array}{r}
\text { satellite_speed_relative_to_earth <~ sqrt (earth_mu/rbo_earth) ; } \\
\text { satellite_speed_relative_to_earth }:=\sqrt{\frac{\text { earth_mu }}{\text { rbo_earth }}}=7.725835198
\end{array}\right.}
\end{aligned}
$$

find what the velocity of spacecraft should be at the perigree of the Hohmann orbit in sun centeric space
[> velocity_perigee <~ sqrt(sun_mu*(2/AU - 1/a));

$$
\text { velocity_perigee }:=\sqrt{\text { sun_mu }\left(\frac{2}{A U}-\frac{1}{a}\right)}=40.07117375
$$

EFind excess speed V infinity out, to escape earth
[> velocity_infinity_entering_saturn <~ velocity_perigeeearth_speed;
velocity_infinity_entering_saturn $:=$ velocity_perigee - earth_speed $=10.28808987$
[set up the energy equation and solve for V b0
[> saturn_vb0 := 'saturn_vb0';

-earth_mu/earth_soi)+ earth_mu/rb0_earth));
saturn_vb0 := saturn_vb0
saturn_vb0 $:=\sqrt{\text { velocity_infinity_entering_saturn }{ }^{2}-\frac{2 \text { earth_mu }}{\text { earth_soi }}+\frac{2 \text { earth_mu }}{\text { rbo_earth }}}=14.97862082$
> delta_v1 <~ saturn_vb0 - satellite_speed_relative_to_earth ;
delta_v1 := saturn_vb0 - satellite_speed_relative_to_earth $=7.252785622$
part(b)
Calculate the angle past the Earth's dawn-dusk line where the $\Delta \mathrm{V}$ should be applied.
Find escape hyperbolic trajectory eccentricity
$[>$ e <~ sqrt ($1+$ (velocity_infinity_entering_saturn^2*saturn_vb0^2*
rb0_earth^2) (earth_mu^ $\overline{2}$);
$e:=\sqrt{1+\frac{\text { velocity_infinity_entering_saturn }{ }^{2} \text { saturn_vb0 }^{2} r b 0 _ \text {earth }}{}{ }^{2}}$ earth_mu $^{2}(2.768660225$
find angle eta
[> eta <~ $\arccos (-1 / e)$;

$$
\eta:=\arccos \left(-\frac{1}{e}\right)=1.940335258
$$

theta <~ evalf(180 - eta*180/Pi);

$$
\theta:=\text { evalf }\left(180-\frac{180 \eta}{\pi}\right)=68.8269789
$$

Part (c)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn? (Note: you do not need to calculate the time within either planet's sphere of influence, as that will be
small relative to the Hohmann transfer time, but you are welcome to do so and compare those values for yourself.)
The time is half the period of the elliptical orbit. Hence
$\left[>T<\sim \operatorname{evalf}\left(P i * \operatorname{sqrt}\left(a^{\wedge} 3 / s u n _m u\right)\right)\right.$;

$$
T:=\operatorname{evalf}\left(\pi \sqrt{\frac{a^{3}}{\text { sun_mu }}}\right)=1.90828078910^{8}
$$

$T<\sim T /(60 * 60 * 24 * 365)$;

$$
T:=\frac{1}{31536000} T=6.051118687
$$

Part (d)

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit about Saturn with an orbital radius of $150,000 \mathrm{~km}$. Calculate the $\Delta \mathrm{V} 2$ required to place the spacecraft

```
on this orbit. When spacecraft reaches saturn is has speed relative to sun of
> saturn vbO := 'saturn vbO';
    rb0 saEurn := 150000;
    v_apogee <~ sqrt(sun_mu*(2/saturn_sun_distance-1/a));
    sātellite_speed_relativ̄e_to_earthurñ <~ sqrt(sun_mu*
    (1/saturn sun distance));
    velocity_infinity_entering_jupitor <~
    satellite_speed_rēlative_to_earthurn - v_apogee;
    saturn mu := 37931187;
    saturn_SOI := 3.47*10^7;
    eq := saturn vb0^2/2 - saturn_mu/rb0 saturn =
    velocity infīnity_entering_jupitor^272 - saturn_mu/saturn_SOI;
    saturn_vb0 := op(select( is, [solve(eq,saturn_v\overline{b}0)], positive))
    ;
    satellite_speed_relative_to_earth <~ sqrt(saturn_mu/rb0_saturn)
    ;
    del_v2 <~ evalf(satellite_speed_relative_to_earth -
    satūrn vbO);
    total_\overline{delV <~ abs(delta_v1) + abs(del_v2);}
                                    saturn_vb0 := saturn_vb0
                                    rb0_saturn := 150000
            v_apogee }:=\sqrt{}{\mathrm{ sun_mu (}\frac{2}{\mathrm{ saturn_sun_distance }}-\frac{1}{a})}=4.20165394
```



```
velocity_infinity_entering_jupitor:= satellite_speed_relative_to_earthurn - v_apogee
    = 5.442491983
                                    saturn mu:= 37931187
                            saturn_SOI:=3.470000000 10
eq:=\frac{1}{2}\mathrm{ saturn_vb0 }\mp@subsup{0}{}{2}-\frac{12643729}{50000}=13.71724171
                            saturn_vb0 := 23.09076966
```

> satellite_speed_relative_to_earth $:=\sqrt{\frac{\text { saturn_mu }}{\text { rb0_saturn }}}=\frac{1}{500} \sqrt{63218645}$
> del_v2 $:=$ evalf $($ satellite_speed_relative_to_earth - saturn_vb0 $)=-7.18873897$ total_delV $:=\mid$ delta_vl $|+|$ del_v2 $\mid=14.44152459$

Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter's orbit about the Sun enters Jupiter's sphere of influence. The spacecraft has a speed of $10 \mathrm{~km} / \mathrm{s}$ relative to the Sun at this point, which you can estimate as the Jupiter's average orbital radius about the Sun. (See the Planetary Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

part(a)

The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit about Jupiter in the patched conic method is Jupiter's SOI radius. Find that value on the Planetary Constants sheet in the course notes and enter it here for reference.
[> jupitor_SOI $:=4.83 * 10^{\wedge} 7$;
sun mu $\quad:=1.327 * 10^{\wedge} 11$;
jupitor_mu := 126686534;
b_max - <~ jupitor_SOI;
jupitor_SOI $:=4.83000000010^{7}$
sun_mu $:=1.32700000010^{11}$
jupitor_ти $:=126686534$
$b_{_}$max $:=$jupitor_SOI $=4.83000000010^{7}$

part(b)

For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same direction as Jupiter when it enters Jupiter's SOI
What is the speed of the satellite relative to Jupiter when it enters Jupiter's SOI?
> satellite_speed_relative_to_sun :=10;
jupitor_sun_distance $:=\overline{5} .2 \overline{0} 3 * 1.495978 * 10^{\wedge} 8$;
jupitor_speèd <~ sqrt((sun_mu)/(jupitor_sun_distance));
velocity
satellité speed rēlative_tōsun;
satellite_speed_relative_to_sun $:=10$
jupitor_sun_distance $:=7.78357353410^{8}$
jupitor_speed $:=\sqrt{\frac{\text { sun_mu }}{\text { jupitor_sun_distance }}}=13.05707640$
velocity_infinity_entering_jupitor $:=$ jupitor_speed - satellite_speed_relative_to_sun
$=3.05707640$

$\square \operatorname{part}(\mathrm{c})$

What is the smallest possible value for the impact parameter b ? This value of impact parameter will result in a burnout radius that just grazes the surface of Jupiter
> jupitor_radius :=71492;
jupitor_vb0_min <~ sqrt(jupitor_mu/jupitor_radius);
b_min <~ evalf(jupitor_radius*
jupitor_vb0_min/velocity_infinity_entering_jupitor); jupitor_radius :=71492
jupitor_vb0_min $:=\sqrt{\frac{\text { jupitor_mu }}{\text { jupitor_radius }}}=\frac{1}{35746} \sqrt{2264268422182}$
b_{-}min $:=$evalf $\left(\frac{\text { jupitor_radius jupitor_vb0_min }}{\text { velocity_infinity_entering_jupitor }}\right)=9.84436387610^{5}$

$-\operatorname{part}(d)$

[Select as your impact parameter the value halfway between $\mathrm{b} _\{\min \}$ and $\mathrm{b} _\{\max \}$. Note that value here for reference and use it as your impact parameter for the rest of the problem
> b < (b_{-}max+b_min) $/ 2$;

$$
b:=\frac{1}{2} b_{-} \max +\frac{1}{2} b_{-} \min =2.46422181910^{7}
$$

part(e)

Given the impact parameter from part (d), calculate the turning angle of the spacecraft relative to Jupiter during the flyby.
> saturn_vb0 := 'saturn_vb0': rb0_earth := 'rb0_earth':
rb0_jupitor <~ b*
velocity_infinity_entering_jupitor/jupitor_vb0;
eq <~ (jupitor_vbすへ^2/2-jupitor_mu/rb0_jupitor =
velocity_infinity_entering_jupitor^2/2 -
jupitor_mu/jupitor_SOI);
sol <~ $\overline{\text { solvene }}$ (eq,jupitor_vb0);
jupitor_vb0 <~ op(selec $\bar{t}($ is, [sol], positive));
rb0_jupitor $:=\frac{b \text { velocity_infinity_entering_jupitor }}{\text { jupitor_vb0 }}=\frac{7.53331436710^{7}}{\text { jupitor_}^{7} b 0}$
$e q:=\left(\frac{1}{2}\right.$ jupitor_$_{-} v b 0^{2}-\frac{\text { jupitor_mu }}{r b 0 \text { _jupitor }}=\frac{1}{2}$ velocity_infinity_entering_jupitor ${ }^{2}$
$\left.-\frac{\text { jupitor_mu }}{\text { jupitor_SOI }}\right)=\left(\frac{1}{2}\right.$ jupitor_vbo ${ }^{2}-1.681683889$ jupitor_$\left._{-} v b 0=2.049948451\right)$
sol $:=$ solve (eq, jupitor_vb0 $)=(4.313785256,-0.9504174777)$
jupitor_vb0 $:=o p($ select $(i s,[$ sol $]$, positive $))=4.313785256$
rb0_jupitor;
1.74633504510^{7}
e <~ sqrt(1+(velocity_infinity_entering_jupitor^2*
jupitor_vb0^2*rb0_jupitor^2)/jupitor_mu^2);
eta $\&=\arccos (-1 / \bar{e})$;
evalf(eta*180/Pi);
theta $\varepsilon=$ (2*eta-Pi);
evalf(theta*180/Pi);
$e:=\sqrt{1+\frac{\text { velocity infinity entering jupitor }^{2} \text { jupitor }^{\text {_vb }} 0^{2} \text { rb0 }^{\text {jupitor }}{ }^{2}}{\text { jupitor_mu }}}=2.074762092$
$(1.940335258) \&=(2.073712835)$
111.1730211
$(68.8269789) \&=(3.880670516-\pi)$
3943.495406
$\geqslant \operatorname{part}(f)$
[What is the spacecraft's heliocentric speed following the flyby? (11.73 is correct)
> vd <~ sqrt(jupitor_speed^2+
velocity_infinity_entering_jupitor^2-2*jupitor_speed*abs (velocitȳ_infinitȳ_entering_jupitor) *cos (theta));
$v d:=$
(jupitor_speed $^{2}+$ velocity_infinity_entering_jupitor 2
-2 jupitor_speed \mid velocity_infinity_entering_jupitor $\mid \cos (\theta))^{1 / 2}=10.16313731$

$\operatorname{part}(g)$

[What is the spacecraft's heliocentric flight path angle following the flyby
$\left[\begin{array}{l}> \\ \text { gamma_d }<\sim \\ \text { (theta) } / v d) \text {; }\end{array}\right.$ (thetā)/vd);
evalf (gamma_d*180/Pi);
gamma_d $:=\arcsin \left(\frac{\text { velocity_infinity_entering_jupitor } \sin (\theta)}{v d}\right)=-0.08555941389$

$$
-4.902193312
$$

Hohmann from earth to moon (for project)

[> satellite_earth_altitude $:=300$;
earth_radius $: \equiv 6378$;
r r_p <~ satellite_earth_altitude+earth_radius;

earth mu $:=3.98 \overline{6 * 1} 0^{\wedge} \overline{5}$;
satelㄱite_speed_relative_to_earth <~ sqrt(earth_mu/r_p); velocity_perigeē <~ sqr̄ (earth_mu* (2/r_p - 1/a)); del V1 <~ velocity_perigee -
satellite_speed_relative_to_earth;

satellite_earth_altitude $:=300$
earth_radius $:=6378$
$r_{p}:=$ satellite_earth_altitude + earth_radius $=6678$
$r_{a}:=384400=384400$
$a:=\frac{1}{2} r_{a}+\frac{1}{2} r_{p}=195539$
earth_mu:=3.98600000 10^{5}
satellite_speed_relative_to_earth $:=\sqrt{\frac{\text { earth_mu }}{r_{p}}}=7.725835198$
velocity_perigee $:=\sqrt{\text { earth_mu }\left(\frac{2}{r_{p}}-\frac{1}{a}\right)}=10.83229389$ $d e l_{V I}:=$ velocity_perigee - satellite_speed_relative_to_earth $=3.106458692$

$$
e:=\operatorname{evalf}\left(\frac{r_{a}-r_{p}}{r_{a}+r_{p}}\right)=0.9658482451
$$

velocity_apogee <~ sqrt(earth_mu*(2/r__a - 1/a));
velocity_apogee $:=\sqrt{\text { earth_mu }\left(\frac{2}{r_{a}}-\frac{1}{a}\right)}=0.1881843356$ v2 <~ sqrt(earth_mu/r_a);
$v 2:=\sqrt{\frac{\text { earth } m u}{r_{a}}}=1.018302846$
delv2 <~ v2-velocity_apogee;
delV2 $:=v 2-$ velocity_apogee $=0.8301185104$
totalDelV <~ abs (del V1) +abs (delV2) ;
totalDelV $:=\mid$ del $_{V 1}|+|$ delV2 $\mid=3.936577202$
delT:=Pi* sqrt(a^3/earth_mu);
delT $:=1.36956118010^{5} \pi$
evalf(delT);
4.30260334210^{5}
evalf(delT/(60*60*24));
4.979864981

3.2 solution in Mathematica

HW5 EMA 550, University of
 Wisconsin, Madison

Nasser M. Abbasi
March 11,2014
problem 1
A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the correct position in its orbit for a flyby to occur when the spacecraft gets there

Part (a)
Find $\Delta \mathrm{V}_{1}$ for Hohmann transfer
define constants to use

Clear["Global`*"]; $\mathrm{AU}=1.495978$ * 10
$r_{\text {earth }}=6378$;
$A_{\text {sun }}=1.327 * 10^{\wedge} 11$;
$\mu_{\text {sur }}=3.986 * 10^{\wedge} 5^{\text {; }}$
$\mathrm{R}_{\text {earth }}=1.496 * 10^{\wedge} 8$;
$R_{\text {earthsor }}=9.24 * 10^{\wedge} 5$
$\mathrm{R}_{\text {saturn }}=9.537 \mathrm{AU}$
Velocity of earth relative to the sun

```
V earth }=\sqrt{}{\frac{\mp@subsup{\mu}{\mathrm{ sun }}{}}{\mp@subsup{R}{\mathrm{ earth }}{}}
29.7831
```

spacecraft altitude over earth

```
alt = 300;
```

2 | HW5_mma.nb

```
r
```

6678

Find Hohmann paramters for trip to Saturn
$a=\frac{R_{\text {earth }}+R_{\text {saturn }}}{2}$
7.88157×10^{8}

Find V_{p} the velocity are perigee
$\mathrm{V}_{\text {perigee }}=\sqrt{\mu_{\text {sun }}\left(\frac{2}{R_{\text {earth }}}-\frac{1}{a}\right)}$
40.0711

Find V_{∞} the excess velocity to escape from Earth

```
V
10.2881
```

Find $V_{b 0}$ at earth
$\mathrm{V}_{\mathrm{b} \theta}=\sqrt{2\left(\left(\frac{\mathrm{~V}_{\text {out }}{ }^{2}}{2}-\frac{\mu_{\text {earth }}}{\mathrm{R}_{\text {earth }}}\right)+\frac{\mu_{\text {earth }}}{\mathrm{r}_{\mathrm{b} \theta}}\right)}$
14.9786

Find $V_{\text {sat }}$ the spacecraft speed around eath

```
v
7.72584
```

find ΔV_{1}

```
delV
```

7.25277

Part (b) Angle calculation at departure
Calculate the angle past the Earth's dawn-dusk line where the ΔV should be applied.
find e the eccentricty for the escape hyperbola

$$
\begin{aligned}
& e=\sqrt{1+\frac{V_{\text {out }}{ }^{2} V_{\mathrm{b} \theta}^{2} r_{\mathrm{b} \theta}{ }^{2}}{\mu_{\mathrm{earth}}{ }^{2}}} \\
& 2.76865
\end{aligned}
$$

```
\eta=\operatorname{ArcCos}[-\frac{1}{\textrm{e}}];
Row[{"\eta Degree = ", }\eta*\frac{180}{\pi}}
Degree = 111.173
```

```
0=Pi-\eta;
Row[{" }0\mathrm{ Degree = ", }0*\frac{180}{\pi}}
0 Degree = 68.8269
```


Part (c)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn? (Note: you do not need to calculate the time within either planet's sphere of influence, as that will be small relative to the Hohmann transfer time, but you are welcome to do so and compare those values for yourself.)

4 | HW5_mma.nb
find time to fly, which is half the period

```
\(T=2 \pi \sqrt{\frac{a^{3}}{\mu_{\text {sun }}}} ;\)
\(\operatorname{Row}[\{\) "time to fly in years \(=\) ", ( \(1 / 2\) ) \(\mathrm{T} /(60 * 60 * 24 * 365)\}]\)
```

time to fly in years $=6.051$

Part (d)
After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit about Saturn with an orbital radius of $150,000 \mathrm{~km}$. Calculate the $\Delta \mathrm{V} 2$ required to place the spacecraft on this orbit. When spacecraft reaches saturn is has speed relative to sun of

Paramters to use

```
rb0 = 150000;
\mu
R
```

Find $V_{\text {apegree }}$ of the Hohmann transfer

```
V
```

4.20171
find saturn speed relative to sun

```
\mp@subsup{\mathbf{V}}{\mathrm{ saturn }}{}=\sqrt{}{\frac{\mp@subsup{\mu}{\mathrm{ sun }}{}}{\mp@subsup{\mathbf{R}}{\mathrm{ saturn }}{}}}=\mp@code{\}
9.64422
```

Find $V_{\text {in }}$ the speed by which spacecraft enters saturn SOI

```
V
5.4425
```

Use energy equation to solve for $V_{b 0}$ at Saturn

23.0908

Since spacecrasft will end up in an orbit around saturn, find its parking speed
$\left(v_{\text {sat }}=\sqrt{\frac{\mu_{\text {saturn }}}{r_{\text {be }}}}\right) / / \mathrm{N}$
15.902
find ΔV_{2}

```
delV
```

-7.18874

Find total speed change needed

```
totalV = Abs[delV 1] + Abs[delV2]
14.4415
```


Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter's orbit about the Sun enters Jupiter's sphere of influence. The spacecraft has a speed of $10 \mathrm{~km} / \mathrm{s}$ relative to the Sun at this point, which you can estimate as the Jupiter's average orbital radius about the Sun. (See the Planetary Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

Part (a)

The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit about Jupiter in the patched conic method is Jupiter's SOI radius. Find that value on the Planetary Constants sheet in the course notes and enter it here for reference.

6 | HW5_mma.nb

Paramters

```
ClearAll["Global`*"];
AU = 1.495978 * 10 %
rearth = 6378;
\mu
\mu
\mujupitor = 126686 534;
R earth = 1.496 * 10^8;
R Rarth }\mp@subsup{}{\mathrm{ OI }}{}=9.24*10^5
R
rjupitor = 71492;
jupitorsor = 4.83 * 10^7;
bmax = jupitorsor ;
```

Part(b)
For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same direction as Jupiter when it enters Jupiter's SOI
What is the speed of the satellite relative to Jupiter when it enters Jupiter's SOI?
Vin = 10;
find Jupitor speed relative to sun
$\mathbf{V}_{\text {jupitor }}=\sqrt{\frac{\mu_{\text {sun }}}{\mathbf{R}_{\text {jupitor }}}}$
13.0571

Find speed of spacecraft relative to Jupitor

```
VinRelative = V jupitor - Vin
3.05708
```


Part(c)

What is the smallest possible value for the impact parameter b ? This value of impact parameter will result in a burnout radius that just grazes the surface of Jupiter

```
eq = bmin VinRelative == r jupitor }\sqrt{}{\frac{\mp@subsup{\mu}{\mathrm{ jupitor }}{}}{\mp@subsup{r}{\mathrm{ jupitor }}{}}}
bmin /. First@Solve[eq, bmin];
(bmin = %) // N
984436.
```


Part(d)

Select as your impact parameter the value halfway between $b_{\text {min }}$ and $b_{\text {max }}$. Note that value here for reference and use it as your impact parameter for the rest of the problem
b = Mean [$\{$ bmin, bmax $\}$]

```
2.46422 * 107
```


Part(e)

Given the impact parameter from part (d), calculate the turning angle of the spacecraft relative to Jupiter during the flyby.

```
eq1 = (rb0) (vb0) == (b) (VinRelative);
rb0 = (b) (VinRelative)
        vb0
7.53331\times107
    vb0
```

setup the energy equation at Jupitor

$$
\begin{aligned}
& \text { eq2 }=\frac{v b 0^{2}}{2}-\frac{\mu_{\text {jupitor }}}{r b 0}==\frac{\text { VinRelative }^{2}}{2}-\frac{\mu_{\text {jupitor }}}{\text { jupitor }_{\text {sOI }}} \\
& -1.68168 \mathrm{vb} 0+\frac{v b \theta^{2}}{2}=2.04995
\end{aligned}
$$

Solve for $V_{b 0}$

```
sol = vb0 /. NSolve[eq2, vb0]
{-0.950417, 4.31379}
```

8 | HW5_mma.nb

```
vb0 = First@Select[%, Positive]
4.31379
```

check the correspoding $r_{b 0}$

Find e at jupitor and find η and θ

```
e=\sqrt{}{1+\frac{(VinRelative)2}{2}(\textrm{vb0}\mp@subsup{)}{}{2}(\textrm{rb0}\mp@subsup{)}{}{2}}
2.07476
```

```
\eta=\operatorname{ArcCos}[-\frac{1}{e}];
Row[{"\eta Degree = ", \eta* 年䘖}}
    Degree = 118.815
```

```
0=2\eta-Pi;
Row[{"0 Degree = ", }0*\frac{180}{\pi}}
Degree = 57.63
```

Part(f)
What is the spacecraft's heliocentric speed following the flyby?

```
vd}=\sqrt{}{\mp@subsup{V}{\mathrm{ jupitor }}{}\mp@subsup{}{}{2}+\mp@subsup{V}{\mathrm{ VinRelative }}{}\mp@subsup{}{}{2}-2 \ V jupitor VinRelative Cos[0]
```

11.7086

Part (g)
What is the spacecraft's heliocentric flight path angle following the flyby

```
\gammad}=\operatorname{ArcSin}[\frac{VinRelative Sin[0]}{vd}]
Row["}\mp@subsup{\gamma}{d}{}\mathrm{ in degree ", }\mp@subsup{\gamma}{d}{}180/Pi
Row[\gammad in degree , 12.7398]
```

For the remaining parts, assume that, relative to the Sun, the spacecraft DOES NOT arrive at Jupiter's SOI moving in the same direction at Jupiter. The spacecraft still has a heliocentric speed of $10 \mathrm{~km} / \mathrm{s}$ at the distance of Jupiter's orbit from the Sun. But now it has a heliocentric eccentricity of 0.5 . (What was the heliocentric eccentricity when the spacecraft arrived in the same direction as Jupiter, assuming that point was aphelion?)

Part(h)

What is the spacecraft's heliocentric flight path angle when it arrives at Jupiter's SOI?


```
a = a /. First@NSolve[eq, a]
5.50681\times10
```

$\gamma=\operatorname{ArcCos}\left[\sqrt{\frac{a^{2}\left(1-e^{2}\right)}{R_{\text {jupitor }}\left(2 a-R_{\text {jupitor }}\right)}}\right] ;$
Row[\{"angle is ", $\gamma 180 / \mathrm{Pi}$, " degree" $\}$]
angle is 17.9875 degree

Part(i)
What is the spacecraft's speed relative to Jupiter

```
VinRelative = }\sqrt{}{\mp@subsup{V}{\mathrm{ jupitor }}{}\mp@subsup{}{}{2}+\mp@subsup{V}{in}{2}-2 \ V jupitor Vin Cos[\gamma]
```

4.70206

part(j)

Using the same impact parameter as in part (d), calculate the turning angle of the spacecraft relative to Jupiter.

```
Clear[vb0];
eq1 = rb0 vb0 == b VinRelative;
b0 = b VinRelative
vb0
1.15869 * 108
    vb0
```

setup the energy equation at Jupitor

```
Clear[vb0];
eq2 = vb0}\mp@subsup{}{2}{2}-\frac{\mp@subsup{\mu}{\mathrm{ jupitor }}{}}{2}==\frac{\mp@subsup{\mathrm{ VinRelative }}{2}{2}}{2}-\frac{\mp@subsup{\mu}{\mathrm{ jupitor }}{}}{\mp@subsup{\mathrm{ jupitor }}{\mathrm{ soI }}{}
1.09336 vb0 + vb0}\mp@subsup{|}{}{2
```

Solve for $V_{b 0}$

```
sol = vb0 /. NSolve[eq2, vb0]
```

$\{-3.15623,5.34294\}$

```
vb0 = First@Select[%, Positive]
```

5.34294
check the correspoding $r_{b 0}$

```
rb0
2.16864 * 107
```

Find e at jupitor and find η and θ
$\mathrm{e}=\sqrt{1+\frac{(\text { VinRelative })^{2}(\mathrm{vb0})^{2}(\mathrm{rb0})^{2}}{\mu_{\text {jupitor }}{ }^{2}}}$
4.4153

$$
\begin{aligned}
& \eta=\operatorname{ArcCos}\left[-\frac{1}{\mathbf{e}}\right] ; \\
& \operatorname{Row}\left[\left\{" \eta \text { Degree }=", \eta * \frac{180}{\pi}\right\}\right] \\
& \eta \text { Degree }=103.09
\end{aligned}
$$

```
0=2\eta-Pi;
Row[{"0 Degree = ", }0*\frac{180}{\pi}}
0 Degree = 26.1805
```

Part(k)
Assuming that the spacecraft flies behind Jupiter, what is the spacecraft's heliocentric speed following the flyby?

$\mathbf{v}_{\text {jupitor }}$
13.0571

VinRelative
4.70206

| Vin |
| :--- | :--- |
| 10 |

```
\beta=\operatorname{ArcSin}[\frac{VinSin}{[\gamma]}
0.716508
```

12 |
HW5 mma.nb

$$
\mathbf{v d}=\sqrt{\mathbf{v}_{\text {jupitor }}{ }^{2}+\text { VinRelative }^{2}-2 \mathbf{V}_{\text {jupitor }} \text { VinRelative } \operatorname{Cos}[\beta+\theta]}
$$

12.0449

Part(L)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft's heliocentric flight path angle following the flyby?

$$
\begin{aligned}
& \gamma_{d}=\operatorname{ArcSin}\left[\frac{\text { VinRelative } \operatorname{Sin}[\beta+\theta]}{\mathrm{vd}}\right] ; \\
& \operatorname{Row}\left[\text { " } \gamma_{d} \text { in degree ", } \gamma_{d} 180 / \mathrm{Pi}\right] \\
& \operatorname{Row}\left[\gamma_{d}\right. \text { in degree , 21.0979] }
\end{aligned}
$$

