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Chapter 1

introduction

Local contents
1.1 Syllubus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 course related links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I took this course in Spring 2013 part of masters degree in engineering mechanics. Uni-
versity of Wisconsin, Madison.

Instructor is professor Matt Allen

External class web page http://courses.engr.wisc.edu/ema/ema545.html

Text book: Mechanical and Structural Vibrations: Theory and Applications, Jerry H. Gins-
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1.1. Syllubus CHAPTER 1. INTRODUCTION

berg, 1st Edition, Wiley, 2001.

1.1 Syllubus

Version 1/21/2013 

EP/EMA 545 – Spring 2013 
Mechanical Vibrations 

 
Course Home Page:  Engineering Moodle Courses: https://courses.moodle.wisc.edu 

Lecture notes, homework and solutions will be posted on course web site. 
 
Instructor: 

Prof. Matt Allen 
Department of Engineering Physics  
535 Engineering Research Building 
Email: msallen@engr.wisc.edu, Office Phone: 608-890-1619 
Office Hours:  T 9:15-10AM, 2-3PM, W 2-3PM, or by appointment 

 
Grader:  (available by appointment if needed) 
 Samuel Fedenia, sfedenia@wisc.edu
 
Prerequisites: 

EMA 202 or 221, EMA 304 or 306, Math 223 
 
Required Textbook:   Mechanical and Structural Vibrations: Theory and Applications, Jerry H. 

Ginsberg, 1st Edition, Wiley, 2001. 
 
Evaluation: 

• Weekly Homework sets – Problems assigned weekly and typically due on Thursday.  Late 
homework will not be accepted unless prior arrangements have been made with the instructor.  
Consulting with your peers is allowed so long as it is done responsibly. 

o If you are ill or otherwise unable to turn in an assignment, contact Prof. Allen 
immediately by phone or email to make arrangements to turn the assignment. Late 
homework will not be accepted unless prior arrangements have been made. 

• Exams (2) 
o Two in-class exams, each approximately one hour long. 
o The instructor will also give occasional 5-min pop-quizzes focusing on very fundamental 

concepts, which will be graded for homework credit. 
• Design Project 

o Work in groups of two and turn in a short but high-quality written report with 
handwritten calculations in the appendix. 

• Final Exam 
• Grades in the course will be based on the following weighting: 

o Homework Sets    30% 
o Exams     40% 
o Design Project    10% 
o Final Exam    20% 

 
Academic Misconduct: 
The instructor takes dishonesty very seriously.  Cheating will not be tolerated, whether on exams, quizzes 
or homework.  If there is reasonable evidence that you have cheated on a homework assignment, the 
instructor reserves the right to give you negative credit for the assignment up to three times the value of 
the assignment.  (Score = –3*value of assignment.)  Serious infractions will be handled through the 
designated university channels. 
 
Online course description: 
General theory of free, forced, and transient vibrations; vibration transmission, isolation, and 
measurement; normal modes and generalized coordinates; method of matrix equation formulation and 
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1.1. Syllubus CHAPTER 1. INTRODUCTION

Version 1/21/2013 

solution. The application of theory and methods to the analysis, measurement and design of dynamic 
systems.  
 
General Topic Areas Covered: 

• Equations of Motion for Discrete Vibratory Systems 
• Transient Response of Single-Degree of Freedom (SDOF) Systems 
• Steady State Response to Harmonic Excitation 
• Modal Analysis of Multi-Degree-of-Freedom (MDOF) Systems 
• Harmonic Excitation of MDOF Systems 
• Vibration of Continuous Systems: The Ritz Method 

 
Miscellaneous 
Please inform me within the first two weeks of class of any specific days during the semester that may 
conflict with your religious observances, so I can make alternate arrangements for you. 
 
Matlab 
Many of the homework assignments require a computer package such as Matlab to complete. Matlab is 
available in all CAE computer labs.  You can also purchase a student version for around $100 to install on 
your personal computer.  Alternatively, there are a few clones of Matlab which may provide enough 
functionality to meet the needs of this course.  These are compared in the following and in many blogs 
and websites: 
http://www.webcitation.org/6BbWqerg3 
The most notable for laptop/desktop computers seem to be: 
Octave – www.octave.org 
Freemat – www.freemat.org 
Python with SciPy - http://en.wikipedia.org/wiki/SciPy 
For Android: 
Addi – https://play.google.com/store/apps/details?id=com.addi 
Octave - https://play.google.com/store/apps/details?id=com.octave&hl=en 
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Version 1/21/2013 

TENTATIVE Semester Schedule: 
* NOTE:  All of the dates below are approximate.  The instructor reserves the right to adjust the schedule! 

Date* 
W

ee
k 

Topic (Book sections) Due Dates 

1/22 1 Introduction, Review of Newton-Euler EOM (1.1-1.4)  
1/24  Numerical solution methods, Harmonic Functions (2.1)  
1/29 2 Intro – Solutions to EOM, Beating   
1/31  Free Response: Underdamped/Overdamped (2.2) HW #1 due  
2/5 3 Forced Response (2.3)  
2/7  Finish Forced Response (2.3) HW #2 due 

2/12 4 MSA OUT (IMAC) Video Lecture 
RF Switch Example, Aircraft Engine Example 

 

2/14  MSA OUT (IMAC) – Lab Demo (John Dreger) HW #3 due 
2/19 5 Frequency Response (3.1, 3.2.1, 3.3)  
2/21  Exam #1 (Ch. 2, SDOF Time Response)  
2/26 6 Base Excitation, examples (Assign Design Project) 
2/28  Damping (3.2) Resonance (3.3) Stress in Springs (notes) HW #4 due 
3/5 7 Rotating Imbalance (3.4) Force Transmissibility (3.6)  
3/7  Intro to Fourier Series (3.7)   HW#5 due 

3/12 8 FFT for Periodic Excitation (3.7.5) 
Fourier Transform, DFT/FFT, Aliasing 

 

3/14  FFT for Transient Excitation (3.8.2), Accelerometer 
(3.7.6),  Examples 

HW#6 due 

3/19 9 MDOF EOM, Large Deformation & Linearization, 
Gravity Stiffness & Stiff Spring Approx 

DP analysis due 

3/21  Additional examples HW #7 due 
3/26-28  Spring Recess (Mar 23-31)  

4/2 10 MDOF Solution, Shuttle Example  
4/4  Exam #2 (SDOF System Response) HW #8 due 
4/9 11 MDOF Systems – Intro to Eigenproblem (4.1-4.2) DP due (Monday 5PM) 

4/11  MDOF Systems – Orthogonality, Normalization (4.2.2) HW#9 due 
4/16 12 Examples: Free Response, Transient Response, Damping  
4/18  Modal Transformation – (4.3), 3DOF Example and 

Matlab, (done by video) (do after close fn’s next time) 
HW #10 due 

4/23 13 Close Nat. Freqs. (4.2.5-6), Rigid Body Modes  
Frequency Response using Modal Coordinates 

 

4/25  Freq. Domain TF (5.1), Vibration Absorber (5.3)  
4/30 14 Introduction to Power Balance & Lagrange Methods (1.5)  
5/2  Ritz Method (6.1), Sound from a rod excited axially HW #11 due 
5/7 15 Examples Continued  
5/9  Aircraft Modes using Ritz, Aeroelasticity Example, 

Review for Final, Nonlinear Vibration 
HW #12 due  

 
 

5/16 
  

Final Exam: Thurs. May 16, 10:05AM - 12:05PM 
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1.2. course related links CHAPTER 1. INTRODUCTION

1.2 course related links
1. final exam schedule

2. Syllabus

3. public course web page

4. internal course web page

5. Lectures download
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Chapter 2

HW’s

Local contents
2.1 HW lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 HW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 HW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 HW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5 HW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6 HW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.7 HW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.8 HW7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
2.9 HW8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.10 HW9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
2.11 HW10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
2.12 HWA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
2.13 HW11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

2.1 HW lookup Table

HW grade about

1 95% series/parallel stiffness, How to use 𝑥 = Re�𝑋𝑒𝑖𝜔𝑡� to analyze systems earliest time
to reach maximum value/speed, complex exponential

2 95.70% eq. of motion cube in water, more use of complex exponential analyzing in complex
plane. Logarithmic decrement from graph. Impulse problem
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2.1. HW lookup Table CHAPTER 2. HW’S

3 100% small lab

4 98.75% force applied for small period, find response. Impulse force on system. analyse in
complex plane. resonance problem, students on bridge.

5 88% 2 DOF system, shock observer on spring.Force transmission to base. off center mo-
tion, find EQM. 2 counter-rotating masses

6 97.50% Find complex Fourier series.Verify using fft. Simplemodel of car moving on ground,
find EQM. Fourier series. rectangle force, Fourier series.

7 95% Using FFT to find response. Transfer functions Compare to analytical. Using La-
grange to find EQM, 2 DOF.

8 99% non-linear EQM, spring stiff approximation. Lagrangian. Model of wing. cart on
spring with sliding mass on it with spring. Lagrangian. Finding 𝜔𝑛 for 2DOF

A1 100% more spring stiff approximation. manipulation of complex form of solution. half-
power point, finding phase lag, solving step response using appendix B method

9 95% Full solution in modal coordinates. Mass normalized. Initial conditions in modal
coordinates. All problems done in power balance method. Double physical pendu-
lum

10 92.5% Full solution in modal coordinates. 3 DOF problem

11 93.3% modal analysis, with damping using specific modal damping. Structual damping
Compare transfer functions for each damping method used. Ritz method, shape
functions. plot mode shapes.

Table 2.1: Homeworks summary table
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2.2. HW1 CHAPTER 2. HW’S

2.2 HW1

Local contents
2.2.1 problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Problem 1 (1.1 book) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Problem 4 (2.5 book) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.6 Problem 5 (2.8 book) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.7 Problem 6 (2.10 book) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.8 Key solution for HW 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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2.2. HW1 CHAPTER 2. HW’S

2.2.1 problem description

Homework #1 
EMA 545, Spring 2013 

 
Problem 1: 1.1 from Ginsberg: 
 

 
 
Problem 2: Find the equation of motion of the system pictured below.  The mass of the 
block is m and the mass of the beams and springs is negligible.  Assume that all of the 
displacements are very small.  (Recall that the displacement of the tip of a cantilever 
beam, Δtip, is related to the force at the tip by: Ftip=(3EI/L3)Δtip) 
 

 
 

USE COMPLEX EXPONENTIALS to derive the solution to problems 3-6 (i.e. do 
not simply look up a trig identity). 
 
Problem 3: 2.3 from Ginsberg 
 
Problem 4: 2.5 from Ginsberg.  Note that “this quantity” in the last sentence is referring 
to “the complex amplitude of dv/dt.” 
 
Problem 5: 2.8 from Ginsberg. 
 
Problem 6: 2.10 from Ginsberg. 
 
Extra: (this problem will not be graded)  If you are not already familiar with Matlab, 
review the Matlab® tutorial on the EMA 545 course website (created by Prof. Negrut). 

10



2.2. HW1 CHAPTER 2. HW’S

2.2.2 Problem 1 (1.1 book)

𝑘3 and 𝑘2 are in parallel, hence the effective stiffness is

𝑘23 = 𝑘2 + 𝑘3

𝑘23 and 𝑘1 are now in series, hence the effective stiffness is

1
𝑘123

=
1
𝑘1
+

1
𝑘23

=
𝑘23 + 𝑘1
𝑘1𝑘23

=
𝑘2 + 𝑘3 + 𝑘1
𝑘1(𝑘2 + 𝑘3)

=
𝑘2 + 𝑘3 + 𝑘1
𝑘1𝑘2 + 𝑘1𝑘3

Therefore
𝑘123 =

𝑘1𝑘2 + 𝑘1𝑘3
𝑘2 + 𝑘3 + 𝑘1

𝑘123 and 𝑘4 are now in parallel, hence the effective stiffness is

𝑘1234 = 𝑘4 + 𝑘123

= 𝑘4 +
𝑘1𝑘2 + 𝑘1𝑘3
𝑘2 + 𝑘3 + 𝑘1

Hence the final effective stiffness is

𝑘𝑒𝑞 =
𝑘4(𝑘2 + 𝑘3 + 𝑘1) + 𝑘1𝑘2 + 𝑘1𝑘3

𝑘2 + 𝑘3 + 𝑘1

11



2.2. HW1 CHAPTER 2. HW’S

2.2.3 Problem 2

We start by drawing a free body diagram and taking displacement of mass from the
static equilibrium position. Let the displacement of the mass be 𝑥 and positive pointing
upwards.

Let △1 be the downward deflection at right end of the bottom beam. Let △2 be the down-
ward deflection at right end of top beam. The free body diagram is

1

2

x
F

kx  1

kb1

k1  2

kb2

m

mx 

12



2.2. HW1 CHAPTER 2. HW’S

Applying equilibrium of vertical forces∑𝐹𝑣 = 0 for mass𝑚 and noting that inertial forces
opposes motion, results in the equation of motion

𝑚𝑥′′ + 𝑘(𝑥 − △1) = 𝐹 (2.1)

To find an expression for △1 in terms of 𝑥,we apply equilibrium of vertical forces at the
right end of the lower beam1

𝑘(𝑥 − △1) = 𝑘𝑏△1 + 𝑘(△1 − △2) (2.2)

Similarly, applying equilibrium of vertical forces at the right end of the top beam

𝑘(△1 − △2) = 𝑘𝑏△2 (2.3)

Solving for △1, △2 from Eqs 2.111,2.96 (2 equations, 2 unknowns) gives

△1 =
𝑘(𝑘 + 𝑘𝑏)

𝑘2 + 3𝑘𝑘𝑏 + 𝑘2𝑏
𝑥

Substituting the above value into Eq 2.110 results in the equation of motion

𝑚𝑥′′ + 𝑘𝑥�1 −
𝑘(𝑘 + 𝑘𝑏)

𝑘2 + 3𝑘𝑘𝑏 + 𝑘2𝑏
� = 𝐹

2.2.4 Problem 3

Assuming periodic motion, the period is 𝑇 = 6ms, or 6 × 10−3 sec. Hence 𝜔 = 𝜋
3 rad/ms

Representing this as a cosine signal with phase gives

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜃)

Then

𝑥(𝑡) = Re[𝐴 + cos(𝜔𝑡 + 𝜃)]
= Re[𝐴𝑒𝑖𝜃𝑒𝑖𝜔𝑡]
= Re[�̄�𝑒𝑖𝜔𝑡] (2.4)

Where now �̂� = 𝐴𝑒𝑖𝜃.Using phasor diagram
1𝑘𝑏 is beam stiffness against vertical displacement at the end and is given as 𝑘𝑏 =

3𝐸𝐼
𝐿3

13



2.2. HW1 CHAPTER 2. HW’S



t
Â

A

u

A

xt  ReÂe it 

 ReAe it

 Acost  

t  

Hence from the diagram we see that for 𝑥(𝑡0) to be zero when 𝑡0 = 1ms, we need to have

𝜔𝑡0 + 𝜃 =
𝜋
2

But 𝜔 = 𝜋
3 rad/ms, hence

𝜃 =
𝜋
2
−
𝜋
3
=
𝜋
6

To find 𝐴 we see that the maximum absolute value of 𝑥(𝑡) is 20 mm hence 𝐴 = 20mm or
20 × 10−3 meter. The equation of 𝑥(𝑡)when substituting all numerical values becomes

𝑥(𝑡) = 20 cos�
𝜋
3
𝑡 +

𝜋
6
� (2.5)

Where units used are radians, milliseconds and mm. This is a plot of the above function

parms = f -> 1/(6 10^-3);
Plot[0.02 Cos[2 Pi f t + (Pi/6)] /. parms, {t,0,0.005},
AxesLabel -> {t,x[t]}, ImageSize -> 300]

14



2.2. HW1 CHAPTER 2. HW’S

2.2.4.1 part(a)

At 𝑡 = 0, from 2.117 𝑥(0) = Re[�̂�] = 𝐴 cos(𝜃) = 20 cos(𝜋6 ) hence

𝑥(0) = 17.321mm

From 2.117 𝑥′(𝑡) = Re[𝜔�̂�𝑒𝑖𝜔𝑡] hence 𝑥′(0) = Re[𝜔�̂�] = 𝜔𝐴 cos(𝜃) = 20𝜋3 cos(
𝜋
6 ) giving

𝑥′(0) = 18.138m/sec

2.2.4.2 part(b)

This can be solved using calculus2

𝑥′(𝑡) = −2𝜋𝑓𝐴 sin�2𝜋𝑓𝑡 + 𝜃�

0 = −2𝜋𝑓𝐴 sin�2𝜋𝑓𝑡 +
𝜋
6
�

= −�
2𝜋

6 × 10−3 �
�20 × 10−3� sin�

2𝜋
6 × 10−3

𝑡 +
𝜋
6 �

0 = sin�
2𝜋

6 × 10−3
𝑡 +

𝜋
6 �

We solve for 𝑡 and find 𝑡=2.5 ms. But this can be solved more easily by looking at the
phasor diagram

2Taking derivative of 𝑥(𝑡) and setting the result to zero and solving for 𝑡

15



2.2. HW1 CHAPTER 2. HW’S

t

Â

u

t  

Maximum negative 
value of x(t) 

Theminimum 𝑥(𝑡) (in negative sense and not in absolute value sense) occurs when𝜔𝑡𝑚𝑖𝑛+
𝜃 = 𝜋, hence 𝑡𝑚𝑖𝑛 =

𝜋−𝜃
𝜔 , therefore

𝑡𝑚𝑖𝑛 = 2.5

2.2.4.3 part(c)

This is solved in a similar way by treating the speed as the rotating vector in complex
plan. Since 𝑥′(𝑡) = Re�𝐴𝜔𝑒𝑖�𝜔𝑡+𝜃+

𝜋
2 �� then in complex plan as follows



t


2

  
2

A

Phase of speed vector at t=0

Velocity 
vector

xt  Re Aei  
2

The difference is that the velocity vector has phase of 𝜃 + 𝜋
2 instead of 𝜃 as was the case

with the position vector, and the amplitude is 𝐴𝜔 instead of 𝐴. Hence the first time the

16
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speed vector will have the maximum value is when

𝜃 +
𝜋
2
+ 𝜔𝑡 = 2𝜋

Hence

𝑡 =
2𝜋 − 𝜋

2 − 𝜃
𝜔

=
2𝜋 − 𝜋

2 −
𝜋
6

𝜋
3

Hence 𝑡 = 4ms and the amplitude is given by 𝐴𝜔 = 20𝜋3 hence 𝐴𝜔 = 20.944meter/sec

2.2.4.4 part(d)

Now treating the acceleration as the rotating vector in complex plan

𝑥(𝑡) = Re�𝐴𝑒𝑖(𝜃+𝜔𝑡)�

𝑥′(𝑡) = Re�𝑖𝐴𝜔𝑒𝑖(𝜃+𝜔𝑡)�

𝑥′′(𝑡) = Re�−𝐴𝜔2𝑒𝑖(𝜃+𝜔𝑡)�

But −1 = 𝑒𝑖𝜋 This adds a 𝜋 to the phase resulting in

𝑥′′(𝑡) = Re�𝐴𝜔2𝑒𝑖(𝜃+𝜔𝑡+𝜋)�

Representing 𝑥′′(𝑡) in complex plan gives



t

acc vector



  

A
2

17
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The first time the 𝑥″(𝑡) vector will have the maximum value is when

𝜃 + 𝜋 + 𝜔𝑡 = 2𝜋

Hence

𝑡 =
2𝜋 − 𝜋 − 𝜃

𝜔

=
𝜋 − 𝜋

6
𝜋
6

Hence 𝑡 = 2.5ms and the amplitude is

𝐴𝜔2 = 20mm�
𝜋
3

rad/msec�
2

= 21.933 × 103 meter/sec2

2.2.5 Problem 4 (2.5 book)

2.2.5.1 part(a)

The function of the signal is converted to complex exponential. A sin or cos can be used to
represent the signal as long as we are consistent. Assuming the signal is 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 +
𝜃), plotting the general representation of the position vector in complex plan gives

18
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

t
Â

A

u

A

xt  ReÂe it 

 ReAe it

 Acost  

t  

The complex representation of the position vector is

𝑥(𝑡) = Re�𝐴𝑒𝑖(𝜔𝑡+𝜃)�

We are given that 𝜔 = 2𝜋
𝑇 = 2𝜋

16 , and since 𝑥(𝑡0) has first zero at 𝑡0 = 5.5 ms this means
from looking at the above diagram that

𝜃 + 𝜔𝑡0 =
𝜋
2

Hence 𝜃 = 𝜋
2 − (𝜔𝑡0) =

𝜋
2 − (

𝜋
8
55
10 )which gives

𝜃 =
−3𝜋
16

radians

Hence the signal is

𝑥(𝑡) = Re�𝐴𝑒𝑖(𝜔𝑡+𝜃)�

= Re�1.2𝑒
𝑖�𝜋8 𝑡−

3𝜋
16 ��

= Re�1.2𝑒−𝑖
3𝜋
16 𝑒𝑖

𝜋
8 𝑡�

= Re��̂�𝑒𝑖
𝜋
8 𝑡�

19
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Where �̂� = 1.2𝑒−𝑖
3𝜋
16 is the complex amplitude in polar coordinates. In rectangular coordi-

nates it becomes

�̂� = 1.2𝑒−𝑖
3𝜋
16

= 1.2�cos�
3𝜋
16 �

− 𝑖 sin�
3𝜋
16 ��

= 1.2(0.831 − 𝑖0.5556)

= 0.9977 − 𝑖0.6667

Hence

𝑥(𝑡) = Re�(0.998 − 𝑖0.668)�cos
𝜋
8
𝑡 + 𝑖 sin

𝜋
8
𝑡��

= Re��0.998 cos
𝜋
8
𝑡 + 0.668 sin

𝜋
8
𝑡�+

𝑖�0.998 sin
𝜋
8
𝑡 − 0.668 cos

𝜋
8
𝑡��

Here is a plot of the signal for 20 ms

w = Pi/8;
f = 1.2 Cos[w t - 3 Pi/16];
Plot[f, {t, 0, 20}, AxesLabel -> {t, x[t]},

ImageSize -> 300,
GridLines -> Automatic,

GridLinesStyle->{{Dashed,Gray},{Dashed,Gray}},
PlotStyle -> Red]

20
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

t
Â

A

u

A

xt  ReÂe it 

 ReAe it

 Acost  

t  

2.2.5.2 part(b)

From above it was found that
𝑥(𝑡) = Re�𝐴𝑒𝑖(𝜔𝑡+𝜃)�

Hence

𝑥′(𝑡) = Re�𝑖𝜔𝐴𝑒𝑖(𝜔𝑡+𝜃)�

= Re�𝑒𝑖
𝜋
2𝜔𝐴𝑒𝑖𝜃𝑒𝑖𝜔𝑡�

= Re�𝜔𝐴𝑒𝑖(
𝜋
2+𝜃)𝑒𝑖𝜔𝑡�

= Re��̂�𝑒𝑖𝜔𝑡�

21
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Where �̂� = 𝜔𝐴𝑒𝑖(
𝜋
2+𝜃) Replacing numerical values gives �̂� = 𝜋

8
(1.2)𝑒𝑖(

𝜋
2 −

3
16𝜋) = 0.471𝑒𝑖0.983

and

𝑥′(𝑡) = Re�0.471𝑒𝑖0.983𝑒𝑖𝜔𝑡�

= Re�0.471𝑒𝑖0.983𝑒𝑖
𝜋
8 𝑡�

= Re�0.471𝑒𝑖0.983𝑒𝑖0.3923𝑡�

In rectangular coordinates, the above becomes

𝑥′(𝑡) = Re�0.471(cos 0.983 + 𝑖 sin 0.983)

(cos 0.3923𝑡 + 𝑖 sin 0.3923𝑡)�

= Re[(0.261 + 0.392𝑖)(cos 0.392𝑡 + 𝑖 sin 0.392𝑡)]

= Re�(0.261 cos 0.392𝑡 − 0.392 sin 0.392𝑡)

+𝑖(0.261 sin 0.392𝑡 + 0.392 cos 0.392𝑡)�

2.2.5.3 part(c)

To find the maximum rate of the signal

𝑥′(𝑡) = Re��̂�𝑒𝑖𝜔𝑡�

Then the maximum 𝑥′(𝑡) is ��̂��which is

��̂�� = |0.261 + 0.392𝑖|

= √0.2612 + 0.3922

= 0.471

Hence maximum 𝑥′(𝑡) is 0.471 v/ms or 471 volt/sec.

Maximum velocity in simple harmonic motion occurs when 𝑥(𝑡) = 0. This occurs at 𝑡 = 5.5
ms and at 8ms henceforth. Hence maximum speed occurs at

𝑡 = 5.5 + 𝑛(8)

for 𝑛 = 0, 1, 2,⋯ this results in

𝑡 = 5.5, 13, 5, 21.5,⋯ms

Here is a plot of 𝑥′(𝑡) in units of volt/ms

22
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f = 0.261 Cos[0.392 t] - 0.392 Sin[0.392 t];
Plot[f, {t, 0, 30},
AxesLabel -> {Row[{t, "(ms)"}], x'[t]},
ImageSize -> 300, GridLines -> Automatic,
GridLinesStyle -> {{Dashed, Gray}, {Dashed, Gray}},
PlotStyle -> Red]

2.2.6 Problem 5 (2.8 book)

2.2.6.1 part(a)

This is a plot of the signal

23
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f = 0.01 Sin[50 t] - 0.02 Cos[50 t - 0.3 Pi];
Plot[f, {t, 0, 0.2},

AxesLabel -> {Row[{t , " (sec)"}], x[t]},
ImageSize -> 300,
GridLines -> Automatic,
GridLinesStyle->{{Dashed,Gray},{Dashed,Gray}},
PlotStyle -> Red]

𝑞 = 0.01 sin(50𝑡) − 0.02 cos(50𝑡 − 0.3𝜋)

= Re�
0.01
𝑖
𝑒𝑖50𝑡 − 0.02𝑒𝑖(50𝑡−0.3𝜋)�

= Re�0.01𝑒−𝑖
𝜋
2 𝑒𝑖50𝑡 − 0.02𝑒𝑖50𝑡𝑒−𝑖0.3𝜋�

= Re��0.01𝑒−𝑖
𝜋
2 − 0.02𝑒−𝑖0.3𝜋�𝑒𝑖50𝑡�

= Re��̂�𝑒𝑖50𝑡�

Hence the complex amplitude is

�̂� = 0.01𝑒−𝑖
𝜋
2 − 0.02𝑒−𝑖0.3𝜋

2.2.6.2 part(b)

From above, we see that
𝜔 = 50 rad/sec

Hence 𝑓 = 50
2𝜋Hz, or the period 𝑇 = 2𝜋

50 = 0.126 sec, therefore the time period separating
the zeros is 0.126

2 = 0.063 sec or 63ms

24
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2.2.6.3 part(c)

The complex phase �̂� can be found by adding the vector 0.01𝑒−𝑖
𝜋
2 and −0.02𝑒−𝑖

3𝜋
10 by com-

pleting the parallelogramas shown in this diagram. �̂� = −0.02 cos 0.7𝜋+𝑖(−0.01 + 0.02 sin 0.7𝜋),
hence the angle 𝛼 that �̂�makes with the horizontal is

tan−1�
−0.01 + 0.02 sin 0.7𝜋

−0.02 cos 0.7𝜋 � = arctan(0.526)

= 0.484 radian
= 27.73 degree

0.01ei 
2

0.3

Â


0.02ei0.3

0.02ei0.7

and the amplitude is

�(−0.01 + 0.02 sin 0.7𝜋)
2 + (0.02 cos 0.7𝜋)2 = 0.0133V

To find the earliest time 𝑞 will be zero, we need to find the time the complex position
vector will take to rotate and reach the imaginary axis.

25



2.2. HW1 CHAPTER 2. HW’S

Â


  

t

Hence we need to solve

𝜋 − 𝛼 + 𝜔𝑡0 =
3
2
𝜋

𝑡0 =
3
2𝜋 − 𝜋 + 0.48402

50
= 0.0411 s

Therefore
𝑡 = 41.1ms

2.2.6.4 part(d)

The largest value of 𝑞 is the absolute value of its complex amplitude. We found this above
as

��̂�� = 0.0133 Volt

To find when this occur first time, the time the position vector will align with the real axis
in the positive direction is found. Hence solving for 𝑡0 from

𝜋 − 𝛼 + 𝜔𝑡0 = 2𝜋

𝑡0 =
2𝜋 − 𝜋 + 0.484

50

Gives 𝑡 = 72.5ms. Another way would be to take derivative of 𝑞𝑡) and set that to zero and
solve for first 𝑡which satisfy the equation.

26
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2.2.7 Problem 6 (2.10 book)

𝑥1 = 8 sin�10𝑡 −
5
6
𝜋�

𝑥2 = 12 cos�10𝑡 + 𝜙�

Let 𝜔 = 10, hence

𝑥 = 𝑥1 + 𝑥2

= Re�
8
𝑖
𝑒
𝑖�𝜔𝑡− 5

6𝜋�� + Re�12𝑒𝑖�𝜔𝑡+𝜙��

= Re�
8
𝑖
𝑒
𝑖�𝜔𝑡− 5

6𝜋� + 12𝑒𝑖�𝜔𝑡+𝜙��

= Re�8𝑒−𝑖
𝜋
2 𝑒

𝑖�𝜔𝑡− 5
6𝜋� + 12𝑒𝑖�𝜔𝑡+𝜙��

= Re�8𝑒−𝑖
𝜋
2 𝑒𝑖𝜔𝑡𝑒−𝑖

5
6𝜋 + 12𝑒𝑖𝜔𝑡𝑒𝑖𝜙�

= Re��8𝑒
−𝑖� 43𝜋� + 12𝑒𝑖𝜙�𝑒𝑖𝜔𝑡�

= Re��̂�𝑒𝑖𝜔𝑡� (2.6)

Where

�̂� = 8𝑒
−𝑖� 43𝜋� + 12𝑒𝑖𝜙

= (−4 + 6.928𝑖) + 12�cos𝜙 + 𝑖 sin𝜙�

= �−4 + 12 cos𝜙� + 𝑖�6.928 + sin𝜙�

Hence Eq 2.6 becomes

𝑥 = Re���−4 + 12 cos𝜙� + 𝑖�6.928 + sin𝜙��𝑒𝑖𝜔𝑡�
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To convert to sin we multiply and divide by 𝑖 hence

𝑥 = Re���−4 + 12 cos𝜙� + 𝑖�6.928 + sin𝜙��𝑖
𝑒𝑖𝜔𝑡

𝑖 �

= Re��−�6.928 + sin𝜙� + 𝑖�−4 + 12 cos𝜙��
𝑒𝑖𝜔𝑡

𝑖 �
(2.7)

The complex number −�6.928 + sin𝜙� + 𝑖�−4 + 12 cos𝜙� can be written in polar form as

𝑘𝑒𝑖𝛽 where 𝐾 = ��6.928 + sin𝜙�
2
+ �−4 + 12 cos𝜙�

2
and 𝛽 = tan−1�

−4+12 cos𝜙
−�6.928+sin𝜙��, hence Eq

2.7 becomes

𝑥 = Re�𝑘𝑒𝑖𝛽
𝑒𝑖𝜔𝑡

𝑖 �

= Re

⎡
⎢⎢⎢⎢⎢⎣𝑘
𝑒𝑖�𝜔𝑡+𝛽�

𝑖

⎤
⎥⎥⎥⎥⎥⎦

= 𝑘 sin�𝜔𝑡 + 𝛽�

or in full form

𝑥 =
�
�6.928 + sin𝜙�

2
+ �−4 + 12 cos𝜙�

2

sin
⎛
⎜⎜⎜⎜⎝𝜔𝑡 + tan−1

⎛
⎜⎜⎜⎜⎝
−4 + 12 cos𝜙
−�6.928 + sin𝜙�

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

For pure sine function we need −4+12 cos𝜙
−�6.928+sin𝜙�

= 0 or 12 cos𝜙 = 4 or cos𝜙 = 1
3 , hence

𝜙 = 1.23096 radian
= 70.529∘

The amplitude can also be found from the complex amplitude above when 𝜙 = 1.23096
as follows

�8𝑒
−𝑖� 43𝜋� + 12𝑒𝑖1.23096� = �−6.592 × 10−6 + 18.242𝑖�

=
�
�−6.592 × 10−6�

2
+ (18.242)2

= 18.242
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2.2.8 Key solution for HW 1

Homework #1 
EMA 545, Spring 2013 

 
Problem 1: 1.1 from Ginsberg: 
 

 
 
Problem 2: Find the equation of motion of the system pictured below.  The mass of the 
block is m and the mass of the beams and springs is negligible.  Assume that all of the 
displacements are very small.  (Recall that the displacement of the tip of a cantilever 
beam, Δtip, is related to the force at the tip by: Ftip=(3EI/L3)Δtip) 
 

 
 

USE COMPLEX EXPONENTIALS to derive the solution to problems 3-6 (i.e. do 
not simply look up a trig identity). 
 
Problem 3: 2.3 from Ginsberg 
 
Problem 4: 2.5 from Ginsberg.  Note that “this quantity” in the last sentence is referring 
to “the complex amplitude of dv/dt.” 
 
Problem 5: 2.8 from Ginsberg. 
 
Problem 6: 2.10 from Ginsberg. 
 
Extra: (this problem will not be graded)  If you are not already familiar with Matlab, 
review the Matlab® tutorial on the EMA 545 course website (created by Prof. Negrut). 
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2.3.1 problem description

Homework #2 
EMA 545, Spring 2013 

 
Problem 1: 
A cube with density  and side length a is floating 
freely in a pool of water. 
a.)  Find the equation of motion of the cube when it is 

displaced in the vertical direction.  (Recall that the 
buoyant force on a floating object is equal to the 
weight of the water displaced.)  If necessary, re-
define your vertical coordinate to eliminate any 
static forces. 

b.)  Derive an expression for the natural frequency of 
the cube. 

c.)  If the block is pine (=400 kg/m3) with a side length of 10cm, what is the natural frequency 
in Hz? 

(Note that, while an analysis like this would be important when designing a boat or ocean vessel, 
in reality the rotational motions of the vessel would usually be more important and those require 
a more complicated analysis.) 
 
Problem 2: 2.17 from Ginsberg 
 
Problem 3: 2.19 from Ginsberg 
 
Problem 4:  Show that x(t)=B te  is a solution to 22 0n nx x x      and find  for the 

following cases:  1.) Underdamped system, 2.) Overdamped system.  Write the solution x(t) for 
both cases for an arbitrary set of initial conditions and draw a sketch to illustrate how each 

response x(t) would look.  Show that x(t) can be written as  i( ) Re n dt tx t Ae e   in case (1). 

 
Comment:  I would encourage you to see if you can solve the following problems using only 
math and the fact that the general solution to an underdamped SDOF system 

22 0n nx x x      

is: 

 i( ) Re n dt tx t Ae e   

where 21d n     and A is a complex constant.  If you’re hunting through the book for 

equations to solve these problems then you might be making them more difficult than they need 
to be and perhaps failing to connect the concepts. 

 
Problem 5: 2.29 from Ginsberg 
 
Problem 6: 2.32 from Ginsberg. (part a=5pts, b=5pts, c=10pts) 
 

x

a
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2.3.2 problem 1

2.3.2.1 Part(a)

We assume the cube is displaced downwards from its static equilibrium position and it
is currently at distance 𝑥 below the static position.

The buoyant force 𝐹𝑏 will push the cube upwards. This force will equal the weight of
water displaced which is 𝑥𝑎2𝜌𝑤𝑔 where 𝜌𝑤 is density of water and 𝑔 is the gravitational
constant. The free body diagram is

c.g.

Fb
Buoyant 
force

x  0

x

Showing cube 
when slightly 
pushed 
downward

M

Static equilibrium

Applying 𝐹 = 𝑚𝑥′′ we obtain equation of motion

𝑀𝑥′′ = −𝐹𝑏 (2.8)
𝑀𝑥′′ + 𝐹𝑏 = 0 (2.9)
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𝑀 = 𝑎3𝜌where 𝜌 is density of pine. The above can be simplified to

𝑎3𝜌𝑥′′ + 𝑥𝑎2𝜌𝑤𝑔 = 0 (2.10)

𝑥′′ +
𝜌𝑤𝑔
𝑎𝜌

𝑥 = 0 (2.11)

𝑥′′ + 𝜔2
𝑛𝑥 = 0 (2.12)

2.3.2.2 Part(b)

Hence from the above equation

𝜔𝑛 =
�

𝜌𝑤𝑔
𝑎𝜌

2.3.2.3 Part(c)

Given 𝜌 = 400 𝑘𝑔/𝑚3 and 𝜌𝑤 = 1000 𝑘𝑔/𝑚3 and 𝑎 = 0.1𝑚 then

𝜔𝑛 =
�

𝜌𝑤𝑔
𝑎𝜌

=
�
1000 × 9.81
0.1 × 400

= 15.66
𝑟𝑎𝑑
sec2

Hence frequency in Hz is

𝑓 =
𝜔𝑛
2𝜋

=
15.66
2𝜋

= 2.492 ℎ𝑧

2.3.3 Problem 2
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2.3.3.1 Part(a)

q  0

q0  20mm

q0  50m/sec

M

kq

q

Static 
equilibrium

applying 𝐹 = 𝑚𝑞′′, we obtain equation of motion

𝑀𝑞′′ = −𝑘𝑞 (2.13)
𝑀𝑞′′ + 𝑘𝑞 = 0 (2.14)

𝑞′′ +
𝑘
𝑀
𝑞 = 0 (2.15)

𝑞′′ + 𝜔2
𝑛𝑞 = 0 (2.16)

Let solution be 𝑞(𝑡) = Re��̂�𝑒𝑖𝜔𝑛𝑡�where �̂� is the complex amplitude, which is a complex
number that can be written as �̂� = 𝑎 + 𝑖𝑏. We use initial conditions to determine �̂�. At
𝑡 = 0, let 𝑞(0) = 𝑞0

𝑞0 = Re��̂�𝑒𝑖𝜔𝑛𝑡� (2.17)

= Re��̂�� (2.18)
= 𝑎 (2.19)

Hence 𝑎 = 𝑞0 And since 𝑞′(𝑡) = Re�𝑖𝜔𝑛�̂�𝑒𝑖𝜔𝑛𝑡�, then 𝑡 = 0 we have

𝑞′0 = Re�𝑖𝜔𝑛�̂�� (2.20)
= Re(𝑖𝜔𝑛(𝑎 + 𝑖𝑏)) (2.21)
= Re(𝑖𝜔𝑛𝑎 − 𝜔𝑛𝑏) (2.22)
= −𝜔𝑛𝑏 (2.23)
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Hence 𝑏 = − 𝑞′0
𝜔𝑛

therefore the general solution is

𝑞(𝑡) = Re��̂�𝑒𝑖𝜔𝑛𝑡� (2.24)

= Re�(𝑎 + 𝑖𝑏)𝑒𝑖𝜔𝑛𝑡� (2.25)

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�

�������������
�𝑞0 − 𝑖

𝑞′0
𝜔𝑛
�𝑒𝑖𝜔𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.26)

Hence ��̂�� =
�
𝑞20 + �

𝑞′0
𝜔𝑛
�
2
and arg��̂�� = 𝜃 = tan−1

⎛
⎜⎜⎜⎜⎜⎝

𝑞′0
𝜔𝑛
𝑞0

⎞
⎟⎟⎟⎟⎟⎠. We have 2 complex quantities

above being multiplied. The first is �̂� and the second is 𝑒𝑖𝜔𝑛𝑡, therefore the result is ob-
tained by adding the angles and by multiplied the magnitudes. The magnitude of 𝑒𝑖𝜔𝑛𝑡 is
one. Hence on the complex plan, the above expression for 𝑞(𝑡) is represented as vector of
length ��̂�� and phase 𝜙 = 𝜃 + 𝜔𝑛𝑡

Imaginary axes

Â



q0

q 0


n

eint

n t Âeint

n t



qt



Âeint

Â

From the above diagram we see that the maximum value of

𝑞max(𝑡) = ��̂��

which occurs when
𝜙 = 𝜃 + 𝜔𝑛𝑡 = 0

solving for 𝑡 gives

𝑡 =
−𝜃
𝜔𝑛

Notice that 𝜃 is negative, hence wewill get positive value for 𝑡. Substituting the numerical
values given we find thatAnd the earliest time this occurs is

𝑡 =
1.3724
2𝜋(80)

= 2.7303 × 10−3 = 2.73ms
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We confirm this by noticing that the initial position vector was at about 1
4𝑐𝑦𝑐𝑙𝑒 away from

the positive x-axis (we found the phase of �̂� above to be about −80 degrees), and the
rotational speed is given as 80 cycles per second. Hence it takes 12.5ms to make one cycle
and 1

4 of this is about 3𝑚𝑠.

2.3.3.2 Part(b)

Since we found 𝑞(𝑡) = Re��𝑞0 − 𝑖
𝑞′0
𝜔𝑛
�𝑒𝑖𝜔𝑛𝑡�, then

𝑞′(𝑡) = Re�𝑖𝜔𝑛�𝑞0 − 𝑖
𝑞′0
𝜔𝑛
�𝑒𝑖𝜔𝑛𝑡� (2.27)

= Re��𝜔𝑛𝑞0 − 𝑒
𝑖𝜋2 𝑞′0�𝑒

𝑖𝜋2 𝑒𝑖𝜔𝑛𝑡� (2.28)

= Re��𝜔𝑛𝑞0𝑒
𝑖𝜋2 − 𝑒𝑖𝜋𝑞′0�𝑒𝑖𝜔𝑛𝑡� (2.29)

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�

�������������������
�𝜔𝑛𝑞0𝑒

𝑖𝜋2 + 𝑞′0� 𝑒𝑖𝜔𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.30)

Where now �̂� is the complex amplitude of 𝑞′(𝑡). Hence ��̂�� = ��𝜔𝑛𝑞0�
2
+ �𝑞′0�

2
and its

phase is arg��̂�� = tan−1 𝜔𝑛𝑞0
𝑞′0

. The complex plane representation of 𝑞′(𝑡) is

Imaginary axes



eint

n t

B
nq0

q0
 Beint



B

Beint

n t  

This 
angle is

qt

From the above diagram we see that maximum magnitude of 𝑞′(𝑡) is ��̂�� given by

��̂�� =
�
�𝜔𝑛𝑞0�

2
+ �𝑞′0�

2
(2.31)

=
�
�2𝜋(80)�20 × 10−3��

2
+ (−50)2 (2.32)

= 51.001m/s (2.33)
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The earliest time it occurs is found by solving for 𝑡 in

𝜔𝑛𝑡 + 𝜃 = 2𝜋 (2.34)

𝑡 =
2𝜋 − 𝜃
𝜔𝑛

(2.35)

=
2𝜋 − tan−1 𝜔𝑛𝑞0

𝑞′0
2𝜋(80)

=
2𝜋 − tan−1

2𝜋(80)�20×10−3�

−50
2𝜋(80)

(2.36)

=
2𝜋 − tan−1(−0.20106)

2𝜋(80)
= 1.2895 × 10−2 (2.37)

= 0.129ms (2.38)

2.3.4 Problem 3
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Adding 2 kg caused deflection of 50mm, hence from 𝐹 = 𝑘Δ we can find 𝑘 as follows

𝑘 =
𝐹
Δ
=

2𝑔
0.05

=
2(9.81)
0.05

= 392 N/m (2.39)

where 𝑔 is the gravitational constant. We also told that 𝑓2 = 𝑓1 − 5where 𝑓2 is the natural
frequency after adding the second mass and where 𝑓1 =

1
2𝜋𝜔1 and 𝑓2 =

1
2𝜋𝜔2, hence

𝑓2 = 𝑓1 − 5 (2.40)
1
2𝜋
𝜔2 =

1
2𝜋
𝜔1 − 5 (2.41)

𝜔2 = 𝜔1 − 10𝜋 (2.42)

But 𝜔1 = �
𝑘
𝑚 and 𝜔2 = �

𝑘
𝑚+2 , hence

�
𝑘

𝑚 + 2
=
�
𝑘
𝑚
− 10𝜋

From Eq 2.117 the above becomes

�
392
𝑚 + 2

=
�
392
𝑚

− 10𝜋

Solving numerically gives 𝑚 = 0.1955kg

2.3.5 Problem 4

To show that 𝑥(𝑡) = 𝐵𝑒𝜆𝑡 is solution to the differential equation, we substitute this solution
into the LHS of the differential equation and see if we obtain zero.

𝑥′(𝑡) = 𝜆𝐵𝑒𝜆𝑡 = 𝜆𝑥(𝑡) (2.43)
𝑥′′(𝑡) = 𝜆2𝐵𝑒𝜆𝑡 = 𝜆2𝑥(𝑡) (2.44)

Then

𝑥′′ + 2𝜁𝜔𝑛𝑥′ + 𝜔2
𝑛𝑥 = 0 (2.45)

𝜆2𝑥(𝑡) + 2𝜁𝜔𝑛𝜆𝑥(𝑡) + 𝜔2
𝑛𝑥(𝑡) = 0 (2.46)

�𝜆2 + 2𝜁𝜔𝑛𝜆 + 𝜔2
𝑛�𝑥(𝑡) = 0 (2.47)

Hence 𝑥(𝑡) = 𝐵𝑒𝜆𝑡 is a non-trivial solution to the differential equation provided𝜆2+2𝜁𝜔𝑛𝜆+
𝜔2
𝑛 = 0 since then we obtain 0 = 0.

Now we find 𝜆 for the different cases.
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2.3.5.1 case 1

The roots of 𝜆2 + 2𝜁𝜔𝑛𝜆 + 𝜔2
𝑛 = 0 are

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛�𝜁2 − 1

For underdamped 𝜁 < 1, hence √𝜁2 − 1 < 0 and we write the above as

𝜆1,2 = −𝜁𝜔𝑛 ± 𝑖𝜔𝑛�1 − 𝜁2 (2.48)
= −𝜁𝜔𝑛 ± 𝑖𝜔𝑑 (2.49)

where
𝜔𝑑 = 𝜔𝑛�1 − 𝜁2

Let 𝜆 = −𝜁𝜔𝑛 + 𝑖𝜔𝑑 and its complex conjugate 𝜆∗ = −𝜁𝜔𝑛 − 𝑖𝜔𝑑, hence the solution is

𝑥(𝑡) = 𝐵1𝑒𝜆𝑡 + 𝐵2𝑒𝜆
∗𝑡

To obtain a real solution we must have 𝐵1 be complex say �̂� and 𝐵2 = �̂�∗. Hence the above
can be written as

𝑥(𝑡) = �̂�𝑒𝜆𝑡 + �̂�∗𝑒𝜆∗𝑡 (2.50)
= 2Re��̂�𝑒𝜆𝑡� (2.51)

= Re�2�̂�𝑒(−𝜁𝜔𝑛+𝑖𝜔𝑑)𝑡� (2.52)

Therefore

𝑥(𝑡) = Re��̂�𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (2.53)

Where �̂� = 2�̂� = 𝑎 + 𝑖𝑏. Hence

𝑥(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡�

To find 𝑎, 𝑏we need to use initial conditions. Assuming 𝑥(0) = 𝑥0 and 𝑥′(0) = 𝑥′0 then from
Eq 2.53 we obtain

𝑥0 = Re(𝑎 + 𝑖𝑏) = 𝑎

Hence
𝑎 = 𝑥0

and taking derivative of 2.53

𝑥(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (2.54)

𝑥′(𝑡) = Re�−𝜁𝜔𝑛(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡 + 𝑖𝜔𝑑(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (2.55)
𝑥′(0) = Re(−𝜁𝜔𝑛(𝑎 + 𝑖𝑏) + 𝑖𝜔𝑑(𝑎 + 𝑖𝑏)) (2.56)

= −𝜁𝜔𝑛𝑎 − 𝜔𝑑𝑏 (2.57)
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Hence
𝑏 =

𝑥′0 + 𝜁𝜔𝑛𝑎
𝜔𝑑

But 𝑎 = 𝑥0, hence

𝑏 =
𝑥′0 + 𝜁𝜔𝑛𝑥0

𝜔𝑑

Hence 2.53 becomes

𝑥(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (2.58)

= Re��𝑥0 + 𝑖
𝑥′0 + 𝜁𝜔𝑛𝑥0

𝜔𝑑
�𝑒−𝜁𝜔𝑛𝑡𝑒𝑖𝜔𝑑𝑡� (2.59)

And this is the general solution. In complex plan it is

x₀

x0
 nx0

d

Imaginary 
axis

Imaginary 
axis

e
nt

Â

Â  x 0
2 

x0
 nx0

d

2

d t

eidt

Ât

Ât  Â ent

  tan1 x0
 nx0

x0d

d t  

Âenteidt

xt

Hence the rotating vector will have its length become smaller with time since ��̂�� is mul-
tiplied by 𝑒−𝜁𝜔𝑛𝑡. The real part, which is the solution will eventually damp down to zero.
Hence it is a damped sinusoid oscillation as follows
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2.3.5.2 case 2

From
𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛�𝜁2 − 1

For overdamped 𝜁 > 1, hence √𝜁2 − 1 > 0 and we write the above as

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛�1 − 𝜁2

Hence the solution is
𝑥(𝑡) = 𝐵1𝑒𝜆1𝑡 + 𝐵2𝑒𝜆2𝑡

where 𝜆1 = −𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2 and 𝜆2 = −𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2 . We see that both roots are
negative always, hence we have 2 exponentially damped solution being added with no
oscillation. A sketch of the solution is
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2.3.6 Problem 5

2.3.6.1 Part(a)

From looking at the plot above, here are the values estimated for displacement positive
peaks and time they occur
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𝑡 𝑦(𝑡)

0.07 16
0.17 12
0.27 9
0.37 6

From the above we estimate the natural period 𝑇 ≈ 0.1 sec hence 𝑓 = 10 hz hence 𝜔𝑛 =
2𝜋𝑓 = 60.3 rad/sec The log decrement is

𝛿 = ln
𝑦𝑖
𝑦𝑖+𝑁

Select 𝑖 = 1 and 𝑁 = 3 gives

𝛿 = ln
16
6

(2.60)

= 0.981 (2.61)
To find 𝜁we use the log decrement method

𝛿 = 2𝜋𝑁𝜁
Hence

𝜁 =
𝛿

2𝜋𝑁
=
0.98083
2𝜋(3)

(2.62)

𝜁 = 0.052 (2.63)
Hence

𝜁 = 5.2%

2.3.6.2 Part(b)

ln�
𝑦1
𝑦1+𝑁

� = 2𝜋𝑁𝜁

Where now we write 𝑦1 = 16 and 𝑦𝑁+1 = 0.01, and hence we need to find 𝑁 the only
unknown in the equation above

ln�
16
0.01�

= 2𝜋𝑁(0.052)

Hence

𝑁 =
ln� 16

0.01
�

2𝜋(0.052)
= 22.581

We take 𝑁 = 23. What this says is that after 23 periods beyond the first peak, we will
satisfy the requirement. But 𝑇 = 0.1 sec, and the first peak was at 𝑡 = 0.05 sec, therefore

𝑡 = 0.07 + 23(0.1) (2.64)
= 2.37sec (2.65)
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2.3.6.3 Part c

Since 𝛿𝑁 = 2𝜋𝑁𝜁 and 𝜁 = 𝑐
𝑐𝑟
= 𝑐

2√𝑘𝑚
, then if we double 𝑘 and half the mass 𝑚, then 𝜁

would remain the same since 𝑐 is held constant. Therefore the answer in part b would not
change.

2.3.6.4 Part d

Since this is an underdamped system, the solution is

𝑞(𝑡) = Re��̂�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

Where �̂� is the complex amplitude, say (𝑎 + 𝑖𝑏), hence

𝑞(𝑡) = Re�(𝑎 + 𝑖𝑏)𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

At 𝑡 = 0 we find that
𝑎 = 𝑞(0) = 𝑞0

Hence
𝑎 = −0.01

and the general solution is

𝑞(𝑡) = Re��𝑞0 + 𝑖𝑏�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

Now taking derivatives of the above gives

𝑞′(𝑡) = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 + 𝑖𝑏�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

At 𝑡 = 0 then, assuming 𝑞′0 is the initial velocity

𝑞′0 = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 + 𝑖𝑏�� (2.66)
= −𝜔𝑛𝜁𝑞0 − 𝜔𝑑𝑏 (2.67)

Hence
𝑏 = −

𝑞′0 + 𝜔𝑛𝜁𝑞0
𝜔𝑑

Therefore the general solution is

𝑞(𝑡) = Re��𝑞0 − 𝑖
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�

and
𝑞′(𝑡) = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 − 𝑖

𝑞′0 + 𝜔𝑛𝜁𝑞0
𝜔𝑑

�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡�
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Now at 𝑡0 = 0.07 sec the velocity is zero, since this is where the displacement is maximum
(first peak). Hence now we have one equation with one unknown 𝑞′0that we can solve for
from the above

0 = Re�(−𝜔𝑛𝜁 + 𝑖𝜔𝑑)�𝑞0 − 𝑖
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡0� (2.68)

= 𝑒−𝜔𝑛𝜁𝑡0 Re��−𝜔𝑛𝜁𝑞0 + 𝑖
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑖𝑞0𝜔𝑑 +

𝑞′0 + 𝜔𝑛𝜁𝑞0
𝜔𝑑

𝜔𝑑�𝑒𝑖𝜔𝑑𝑡0� (2.69)

= 𝑒−𝜔𝑛𝜁𝑡0 Re��𝑖�
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑� + 𝑞′0�𝑒𝑖𝜔𝑑𝑡0� (2.70)

= 𝑒−𝜔𝑛𝜁𝑡0 Re�𝑖�
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑�𝑒𝑖𝜔𝑑𝑡0 + 𝑞′0𝑒𝑖𝜔𝑑𝑡0� (2.71)

= 𝑒−𝜔𝑛𝜁𝑡0 Re�
−1
𝑖 �
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑�𝑒𝑖(𝜔𝑑𝑡0) + 𝑞′0𝑒𝑖𝜔𝑑𝑡0� (2.72)

= 𝑒−𝜔𝑛𝜁𝑡0�Re�
−1
𝑖 �
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑�𝑒𝑖(𝜔𝑑𝑡0)� + Re�𝑞′0𝑒𝑖𝜔𝑑𝑡0�� (2.73)

= 𝑒−𝜔𝑛𝜁𝑡0�−�
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
𝜔𝑛𝜁 + 𝑞0𝜔𝑑� sin(𝜔𝑑𝑡0) + 𝑞′0 cos(𝜔𝑑𝑡0)� (2.74)

But 𝑞0 = −0.01m/sec, 𝜁 = 0.052,𝜔𝑛 = 60.3 rad/sec and𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 = 60.3√1 − 0.0522 =
60.218, therefore𝜔𝑑𝑡0 = 60.218×0.07 = 4.2153 and 𝑞0𝜔𝑑 = (60.218)(−0.01) = −0.60218hence
the above equation becomes

0 = 𝑒−(60.3)(0.052)(0.07)�−�
𝑞′0 + (60.3)(0.052)(−0.01)

60.218
60.3 × 0.052 − 0.602� sin(4.215) + 𝑞′0 cos(4.215)�

(2.75)

= 0.80293�−�
𝑞′0 − 3.136 × 10−2

60.218
(3.1356) − 0.602�(−0.879) + 𝑞′0(−0.477)� (2.76)

Solving for 𝑞′0 gives
𝑞′0 = −1.231m/sec

Now that we 𝑞′0,

Now that we 𝑞′0, we can find the numerical value for 𝑏 and write the general solution
again.

𝑏 = −
𝑞′0 + 𝜔𝑛𝜁𝑞0

𝜔𝑑
(2.77)

= −
−1.231 + 60.3(0.052)(−0.01)

60.218
(2.78)

= 2.0963 × 10−2 (2.79)
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Hence from

𝑞(𝑡) = Re��𝑞0 + 𝑖𝑏�𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡� (2.80)

= Re�(−0.01 + 𝑖0.0209)𝑒(−𝜔𝑛𝜁+𝑖𝜔𝑑)𝑡� (2.81)

giving��̂�� = √0.012 + 0.02092 = 0.023

2.3.7 Problem 6

2.3.7.1 Part a

Assume the system is underdamped.

When the package hits the ground, its speed becomes zero. Therefore the impulse gen-
erated on it is the change of linear momentum. Since it speed was 𝑣 just before impact,
then impulse= 𝑚𝑣.
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m

kz

cz

z

mg

F impulse

Hence the EQM is

𝑚𝑧′′ = −𝑐𝑧′ − 𝑘𝑧 − 𝐹𝑖𝑚𝑝𝑢𝑙𝑠𝑒 + 𝑚𝑔 (2.82)
𝑚𝑧′′ + 𝑐𝑧′ + 𝑘𝑧 = 𝑚𝑔 − 𝐹𝑖𝑚𝑝𝑢𝑙𝑠𝑒 (2.83)

With the initial conditions now being 𝑧 = 0 and 𝑧′ = 0.

The response due to the force 𝑚𝑔 can be found from the response to a unit step of ampli-
tude 𝑚𝑔 Hence the response due to the force 𝑚𝑔 is

𝑢(𝑡) =
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��

The response due to the impulse is the response of a free systemwith zero initial position
but with initial velocity 𝑖𝑚𝑝𝑢𝑙𝑠𝑒

𝑚 in the upward (negative) direction. Hence the response
due to the impulse only is

𝑔(𝑡) =
𝑚𝑣
𝑚𝜔𝑑

𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡 (2.84)

=
𝑣
𝜔𝑑
𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡 (2.85)

Hence the downward displacement is given by

𝑧(𝑡) =
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡�� −
𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡 (2.86)

2.3.7.2 Part b

Now that the impulse have taken place and we have accounted for it in the 𝑧(𝑡) solution,
then we can use this expression to find the spring force since 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝑧(𝑡) and the
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damping force on the mass 𝐹𝑑𝑎𝑚𝑝𝑒𝑟 = 𝑐𝑧′(𝑡). When resultant net force 𝐹 is negative then
the mass will rebound from the ground.

m

kz

cz

z

mg

𝐹 = 𝑚𝑔 − 𝑘𝑧(𝑡) − 𝑐𝑧′(𝑡)

But

𝑧(𝑡) =
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡�� −
𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡 (2.87)

Hence

𝑧′(𝑡) =
𝑚𝑔
𝑘 �

𝜁𝜔𝑛𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡� − 𝑒−𝜁𝜔𝑛𝑡[−𝜔𝑑 sin𝜔𝑑𝑡 + 𝜁𝜔𝑛 cos𝜔𝑑𝑡]� −
𝜁𝜔𝑛𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡 − 𝑣𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡

(2.88)

or

𝑧′(𝑡) =
𝑒−𝜁𝜔𝑛𝑡

𝑘𝜔𝑑
��𝑘𝑣𝜔𝑛𝜁 + 𝑔𝑚�𝜔2

𝑑 + 𝜔2
𝑛𝜁2�� sin𝜔𝑑𝑡 − 𝑘𝑣𝜔𝑑 cos(𝜔𝑑𝑡)� (2.89)

Hence

𝐹 = 𝑚𝑔 − 𝑘𝑧(𝑡) − 𝑐𝑧′(𝑡) (2.90)

= 𝑚𝑔 − 𝑘�
𝑚𝑔
𝑘 �

1 − 𝑒−𝜁𝜔𝑛𝑡�cos𝜔𝑑𝑡 +
𝜁𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡�� −
𝑣𝑒−𝜁𝜔𝑛𝑡

𝜔𝑑
sin𝜔𝑑𝑡� − 𝑐

𝑒−𝜁𝜔𝑛𝑡

𝑘𝜔𝑑
��𝑘𝑣𝜔𝑛𝜁 + 𝑔𝑚�𝜔2

𝑑 + 𝜔2
𝑛𝜁2�� sin𝜔𝑑𝑡 − 𝑘𝑣𝜔𝑑 cos(𝜔𝑑𝑡)�

(2.91)

To find when this force will turn negative first time, we can take the derivative with
respect to time and set it to zero and solve for first 𝑡 = 𝑡′ that will make it zero. Since the
force was positive first, then it has to become zero before turning negative.
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2.3.7.3 Part(c)

Let 𝑚 = 1 kg, 𝜔𝑛 = 5 rad/sec3, 𝑣 = 4 m/s. Hence 𝜔𝑑 = 5√1 − 𝜁2 . Since 𝜔2
𝑛 =

𝑘
𝑚 , hence

𝑘 = 25 N/m. Also 𝑐 = 𝜁𝑐𝑐𝑟 = 𝜁2𝑚𝜔𝑛 = 10𝜁

Using these values, the force in part(b) is plotted for different values of 𝜁. For example,
setting 𝜁 = 5% gives this plot of 𝐹(𝑡) for 𝑡 = 0 to 20 seconds.

Themaximum force is seen as little over 20N.Therefore, to findwhich 𝜁 gives the smallest
value of maximum force, we can try different values of 𝜁 and see how the maximum force
changes as a function of 𝜁. Using software the following values of maximum for for
different 𝜁 are generated along with 𝑡 = 𝑡max when this maximum occurs and with the
time 𝑡 = 𝑡′ when the mass rebounds first time from 𝑧 = 0

3typo in book. hz is assumed to mean rad/sec
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maximum force (N) 𝜁% 𝑡max(sec) 𝑡′(sec)

22.1 1 0.21 0.84
21.85 3 0.206 0.834
21.45 7 0.184 0.81
21.27 10 0.16 0.779
21.4 20 0.11 0.75
25.8 40 0.01 0.68
30 50 0.001 0.64

Most protection when damping ratio is below 10%
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2.3.8 Key solution for HW 2

Generated by CamScanner from intsig.com
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v 4 ω nat 10 π. m 1 g 9.807 ω d ζ( ) 1 ζ
2
ω nat.

c 1
g

ω nat
2

c 2 ζ( ) v
ω d ζ( )

ζ

1 ζ
2

g

ω nat
2

.

z t ζ,( ) exp ζ ω nat. t. c 1 cos ω d ζ( ) t.. c 2 ζ( ) sin ω d ζ( ) t... g

ω nat
2

z' t ζ,( ) exp ζ ω nat. t. ω d ζ( ) c 2 ζ( ). ζ ω nat. c 1. cos ω d ζ( ) t..

ω d ζ( ) c 1. ζ ω nat. c 2 ζ( ). sin ω d ζ( ) t..+

....

F susp t ζ,( ) m ω nat
2 z t ζ,( ). 2 ζ. ω nat

2. z' t ζ,( )..

j 1 25.. ζj
j 1
25 n 1 101.. tn

n 1
100

2 π.

ω nat
.

Fn j, F susp tn ζj,

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.22000

0

2000

4000

6000

8000

Fn 1,

Fn 5,

Fn 10,

Fn 15,

Fn 20,

tn

F magn j,
Fn j, F maxj

max F mag
j< >

0 0.5 10

5000

1 .104

F maxj

ζj

F max1
135.839=
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2.4 HW3

Node location

Resonance at 9 Hz

Resonance at 39 Hz

Resonance at 180 Hz

3 nodes counted in each ring 
when it was in resonance

Lab observation 2/14/13
EME 545 Spring 2013

Nasser M. Abbasi
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2.5.1 problem description

Homework #4 
EMA 545, Spring 2013 

 
Problem 1: Exercise 2.54 from Ginsberg. 
 
Problem 2: (30 pts, each part below is worth 10 pts). 
The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a 
torsional spring at its base as shown below with L = 2 cm, m = 3 grams and  = 20 N/rad.  
The damping ratio for the system is  = 0.02.  The equation of motion for this system is: 
(later we will discuss how to find the EOM for a system like this) 

21
( )

3
mL c t        

A certain read operation involves applying a step torque Γ(t) = F(t) with amplitude F0 and 
duration T as shown below, where F0 is the static torque required to displace the bar 30 
degrees. 

T

F
0

F(t)

t

   



, c

m,

 
 
(a) Find the response of the system numerically over the time interval 0 < 1 < 10*T, with 

T = 2.5*Td, where Td is the damped period of the system.  Use a numerical procedure, 
preferably Matlab's “ode45” function together with a suitably modified version of 
eom_2_12.m, which is available on the class website. 

(b) Assuming an underdamped response, write down a closed-form solution for the 
response in terms of Heaviside-step functions, and unit step responses, qs(t).  
Compare this with the response that you found numerically. 

(c) Plot the displacement as a function of time for the case where T = 3*Td  and T = 
2.5*Td.  What do you observe?  Why is the residual vibration larger in the latter case?  
(Hint –an undamped version of your analysis in (b) may make this easier to see.) 

 
Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg, 

k=11 kN/m and c=660 N-s/m.  The car is released from rest at t=0 
with z(0)= –0.10m.   It is possible to bring the car exactly to rest by 
exerting an impulsive force f(t)=F0(t-T) at some instant t=T. (e.g. 
hitting it with a very large hammer at just the right instant).  Find the 
magnitude of the impulse and the instant, T, at which it should be 
applied such the bouncing of the car stops completely after at least 
2.0 seconds have elapsed but before 5.0 seconds have elapsed. 

m

k

z

f(t)

c
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be 
modeled as a simply-supported beam with length L=50 m.  To simplify the analysis, let’s 
assume that the beam has rectangular cross section with height 18 inches, width 4 feet 
and that it is constructed from steel with =7800 kg/m^3 and E=210 GPa.  (Note that the 
stiffness for various beam configurations is given in Figure 1.1 in the text.)  Model this 
bridge as a SDOF system with an effective mass that is one third of the total mass of the 
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its 
center.  The damping ratio of the system is observed to be =0.01. 
 Suppose that a single student jumping up and down on the bridge can exert a 
force f(t)=(1000 N)cos(ωt) where  can be between 0 and 8 rad/s depending on how 
quickly he jumps up and down.  How many students must jump on the bridge to cause a 
displacement amplitude of 50 cm?  What frequency should they jump at to minimize the 
number of students required?  (Don’t worry, the actual bridge is stiffer and lighter than 
that given in the problem statement.  Extra Credit: What would be more reasonable 
values for its mass and natural frequency? How does this change the solution?) 
 
 

 
Problem 5: 3.2 from Ginsberg.  Note that you are approximating the radar display as a 
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.  
 
Problem 6: 3.5 from Ginsberg.  Also, please sketch the force and the response of the 
system (by hand) over one or two cycles, taking care to properly represent the amplitude 
and phase difference.  Do this for both cases, 0.95 kHz and 1.05 kHz. 

m

k

z

f(t)

c

z(t) 
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2.5.2 problem 1

Assuming zero initial conditions. The input to the system is made up of two inputs. We
find the response to the first input, then add this response to the response due to the
second input. The first input is

𝑢1(𝑡) = 𝐹0ℎ(𝑡) − 𝐹0ℎ(𝑡 − 𝑇)
= 𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇))

Which is a rectangular pulse of width 𝑇 starting at 𝑡 = 0. For example for 𝑇 = 10 sec. and
𝐹0 = 1

Assuming the response to unit step is 𝑔𝑠(𝑡) then the response to 𝑢1(𝑡) is

𝑔1(𝑡) = 𝐹0����������𝑔𝑠(𝑡)ℎ(𝑡) −���������������������𝑔𝑠(𝑡 − 𝑇)ℎ(𝑡 − 𝑇)�
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From appending B, 𝑔𝑠(𝑡) =
1

𝑚𝜔2𝑛
(1 − cos(𝜔𝑛𝑡)), hence the above becomes

𝑔1(𝑡) = 𝐹0

⎛
⎜⎜⎜⎜⎜⎝
�����������������������������1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛𝑡))ℎ(𝑡) −

�������������������������������������������1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛(𝑡 − 𝑇)))ℎ(𝑡 − 𝑇)

⎞
⎟⎟⎟⎟⎟⎠ (2.92)

Looking at the second input given by 𝑢2(𝑡) = 𝐹0𝑒−𝛽(𝑡−𝑇)ℎ(𝑡 − 𝑇)

From appendix B, the response to an exponential 𝐹0𝑒−𝛽𝑡ℎ(𝑡) is

𝐹0
𝑚�𝜔2

𝑛 + 𝛽2�
�𝑒−𝛽𝑡 − �cos(𝜔𝑛𝑡) −

𝛽
𝜔𝑛

sin(𝜔𝑛𝑡)��ℎ(𝑡)

Therefore the response to 𝑢2(𝑡) is

𝑔2(𝑡) =
𝐹0

𝑚�𝜔2
𝑛 + 𝛽2�

�𝑒−𝛽(𝑡−𝑇) − �cos(𝜔𝑛(𝑡 − 𝑇)) −
𝛽
𝜔𝑛

sin(𝜔𝑛(𝑡 − 𝑇))��ℎ(𝑡 − 𝑇) (2.93)

Adding Eqs 2.102 and 2.93 results in the final response

𝑔(𝑡) = 𝑔1(𝑡) + 𝑔1(𝑡)

= 𝐹0�
1

𝑚𝜔2
𝑛
(1 − cos(𝜔𝑛𝑡))ℎ(𝑡) −

1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛(𝑡 − 𝑇)))ℎ(𝑡 − 𝑇)�+

𝐹0
𝑚�𝜔2

𝑛 + 𝛽2�
�𝑒−𝛽(𝑡−𝑇) − �cos(𝜔𝑛(𝑡 − 𝑇)) −

𝛽
𝜔𝑛

sin(𝜔𝑛(𝑡 − 𝑇))��ℎ(𝑡 − 𝑇)

For illustration, the following plot shows the response using some values. Using 𝑚 = 1
kg, 𝜔𝑛 = 1 rad/sec, 𝑇 = 10 sec, 𝛽 = 1, 𝐹0 = 1 Volt.
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2.5.3 Problem 2

2.5.3.1 part(a)

The differential equation is

1
3
𝑀𝐿2𝜃′′(𝑡) + 𝑐𝜃′(𝑡) + 𝑘𝜃(𝑡) = 𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇)) (2.94)

The initial conditions are not given, and assumed to be zero, therefore 𝜃(0) = 0∘ and
𝜃′(0) = 0 rad/sec. The system is underdamped, hence

𝜔𝑑 = 𝜔𝑛�1 − 𝜁2
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Let 𝑇𝑑, be the damped period of oscillation given by

𝑇𝑑 =
2𝜋
𝜔𝑑

=
2𝜋

𝜔𝑛√1 − 𝜁2

To obtain an expression for 𝜔𝑛, Eq 2.110 is changed to a standard form 𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) +
𝜔2
𝑛𝜃(𝑡) =

𝐹0(ℎ(𝑡)−ℎ(𝑡−𝑇))
1
3𝑀𝐿2

𝜃′′(𝑡) +

2𝜁𝜔𝑛
�3𝑐
𝑀𝐿2

𝜃′(𝑡) +

𝜔2
𝑛

�3𝑘
𝑀𝐿2

𝜃(𝑡) =
𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇))

1
3𝑀𝐿

2
(2.95)

Therefore
𝜔2
𝑛 =

3𝑘
𝑀𝐿2

Using 𝑘 = 20 N/rad, 𝐿 = 0.02meter,𝑀 = 0.003 kg

𝜔2
𝑛 =

3(20)
(0.003)(0.02)2

= 5.0 × 107

or
𝜔𝑛 = √5.0 × 107 = 7071 rad/sec

and
𝑇𝑑 =

2𝜋
7071.1√1 − 0.022

= 0.8888ms

Therefore
𝑇 = 2.5𝑇𝑑 = 2.5 × 0.88857 = 2.221ms

To find 𝐹0 it is assumed the head was initially at rest. Therefore

𝐹0 = 𝑘𝜃0

= 20�
𝜋
6
� = 10.472 N-meter

Eq 2.111 becomes

𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) + 𝜔2
𝑛𝜃(𝑡) =

𝐹0(ℎ(𝑡) − ℎ(𝑡 − 2.5𝑇𝑑))
1
3𝑀𝐿

2

𝜃′′(𝑡) + 2(0.02)(7071)𝜃′(𝑡) + �5 × 107�𝜃(𝑡) =
3 × 20�𝜋6 �(ℎ(𝑡) − ℎ(𝑡 − 2.5𝑇𝑑))

(0.003)(0.02)2

𝜃′′(𝑡) + 283𝜃′(𝑡) + 5 × 107𝜃(𝑡) = 2.618 × 107(ℎ(𝑡) − ℎ(𝑡 − 0.0022219))

This is solved numerically for 0 < 𝑡 < 10𝑇 with the initial conditions 𝜃(0) = 0∘ and
𝜃′(0) = 0 rad/sec. Here is a plot of the solution and the input on a second plot.
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A computational software was used to numerically solve the above differential equation
for the solution 𝜃(𝑡).

2.5.3.2 Part(b)

From appendix B the response to underdamped second order system to a unit step 𝑢(𝑡) is

𝑞𝑠(𝑡) =
1

𝑀𝜔2
𝑛
�1 − 𝑒−𝜁𝜔𝑛𝑡�cos(𝜔𝑑𝑡) +

𝜁𝜔𝑛
𝜔𝑑

sin(𝜔𝑑𝑡)��ℎ(𝑡)
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Hence the response 𝑈(𝑡) due to 𝐹0
� 13𝑚𝐿

2�
(ℎ(𝑡) − ℎ(𝑡 − 𝑇)) is given by

𝑈(𝑡) =
𝐹0

�1
3𝐿

2�
����������𝑞𝑠(𝑡)ℎ(𝑡) −���������������������𝑞𝑠(𝑡 − 𝑇)ℎ(𝑡 − 𝑇)�

Notice the factor 𝐹0
1
3𝐿

2
. This was used since appendix B solution on based on equation

of motion 𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) + 𝜔2
𝑛𝜃(𝑡) =

1
𝑚 while in this case, the equation of motion is

𝜃′′(𝑡) + 2𝜁𝜔𝑛𝜃′(𝑡) + 𝜔2
𝑛𝜃(𝑡) =

𝐹0
1
3𝑚𝐿

2
, hence a factor of 𝐹0

1
3𝐿

2
is needed to scale the solution.

Therefore the analytical solution is

𝑈(𝑡) =
3𝐹0/𝐿2

𝑀𝜔2
𝑛
�1 − 𝑒−𝜁𝜔𝑛𝑡�cos(𝜔𝑑𝑡) +

𝜁𝜔𝑛
𝜔𝑑

sin(𝜔𝑑𝑡)��ℎ(𝑡)

−
3𝐹0/𝐿2

𝑀𝜔2
𝑛
�1 − 𝑒−𝜁𝜔𝑛(𝑡−2𝑇)�cos(𝜔𝑑(𝑡 − 𝑇)) +

𝜁𝜔𝑛
𝜔𝑑

sin(𝜔𝑑(𝑡 − 𝑇))��ℎ(𝑡 − 𝑇)

To compare this solution with the numerical solution found in part(a), the two solutions
are plotted side-by-side for the case 𝑇 = 2.5𝑇𝑑

We see that solutions are in good approximate. Here is a plot of the difference. The error
is in the order of 10−7
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2.5.3.3 Part(c)

The analytical solutions for 𝑇 = 2.5𝑇𝑑 and 𝑇 = 3.0𝑇𝑑 are

We see when the step load duration is 𝑇 = 2.5𝑇𝑑, the disk head will vibrate with larger
amplitudes than when the step duration was 𝑇 = 3𝑇𝑑.

To understand the reason for this, analysis was done on the undamped version of the
solution for part 𝑏

From appendix B the response to undamped second order system to a unit step 𝑢(𝑡) is

𝑞𝑠(𝑡) =
1

𝑀𝜔2
𝑛
(1 − cos(𝜔𝑛𝑡))ℎ(𝑡)

Therefore the solution for 0 < 𝑡 < 𝑇 is 3𝐹0/𝐿2

𝑀𝜔2𝑛
(1 − cos(𝜔𝑛𝑡)). This means at 𝑡 = 𝑇 which is
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when the step load is removed,𝜃(𝑇) = 3𝐹0/𝐿2

𝑀𝜔2𝑛
(1 − cos(𝜔𝑛𝑇)) and𝜃′(𝑇) = −

3𝐹0/𝐿2

𝑀𝜔2𝑛
(𝜔𝑛 sin(𝜔𝑛𝑇)).

For 𝑡 > 𝑇, the load is not present any more and we have free vibration response but with
the above initial conditions obtained at the end of the 𝑇. The solution to free vibration of
an undamped system for ̃𝑡 = 𝑡 − 𝑇 ≥ 0 is given by

𝜃� ̃𝑡� =
𝜃′(𝑇)
𝜔𝑛

sin𝜔𝑛 ̃𝑡 + 𝜃(𝑇) cos𝜔𝑛 ̃𝑡

=
−3𝐹0/𝐿2

𝑀𝜔2𝑛
(𝜔𝑛 sin(𝜔𝑛𝑇))

𝜔𝑛
sin𝜔𝑛 ̃𝑡 +

3𝐹0/𝐿2

𝑀𝜔2
𝑛
(1 − cos(𝜔𝑛𝑇)) cos𝜔𝑛 ̃𝑡

= −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

sin(𝜔𝑛𝑇) sin𝜔𝑛 ̃𝑡 + �
3𝐹0/𝐿2

𝑀𝜔2
𝑛
−
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos(𝜔𝑛𝑇)� cos𝜔𝑛 ̃𝑡

= −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

sin(𝜔𝑛𝑇) sin𝜔𝑛 ̃𝑡 −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos(𝜔𝑛𝑇) cos𝜔𝑛 ̃𝑡 +
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡

= −
3𝐹0/𝐿2

𝑀𝜔2
𝑛
�sin(𝜔𝑛𝑇) sin𝜔𝑛 ̃𝑡 + cos(𝜔𝑛𝑇) cos𝜔𝑛 ̃𝑡� +

3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 (2.96)

We have obtained a solution for the time after the step load was removed. We now inves-
tigate the result observed. We see that when 𝑇 is close to an integer multiple of the period
of the system, where we call the period of the system �̃� to differentiate it from 𝑇, then

sin�𝜔𝑛𝑛�̃�� = sin�
2𝜋
�̃�
𝑛�̃�� = sin(𝑛2𝜋) = 0

Also
cos�𝜔𝑛𝑛�̃�� = cos�

2𝜋
�̃�
𝑛�̃�� = cos(𝑛2𝜋) = 1

Hence the response given by equation 2.96 becomes

𝜃� ̃𝑡� = −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 +
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡

= 0 (2.97)

But if 𝑇 occurs at multiple of halves of the period of the system (for example, 𝑇 =
0.5�̃�, 1.5�̃�, 2.5�̃�, etc...) then now

sin�𝜔𝑛�𝑛
�̃�
2 ��

→ sin�
2𝜋
�̃� �

𝑛
�̃�
2 ��

→ sin(𝑛𝜋) → 0

However
cos�𝜔𝑛𝑛

�̃�
2 �

→ cos�
2𝜋
�̃�
𝑛
�̃�
2 �

→ cos(𝑛𝜋) → −1
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We notice that the sign is now negative. This means equation 2.96 becomes

𝜃� ̃𝑡� = −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 −
3𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡

= −
6𝐹0/𝐿2

𝑀𝜔2
𝑛

cos𝜔𝑛 ̃𝑡 (2.98)

ComparingEqs 2.97 and 2.98we see that when 𝑇 is an integer multiple of the period of the system ,
then the response after 𝑇 is minimal (zero for the case on undamped)

While when 𝑇 occurs at multiple of halves of the period of the system ,the response is
large beyond the time 𝑇.

The above analysis was done for undamped system, but the same idea carries to the
underdamped case. This explains why the response dies out quickly when 𝑇 = 3𝑇𝑑 while
it was large when 𝑇 = 2.5𝑇𝑑
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2.5.4 Problem 3

First lets look at the free vibration response (zero input response, called 𝑢𝑧𝑖). The damping

ratio 𝜁 = 𝑐
𝑐𝑟
= 𝑐

2√𝑘𝑚
= 660

2√11000×1000
= 9.9499 × 10−2 ≈ 0.1 and 𝜔𝑛 = �

𝑘
𝑚 = �

10000
1000 hence

𝜔𝑛 = 3.162 rad/sec, and 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 = 3.1623√1 − 0.12 . Hence 𝜔𝑑 = 3.146 rad/sec .

The damped period of the system is 𝑇𝑑 =
2𝜋
𝜔𝑑
= 2𝜋

3.146 = 1.997 seconds and the natural

period is 𝑇𝑛 =
2𝜋
𝜔𝑛
= 2𝜋

3.162 = 1.987 seconds.

Hence the system is underdamped and the solution is

𝑢𝑧𝑖 = Re��̂�𝑒(𝑖𝜔𝑑−𝜁𝜔𝑛)𝑡�

Where �̂� = 𝑎 + 𝑖𝑏 is the complex amplitude. At 𝑡 = 0 we have

𝑎 = 𝑢𝑧𝑖(0) = −0.1

and 𝑢′𝑧𝑖(0) ≡ 𝑢′0 = Re((𝑖𝜔𝑑 − 𝜁𝜔𝑛)(𝑎 + 𝑖𝑏)) = −𝑏𝜔𝑑 − 𝑎𝜁𝜔𝑛 therefore 𝑏 = −𝑢′0−𝑎𝜁𝜔𝑛
𝜔𝑑

. Since car

was dropped from rest, then we take 𝑢′0 = 0 which leads to 𝑏 = − (−0.1)(0.1)3.162
3.146 = 0.1

Hence, since 𝑎 = 𝑢′0(0) ≡ 𝑢0 and

𝑏 =
−𝑢′0 − 𝑎𝜁𝜔𝑛

𝜔𝑑
= 0.1

then

𝑢𝑧𝑖(𝑡) = Re�(𝑎 − 𝑖𝑏)𝑒(𝑖𝜔𝑑−𝜁𝜔𝑛)𝑡�

= Re�𝑒−𝜁𝜔𝑛𝑡�𝑢0 − 𝑖�
𝑢′0 + 𝑎𝜁𝜔𝑛

𝜔𝑑
��𝑒𝑖𝜔𝑑𝑡�

= 𝑒−𝜁𝜔𝑛𝑡�𝑢0(0) cos𝜔𝑑𝑡 + �
𝑢′0 + 𝑎𝜁𝜔𝑛

𝜔𝑑
� sin𝜔𝑑𝑡� (2.99)
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For the numerical values gives, we now can plot this solution

𝑢𝑧𝑖(𝑡) = 𝑒−0.1(3.162)𝑡(−0.1 cos 3.146𝑡 + 0.1 sin 3.146𝑡)

The phase is given by tan−1� 𝑏𝑎� = tan−1� 0.1
−0.1

� = 2.356 𝑟𝑎𝑑 = 1350, In complex plane, 𝑢ℎ(𝑡) is

e 
n t

a
2


b
2

  tan1 b
a

d t

eidt

e
nt Â

 1350

θ

d t

Zero input (free vibration) 
solution vector at time t

uzi  Re Âeidnt

Â
e 

n t

Â  a2  b2

Now we add the zero initial conditions response, also called zero state response 𝑢𝑧𝑠 for
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an input which is an impulse using appendix B.

𝑢𝑧𝑠(𝑡) = 𝑒−𝜁𝜔𝑛𝑡�
𝐹0
𝑚𝜔𝑑

sin𝜔𝑑𝑡�ℎ(𝑡)

Hence 𝑢𝑧𝑠 for an impulse that occurs at time 𝑇 is

𝑢𝑧𝑠(𝑡) = 𝑒−𝜁𝜔𝑛(𝑡−𝑇)�
𝐹0
𝑚𝜔𝑑

sin𝜔𝑑(𝑡 − 𝑇)�ℎ(𝑡 − 𝑇) (2.100)

Hence the solution is found by combining Eq. 2.117 and Eq 2.113

𝑢(𝑡) = 𝑢𝑧𝑖 + 𝑢𝑧𝑠

= 𝑒−𝜁𝜔𝑛𝑡�𝑢0(0) cos𝜔𝑑𝑡 + �
𝑢′0 + 𝑎𝜁𝜔𝑛

𝜔𝑑
� sin𝜔𝑑𝑡�ℎ(𝑡) + 𝑒−𝜁𝜔𝑛(𝑡−𝑇)�

𝐹0
𝑚𝜔𝑑

sin𝜔𝑑(𝑡 − 𝑇)�ℎ(𝑡 − 𝑇)

We need now to solve for 𝑇 and 𝐹0 in order to meet the requirements that 𝑢(𝑡) should
become zero between for 2 < 𝑡 < 5. To do this in the complex plane, we draw the zero
state response as a vector

𝑢𝑧𝑠 = 𝑒−𝜁𝜔𝑛(𝑡−𝑇)�
𝐹0
𝑚𝜔𝑑

sin𝜔𝑑(𝑡 − 𝑇)�ℎ(𝑡 − 𝑇)

= Re�
𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑

1
𝑖
𝑒𝑖𝜔𝑑(𝑡−𝑇)�ℎ(𝑡 − 𝑇)

= Re�
𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑
𝑒𝑖�𝜔𝑑(𝑡−𝑇)−

𝜋
2 ��ℎ(𝑡 − 𝑇)

Hence 𝑢𝑧𝑠 vector has magnitude 𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑
and phase 𝜔𝑑𝑡 − 𝜔𝑑𝑇 −

𝜋
2 Now to solve the

problem of finding 𝑇 and 𝐹0: To make the response become 𝑧𝑒𝑟𝑜 we need the magnitude
of 𝑢𝑧𝑠 to be equal but opposite in sign to the magnitude of 𝑢𝑧𝑖 so that the projection on
the x-axis cancel out (the projection on the x-axis of the vector is the real part which is
the solution). Therefore, for the projection of 𝑢𝑧𝑠 to be the same as the projection of 𝑢𝑧𝑖
but of different sign, the following diagram shows all the possible 𝑇 values that allows
this. We will pick the first 𝑇 value which is larger than 2 seconds to use.
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d tÂ ent

This vector represents the response 
to the impulse for zero initial 
conditions shown here at one 
possible value for T

F0entT

md

Magnitude of 
this vector is

Magnitude of 
this vector is

Zero input (free vibration) 
solution vector at time 0

We want these 2 values to 
be the same for the total 

response to be zero

d t

450

450

450

This angle is
d T  

2

From the above diagram, we need 𝜔𝑑𝑇 +
𝜋
2 = 2𝜋 − 𝜋

4 , hence 𝑇 =
2𝜋−𝜋

4 −
𝜋
4

𝜔𝑑
=

3
2𝜋

𝜋 = 1.5
seconds. Hence this value of 𝑇 is not acceptable. We now look for the next possible 𝑇.
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d tÂ ent

This vector represents the response 
to the impulse for zero initial 
conditions shown here at one 
possible value for T

F0entT

md

Magnitude of 
this vector is

Magnitude of 
this vector is

Zero input (free vibration) 
solution vector at time 0

We want these 2 values to 
be the same for the total 

response to be zero

d t

450

450

450

This angle is
d T  

2

From the above diagram we see it will be 𝜔𝑑𝑇 +
𝜋
2 = 2𝜋 + 𝜋

4 hence 𝑇 =
2𝜋+𝜋

4 −
𝜋
2

𝜋 = 1.75
seconds. Hence this is still too early to apply the impulse. We look at the next possible
case. We see that now we must rotate the vector all the way it was in the first diagram
above to get the projection on the x-axis canceling the projection of the free vibration
vector. Hence now the relation to solve for is

𝜔𝑑𝑇 +
𝜋
2
= 4𝜋 −

𝜋
4

Where in the above we added full 2𝜋 to the first case we considered above. This gives

𝑇 =
4𝜋 − 𝜋

4 −
𝜋
2

𝜋
= 3.25 sec

.We have found 𝑇 which brings the system to halt after at least 2 seconds has elapsed.
Now we find 𝐹0 This is done by equating the amplitudes of the vectors as follows

𝐹0𝑒−𝜁𝜔𝑛(𝑡−𝑇)

𝑚𝜔𝑑
= 𝑒−𝜁𝜔𝑛𝑡��̂��
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Now for𝑡 = 𝑇 = 3.25 second, plug-in numerical values

𝐹0
1000(3.146)

= 𝑒−(0.1)(3.162)(3.25)√0.12 + 0.12

𝐹0
3146.0

= 5.0607 × 10−2

𝐹0 = 159.21

To verify, here is a plot of the response when the impulse hit with

𝐹0 = 159.21 N at 𝑡 = 3.25 seconds
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2.5.5 Problem 4

2.5.5.1 First part

Let𝐴 be the area of the cross section and 𝜌 the mass density and 𝐿 the length, then actual
mass is

𝑚𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐿𝐴𝜌
= 50(18 × 0.0254)(4 × 0.3048)(7800)
= 217393 kg

Hence we will use
𝑚 =

217393
3

= 72464 kg

The actual stiffness for a simply supported mean with loading at the center is 48𝐸𝐼
𝐿3 where

𝐼 is the area moment of inertia. Hence

𝐼 =
𝑤ℎ3

12
=
(4 × 0.3048)(18 × 0.0254)3

12
= 0.00971m4

85



2.5. HW4 CHAPTER 2. HW’S

Therefore the stiffness of the beam is

𝑘 =
48𝐸𝐼
𝐿3

=
48�210 × 109�(0.00971)

503
= 783014 N/m

The natural frequency is

𝜔𝑛 = �
𝑘
𝑚
=
�
783014
72464

= 3.287rad/sec

𝑓𝑛 = 0.523 Hz

Therefore, assuming the loading is given by 𝐹0 cos(�̄�𝑡)where �̄� is the forcing frequency.
The dynamic response at any time is given by

��̂�� =
𝐹0/𝑘

��1 − 𝑟
2�

2
+ (2𝜁𝑟)2

Where 𝑟 = �̄�
𝜔𝑛
.We start by drawing ��̂�� vs. �̄� for the load of 1000 N by changing �̄� from 0

to 8𝜋, Hence for a single student the displacement vs. forcing frequency is
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Hence we see that for one student, the maximum displacement is around 6 cm when the
student is jumping at resonance frequency.

To answer the question of how many students are needed to cause |𝑋| to be 50 cm then
that will depend on what forcing frequency is used. Now we will find the minimum
number of students needed.

The minimum number will be when they all jump at the resonance frequency which is
found from solving for �̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 in

�̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

= �1 − 2𝜁2

�̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = 𝜔𝑛�1 − 2𝜁2

= 3.287�1 − 2(0.01)
2

= 3.28667 rad/sec

Therefore, at this forcing frequency, we now solve for 𝐹0 to determine the number of
students

��̂�� =
𝐹0/𝑘

�
�1 − �

�̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2
�
2

+ �2𝜁 �̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2

𝐹0 = 𝑘��̂��

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎝1 − �

�̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2⎞⎟⎟⎟⎟⎠

2

+ �2𝜁
�̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
𝜔𝑛

�
2

= (783014)(0.5)

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎝1 − �

3.28667
3.287 �

2⎞⎟⎟⎟⎟⎠

2

+ �2(0.01)
3.28667
3.287 �

2

= 7829.75 N

Therefore we need at least 8 students all jumping at 3.287 rad/sec to cause a displace-
ment of at least 50 cm.

2.5.6 Extra part

To make the structure avoid resonance, we need to make sure the ratio 𝜛
𝜔𝑛

stays away
from one. This is the ratio of the forcing frequency to the natural frequency. One way is to
make 𝜔𝑛 much larger than any expected 𝜛 that can occur is typical use of this structure.

But to make 𝜔𝑛 = �
𝑘
𝑚 large, means either making 𝑚 small or making 𝑘 large. It is hard

to reduce the mass of the structure. Therefore, making the structure more stiff will be a
better solution.
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The bridge can be made more stiff in many ways, such as by adding additional truss
structure to it (assuming this will add minimal weight). For this example, suppose we

double the stiffness. Hence 𝜔𝑛 = �
2𝑘
𝑚 = �

2(783014)
72464 = 4.649rad/sec.

Therefore now �̄�𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = 𝜔𝑛√1 − 2𝜁2 = 4.649�1 − 2(0.01)
2 = 4.65 rad/sec. Now the

same number of students (8) as before, jumping at same frequency of 3.28667 will cause
displacement of

��̂�� =
8𝐹0/𝑘

�
�1 − �

�̄�
𝜔𝑛
�
2
�
2

+ �2𝜁 �̄�
𝜔𝑛
�
2

=
8000/783014

�
�1 − �

3.28667
4.649

�
2
�
2

+ �2(0.01)3.286674.649
�
2

= 0.02meter

Therefore by making the bridge twice as stiff, now the same 8 students at �̄� = 3.287 will
cause only 2 cm displacement instead of 50 cm.

2.5.7 Problem 5
A radar display is to be tested by mounting it on spring-dashpot suspension and subject-
ing it to harmonic force 𝑄 = 𝐹 cos(�̄�𝑡). The mounted mass is 8 kg and 𝜁 = 0.25. A free
vibration shows that damped natural frequency 𝑓𝑑 = 5hz.It is observed that when the
force is applied at very low frequency the displacement amplitude is 2 mm. The test is to
be performed at 5.2 Hz. What will be the steady state response?

We are given are the following

𝑚 = 8 kg
𝜁 = 0.25

𝜔𝑑 = 𝜔𝑛�1 − 𝜁2 = 2𝜋(5) rad/sec
𝐹0/𝑘 = 0.002meter
�̄� = 2𝜋(5.2) rad/sec

Hence 𝜔𝑛 =
𝜔𝑑

�1−𝜁2
= 2𝜋(5)

√1−0.252
= 32.446 rad/sec. The steady state response is given by

𝑢𝑠𝑠 = Re��̂�𝑒𝑖�̄�𝑡�
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where �̂� = ��̂��𝑒𝑖𝜃. Hence

��̂�� =
𝐹0/𝑘

�
�1 − �

�̄�
𝜔𝑛
�
2
�
2

+ �2𝜁 �̄�
𝜔𝑛
�
2

=
0.002

�
�1 − �

2𝜋(5.2)
32.446

�
2
�
2

+ �2(0.25)2𝜋(5.2)32.446
�
2

= 0.00397

and

𝜃 = tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1�
2(0.25)
0 �

tan−1(∞)

Since 0 ≤ 𝜃 ≤ 𝜋 then the phase is
𝜃 =

𝜋
2

Hence

𝑢 = Re��̂�𝑒𝑖�̄�𝑡�

= Re�0.00397𝑒𝑖
𝜋
2 𝑒𝑖�̄�𝑡�

= 0.00397 cos��̄�𝑡 +
𝜋
2
�

= −0.00397 sin(�̄�𝑡)
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2.5.8 Problem 6
A one degree of freedom system whose mass is 10 kg and whose natural frequency is 1
khz is subjected to a harmonic excitation 1.2 sin �̄�𝑡 kN. The steady state amplitude when
�̄� = 1 khz is observed to be 2.4mm. Determine the steady state response at �̄� = 0.95 khz
and �̄� = 1.05 khz.

We are given

𝑚 = 10 kg
𝜔𝑛 = 2𝜋(1000) rad/sec
𝐹0 = 1200 N
|𝑋| = 2.4 × 10−3 meter when �̄� = 𝜔𝑛

Since 𝜔2
𝑛 =

𝑘
𝑚 , hence 𝑘 = 𝜔2

𝑛𝑚 = (2𝜋(1000))2(10), therefore

𝑘 = 3.949 × 108 N/m

Now when �̄� = 𝜔𝑛 we have

��̂�� =
𝐹0/𝑘

�
�1 − �

�̄�
𝜔𝑛
�
2
�
2

+ �2𝜁 �̄�
𝜔𝑛
�
2

2.4 × 10−3 =
1200/�3.949 × 108�

�(2𝜁)
2

=
3.039 × 10−6

2𝜁
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Hence

𝜁 = �
3.039 × 10−6

2 × 2.4 × 10−3 �

= 0.000633

2.5.8.1 Part (1)

when �̄� = 2𝜋(950) now 𝑟 = �̄�
𝜔𝑛

< 1 hence dynamic magnification factor is positive.
Therefore loading and displacement will be in phase with each others. (i.e. displacement
is in same direction as force). Since the force is sin then the response will be sin with
same frequency but different phase and amplitude. Hence let

𝑢𝑠𝑠 = 𝑋 sin(�̄�𝑡 − 𝜃)

Where

𝑋 =
𝐹0/𝑘

�
�1 − �

�̄�
𝜔𝑛
�
2
�
2

+ �2𝜁 �̄�
𝜔𝑛
�
2

=
1200/�3.949 × 108�

�
�1 − �

2𝜋(950)
2𝜋(1000)

�
2
�
2

+ �2(0.000633) 2𝜋(950)2𝜋(1000)
�
2

= 3.116 × 10−5 meter

and

𝜃 = tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(0.000633) 2𝜋(950)2𝜋(1000)

1 − � 2𝜋(950)
2𝜋(1000)

�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tan−1�1.234 × 10−2�
= 0.01235 radians
= 0.71∘

Hence steady state response is

𝑢𝑠𝑠 = 3.116 × 10−5 sin(�̄�𝑡 − 0.71∘)

Hence we see that the displacement is lagging the load by 0.71∘. On complex plane it
looks as follows
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1.2
sin
 t

 t

 t

Re

Im When r<1 the displacement 
moves with load, but lags 
behind it by





Xsin t  

load

Disp.

2.5.8.2 Part (2)

When �̄� = 2𝜋(1050) now 𝑟 = �̄�
𝜔𝑛

> 1 hence dynamic magnification factor is negative.
Therefore loading and displacement will be out of phase with loading. (i.e .displacement
is in opposite direction to force). Doing the same calculations are done as above

𝑢𝑠𝑠 = 𝑋 sin(�̄�𝑡 − 𝜃)
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where 𝑋

𝑋 =
𝐹0/𝑘

�
�1 − �

�̄�
𝜔𝑛
�
2
�
2

+ �2𝜁 �̄�
𝜔𝑛
�
2

=
1200/�3.949 × 108�

�
�1 − �

2𝜋(1050)
2𝜋(1000)

�
2
�
2

+ �2(0.000633)2𝜋(1050)2𝜋(1000)
�
2

= 2.964 × 10−5 meter

and

𝜃 = tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(0.000633)2𝜋(1050)2𝜋(1000)

1 − �2𝜋(1050)2𝜋(1000)
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= tan−1�
0.0013293
−0.1025 �

= 3.12862 radians
= 179.257∘

Hence steady state response is

𝑢𝑠𝑠 = 2.964 × 10−5 sin(�̄�𝑡 − 179.257∘)

On complex plane it looks as follows
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1.2
sin t

 t

load

displacement

 t

Re

Im

When r>1 the displacement 
moves with load, but lags 
behind it by



X
sin t 

179.257 

load

disp

Load increasing

Displacement increasing

We see that when r>1 then as load 
increases in one direction, the displacement 
is increasing but in opposite direction

Here is a plot by hand for the above 2 cases. First, the period that the loading is using
𝑇 = 2𝜋

𝜛 = 1
950 = 1.0526 × 10

−3sec
𝑇 = 1.053ms

94



2.5. HW4 CHAPTER 2. HW’S

2.5.9 Key solution for HW 4

Homework #4 
EMA 545, Spring 2013 

 
Problem 1: Exercise 2.54 from Ginsberg. 
 
Problem 2: (30 pts, each part below is worth 10 pts). 
The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a 
torsional spring at its base as shown below with L = 2 cm, m = 3 grams and  = 20 N/rad.  
The damping ratio for the system is  = 0.02.  The equation of motion for this system is: 
(later we will discuss how to find the EOM for a system like this) 

21
( )

3
mL c t        

A certain read operation involves applying a step torque Γ(t) = F(t) with amplitude F0 and 
duration T as shown below, where F0 is the static torque required to displace the bar 30 
degrees. 

T

F
0

F(t)

t

   



, c

m,

 
 
(a) Find the response of the system numerically over the time interval 0 < 1 < 10*T, with 

T = 2.5*Td, where Td is the damped period of the system.  Use a numerical procedure, 
preferably Matlab's “ode45” function together with a suitably modified version of 
eom_2_12.m, which is available on the class website. 

(b) Assuming an underdamped response, write down a closed-form solution for the 
response in terms of Heaviside-step functions, and unit step responses, qs(t).  
Compare this with the response that you found numerically. 

(c) Plot the displacement as a function of time for the case where T = 3*Td  and T = 
2.5*Td.  What do you observe?  Why is the residual vibration larger in the latter case?  
(Hint –an undamped version of your analysis in (b) may make this easier to see.) 

 
Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg, 

k=11 kN/m and c=660 N-s/m.  The car is released from rest at t=0 
with z(0)= –0.10m.   It is possible to bring the car exactly to rest by 
exerting an impulsive force f(t)=F0(t-T) at some instant t=T. (e.g. 
hitting it with a very large hammer at just the right instant).  Find the 
magnitude of the impulse and the instant, T, at which it should be 
applied such the bouncing of the car stops completely after at least 
2.0 seconds have elapsed but before 5.0 seconds have elapsed. 

m

k

z

f(t)

c
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be 
modeled as a simply-supported beam with length L=50 m.  To simplify the analysis, let’s 
assume that the beam has rectangular cross section with height 18 inches, width 4 feet 
and that it is constructed from steel with =7800 kg/m^3 and E=210 GPa.  (Note that the 
stiffness for various beam configurations is given in Figure 1.1 in the text.)  Model this 
bridge as a SDOF system with an effective mass that is one third of the total mass of the 
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its 
center.  The damping ratio of the system is observed to be =0.01. 
 Suppose that a single student jumping up and down on the bridge can exert a 
force f(t)=(1000 N)cos(ωt) where  can be between 0 and 8 rad/s depending on how 
quickly he jumps up and down.  How many students must jump on the bridge to cause a 
displacement amplitude of 50 cm?  What frequency should they jump at to minimize the 
number of students required?  (Don’t worry, the actual bridge is stiffer and lighter than 
that given in the problem statement.  Extra Credit: What would be more reasonable 
values for its mass and natural frequency? How does this change the solution?) 
 
 

 
Problem 5: 3.2 from Ginsberg.  Note that you are approximating the radar display as a 
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.  
 
Problem 6: 3.5 from Ginsberg.  Also, please sketch the force and the response of the 
system (by hand) over one or two cycles, taking care to properly represent the amplitude 
and phase difference.  Do this for both cases, 0.95 kHz and 1.05 kHz. 

m

k

z

f(t)

c

z(t) 
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HW#6, Problem 2e-01, Hard Disk Drive 
SOLUTION 

MSA – Mar. 2009 
 

Response with T = 3*Td 

0 5 10 15 20 25 30
0

5

10

15
Forcing F(t)

0 5 10 15 20 25 30
-20

0

20

40

60
Response q(t)

time (ms)

θ 
(o )

 

 
Analytical
ODE45

 
The transient response due to the step up is in phase with that of the transient response 
due to the step down, so the two almost cancel.  They do not quite cancel because the 
response has damped somewhat, so the second step is larger than what would be needed 
to cancel the residual vibration from the first step. 
 
 
Response with T = 2.5*Td 
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0 5 10 15 20 25
0

5

10

15
Forcing F(t)

0 5 10 15 20 25
-50

0

50

100
Response q(t)

time (ms)

θ 
(o )

 

 
Analytical
ODE45

 
 
Matlab code: 
% Solution to HW 2e-01 Hard Disk Drive Head 
  
clear all; close all 
  
% Parameter values 
L = 0.02; % m 
k = 20; % N/rad (torsional) 
m = 0.003; % 
M = (1/3)*m*L^2; K = k; % SDOF parameters 
wn = sqrt(K/M) 
zt = 0.02 
  
F0 = 30*pi/180*k; 
q_0 = 0; q_dot_0 = 0; 
Td = 2*pi/wn; 
Tc = 1/(zt*wn); % time constant of the system 
  
T = 3*Td 
% T = 2.5*Td; 
  
global S 
vns = whos; % put into a global variable 
for k = 1:length(vns); 
    eval(['S.',vns(k).name, ' = ',vns(k).name,';']); 
end 
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% Time Vector 
ts = [0:Td/10:10*T]; % 4*Tctime vector, sample 10x per period and over 
4 time constants. 
  
% Forcing - sum of step and ramp 
% note h(t) written as (t>0) in Matlab 
F = F0*(ts>0) - F0.*(ts-T>0); 
  
% Analytical Solution 
  
% Unit step and ramp responses from Ginsberg - includes particular and  
% complimentary solutions 
qs = inline(['(1/(M*wn^2))*(1-exp(-zt*wn*t)*(cos(wn*sqrt(1-
zt^2)*t)+',... 
    '(zt/sqrt(1-zt^2))*sin(wn*sqrt(1-
zt^2)*t)))*(t>0)'],'t','M','wn','zt'); 
  
% Response is a sum of step and ramp responses 
q = zeros(size(ts)); 
for k = 1:length(ts) 
    q(k) = F0*qs(ts(k),M,wn,zt) - F0*qs(ts(k)-T,M,wn,zt); 
end 
  
figure(1) 
subplot(2,1,1) 
plot(ts*1e3,F); grid on; 
title('Forcing F(t)'); 
subplot(2,1,2); 
plot(ts*1e3,q*180/pi); grid on; 
title('Response q(t)'); 
xlabel('time (ms)'); ylabel('\theta (^o)'); 
  
% Solution using ODE45 
  
% Define equations of motion in eom_2_12.m 
% Note - ode45 requires only the time span, not the whole time vector 
tic 
[tout,yout] = ode45('eom_2e_1',[ts(1),ts(end)],[q_0; q_dot_0]); 
t_ode = toc 
  
q_ode = yout(:,1); % the first of the y variables is q(t), the second 
is q_dot(t) 
  
% Add red dots to plot above 
hold on; plot(tout*1e3,q_ode*180/pi,'r.'); hold off; 
legend('Analytical','ODE45'); 
 
%%% Equations of Motion: 
function [xdot] = eom_2e_1(t,x) 
  
global S % bring in parameters 
  
% Forcing - sum of step and ramp 
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F = S.F0*(t>0) - S.F0.*(t-S.T>0); 
  
% Equations of Motion 
xdot(1,1) = x(2); 
xdot(2,1) = -S.wn^2*x(1)-2*S.zt*S.wn*x(2) + F/S.M; 
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% Solution to HW e2-03, Car impulse 
  
m=1000; 
wn=sqrt(11000/1000) 
zt=660/1000/2/wn 
wd=wn*sqrt(1-zt^2); 
lam=-zt*wn+1i*wd; 
  
A=-0.1+1i*0.1*zt*wn/(wn*sqrt(1-zt^2)) 
  
gam=pi-angle(A) 
  
T=(3*pi/2+gam+1*2*pi)/wd 
  
F0=m*wd*abs(A)*exp(-zt*wn*T) 
% Notice, the value of F0 seems rather small.  Remember that it is an 
% impulse, so to get realistic units we need to integrate over the 
impulse. 
% For example, if the impulse were a constant force, Fc, that is 
0.001sec long, 
% then the integral of Fc*0.001 would equal F0, or in other words, 
  
Fc=F0/0.001 % N 
% Maybe that still seems a little small but it seems to be correct. 
  
B=(-1i*F0/(m*wd)) 
  
% Check to see if this works: 
dt=(2*pi/wd)/20; % 20 samples per period 
ts=[0:dt:7]; 
z_IC=real(A*exp(lam*ts)); 
z_F=real(B*exp(lam*(ts-T))).*(ts>T); 
  
figure(1); 
plot(ts,z_IC, ts,z_F, ts, z_IC+z_F,'--'); grid on; 
legend('z_{IC}','z_F','z_{total}'); 
set(get(gca,'Children'),'LineWidth',2); 
xlabel('time (s)'); ylabel('Displacement (m)'); 
 
Command Window Output: 
wn = 
       3.3166 
zt = 
     0.099499 
A = 
         -0.1 +  0.0099995i 
gam = 
     0.099664 
T = 
        3.362 
F0 = 
       109.36 
Fc = 
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   1.0936e+05 
B = 
            0 -   0.033138i 
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2.6.1 problem description

Homework #5, EMA 545, Spring 2013 
Due Thursday 2/28 

 
Comment:  As I mentioned in class, I strongly encourage you to avoid hunting for formulas on 
forced response.  All of these problems can be solved simply by knowing the differential 
equation and that the force and steady state response have the form: 

 i( ) Re tf t Fe                   i( ) Re tx t Xe   

 
Problem 1: 3.9 from Ginsberg  (Hint: assume that the motion of every component of the system 
is harmonic.  Derive the equation(s) of motion and show the full derivation used to obtain the 
complex amplitude(s) from the equation(s) of motion.) 
 
Problem 2: (3e1) (20 points) 
A 450 kg generator, modeled as a rigid mass, must be installed on the 
same floor as some sensitive laboratory equipment.  The operation of the 
generator results in a vertical force, f(t), being applied to the generator 
(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm.  
Use a damping ratio of  = 0.03 for both (a) and (b) below.   

a.) Find the stiffness of the support, k, such that the force transmitted 
to the ground is no more than 2kN. 

b.) Take your result from part (a) and compute the amplitude of the 
generator as the machine starts up.  (As the machine starts up, 
assume that the force amplitude is constant at 20kN, but the 
frequency increases very slowly from zero to 1800 rpm.  Do a worst-case analysis – just 
assure that the steady-state amplitude of the machine is less than 10mm for any forcing 
frequency between 0 and 1800 rpm.) 

c.) Using your results from (a) and (b), suppose that the startup amplitude must not exceed 
10mm.  The startup amplitude can be decreased by adding mass to the generator while 
also increasing the stiffness of the support to keep the natural frequency of the system 
constant.  How much mass must be added to keep the amplitude below 10mm? 

 
Problem 3: 3.19 from Ginsberg 
 
Problem 4: 3.23 from Ginsberg 
 
 
 

m

k

z

f(t)

c
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2.6.2 problem 1

Assuming the 2 masses move together (else we will have 2 systems and 2 equations of
motions. Hence I assumed that they move together as one body).

(𝑚1 + 𝑚2)𝑦′′ + 𝑦′𝜇 + 𝑘𝑦 = 𝑓(𝑡)

Since 𝑦(𝑡) = 𝐴 sin(𝜔𝑡) hence

𝑦(𝑡) = Re�
𝐴
𝑖
𝑒𝑖𝜔𝑡�

Let
𝑓(𝑡) = Re�

�̂�
𝑖
𝑒𝑖(𝜔𝑡)�

Where �̂� is the complex amplitude of the force. Now we substitute all these in the differ-
ential equation above.

𝑦′ = Re�𝜔𝐴𝑒𝑖𝜔𝑡�

𝑦′′ = Re�𝑖𝜔2𝐴𝑒𝑖𝜔𝑡�
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(𝑚1 + 𝑚2)𝑦′′ + 𝑦′𝜇 + 𝑘𝑦 = Re�
�̂�
𝑖
𝑒𝑖(𝜔𝑡)�

Re�𝑖𝜔2𝐴𝑒𝑖𝜔𝑡�(𝑚1 + 𝑚2) + Re�𝜔𝐴𝑒𝑖𝜔𝑡�𝜇 + 𝑘Re�
𝐴
𝑖
𝑒𝑖𝜔𝑡� = Re�

�̂�
𝑖
𝑒𝑖(𝜔𝑡)�

Re��𝑖𝜔2(𝑚1 + 𝑚2) + 𝜔𝜇 +
1
𝑖
𝑘�𝐴𝑒𝑖𝜔𝑡� = Re�

�̂�
𝑖
𝑒𝑖(𝜔𝑡)�

�𝑖𝜔2(𝑚1 + 𝑚2) + 𝜔𝜇 +
1
𝑖
𝑘�𝐴 =

�̂�
𝑖

Hence
�̂� = �−𝜔2(𝑚1 + 𝑚2) + 𝑖𝜔𝜇 + 𝑘�𝐴

𝑘 = 3.2 × 103 Nm, 𝜇 = 40 Ns/m,𝐴 = 0.02meter. When 𝜔 = 75rad/sec the above becomes

�̂� = �−752(1.5) + 𝑖75 × 40 + 3.2 × 103�0.02
= −104.75 + 60.0𝑖

Hence Re��̂�� = −104.75N and the phase is tan−1�− 60.0
104.75

� = 2.62 rad/sec.

When 𝜔 = 85

�̂� = 1.5�−852 + 𝑖85
40
1.5

+ 2133.3�0.02

= −152.75 + 68.0𝑖

Re��̂�� = −152.75 N and the phase is tan−1�− 68
152.75

� = 2.722 rad/sec.
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2.6.3 problem 2

2.6.3.1 Part(a)

Force transmitted to floor is given by

𝐹𝑡𝑟 = 𝑐𝑧′ + 𝑘𝑧

Let 𝑓(𝑡) = 𝐹 cos(𝜔𝑡) = Re�𝐹𝑒𝑖𝜔𝑡� = Re�𝐹𝑒𝑖𝜔𝑡� where we are given that 𝐹 = 20 × 103 N.

𝜔 = 2𝜋�180060
� = 60𝜋 = 188.50 rad/sec or 30 Hz.

Let 𝑧𝑠𝑠 = Re�𝐹𝑘 |𝐷|𝑒
𝑖�𝜔𝑡−𝜙��where𝜙 = tan−1� 2𝜁𝑟

1−𝑟2
� and |𝐷| = 1

�
�1−𝑟2�

2
+(2𝜁𝑟)2

. and 𝑟 = 𝜔
𝜔𝑛

Hence

𝑧′ = Re�𝑖𝜔𝐹
𝑘 |𝐷|𝑒

𝑖�𝜔𝑡−𝜙�� = Re�𝜔𝐹
𝑘 |𝐷|𝑒

𝑖�𝜔𝑡−𝜙+𝜋
2 ��. Therefore

𝐹𝑡𝑟 = 𝑐Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�𝜔𝑡−𝜙+

𝜋
2 �� + 𝑘Re�

𝐹
𝑘
|𝐷|𝑒𝑖�𝜔𝑡−𝜙��

Where 𝑐 = 2𝜁𝜔𝑛𝑚 and When 𝐹𝑡𝑟 = 2 × 103N . We now solve for 𝑘 from

2 × 103 ≥ 2𝜁𝜔𝑛𝑚Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�𝜔𝑡−𝜙+

𝜋
2 �� + 𝑘Re�

𝐹
𝑘
|𝐷|𝑒𝑖�𝜔𝑡−𝜙��
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Taking the maximum case for RHS where exponential are unity magnitude, hence

2 × 103 = 2𝜁𝜔𝑛𝑚𝜔
𝐹
𝑘
|𝐷| + 𝐹|𝐷|

= �2𝜁𝜔𝑛𝑚𝜔�
𝐹
𝑘�
+ 𝐹�|𝐷|

=
𝐹�1 + 2𝜁𝜔𝑛

𝑚
𝑘𝜔�

��1 − 𝑟
2�

2
+ (2𝜁𝑟)2

Where 𝑟 = 𝜔
𝜔𝑛
= 𝜔

�
𝑘
𝑚

. Hence the above becomes

2 × 103 =
𝐹�1 + 2𝜁𝜔𝑛

𝑚
𝑘𝜔�

�
⃓
⃓
⎷
�1 −

𝜔2

𝑘
𝑚
�
2

+
⎛
⎜⎜⎜⎜⎝2𝜁

𝜔

�
𝑘
𝑚

⎞
⎟⎟⎟⎟⎠

2

In the above everything is known except for 𝑘which we solve for. Plugging the numerical
values given. 𝜔 = 2𝜋�180060

�,𝑚 = 450, 𝐹 = 20 × 103, 𝜁 = 0.03 hence

2 × 103 =
20 × 103�1 + 2(0.03)�

𝑘
450

450
𝑘
(60𝜋)�

�
⃓
⃓
⎷
�1 − 450(60𝜋)2

𝑘
�
2
+
⎛
⎜⎜⎜⎜⎝2(0.03)

60𝜋

�
𝑘
450

⎞
⎟⎟⎟⎟⎠

2

Hence 𝑘 = 1.2135 × 106 N/m. Hence 𝜔𝑛 = �
𝑘
𝑚 = �

1.2135×106

450 = 51.929 rad/sec or 8.265Hz.

2.6.3.2 part(b)

The total displacement is given by

𝑧(𝑡) = 𝑧𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝑡) + 𝑧𝑠𝑠(𝑡)

= 𝑒−𝜁𝜔𝑛𝑡(𝐴 cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡) + Re�
𝐹
𝑘
|𝐷|𝑒𝑖�𝜔𝑡−𝜙��

Where
𝑧𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝑡) = 𝑒−𝜁𝜔𝑛𝑡(𝐴 cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡)

Assuming at 𝑡 = 0 the system is relaxed hence 𝑧(0) = 0 and 𝑧′(0) = 0 we can determine
𝐴,𝐵 from Eq ??.
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At 𝑡 = 0,

𝑧(0) = 0

= 𝐴 + Re�
𝐹
𝑘
|𝐷|𝑒−𝑖𝜙�

Hence
𝐴 = −Re�

𝐹
𝑘
|𝐷|𝑒−𝑖𝜙�

and

𝑧′(𝑡) = −𝜁𝜔𝑛𝑒−𝜁𝜔𝑛𝑡(𝐴 cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡) + 𝑒−𝜁𝜔𝑛𝑡(−𝜔𝑑𝐴 sin𝜔𝑑𝑡 + 𝜔𝑑𝐵 cos𝜔𝑑𝑡)

+ Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�−𝜙+

𝜋
2 ��

Hence at 𝑡 = 0

𝑧′(0) = 0

= −𝜁𝜔𝑛𝐴 + 𝜔𝑑𝐵 + Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�−𝜙+

𝜋
2 ��

Hence

𝐵 =
𝜁𝜔𝑛
𝜔𝑑

𝐴 −
1
𝜔𝑑

Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�−𝜙+

𝜋
2 ��

= −
𝜁𝜔𝑛
𝜔𝑑

Re�
𝐹
𝑘
|𝐷|𝑒−𝑖𝜙� −

1
𝜔𝑑

Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�−𝜙+

𝜋
2 ��

Therefore the displacement is

𝑧(𝑡) = 𝑒−𝜁𝜔𝑛𝑡�−Re�
𝐹
𝑘
|𝐷|𝑒−𝑖𝜙� cos𝜔𝑑𝑡 + �−

𝜁𝜔𝑛
𝜔𝑑

Re�
𝐹
𝑘
|𝐷|𝑒−𝑖𝜙� −

1
𝜔𝑑

Re�𝜔
𝐹
𝑘
|𝐷|𝑒𝑖�−𝜙+

𝜋
2 ��� sin𝜔𝑑𝑡�

+ Re�
𝐹
𝑘
|𝐷|𝑒𝑖�𝜔𝑡−

𝜋
2 −𝜙��
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Hence expressed in sin and cos

𝑧(𝑡) = −�
𝐹
𝑘
|𝐷| cos𝜙�𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝑒−𝜁𝜔𝑛𝑡�−

𝜁𝜔𝑛
𝜔𝑑

�
𝐹
𝑘
|𝐷| cos𝜙� −

1
𝜔𝑑
�𝜔
𝐹
𝑘
|𝐷| sin𝜙�� sin𝜔𝑑𝑡

+
𝐹
𝑘
|𝐷| cos�𝜔𝑡 − 𝜙�

= −�
𝐹
𝑘
|𝐷| cos𝜙�𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝑒−𝜁𝜔𝑛𝑡

𝐹|𝐷|
𝜔𝑑𝑘

�−𝜁𝜔𝑛 cos𝜙 − 𝜔 sin𝜙� sin𝜔𝑑𝑡 +
𝐹
𝑘
|𝐷| cos�𝜔𝑡 − 𝜙�

=
𝐹
𝑘
|𝐷|𝑒−𝜁𝜔𝑛𝑡�− cos𝜙 cos𝜔𝑑𝑡 +

1
𝜔𝑑
�−𝜁𝜔𝑛 cos𝜙 − 𝜔 sin𝜙� sin𝜔𝑑𝑡� +

𝐹
𝑘
|𝐷| cos�𝜔𝑡 − 𝜙�

Since 𝜁 = 0.03 then𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 = 𝜔𝑛√1 − 0.032 = 0.99955(𝜔𝑛). Therefore in the above
we can just replace 𝜔𝑑 by 𝜔𝑛 with very good approximation, hence we now obtain

𝑧(𝑡) =
𝐹
𝑘
|𝐷|𝑒−𝜁𝜔𝑛𝑡�− cos𝜙 cos𝜔𝑛𝑡 +

1
𝜔𝑛
�−𝜁𝜔𝑛 cos𝜙 − 𝜔 sin𝜙� sin𝜔𝑛𝑡� +

𝐹
𝑘
|𝐷| cos�𝜔𝑡 − 𝜙�

=
𝐹
𝑘
|𝐷|𝑒−𝜁𝜔𝑛𝑡�− cos𝜙 cos𝜔𝑛𝑡 − �𝜁 cos𝜙 +

𝜔
𝜔𝑛

sin𝜙� sin𝜔𝑛𝑡� +
𝐹
𝑘
|𝐷| cos�𝜔𝑡 − 𝜙�

This is the amplitude. In the above |𝐷| = 1

�
�1−�

𝜔
𝜔𝑛

�
2
�
2
+�2𝜁� 𝜔

𝜔𝑛
��
2
, and 𝜙 = tan−1

2𝜁 𝜔
𝜔𝑛

1−� 𝜔
𝜔𝑛

�
2 . The

transient solution usually goes away after 5 or 6 cycles. Hence let us assume that the start
up time takes 6 × 2𝜋

𝜔𝑛
= 6 × 2𝜋

�
𝑘
𝑚

= 6 × 2𝜋

�
1.2135×106

450

= 0.72597 seconds. Or 1 second at worst.

Therefore we can now plot the amplitude for 𝑡 = 0 to 𝑡 = 1 second in increments of 0.1
second, and each time advance, we can increment𝜔 from 0 to 60𝜋 in linear fashion, hence
each 0.1 second we update 𝜔 by an amount 6𝜋. After 1 second has passed, the system
is assumed to be in steady state, and then we keep 𝜔 fixed at 60𝜋 rad/sec. This is a plot
showing 𝑧(𝑡) for 𝑡 = 0 to 2 seconds given the above method of changing 𝜔

To avoid going over 10𝑚𝑚, this means we have to avoid the case of 𝑟 = 1 or 𝜔 = 𝜔𝑛.
When I first just incremented 𝜔𝑛 such that 𝑟 = 1 was not avoided, resonance caused the
amplitude to go over 10𝑚𝑚 as given in this plot. The transient solution itself stayed just
below 10mm but the steady state solution went over 10mm due to resonance
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2.6.3.3 Part(c)

To insure that the amplitude does not go over 10mm,we need to addmass to the generator.
Maximum amplitude is given by 𝐹

𝑘
1
2𝜁 =

20×103

1.2135×106
1

2(0.03) = 0.27469meter or 274mm

So to insure maximum does not exceed 10mm, solve for new 𝑘 from 0.01 = 20×103

𝑘𝑛
1

2(0.03) ,

hence 𝑘𝑛 = 3.3333×107. Since𝜔𝑛 = 51.929 =
�

𝑘𝑛
𝑚𝑛

then newmass is𝑚𝑛 =
3.3333×107

51.9292 = 12361 kg

using these values, the above plot now are redone. This is the result
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We see that now the maximum displacement remained below 10mm.
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2.6.4 Problem 3

Let 𝜀 = 50𝑚𝑚 = 0.05𝑚 be the distance of the unbalance mass𝑚. Let𝑀 = 80𝑘𝑔 be the mass
of the motor. The equation of motion is given by

(𝑀 + 𝑚)𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑚𝜀Ω2 sin(Ω𝑡)

𝑦′′ + 2𝜁𝜔𝑛𝑦′ + 𝜔2
𝑛𝑦 =

𝑚
𝑚 +𝑀

𝜀Ω2 Re�
1
𝑖
𝑒𝑖Ω𝑡�

Where 𝜔𝑛 = �
𝑘

𝑚+𝑀 and 𝜁 = 𝑐
2(𝑀+𝑚)𝜔𝑛

. Let 𝑦 = Re�𝑌𝑖 𝑒
𝑖Ω𝑡�. This leads to

𝑌 =
𝑚

𝑚 +𝑀
𝜀Ω2

𝜔2
𝑛 − Ω2 + 2𝑖𝜁𝜔𝑛Ω

Since static deflection is 40𝑚𝑚, then

(𝑀 + 𝑚)𝑔
𝑘

= 0.04

𝑘 =
(𝑀 + 𝑚)𝑔
0.04

But 𝜔2
𝑛 =

𝑘
𝑚+𝑀 = (𝑀+𝑚)𝑔

0.04(𝑀+𝑚) =
𝑔

0.04 , hence 𝜔𝑛 = �
9.81
0.04 = 15.66 rad/sec or 2.492 Hz.
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2.6.4.1 part(a)

Since at steady state the displacement is 10mm, thenΩ = 2𝜋145
60 = 15.184 or 2.4167 Hz

hence

𝑦 = Re�
𝑌
𝑖
𝑒𝑖Ω𝑡� = Re

⎛
⎜⎜⎜⎜⎝
𝜀𝑚

𝑚 +𝑀
𝑟2

�1 − 𝑟2 + 2𝑖𝜁𝑟�
𝑒𝑖�Ω𝑡−𝜋

2 �
⎞
⎟⎟⎟⎟⎠

=
𝜀𝑚𝑟2

𝑚 +𝑀
1

�
��1 − 𝑟2�

2
+ (2𝜁𝑟)2�

Re�𝑒−𝑖𝜙𝑒𝑖�Ω𝑡−𝜋
2 ��

Where 𝜙 = tan−1� 2𝜁𝑟
1−𝑟2

�. 𝑟 = Ω
𝜔𝑛

= 15.184
15.66 = 0.9696 hence the above becomes, at steady

state

0.01 =
(0.05)𝑚
𝑚 + 80

0.96962

��1 − 0.9696
2�

2
+ (2𝜁0.9696)2

Re�𝑒𝑖�15.184 𝑡−𝜋
2 −𝜙��

=
(0.05)𝑚
𝑚 + 80

0.96962

��1 − 0.9696
2�

2
+ (2𝜁0.9696)2

sin�15.184 𝑡 − 𝜙� (2.101)

We are now told that at Ω = 15.184 and when Ω𝑡 = 750 then the displacement is zero,
hence

0 =
(0.05)𝑚
𝑚 + 80

0.96962

��1 − 0.9696
2�

2
+ (2𝜁0.9696)2

sin�750 − 𝜙�

or
sin�750 − 𝜙� = 0

750 − 𝜙 = 0
𝜙 = 750

Since 𝜙 = tan−1� 2𝜁𝑟
1−𝑟2

� then

75�
𝜋
180

� = tan−1�
2𝜁0.9696
1 − 0.96962 �

Hence

tan−1�
2𝜁0.9696
1 − 0.96962 �

= 1.3090

2𝜁0.9696
1 − 0.96962

= tan(1.3090)

2𝜁0.9696
1 − 0.96962

= 3.7321
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Hence 𝜁 = 0.11523

2.6.4.2 Part(b)

From Eq 2.101

0.01 =
(0.05)𝑚
𝑚 + 80

0.96962

��1 − 0.9696
2�

2
+ (2𝜁0.9696)2

sin�15.184 𝑡 − 𝜙�

The maximum amplitude is when

0.01 =
(0.05)𝑚
𝑚 + 80

0.96962

��1 − 0.9696
2�

2
+ (2𝜁0.9696)2

But 𝜁 = 0.11523, hence we now solve for 𝑚

0.01 =
(0.05)𝑚
𝑚 + 80

0.96962

��1 − 0.9696
2�

2
+ (2(0.11523)0.9696)2

Hence
𝑚 = 4.1 𝑘𝑔

Hence 𝜀𝑚 = (0.05)(4.1) = 0.20 kg meter

2.6.4.3 Part(c)

since

𝑦 =
𝜀𝑚𝑟2

𝑚 +𝑀
1

�
��1 − 𝑟2�

2
+ (2𝜁𝑟)2�

Re�𝑒𝑖�Ω𝑡−𝜋
2 −𝜙��

As Ω becomes much larger than 𝜔𝑛 then �1 − 𝑟2�
2
→ 𝑟4 . Now dividing numerator and

denominator by 𝑟2 gives

𝑦 =
𝜀𝑚

𝑚 +𝑀
1

�
�𝑟4+(2𝜁𝑟)2�

𝑟4

sin�Ω𝑡 − 𝜙�

=
𝜀𝑚

𝑚 +𝑀
1

�
�1 + 4𝜁2

𝑟2
�
sin�Ω𝑡 − 𝜙�
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as 𝑟 becomes large then 4𝜁2

𝑟2 → 0 hence

𝑦 ≃
𝜀𝑚

𝑚 +𝑀
sin�Ω𝑡 − 𝜙�

The smallest possible amplitude is

�𝑦� =
0.20

4.1 + 80
= 2.3781 × 10−3 meter

or
�𝑦� = 2.38mm

2.6.5 problem 4

2.6.5.1 Part(a)

(note: total mass of system includes the small unbalanced masses) Since static deflection
is 8.5𝑚𝑚, then

𝑀𝑔
𝑘

= 0.0085

𝑘 =
𝑀𝑔
0.0085

But 𝜔2
𝑛 =

𝑘
𝑀 = 𝑀𝑔

0.0085𝑀 = 𝑔
0.0085 , hence 𝜔𝑛 = �

9.81
0.0085 = 33.972 rad/sec or 5.4068 Hz
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2.6.5.2 Part(b)

The equation of motion is (angle Ω is now measured from horizontal, anti-clock wise
positive)

𝑀𝑦′′ + 𝑐𝑦′ = 2𝑚𝜀Ω2 sin(Ω𝑡) = Re�
1
𝑖
2𝑚𝜀Ω2𝑒𝑖(Ω𝑡)�

Let 𝑦(𝑡) = Re�1𝑖𝑌𝑒
𝑖Ω𝑡� hence 𝑦′(𝑡) = Re�𝑌Ω𝑒𝑖Ω𝑡�,𝑦′′(𝑡) = Re�𝑖𝑌Ω2𝑒𝑖Ω𝑡�, hence the above

becomes

Re�𝑖𝑌Ω2𝑒𝑖Ω𝑡� +
𝑐
𝑀

Re�𝑌Ω𝑒𝑖Ω𝑡� = Re�
1
𝑖
2𝑚𝜀Ω2

𝑀
𝑒𝑖Ω𝑡�

Re��𝑖Ω2 +
𝑐Ω
𝑀 �𝑌𝑒𝑖Ω𝑡� = Re�

1
𝑖
2𝑚𝜀Ω2

𝑀
𝑒𝑖Ω𝑡�

�𝑖Ω2 +
𝑐Ω
𝑀 �𝑌 =

1
𝑖
2𝑚𝜀Ω2

𝑀

𝑌 =
1
𝑖

2𝑚𝜀Ω2

𝑀

𝑖Ω2 + 𝑐Ω
𝑀

=
2𝑚𝜀Ω2

𝑖𝑐Ω −𝑀Ω2

Hence

𝑦𝑠𝑠(𝑡) = Re�
1
𝑖
𝑌𝑒𝑖(Ω𝑡)�

= Re�
1
𝑖

2𝑚𝜀Ω2

𝑖𝑐Ω −𝑀Ω2 𝑒
𝑖(Ω𝑡)�

Now we are told when Ω𝑡 = 𝜋
2 (upright position) then 𝑦 = 0(since it passes static equi-

librium). At this moment Ω = 2𝜋900
60 = 94.248 rad/sec , At this moment the centripetal

forces equal the damping force downwards (since themasswasmoving upwards). Hence

𝑚𝜀Ω2 = 𝑐𝑦′(𝑡)

But from above we found that

𝑦′(𝑡) = Re�
2𝑚𝜀Ω2

𝑖𝑐Ω −𝑀Ω2Ω𝑒
𝑖Ω𝑡�

= Re�
(0.5)94.2482

𝑖𝑐(94.248) − 200(94.248)2
94.248𝑒𝑖

𝜋
2 �

= Re�
8.3718 × 105

94.248𝑖𝑐 − 1.7765 × 106
𝑒𝑖

𝜋
2 �
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Hence

𝑚𝜀Ω2 = 𝑐�𝑦′(𝑡)�

(0.5)94.2482 = 𝑐
8.3718 × 105

�(94.248𝑐)
2 + �1.7765 × 106�

2

4441.3 = 8.3718 × 105
𝑐

√8882.7𝑐2 + 3.1560 × 1012

Solving numerically for 𝑐 gives

𝑐 = 1.0882 × 104 N second per meter

2.6.5.3 Part(c)

When Ω = �2𝜋1000
60
� = 104.72 rad/sec or 16.667 Hz. From

𝑦 = Re�
1
𝑖

2𝑚𝜀Ω2

𝑖𝑐Ω −𝑀Ω2 𝑒
𝑖(Ω𝑡)�

= Re
⎛
⎜⎜⎜⎜⎝

2(0.5)(104.72)2

𝑖�1.0882 × 104�104.72 − 200(104.72)2
𝑒𝑖�104.72𝑡−

𝜋
2 �
⎞
⎟⎟⎟⎟⎠

= Re�
10966.

𝑖1.1396 × 106 − 2.1933 × 106
𝑒𝑖�104.72𝑡−

𝜋
2 ��

�𝑦� = 4.4mm
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2.6.6 Key solution for HW 5

Homework #5, EMA 545, Spring 2013 
Due Thursday 2/28 

 
Comment:  As I mentioned in class, I strongly encourage you to avoid hunting for formulas on 
forced response.  All of these problems can be solved simply by knowing the differential 
equation and that the force and steady state response have the form: 

 i( ) Re tf t Fe                   i( ) Re tx t Xe   

 
Problem 1: 3.9 from Ginsberg  (Hint: assume that the motion of every component of the system 
is harmonic.  Derive the equation(s) of motion and show the full derivation used to obtain the 
complex amplitude(s) from the equation(s) of motion.) 
 
Problem 2: (3e1) (20 points) 
A 450 kg generator, modeled as a rigid mass, must be installed on the 
same floor as some sensitive laboratory equipment.  The operation of the 
generator results in a vertical force, f(t), being applied to the generator 
(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm.  
Use a damping ratio of  = 0.03 for both (a) and (b) below.   

a.) Find the stiffness of the support, k, such that the force transmitted 
to the ground is no more than 2kN. 

b.) Take your result from part (a) and compute the amplitude of the 
generator as the machine starts up.  (As the machine starts up, 
assume that the force amplitude is constant at 20kN, but the 
frequency increases very slowly from zero to 1800 rpm.  Do a worst-case analysis – just 
assure that the steady-state amplitude of the machine is less than 10mm for any forcing 
frequency between 0 and 1800 rpm.) 

c.) Using your results from (a) and (b), suppose that the startup amplitude must not exceed 
10mm.  The startup amplitude can be decreased by adding mass to the generator while 
also increasing the stiffness of the support to keep the natural frequency of the system 
constant.  How much mass must be added to keep the amplitude below 10mm? 

 
Problem 3: 3.19 from Ginsberg 
 
Problem 4: 3.23 from Ginsberg 
 
 
 

m

k

z

f(t)

c
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2.7.1 problem description

Homework #6 
EMA 545, Spring 2013 

 
1.)  Problem 3.41 in Ginsberg.  Check your answer for =1.0 using FFT techniques with 
the fft_easy.m Matlab function from the course website. 
 
2.)  Problem 3.50 in Ginsberg. DO PART (a) ONLY. 
 
3.)  (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46 
from Ginsberg using FFT techniques.  Perform your analysis with  = /(3n) as stated in 
the problem and also repeat the analysis for  = 3/n.  Which harmonic is dominant in 
the response in each case?  Why?  Create a plot of the steady-state displacement for each 
case. 
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2.7.2 problem 1
3.41 in text: A periodic disturbance consists of a sequence of exponentially pulse repeated

at intervals 𝑇, such that𝑄(𝑡) = 𝐹𝑒
−𝜆𝑡
𝑇 for 0 < 𝑡 < 𝑇, and𝑄(𝑡 ± 𝑇) = 𝑄(𝑡). The parameter 𝜆 is

nondimensional. Determine the complex Fourier series representing the force. Evaluate
the first 5 coefficients when 𝜆 = 0.1, 1, 10. What does this reveal regarding the influence
of 𝜆 on the frequency spectrum?

Let �̃�(𝑡) be the Fourier series approximation to 𝑄(𝑡) given by

�̃�(𝑡) =
1
2

∞
�
𝑛=−∞

𝐹𝑛𝑒
𝑖𝑛 2𝜋

𝑇 𝑡 (2.102)

Where

𝐹𝑛 =
2
𝑇

𝑇

�
0

𝑄(𝑡)𝑒−𝑖𝑛
2𝜋
𝑇 𝑡𝑑𝑡

=
2
𝑇

𝑇

�
0

𝐹𝑒
−𝜆𝑡
𝑇 𝑒−𝑖𝑛

2𝜋
𝑇 𝑡𝑑𝑡 =

2𝐹
𝑇

𝑇

�
0

𝑒
−𝑡�𝑖𝑛 2𝜋

𝑇 −𝜆
𝑇 �𝑑𝑡 =

2𝐹
𝑇

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝑒
−𝑡�𝑖𝑛 2𝜋

𝑇 −𝜆
𝑇 �

𝑖𝑛2𝜋
𝑇 − 𝜆

𝑇

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

𝑇

0

=
2𝐹

𝑖𝑛2𝜋 − 𝜆�
𝑒
−𝑇�𝑖𝑛 2𝜋

𝑇 −𝜆
𝑇 � − 1�

=
2𝐹

𝑖𝑛2𝜋 − 𝜆
�𝑒−𝑖𝑛2𝜋𝑒−𝜆 − 1�

But 𝑒−𝑖𝑛2𝜋 = 1, hence
𝐹𝑛 =

2𝐹
𝑖𝑛2𝜋 − 𝜆

�𝑒−𝜆 − 1�

Hence Eq 2.102 becomes

�̃�(𝑡) =
1
2

∞
�
𝑛=−∞

2𝐹
𝑖𝑛2𝜋 − 𝜆

�𝑒−𝜆 − 1�𝑒𝑖𝑛
2𝜋
𝑇 𝑡

= 𝐹
∞
�
𝑛=−∞

�𝑒−𝜆 − 1�
𝑖𝑛2𝜋 − 𝜆

𝑒𝑖𝑛
2𝜋
𝑇 𝑡

= 𝐹
∞
�
𝑛=−∞

1 − 𝑒−𝜆

𝜆 + 𝑖𝑛2𝜋
𝑒𝑖𝑛

2𝜋
𝑇 𝑡

For 𝑛 = −2, −1, 0, 1, 2we obtain

�̃�(𝑡) = 𝐹
2
�
𝑛=−2

1 − 𝑒−𝜆

𝜆 + 𝑖𝑛2𝜋
𝑒𝑖𝑛

2𝜋
𝑇 𝑡

= 𝐹�
1 − 𝑒−𝜆

𝜆 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−𝜆

𝜆 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−𝜆

𝜆
+
1 − 𝑒−𝜆

𝜆 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−𝜆

𝜆 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�
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For 𝜆 = 0.1

�̃�(𝑡) = 𝐹�
1 − 𝑒−0.1

0.1 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−0.1

0.1 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−0.1

0.1
+
1 − 𝑒−0.1

0.1 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−0.1

0.1 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

= 𝐹{�6.026 × 10−5 + 7.572 × 10−3𝑖�𝑒−𝑖
4𝜋
𝑇 𝑡

+ �2.41 × 10−4 + 1.514 × 10−2𝑖�𝑒−𝑖
2𝜋
𝑇 𝑡

+ 0.952

+ �2.4099 × 10−4 − 1.5142 × 10−2𝑖�𝑒𝑖
2𝜋
𝑇 𝑡

+ �6.026 × 10−5 − 7.572 × 10−3𝑖�𝑒𝑖
4𝜋
𝑇 𝑡}

For 𝜆 = 1

�̃�(𝑡) = 𝐹�
1 − 𝑒−1

1 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−1

1 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−1

1
+
1 − 𝑒−1

1 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−1

1 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

= 𝐹{(0.00398 + 0.05𝑖)𝑒−𝑖
4𝜋
𝑇 𝑡 + (0.016 + 0.098𝑖)𝑒−𝑖

2𝜋
𝑇 𝑡 + 0.632 + (0.016 + 0.098𝑖)𝑒𝑖

2𝜋
𝑇 𝑡 + (0.00398 + 0.05𝑖)𝑒𝑖

4𝜋
𝑇 𝑡}

For 𝜆 = 10

�̃�(𝑡) = 𝐹�
1 − 𝑒−10

10 − 𝑖4𝜋
𝑒−𝑖

4𝜋
𝑇 𝑡 +

1 − 𝑒−10

10 − 𝑖2𝜋
𝑒−𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−10

10
+
1 − 𝑒−10

10 + 𝑖2𝜋
𝑒𝑖

2𝜋
𝑇 𝑡 +

1 − 𝑒−10

10 + 𝑖4𝜋
𝑒𝑖

4𝜋
𝑇 𝑡�

= 𝐹{�3.877 × 10−2 + 4.872 × 10−2𝑖�𝑒−𝑖
4𝜋
𝑇 𝑡

+ �7.169 × 10−2 + 4.505 × 10−2𝑖�𝑒−𝑖
2𝜋
𝑇 𝑡

+ 0.1

+ �7.169 × 10−2 − 4.505 × 10−2𝑖�𝑒𝑖
2𝜋
𝑇 𝑡

+ �3.877 × 10−2 − 4.872 × 10−2𝑖�𝑒𝑖
4𝜋
𝑇 𝑡}

We notice that as 𝜆 became larger, the DC term became smaller. Since the 𝐷𝐶 term rep-
resents average value of the whole signal, then we can say that as 𝜆 gets larger, then
the average becomes smaller. This means the energy of the signal becomes smaller as 𝜆
becomes larger.

2.7.2.1 Verification using Matlab ffteasy.m

From above, we found for 𝜆 = 1

𝐹𝑛 =
2𝐹

𝑖𝑛2𝜋 − 𝜆
�𝑒−𝜆 − 1�

=
2𝐹

𝑖𝑛2𝜋 − 1
�𝑒−1 − 1�
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and the first 5 found to be

𝑛 𝐹𝑛
−2 0.00398 + 0.05𝑖
−1 0.016 + 0.098𝑖
0 0.632
1 0.016 − 0.098𝑖
2 0.00398 − 0.05𝑖

To verify the result with ffteasy.musing 𝜆 = 1, Using 𝐹 = 1, and using 𝑇 = 1. This below
shows the result for 𝐹0, 𝐹1, 𝐹2 and we see that the DC term 𝐹0 agrees, and that complex
component of 𝐹1, 𝐹2 also agrees. The real parts are little larger than what I obtained using
the above. This might be a scaling issue, and I was not able to determine the reason for it
at this time.

EDU>> T=1; del=0.01; t=0:del:T; lambda=1; xt=exp(-lambda*t/T);
EDU>> (1/length(t))*fft_easy(xt,t)

ans =

0.6326 + 0.0000i
0.0190 - 0.0986i
0.0072 - 0.0502i
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2.7.3 problem 2

139



2.7. HW6 CHAPTER 2. HW’S

We are given that 𝑚 = 1200 kg, 𝑓 = 5 Hz, 𝜁 = 0.4 and

𝑧(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 − 5𝑥2 0 < 𝑥 < 0.2
0 0.2 < 𝑥 < 4

A plot of 𝑧(𝑥) for first 20meters is

z[x_] := Piecewise[{{x - 5 x^2, 0 <= x < 0.2}, {0, 0.2 <= x <= 4}}]
z[x_] /; x > 4 := z[Mod[x, 4]];
Table[{x, z[x]}, {x, 0, 21, .1}];
ListLinePlot[%, PlotRange -> {All, {0, .07}}, Frame -> True,
FrameLabel -> {{"z(x) hight or road (mm)", None}, {"meter",

"bumps on road"}}]

We need to be able to express 𝑧(𝑡) as Re�𝑍𝑒𝑖
2𝜋
𝑇 𝑡� where 𝑇 is the period of the function 𝑧(𝑡).

Hence we need to represent 𝑧(𝑥) as Fourier series approximation then replace 𝑥 = 𝑣𝑡 and
use the result.

The period 𝑇 = 4meter. Let �̃�(𝑥) be the Fourier series approximation to 𝑧(𝑥), hence

�̃�(𝑥) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�
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Where

𝐹𝑛 =
2
𝑇

𝑇

�
0

𝑧(𝑥)𝑒−𝑖𝑛
2𝜋
𝑇 𝑥𝑑𝑥 =

1
2

2/10

�
0

�𝑥 − 5𝑥2�𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 =

1
2

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 −

5
2

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, letting 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒−𝑖𝑛
𝜋
2 𝑥 then 𝑣 =

∫ 𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 = 𝑖𝑒−𝑖𝑛

𝜋
2 𝑥

𝑛𝜋
2

hence

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 = 𝑥

𝑖𝑒−𝑖𝑛
𝜋
2 𝑥

𝑛𝜋
2

�

2
10

0

−
2/10

�
0

𝑖𝑒−𝑖𝑛
𝜋
2 𝑥

𝑛𝜋
2

𝑑𝑥

=
2
10
𝑖𝑒−𝑖𝑛

𝜋
2

2
10

𝑛𝜋
2

−
2
𝑛𝜋

2/10

�
0

𝑖𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

=
4
10
𝑖𝑒−𝑖𝑛

𝜋
10

𝑛𝜋
−
𝑖2
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎝
𝑒−𝑖𝑛

𝜋
2 𝑥

−𝑖𝑛𝜋
2

⎞
⎟⎟⎟⎟⎟⎠

2
10

0

=
4
10
𝑖𝑒−𝑖𝑛

𝜋
10

𝑛𝜋
+

4
𝑛2𝜋2 �𝑒

−𝑖𝑛𝜋
2 𝑥�

2
10

0

=
4
10
𝑖𝑒−𝑖𝑛

𝜋
10

𝑛𝜋
+

4
𝑛2𝜋2 �𝑒

−𝑖𝑛𝜋
2

2
10 − 1�

=
4𝑖

10𝑛𝜋
𝑒−𝑖𝑛

𝜋
10 +

4
𝑛2𝜋2 𝑒

−𝑖𝑛 𝜋
10 −

4
𝑛2𝜋2

= 𝑒−𝑖𝑛
𝜋
10 �

4
𝑛2𝜋2 +

2𝑖
5𝑛𝜋�

−
4

𝑛2𝜋2

Now we do the second integral
2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥.

Integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, letting 𝑢 = 𝑥2 and 𝑑𝑣 = 𝑒−𝑖𝑛
𝜋
2 𝑥 then 𝑣 = 𝑖𝑒−𝑖𝑛

𝜋
2 𝑥

𝑛𝜋
2

hence

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 =

⎡
⎢⎢⎢⎢⎢⎣𝑥

2 𝑖𝑒
−𝑖𝑛𝜋

2 𝑥

𝑛𝜋
2

⎤
⎥⎥⎥⎥⎥⎦

2
10

0

−
2/10

�
0

2𝑥
𝑖𝑒−𝑖𝑛

𝜋
2 𝑥

𝑛𝜋
2

𝑑𝑥

=
8
100

𝑖𝑒−𝑖𝑛
𝜋
10

𝑛𝜋
−
4𝑖
𝑛𝜋

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

141



2.7. HW6 CHAPTER 2. HW’S

But
2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥was solved before and its results is Eq 2.1, hence

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 =

4
100

𝑖𝑒−𝑖𝑛
𝜋
10

𝑛𝜋
2

−
4𝑖
𝑛𝜋�

𝑒−𝑖𝑛
𝜋
10 �

4
𝑛2𝜋2 +

2𝑖
5𝑛𝜋�

−
4

𝑛2𝜋2 �

=
8𝑖

100𝑛𝜋
𝑒−𝑖𝑛

𝜋
10 − 𝑒−𝑖𝑛

𝜋
10 �

16𝑖
𝑛3𝜋3 −

8
5𝑛2𝜋2 � +

16𝑖
𝑛3𝜋3

= 𝑒−𝑖𝑛
𝜋
10 �

8𝑖
100𝑛𝜋

−
16𝑖
𝑛3𝜋3 +

8
5𝑛2𝜋2 � +

16𝑖
𝑛3𝜋3

Putting all the above together, we obtain 𝐹𝑛 as

𝐹𝑛 =
1
2

2/10

�
0

𝑥𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥 −

5
2

2/10

�
0

𝑥2𝑒−𝑖𝑛
𝜋
2 𝑥𝑑𝑥

=
1
2�
𝑒−𝑖𝑛

𝜋
10 �

4
𝑛2𝜋2 +

2𝑖
5𝑛𝜋�

−
4

𝑛2𝜋2 � −
5
2�
𝑒−𝑖𝑛

𝜋
10 �

8𝑖
100𝑛𝜋

−
16𝑖
𝑛3𝜋3 +

8
5𝑛2𝜋2 � +

16𝑖
𝑛3𝜋3 �

= 𝑒−𝑖𝑛
𝜋
10 �

2
𝑛2𝜋2 +

𝑖
5𝑛𝜋�

−
2

𝑛2𝜋2 − 𝑒
−𝑖𝑛 𝜋

10 �
20𝑖

100𝑛𝜋
−
40𝑖
𝑛3𝜋3 +

20
5𝑛2𝜋2 � −

40𝑖
𝑛3𝜋3

= 𝑒−𝑖𝑛
𝜋
10 �

2
𝑛2𝜋2 +

𝑖
5𝑛𝜋

−
20𝑖

100𝑛𝜋
+

40𝑖
𝑛3𝜋3 −

4
𝑛2𝜋2 � −

2
𝑛2𝜋2 −

40𝑖
𝑛3𝜋3

= 𝑒−𝑖𝑛
𝜋
10 �

40𝑖
𝑛3𝜋3 −

2
𝑛2𝜋2 � −

2
𝑛2𝜋2 −

40𝑖
𝑛3𝜋3

Now

𝐹0 =
2
𝑇

𝑇

�
0

𝑧(𝑥)𝑑𝑥 =
1
2

2/10

�
0

�𝑥 − 5𝑥2�𝑑𝑥 =
1
300

Hence

�̃�(𝑥) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

=
1
600

+ Re�
𝑁
�
𝑛=1
�𝑒−𝑖𝑛

𝜋
10 �

40𝑖
𝑛3𝜋3 −

2
𝑛2𝜋2 � −

2
𝑛2𝜋2 −

40𝑖
𝑛3𝜋3 �𝑒

𝑖𝑛𝜋
2 𝑥�

=
1
600

+ Re�
𝑁
�
𝑛=1
𝑒𝑖�

𝑛𝜋
2 𝑥− 𝑛𝜋

10 ��
40𝑖
𝑛3𝜋3 −

2
𝑛2𝜋2 � − 𝑒

𝑖𝑛𝜋
2 𝑥�

2
𝑛2𝜋2 +

40𝑖
𝑛3𝜋3 ��

=
1
600

+ Re�
𝑁
�
𝑛=1

−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�

𝑛𝜋
2 𝑥− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖� 𝑛𝜋2 𝑥− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜋

2 𝑥 +
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛

𝜋
2 𝑥�
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But 𝑥 = 𝑣𝑡, hence

�̃�(𝑡) =
1
600

+ Re�
𝑁
�
𝑛=1

−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�

𝑛𝜋𝑣
2 𝑡− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖� 𝑛𝜋𝑣2 𝑡− 𝑛𝜋

10 � −
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜋𝑣

2 𝑡 +
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛

𝜋𝑣
2 𝑡�

Therefore the forcing frequency is 𝑛𝜛1 = 𝑛𝜋𝑣
2 or from 2𝜋𝑓1 =

𝜋𝑣
2 , hence 𝑓1 =

𝑣
4Hz.The

above can be written as

�̃�(𝑡) =
1
600

+
𝑁
�
𝑛=1

Re�
−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�

𝑛𝜋𝑣
2 𝑡− 𝑛𝜋

10 �� −
𝑁
�
𝑛=1

Re�
2

𝑛2𝜋2 𝑒
𝑖� 𝑛𝜋𝑣2 𝑡− 𝑛𝜋

10 ��

−
𝑁
�
𝑛=1

Re�
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜋𝑣

2 𝑡� +
𝑁
�
𝑛=1

Re�
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛

𝜋𝑣
2 𝑡�

=
1
600

+
𝑁
�
𝑛=1

−40
𝑛3𝜋3 sin�𝑛𝜛1𝑡 −

𝑛𝜋
10
� −

𝑁
�
𝑛=1

2
𝑛2𝜋2 cos�𝑛𝜛1𝑡 −

𝑛𝜋
10
�

−
𝑁
�
𝑛=1

2
𝑛2𝜋2 cos(𝑛𝜛1𝑡) +

𝑁
�
𝑛=1

40
𝑛3𝜋3 sin(𝑛𝜛1𝑡)

=
1
600

−
40
𝜋3

𝑁
�
𝑛=1

1
𝑛3

sin�𝑛𝜛1𝑡 −
𝑛𝜋
10
� −

2
𝜋2

𝑁
�
𝑛=1

1
𝑛2

cos�𝑛𝜛1𝑡 −
𝑛𝜋
10
�

−
2
𝜋2

𝑁
�
𝑛=1

1
𝑛2

cos(𝑛𝜛1𝑡) +
40
𝜋3

𝑁
�
𝑛=1

1
𝑛3

sin(𝑛𝜛1𝑡)

Where 𝜛1 =
𝜋𝑣
2

To verify the above, here is a plot for different number of fourier series terms showing that
approximation improves as 𝑁 increases. This was done for 𝑣 = 5𝑚/𝑠 and for 5 seconds.
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2.7.3.1 Part(a)

The equation of motion is

𝑚𝑦′′ + 𝑐�𝑦′ − 𝑧′� + 𝑘�𝑦 − 𝑧� = 0
𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑐𝑧′ + 𝑘𝑧 (2.1)
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From earlier, we found that fourier series approximation to 𝑧(𝑡) is

𝑧(𝑡) =
1
600

+ Re�
∞
�
𝑛=1

−40
𝑛3𝜋3

1
𝑖
𝑒𝑖�𝑛𝜛𝑡−

𝑛𝜋
10 � −

2
𝑛2𝜋2 𝑒

𝑖�𝑛𝜛𝑡− 𝑛𝜋
10 � −

2
𝑛2𝜋2 𝑒

𝑖𝑛𝜛𝑡 +
40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛𝜛𝑡�

=
1
600

+ Re�
∞
�
𝑛=1

−40
𝑛3𝜋3 𝑒

−𝑖 𝑛𝜋10
1
𝑖
𝑒𝑖𝑛𝜛𝑡 −

2
𝑛2𝜋2 𝑒

−𝑖 𝑛𝜋10 𝑒𝑖𝑛𝜛𝑡 −
2

𝑛2𝜋2 𝑒
𝑖𝑛𝜛𝑡 +

40
𝑛3𝜋3

1
𝑖
𝑒𝑖𝑛𝜛𝑡�

=
1
600

+ Re�
∞
�
𝑛=1
𝑒𝑖𝑛𝜛𝑡�

−40
𝑛3𝜋3 𝑒

−𝑖� 𝑛𝜋10 +
𝜋
2 � −

2
𝑛2𝜋2 𝑒

−𝑖 𝑛𝜋10 −
2

𝑛2𝜋2 +
40
𝑛3𝜋3 𝑒

−𝑖𝜋2 ��

Let
𝑍𝑛 =

−40
𝑛3𝜋3 𝑒

−𝑖� 𝑛𝜋10 +
𝜋
2 � −

2
𝑛2𝜋2 𝑒

−𝑖 𝑛𝜋10 −
2

𝑛2𝜋2 +
40
𝑛3𝜋3 𝑒

−𝑖𝜋2

Then above can be simplified to

𝑧(𝑡) =
1
600

+ Re�
∞
�
𝑛=1
𝑒𝑖𝑛𝜛𝑡𝑍𝑛�

Where 𝜛 = 𝜋𝑣
2 , hence

𝑧′(𝑡) = Re�
∞
�
𝑛=1
𝑖𝑛𝜛𝑒𝑖𝑛𝜛𝑡𝑍𝑛�

Hence, let
𝑦𝑠𝑠(𝑡) = Re

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡

Hence Eq 2.1 becomes
∞
�
𝑛=1

− 𝑚𝑛2𝜛2𝑌𝑛𝑒𝑖𝑛𝜛𝑡 +
∞
�
𝑛=1
𝑖𝑐𝑛𝜛𝑌𝑛𝑒𝑖𝑛𝜛𝑡 +

∞
�
𝑛=1
𝑘𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =

∞
�
𝑛=1
𝑖𝑐𝑛𝜛𝑒𝑖𝑛𝜛𝑡𝑍𝑛 +

𝑘
600

+
∞
�
𝑛=1
𝑘𝑒𝑖𝑛𝜛𝑡𝑍𝑛

∞
�
𝑛=1
�−𝑚𝑛2𝜛2 + 𝑖𝑐𝑛𝜛 + 𝑘�𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =

∞
�
𝑛=1
(𝑖𝑐𝑛𝜛 + 𝑘)𝑍𝑛𝑒𝑖𝑛𝜛𝑡 +

𝑘
600

∞
�
𝑛=1
�−𝑚𝑛2𝜛2 + 𝑖𝑐𝑛𝜛 + 𝑘�𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =

𝑘
600

+
∞
�
𝑛=1
(𝑖𝑐𝑛𝜛 + 𝑘)𝑍𝑛𝑒𝑖𝑛𝜛𝑡

Hence

𝑌𝑛 =
(𝑖𝑐𝑛𝜛 + 𝑘)

−𝑚(𝑛𝜛)2 + 𝑖𝑐𝑛𝜛 + 𝑘
𝑍𝑛 (2.103)
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Let

𝐷(𝑟𝑛, 𝜁) =
𝑖𝑐𝑛𝜛 + 𝑘

−𝑚(𝑛𝜛)2 + 𝑖𝑐𝑛𝜛 + 𝑘

=
𝑖2𝜁𝑚𝜔𝑛𝑎𝑡𝑛𝜛 + 𝜔2

𝑛𝑎𝑡𝑚
−𝑚(𝑛𝜛)2 + 𝑖2𝜁𝑚𝜔𝑛𝑎𝑡𝑛𝜛 + 𝜔2

𝑛𝑎𝑡𝑚

=
𝑖2𝜁𝑛 𝜛

𝜔𝑛𝑎𝑡
+ 1

−�𝑛 𝜛
𝜔𝑛𝑎𝑡

�
2
+ 𝑖2𝜁𝑛 𝜛

𝜔𝑛𝑎𝑡
+ 1

=
1 + 𝑖2𝜁𝑟𝑛

�1 − 𝑟2𝑛� + 𝑖2𝜁𝑟𝑛

Where in the above 𝑟𝑛 =
𝑛𝜛
𝜔𝑛𝑎𝑡

where 𝜛 is 2𝜋
𝑇 which means it is the fundamental frequency

of the forcing function and 𝜔𝑛𝑎𝑡 is the natural frequency.

Then Eq 2.111 becomes
𝑌𝑛 = 𝐷(𝑟𝑛, 𝜁)𝑍𝑛

And the steady state solution 𝑦𝑠𝑠(𝑡) becomes

𝑦𝑠𝑠(𝑡) =
𝑘
600

+ Re�
∞
�
𝑛=1
𝐷(𝑟𝑛, 𝜁)𝑍𝑛𝑒𝑖𝑛𝜛𝑡�

Now we can answer the question. When 𝑐 = 0 then 𝐷(𝑟𝑛, 𝜁) reduces to 𝑘
−𝑚(𝑛𝜛)2+𝑘

=
1

1−�𝑛 𝜛
𝜔𝑛𝑎𝑡

�
2 =

1
1−𝑟2𝑛

, hence

𝑦𝑠𝑠(𝑡) =
𝑘
600

+ Re�
∞
�
𝑛=1

1
1 − 𝑟2𝑛

𝑍𝑛𝑒𝑖𝑛𝜛𝑡�

So the displacement 𝑦𝑠𝑠(𝑡)will be resonant when 𝑟𝑛 = 1 or
𝑛𝜋𝑣
2𝜔𝑛𝑎𝑡

= 1 or 𝑣 = 2𝜔𝑛𝑎𝑡
𝑛𝜋

Hence
𝑣 =

2(2𝜋5)
𝑛𝜋

=
20
𝑛

Hence 𝑣 = 20, 10, 5, 2.5, 1.25,⋯ meter/sec will each cause resonance. To verify, here is a
plot of 𝑦𝑠𝑠(𝑡)with no damper for speed near resonance 𝑣 = 19.99 and comparing this for
speeds away from resonance speed. This plot shows that when speed 𝑣 is close to any
of the above speeds, then the displacement 𝑦𝑠𝑠(𝑡) becomes very large. Once the speed is
away from those values, then 𝑦𝑠𝑠(𝑡) quickly comes down to steady state 𝐹/𝑘 value.
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2.7.4 problem 3

The function is periodic with period 𝑇 = 2𝜏

𝑓(𝑡) =
𝑃
𝜏 𝑡 0 < 𝑡 < 𝜏

0 𝜏 < 𝑡 < 2𝜏
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and 𝑓(𝑡 ± 𝑇) = 𝑓(𝑡). Let ̃𝑓(𝑡) be the Fourier series approximation to 𝑓(𝑡), hence

̃𝑓(𝑡) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥� (2.104)

Where

𝐹𝑛 =
2
𝑇

𝑇

�
0

𝑓(𝑡)𝑒−𝑖𝑛
2𝜋
𝑇 𝑡𝑑𝑡

=
2
2𝜏

𝜏

�
0

𝑃
𝜏
𝑡𝑒−𝑖𝑛

𝜋
𝜏 𝑡𝑑𝑡

=
𝑃
𝜏2

𝜏

�
0

𝑡𝑒−𝑖𝑛
𝜋
𝜏 𝑡𝑑𝑡

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢, letting 𝑢 = 𝑡 and 𝑑𝑣 = 𝑒−𝑖𝑛
𝜋
𝜏 𝑡 then 𝑣 =

∫ 𝑒−𝑖𝑛
𝜋
𝜏 𝑡𝑑𝑡 = 𝑖𝑒−𝑖𝑛

𝜋
𝜏 𝑡

𝑛𝜋
𝜏

hence

𝐹𝑛 =
𝑃
𝜏2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝𝑡
𝑖𝑒−𝑖𝑛

𝜋
𝜏 𝑡

𝑛𝜋
𝜏

⎞
⎟⎟⎟⎟⎟⎠

𝜏

0

−
𝑖
𝑛𝜋
𝜏

𝜏

�
0

𝑒−𝑖𝑛
𝜋
𝜏 𝑡𝑑𝑡

⎤
⎥⎥⎥⎥⎥⎥⎦

=
𝑃
𝜏2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝𝜏
𝑖𝑒−𝑖𝑛

𝜋
𝜏 𝜏

𝑛𝜋
𝜏

⎞
⎟⎟⎟⎟⎟⎠ −

𝑖
𝑛𝜋
𝜏

⎛
⎜⎜⎜⎜⎜⎝
𝑒−𝑖𝑛

𝜋
𝜏 𝑡

−𝑖𝑛𝜋
𝜏

⎞
⎟⎟⎟⎟⎟⎠

𝜏

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=
𝑃
𝜏2 ��

𝜏2
𝑖𝑒−𝑖𝑛𝜋

𝑛𝜋 � +
𝜏2

𝑛2𝜋2 �𝑒
−𝑖𝑛𝜋

𝜏 𝑡�
𝜏

0
�

=
𝑃
𝜏2 ��

𝜏2
𝑖𝑒−𝑖𝑛𝜋

𝑛𝜋 � +
𝜏2

𝑛2𝜋2 �𝑒
−𝑖𝑛𝜋 − 1��

𝑒−𝑖𝑛𝜋 = cos(𝑛𝜋) = (−1)𝑛, hence

𝐹𝑛 =
𝑃
𝜏2 ��

𝜏2
𝑖(−1)𝑛

𝑛𝜋 � +
𝜏2

𝑛2𝜋2 �(−1)
𝑛 − 1��

Hence for even 𝑛

𝐹𝑛 =
𝑃
𝜏2 ��

𝜏2
𝑖
𝑛𝜋��

= 𝑃
𝑖
𝑛𝜋
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and for odd 𝑛

𝐹𝑛 =
𝑃
𝜏2 ��

−𝜏2
𝑖
𝑛𝜋�

− 2
𝜏2

𝑛2𝜋2 �

= −
𝑃
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�

𝐹0 =
𝑃
𝜏2

𝜏

�
0

𝑡𝑑𝑡

=
𝑃
𝜏2 �

𝑡2

2 �
𝜏

0
=
𝑃
𝜏2 �

𝜏2

2 �

=
𝑃
2

Now Eq 2.117 becomes

̃𝑓(𝑡) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

=
1
2
𝐹0 + Re� �

𝑒𝑣𝑒𝑛 𝑛
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑡 + �

𝑜𝑑𝑑 𝑛
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑡�

=
𝑝
4
+ Re� �

𝑒𝑣𝑒𝑛 𝑛
𝑃
𝑖
𝑛𝜋
𝑒𝑖𝑛

2𝜋
𝑇 𝑡 + �

𝑜𝑑𝑑 𝑛
−
𝑃
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�𝑒𝑖𝑛
2𝜋
𝑇 𝑡�

=
𝑝
4
+ Re�

𝑃
𝜋
�

𝑒𝑣𝑒𝑛 𝑛

𝑖
𝑛
𝑒𝑖𝑛

2𝜋
𝑇 𝑡 −

𝑃
𝜋
�
𝑜𝑑𝑑 𝑛

1
𝑛�

2
𝑛𝜋

+ 𝑖�𝑒𝑖𝑛
2𝜋
𝑇 𝑡�

=
𝑃
4
+ Re�

𝑃
𝜋
�

𝑒𝑣𝑒𝑛 𝑛

𝑖
𝑛
𝑒𝑖𝑛

2𝜋
𝑇 𝑡 −

𝑃
𝜋
�
𝑜𝑑𝑑 𝑛

�
2
𝑛2𝜋

+
𝑖
𝑛�
𝑒𝑖𝑛

2𝜋
𝑇 𝑡�

To verify, here is a plot of the above, using 𝑃 = 1 and 𝜏 = 0.5 sec for 𝑡 = 0⋯2 seconds. This
shows as more terms are added, the approximation becomes very close to the function.
At 𝑁 = 40 the approximation appears very good.
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Now we need to write 𝑓(𝑡) as sum of exponential to answer the question.

̃𝑓(𝑡) =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

where 𝜛 is the fundamental frequency of the force given by 2𝜋
𝑇 = 2𝜋

2𝜏 =
𝜋
𝜏

Hence, let 𝑦𝑠𝑠 =
∞
�
𝑛=−∞

𝑌𝑛𝑒𝑖𝑛𝜛𝑡, then

Re�𝑚
∞
�
𝑛=−∞

− (𝑛𝜛)2𝑌𝑛𝑒𝑖𝑛𝜛𝑡 + 𝑐
∞
�
𝑛=−∞

𝑖𝑛𝜛𝑌𝑛𝑒𝑖𝑛𝜛𝑡 + 𝑘
∞
�
𝑛=−∞

𝑌𝑛𝑒𝑖𝑛𝜛𝑡� =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�

∞
�
𝑛=−∞

�−𝑚(𝑛𝜛)2 + 𝑖𝑐𝑛𝜛 + 𝑘�𝑌𝑛𝑒𝑖𝑛𝜛𝑡 =
1
2
𝐹0 + Re�

𝑁
�
𝑛=1
𝐹𝑛𝑒

𝑖𝑛 2𝜋
𝑇 𝑥�
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Hence

𝑌𝑛 =
𝐹𝑛
𝑘

1

�1 − �𝑛
𝜛

𝜔𝑛𝑎𝑡
�
2
� + 𝑖2𝜁𝑛

𝜛
𝜔𝑛𝑎𝑡

=
𝐹𝑛
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

Hence
𝑦𝑠𝑠 =

1
2
𝐹0 + Re�

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡�

Finding 𝑌𝑛 for 𝜏 = 𝜋
3𝜔𝑛𝑎𝑡

where 𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 𝜋
3𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 𝜋
3𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡
= 3,

therefore

𝑌𝑛 =
𝐹𝑛
𝑘

1
�1 − (3𝑛)2� + 𝑖6(0.04)𝑛

=
𝐹𝑛
𝑘

1
�1 − 9𝑛2� + 𝑖0.24𝑛

The largest 𝑌𝑛 will occur when the denominator of the above is smallest. Plotting the

modulus of the denominator ��1 − 9𝑛
2�

2
+ (0.24𝑛)2 for different 𝑛 values shows that

𝑛 = 1 is the values which makes it minimum.

This happens since for any 𝑛 > 1 the denominator will become larger due to 𝑛2 and hence
𝑌𝑛 will become smaller. So 𝑛 = 1 will be used.
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For 𝑛 = 1, we obtain
𝑌1 =

𝐹1
𝑘

1
(1 − 9) + 𝑖6(0.04)

But 𝐹1 = −
𝑃
𝜋
� 2
𝜋 + 𝑖�, hence

𝑌1 =
−𝑃
𝜋
� 2
𝜋 + 𝑖�

𝑘
1

(1 − 9) + 𝑖6(0.04)
=
−𝑃
𝜋𝑘

� 2
𝜋 + 𝑖�

−8 + 𝑖0.24

=
𝑃
𝜋𝑘

2
𝜋 + 𝑖

8 − 𝑖0.24
=
𝑃
𝜋𝑘

� 2
𝜋 + 𝑖�(8 + 𝑖0.24)

(8 − 𝑖0.24)(8 + 𝑖0.24)

=
𝑃
𝜋𝑘
(0.075759 + 0.12727𝑖)

Therefore
𝑌1 =

𝑃
𝑘
(0.024115 + 0.0405𝑖)

Here is a list of 𝑌𝑛 for 𝑛 = 1⋯10 with the phase and magnitude of each (this was done
for 𝑝

𝑘 = 1)
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From the above we see that most of the energy in the response will be contained in 𝑌1 and
adding more terms will not have large effect on the response shape. This is confirmed by
the plot that follows.

Plot for the steady state

Since
𝑦𝑠𝑠 =

1
2
𝐹0 + Re�

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡�

Where now 𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 𝜋
3𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 𝜋
3𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡

therefore 𝑟 = 3

𝑦𝑠𝑠 =
𝑝
4
+ Re

⎛
⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
𝑌𝑛𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯
𝑌𝑛𝑒𝑖𝑛𝜛𝑡

⎞
⎟⎟⎟⎠

=
𝑝
4
+ Re

⎛
⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯

𝐹𝑛𝑜𝑑𝑑
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡 +
∞
�

𝑛=2,4,6⋯

𝐹𝑛𝑒𝑣𝑒𝑛
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡
⎞
⎟⎟⎟⎟⎠

=
𝑝
4
+ Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯

− 𝑃
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�

𝑘
1

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑃 𝑖
𝑛𝜋
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
𝑝
4
+
𝑝
𝑘
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−

1
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Now let 𝑟 = 3, 𝜁 = 0.04. Normalizing the equation for 𝜛 = 1 which implies 𝜏 = 𝜋 and
𝑘 = 1 and 𝑝 = 1, then the above becomes

𝑦𝑠𝑠 =
1
4
+ Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−

1
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�

�1 − (3𝑛)2� + 𝑖2(0.04)3𝑛
𝑒𝑖𝑛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

�1 − (3𝑛)2� + 𝑖2(0.04)3𝑛
𝑒𝑖𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here is a plot of the above for 𝑡 = 0⋯20 seconds for different values of 𝑛

We see from the above plot, that 𝑦𝑠𝑠(𝑡) does not change too much as more terms are added,
since when 𝑟 = 3, then 𝑌𝑛 for 𝑛 = 1 contains most of the energy, hence adding more terms
did not have an effect.

Repeating the calculations for 𝜏 = 3𝜋
𝜔𝑛𝑎𝑡
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𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 3𝜋
𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 3𝜋
𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡
= 1

3 , therefore

𝑌𝑛 =
𝐹𝑛
𝑘

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

=
𝐹𝑛
𝑘

1

�1 − �
1
3𝑛�

2
� + 𝑖

2
3
(0.04)𝑛

=
𝐹𝑛
𝑘

1

�1 − 𝑛2

9
� + 𝑖0.0267𝑛

The largest 𝑌𝑛 will occur when the denominator of the above is smallest. Similar to above,
we can either find 𝑛whichminimizes the denominator (by taking derivative and setting it
to zero and solve for 𝑛) or we can make a plot and see how the function behaves. Making
a plot shows this

From the above we see that the smallest value of the denominator happens when 𝑛 = 3.
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so using 𝑛 = 3 we find

𝑌3 =
𝐹3
𝑘

1
�1 − (3𝑟)2� + 𝑖2𝜁3𝑟

=
𝐹3
𝑘

1

�1 − �3
1
3
�
2
� + 𝑖2(0.04)3

1
3

=
𝐹3
𝑘

1
𝑖0.08

But 𝐹𝑛 = −
𝑃
𝑛𝜋
� 2
𝑛𝜋 + 𝑖�, hence

𝐹3 = −
𝑃
3𝜋�

2
3𝜋

+ 𝑖�

Therefore

𝑌3 =
− 𝑃
3𝜋
� 2
3𝜋 + 𝑖�

𝑘
1

𝑖0.08

Hence
𝑌3 =

𝑝
𝑘
(−1.3263 + 0.28145𝑖)

Here is a list of 𝑌𝑛 for 𝑛 = 1⋯10 with the phase and magnitude of each (this was done
for 𝑝

𝑘 = 1)
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We see from the above that �𝑌3� is the largest harmonic.

Plot for the steady state

Since
𝑦𝑠𝑠 =

1
2
𝐹0 + Re�

∞
�
𝑛=1
𝑌𝑛𝑒𝑖𝑛𝜛𝑡�

Where now 𝑟 = 𝜛
𝜔𝑛𝑎𝑡

. When 𝜁 = 0.04 and 𝜏 = 3𝜋
𝜔𝑛𝑎𝑡

, hence now 𝑟 = 2𝜋
(2𝜏)𝜔𝑛𝑎𝑡

= 2𝜋

�2 3𝜋
𝜔𝑛𝑎𝑡

�𝜔𝑛𝑎𝑡
= 1

3 ,

therefore from above

𝑦𝑠𝑠 =
𝑝
4
+
𝑝
𝑘
Re
⎛
⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−
1
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�
1

�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟
𝑒𝑖𝑛𝜛𝑡 +

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

1
�1 − (𝑛𝑟)2� + 𝑖2𝜁𝑛𝑟

𝑒𝑖𝑛𝜛𝑡
⎞
⎟⎟⎟⎟⎠

Now let 𝑟 = 1
3 , 𝜁 = 0.04, and assuming 𝜏 = 0.5 then 𝜛 = 2𝜋

2𝜏 =
𝜋
0.5 , and assuming 𝑘 = 1,

then the above becomes

𝑦𝑠𝑠 =
1
4
+
1
𝑘
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=1,3,5⋯
−
1
𝑛𝜋�

2
𝑛𝜋

+ 𝑖�
1

�1 − �𝑛
1
3
�
2
� + 𝑖2(0.04)

1
3𝑛
𝑒𝑖𝑛

𝜋
0.5 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
𝑘
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�

𝑛=2,4,6⋯

𝑖
𝑛𝜋

1

�1 − �𝑛
1
3
�
2
� + 𝑖2(0.04)

1
3𝑛
𝑒𝑖𝑛

𝜋
0.5 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here is a plot of the above for 𝑡 = 0⋯20 seconds for different values of 𝑛
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We see now that after 𝑛 = 3 that the response did not changemuch by addingmore terms,
this is because more of the energy are contained in the first 3 harmonics with 𝑌𝑛 being
the the largest.
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2.7.5 Key solution for HW 6

Homework #6 
EMA 545, Spring 2013 

 
1.)  Problem 3.41 in Ginsberg.  Check your answer for =1.0 using FFT techniques with 
the fft_easy.m Matlab function from the course website. 
 
2.)  Problem 3.50 in Ginsberg. DO PART (a) ONLY. 
 
3.)  (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46 
from Ginsberg using FFT techniques.  Perform your analysis with  = /(3n) as stated in 
the problem and also repeat the analysis for  = 3/n.  Which harmonic is dominant in 
the response in each case?  Why?  Create a plot of the steady-state displacement for each 
case. 
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Exercise 3.41

n 0 5.. F n λ n,( ) 2
λ 2i n. π.( )

1 exp λ( )( ).

0 1 2 3 4 50

1

2

Re F n 0.1 n,( )

Re F n 1 n,( )

Re F n 10 n,( )

n

0 1 2 3 4 50.2

0.1

0

Im F n 0.1 n,( )

Im F n 1 n,( )

Im F n 10 n,( )

n

As λ increases, the higher harmonic amplitudes increase.
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Matlab solution to HW#8, Problem 3.41 
 
%% Solution to 3.41 using Matlab 
% EMA 545, Spring 2011 
clear all; close all 
  
N = 2^5; % 2^13; % number of samples for FFT 
tau = pi/3; % 3*pi; % pi/3; 
T = 1 
    w1 = 2*pi/T; 
F=1; % Force will be non-dimensional 
lam = 1; 
  
dt = T/N; 
ts_fft = [0:dt:(T-dt)].'; 
  
% Define Input Force in Time Domain--f(t)  
ft = F*exp(-lam*ts_fft); 
ft = ft(:); % make sure these are column vectors 
  
% Use FFT easy to perform analysis 
[D_fft,ws_fft] = fft_easy(ft,ts_fft); 
  
F_fft = (2/N)*D_fft; % this only has those for positive frequencies. 
  
ns = [0:5].'; 
F_fs = 2*(1-exp(-lam))./(lam+1i*2*pi*ns); 
  
disp('n, Frequency, Fourier Coeff, FFT estimate (abs)'); 
[ns, ws_fft(1:6), abs(F_fs(1:6)), abs(F_fft(1:6))] 
disp('Frequency, Fourier Coeff, FFT estimate (angle in deg)'); 
[ns, ws_fft(1:6), angle([F_fs(1:6), F_fft(1:6)])*180/pi] 
 
Results with n=2^5=32 

n,  Frequency, Fourier Coeff, FFT estimate (abs) 
ans = 
            0            0       1.2642       1.2841 
            1       6.2832      0.19871      0.20215 
            2       12.566      0.10029      0.10252 
            3        18.85     0.066976     0.069021 
            4       25.133     0.050263     0.052388 
            5       31.416     0.040222     0.042541 

n,  Frequency, Fourier Coeff, FFT estimate (angle in deg) 
ans = 
            0            0            0            0 
            1       6.2832      -80.957      -75.361 
            2       12.566       -85.45      -74.259 
            3        18.85      -86.963      -70.177 
            4       25.133      -87.721       -65.34 
            5       31.416      -88.177      -60.201 
 
With only 32 samples, this is already a pretty good approximation of the Fourier 
Coefficients.  With n=2^13, the FFT is accurate to about three decimal places.  
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Solution: Problem 4 (3.45-46) Spring 2011 
Matlab code given below, which is modified only slightly from 
FFT_Square_Ex_545_v2.m 
 
%% Solution to P4, HW#8 (based on 3.45 and 3.46 in Ginsberg) 
clear all; close all 
  
N = 256; % number of samples for FFT 
tau = pi/3; % 3*pi; % pi/3; 
T = 2*tau; 
    w1 = 2*pi/T; 
m=1; 
wn=1; % since time is non-dimensional 
zt = 0.04; 
P = 1; % Force will be non-dimensional 
  
dt = T/N; 
ts_fft = [0:dt:(T-dt)]; 
  
% Define Input Force in Time Domain--f(t) = mean at discontinuity 
for k = 1:1:length(ts_fft) 
    if ts_fft(k) < tau; 
        ft(k,1) = P*ts_fft(k)/tau; 
    else 
        ft(k,1) = 0; 
    end 
end 
  
% Use FFT easy to perform analysis 
[F_fft,ws_fft] = fft_easy(ft,ts_fft); 
  
% Each coefficient in F_fft is the complex amplitude of a harmonic 
whose 
% frequency is given in ws_fft.  We could scale these to obtain 
estimates 
% of the Fourier coefficients, but we do not need to since we are just 
% going to take the IFFT later. 
  
% Make everything a column vector: 
F_fft = F_fft(:); ws_fft = ws_fft(:); 
  
% Now form a vector of transfer function values at each frequency: 
H = (1/m)./((i*ws_fft).^2 + i*ws_fft*(2*zt*wn) + wn^2); % dot or term 
by term multiply 
    % Same as doing a for loop over each frequency. 
  
% Now the response is just the force times the transfer function. 
X = H.*F_fft(:); 
  
% Plot everything in the frequency domain to understand what's 
happening. 
figure(3) 
semilogy(ws_fft,abs(F_fft),'o',ws_fft,abs(X),'*',ws_fft,abs(H),'-'); 
grid on; 
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xlabel('\bfFrequency (rad/s))'); ylabel('\bf|X| or |F|'); 
legend('fft(F)','fft(X)','H(\omega)'); 
  
% take IFFT of the coefficients X to find the time signal x(t) 
xt = ifft_easy(X,ws_fft); 
% note ifft_easy(F_fft,ws_fft) = ft, exactly with no approximation 
  
figure(4) 
% [ax,h1,h2] = plotyy(ts_fft,gt,ts_fft,xt); 
plot(ts_fft,ft,'.-',ts_fft,xt,'.-'); 
xlabel('time (s)'); ylabel('f(t) or x(t)'); 
legend('f(t)','x(t)'); 
title('\bfForce and Response Found with FFT'); 
 
 
 
Results: 
Case 1:   τ = π/(3ωn) (r = 3) 

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

f(t
) o

r x
(t)

Force and Response Found with FFT

 

 
f(t)
x(t)

 
To understand this, let’s look at the FFT coefficients of X, F and the transfer function H, 
shown in the following figure.  Since the first coefficient is beyond the natural frequency, 
the transfer function gets smaller as omega increases.  The force is also dominated by the 
lower frequency terms, so the low frequency terms dominate.  The DC term is the largest, 
followed by the first harmonic (DC is Electrical Engineering terminology for Direct 
Current or the zero frequency).  So, it shouldn’t surprise us to see that the response is an 
offset sinusoid with low amplitude. 
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Case 2:   τ = 3π/ωn (r = 1/3) 
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In this case the fundamental frequency of the sawtooth is 1/3 the natural frequency.  
Hence, the third harmonic is equal to the natural frequency so that harmonic is amplified 
in the response.  So, the response looks like a 3-cycle sinusoid (per period of the force) 
even though the force spectrum is dominated by the lower frequency harmonics. 
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2.8.1 problem description

Homework #7 
EMA 545, Spring 2013 

 
Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation 
system to the turbulent flight profile in  “FlightAccel.mat” on the course website.  (To do 
this, you will have to assume that the aircraft experiences this exact same flight profile 
over and over again.) 

a.) Provide at least one plot comparing the response of the aircraft to the (hopefully 
improved) response on the vibration isolator. 

b.) Report on the values of mass, stiffness and damping that you used and how they 
would be realized in practice (e.g. if you use a beam as a leaf spring, what would 
its dimensions be?). 

 
Problem 2: (20 pts) Do Problem 3.60 as given in the text.  Comment on how you 
selected adequate values for N (number of samples in the time history) and the length of 
the time window (in seconds). 
 
Problem 3: Exercise 1.11 from Ginsberg.  (For the proof described in (b), set m2=0 and 
see what your equation of motion reduces to.) 
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2.8.2 problem 1

2.8.2.1 Part(a)

Vibration isolation was based on reducing absolute acceleration of passenger under tur-
bulent external forces. This was done by isolating the passenger from the base motion
subjected to external absolute acceleration. Hence the model is based on the following
diagram

M

z

ÿ

k
c
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Hence EQM of motion is

𝑚𝑦′′ + 𝑐�𝑦′ − 𝑧′� + 𝑘�𝑦 − 𝑧� = 0
𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑐𝑧′ + 𝑘𝑧 (2.105)

We are given the time history of the turbulent acceleration. Hence in frequency domain
we can write

𝑧′′ = Re�𝑍𝑎𝑐𝑐
𝑛 𝑒𝑖(𝜔1𝑛)𝑡�

Where 𝑍𝑎𝑐𝑐
𝑛 is the complex amplitude of the 𝑛𝑡ℎ harmonic component in the acceleration

data. Let 𝜔1𝑛 ≡ 𝜛𝑛 then using the above, In frequency domain Eq 3.1 becomes

Re��−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘�𝑌𝑛𝑒𝑖𝜛𝑛𝑡� = Re��𝑐

𝑍𝑎𝑐𝑐
𝑛
𝑖𝜛𝑛

+ 𝑘
𝑍𝑎𝑐𝑐
𝑛

−𝜛2
𝑛
�𝑒𝑖𝜛𝑛𝑡�

𝑌𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛

The above gives the transfer function between the displacement of the passenger and the
external acceleration. In otherwords

𝑦(𝑡) = Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛 𝑒𝑖(𝜔1𝑛)𝑡

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Let

𝑌𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛

then the transfer function is

𝐻(𝜛𝑛) =
𝑌𝑛
𝑍𝑎𝑐𝑐
𝑛

=
−𝑖𝑐
𝜛𝑛
− 𝑘

𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

= −
1
𝜛2
𝑛

(𝑘 + 𝑖𝑐𝜛𝑛)
�𝑘 − 𝑚𝜛2

𝑛� + 𝑖𝜛𝑛𝑐

Hence phase is

arg(𝐻(𝜛𝑛)) = tan−1�
𝑐𝜛𝑛
𝑘
� − tan−1�

𝜛𝑛𝑐
𝑘 − 𝑚𝜛2

𝑛
�

and magnitude is

|𝐻(𝜛𝑛)| = �
𝑌𝑛
𝑍𝑎𝑐𝑐
𝑛
� =

1
𝜛𝑛

�𝑘2 + 𝑐2𝜛2
𝑛

��𝑘 − 𝑚𝜛
2
𝑛�

2
+ (𝜛𝑛𝑐)

2
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These can be written in terms of 𝜁 and 𝜔𝑛𝑎𝑡 as follows. From 𝐻(𝜛𝑛) = − 1
𝜛2𝑛

(𝑘+𝑖𝑐𝜛𝑛)
�𝑘−𝑚𝜛2𝑛�+𝑖𝜛𝑛𝑐

,

dividing numerator and denominator by 𝑘 = 𝑚𝜔2
𝑛𝑎𝑡 and using 𝑐 = 2𝜁𝑚𝜔𝑛𝑎𝑡 then

𝐻(𝜛𝑛) = −
1
𝜛2
𝑛

�1 + 𝑖2𝜁𝑚𝜔𝑛𝑎𝑡𝜛𝑛
𝑚𝜔2

𝑛𝑎𝑡
�

�1 − 𝑚𝜛2𝑛

𝑚𝜔2
𝑛𝑎𝑡
� + 𝑖𝜛𝑛2𝜁𝑚𝜔𝑛𝑎𝑡

𝑚𝜔2
𝑛𝑎𝑡

= −
1
𝜛2
𝑛

�1 + 𝑖2𝜁𝜛𝑛
𝜔𝑛𝑎𝑡

�

�1 − 𝜛2𝑛

𝜔2
𝑛𝑎𝑡
� + 𝑖𝜛𝑛2𝜁

𝜔𝑛𝑎𝑡

Let 𝑟𝑛 =
𝜛𝑛
𝜔𝑛𝑎𝑡

then the above becomes

𝐻(𝜛𝑛) = −
1
𝜛2
𝑛

(1 + 𝑖2𝜁𝑟𝑛)
�1 − 𝑟2𝑛� + 𝑖2𝑟𝑛𝜁

Hence

|𝐻(𝜛𝑛)| =
1
𝜛𝑛

�1 + (2𝜁𝑟𝑛)
2

��1 − 𝑟
2
𝑛�

2
+ (2𝑟𝑛𝜁)

2

arg(𝐻(𝜛𝑛)) = tan−1(2𝜁𝑟𝑛) − tan−1
2𝑟𝑛𝜁
1 − 𝑟2𝑛

The following is a plot showing the passenger absolute acceleration 𝑦′′(𝑡) over the period
of 80 seconds against the turbulent acceleration 𝑧′′(𝑡). We now see that passenger absolute
acceleration is close to the nominal acceleration. This was done using the following values
for the vibration isolation

𝑀 100000 kg

𝜁 0.72

𝑘 38924 N/m

𝑐 57746 Ns/m

The plot on the right side is the absolute acceleration of the passenger during flight in
the turbulent case.
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2.8.2.2 Part(b)

The length of first class cabinet was estimated to be 𝐿 = 15meters from looking at Boeing
web page.

Using Steel, Structural ASTM-A36 𝐼 beam as a cantilever beam for the implementation,
then using 𝑘 = 3𝐸𝐼

𝐿3 results in

38924 =
3�200 × 109�𝐼

153
𝐼 = 2.1895 × 10−4 m4

Using rectangle cross section 𝐼 = 𝑏ℎ3

12 . Letting ℎ = 20 cm, then 𝑏 =
�2.1895×10−4�12

0.23 = 0.32843
meter or 32 cm.
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2.8.3 Problem 2

2.8.3.1 part(a)

𝑄 = 2000𝑡
(𝑇 − 𝑡)
𝑇2 [ℎ(𝑡) − ℎ(𝑡 − 𝑇)]

𝑚 = 0.5 kg
𝜔𝑛 = 2𝜋𝑓𝑛
𝑓𝑛 = 100 Hz

Hence pulse duration is 1
𝑓 = 0.01 sec.

𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑄(𝑡)
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In the frequency domain assuming that the force 𝑄(𝑡) can be represented in its Fourier
series as

𝑄(𝑡) = Re��
𝑛
𝑄𝑛𝑒𝑖𝜔1𝑛𝑡�

where 𝜔1 is the fundamental frequency for 𝑄(𝑡) which depends on the period we choose
to select to sample over. In this example, I selected 3𝑇 as the overall period to sample over
so that it covers the pulse duration and an additional time to show the free vibration part
as well and to compare to the analytical solution. Hence the EQM becomes

𝑌𝑛 =
𝑄𝑛

−𝑚(𝑛𝜔1)
2 + 𝑖𝑐(𝑛𝜔1) + 𝑘

𝑘 = 𝜔2
𝑛𝑚 hence dividing the numerator and denominator by 𝑘we obtain

𝑌𝑛 =
𝑄𝑛
𝐾

�1 − 𝑚(𝑛𝜔1)
2

𝜔2𝑛𝑚
� + 𝑖𝑐(𝑛𝜔1)

𝜔2𝑛𝑚

=
1
𝑘

1
�1 − 𝑟2𝑛� + 𝑖2𝜁𝑟𝑛

𝑄𝑛

where 𝑟𝑛 =
𝑛𝜔1
𝜔𝑛

.Hence response is

𝑦(𝑡) = Re��
𝑛
𝑌𝑛𝑒𝑖𝜔1𝑛𝑡�

= Re
⎛
⎜⎜⎜⎜⎝�

𝑛

1
𝑘

1
�1 − 𝑟2𝑛� + 𝑖2𝜁𝑟𝑛

𝑄𝑛𝑒𝑖𝜔1𝑛𝑡

⎞
⎟⎟⎟⎟⎠

𝑦(𝑡) is found by taking the IFFT of∑𝑛
1
𝑘

1
�1−𝑟2𝑛�+𝑖2𝜁𝑟𝑛

𝑄𝑛.

𝑄𝑛 values are found by taking the FFT of 𝑄(𝑡). We start by sampling 𝑄(𝑡). To obtain the
solution for say 𝑡 = 0⋯3𝑇, thenwe have to assume that the period of the signal is actually
3𝑇 and sample over this whole time from 0⋯3𝑇 − 𝑑𝑒𝑙𝑡. Then we use FFT on the result.
Then find the response by doing IFFT. Using 𝑁 = 128 over 𝑡 = 0⋯0.03 seconds, the
following solution was obtained
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%by Nasser M. Abbasi, HW 7, EMA 545
close all;
T = 0.01; %sec
duration = 3*T; %duration to find solution over
N = 128;
delT = duration/(N-1);
w1 = 2*pi/duration; %fundamental freq rad/sec
t = linspace(0,(duration-delT),N);
Qt = @(t) (2000*t.*(T-t))/T^2.*(t<=T)+0*(t>T)

subplot(2,1,1)
plot(t,Qt(t),'r-o');
hold on;
plot(0:delT:duration,Qt(0:delT:duration),'r');

title(sprintf('force Q(t) and its reponse. 16 samples, delT=%f',delT));
xlabel('time sec');
grid;

m = 0.5; %mass kg
wn = 2*pi*100; %natural freq
k = wn^2*m; %stiffness N/meter
[Q,ws] = fft_easy(Qt(t),delT);

zeta = 0.002;
I = sqrt(-1);
y = ifft_easy( (Q/k)./( (1-(ws/wn).^2) + 2*I*zeta*ws/wn),ws);

subplot(2,1,2);
plot(t,y,'r');
title(sprintf('reponse at zeta=%f',zeta));
xlabel('time sec');
grid;

2.8.3.2 Part(b)

For 𝜁 = 0.002 the above Matlab script was modified and the following solution resulted.
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Now we compare the above with the analytical solution.

2.8.3.3 Part(c)

The pulse can be written as

𝐹 = 𝑄(𝑡)[ℎ(𝑡) − ℎ(𝑡 − 𝑇)]
= 𝑄(𝑡)ℎ(𝑡) − 𝑄(𝑡)ℎ(𝑡 − 𝑇)

Let 𝑡′ = 𝑡 − 𝑇, hence 𝑡 = 𝑡′ + 𝑇, therefore the above becomes

𝐹 = 𝑄(𝑡)ℎ(𝑡) − 𝑄(𝑡′ + 𝑇)ℎ(𝑡′)

But 𝑄(𝑡) = 2000𝑡(𝑇−𝑡)
𝑇2 . Let 2000

𝑇2 = 𝛽 since it is a constant. Hence 𝑄(𝑡) = 𝛽𝑡(𝑇 − 𝑡). Now we
write the above 𝐹 as

𝐹 = 𝛽𝑡(𝑇 − 𝑡)ℎ(𝑡) − 𝛽(𝑡′ + 𝑇)(𝑇 − (𝑡′ + 𝑇))ℎ(𝑡′)
= �𝛽𝑇𝑡 − 𝛽𝑡2�ℎ(𝑡) − 𝛽(𝑡′ + 𝑇)(−𝑡′)ℎ(𝑡′)

= �𝛽𝑇𝑡 − 𝛽𝑡2�ℎ(𝑡) + 𝛽�(𝑡′)2 + 𝑇𝑡′�ℎ(𝑡′)

= 𝛽𝑇𝑡ℎ(𝑡) − 𝛽𝑡2ℎ(𝑡) + 𝛽𝑇(𝑡′)2 + 𝛽𝑇𝑡′ℎ(𝑡′) (2.106)

So we see that the response to 𝐹 will be the response to a unit impulse ℎ(𝑡) with forcing
basis functions that are 1, 𝑡, 𝑡2. Now we can use the solution from back of the book ap-
pendix 𝐵 to sum the responses in order to find the final response and compare to the FFT
method.
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From appendix B, the response to unit ramp 𝑡ℎ(𝑡)is

𝑟(𝑡ℎ(𝑡)) =
1

𝑚𝜔3
𝑛
�𝜔𝑛𝑡 − 2𝜁 + 𝑒−𝜁𝜔𝑛𝑡�2𝜁 cos𝜔𝑑𝑡 − �1 − 2𝜁2�

𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

and the response to quadratic 𝑡2ℎ(𝑡) is

𝑠�𝑡2ℎ(𝑡)� =
1

𝑚𝜔4
𝑛
�(𝜔𝑛𝑡)

2 − 4𝜁𝜔𝑛𝑡 − 2�1 − 4𝜁2� + 𝑒−𝜁𝜔𝑛𝑡�2�1 − 4𝜁2� cos𝜔𝑑𝑡 + �6𝜁 − 8𝜁3�
𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

Now that we have the basis solutions, we can apply them to EQ 2.110

𝐹 = 𝛽𝑇(𝑟(𝑡) + 𝑟(𝑡′)) − 𝛽𝑇(𝑠(𝑡) − 𝑠(𝑡′))
= 𝛽(𝑟(𝑡) + 𝑟(𝑡 − 𝑇)) − 𝛽𝑇(𝑠(𝑡) − 𝑠(𝑡 − 𝑇))

= �𝛽𝑇�
1

𝑚𝜔3
𝑛
�𝜔𝑛𝑡 − 2𝜁 + 𝑒−𝜁𝜔𝑛𝑡�2𝜁 cos𝜔𝑑𝑡 − �1 − 2𝜁2�

𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

+ �𝛽𝑇�
1

𝑚𝜔3
𝑛
�𝜔𝑛𝑡′ − 2𝜁 + 𝑒−𝜁𝜔𝑛𝑡′�2𝜁 cos𝜔𝑑𝑡′ − �1 − 2𝜁2�

𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡′��ℎ(𝑡′)

− �𝛽�
1

𝑚𝜔4
𝑛
�(𝜔𝑛𝑡)

2 − 4𝜁𝜔𝑛𝑡 − 2�1 − 4𝜁2� + 𝑒−𝜁𝜔𝑛𝑡�2�1 − 4𝜁2� cos𝜔𝑑𝑡 + �6𝜁 − 8𝜁3�
𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡��ℎ(𝑡)

+ �𝛽�
1

𝑚𝜔4
𝑛
�(𝜔𝑛𝑡′)

2 − 4𝜁𝜔𝑛𝑡′ − 2�1 − 4𝜁2� + 𝑒−𝜁𝜔𝑛𝑡′�2�1 − 4𝜁2� cos𝜔𝑑𝑡′ + �6𝜁 − 8𝜁3�
𝜔𝑛
𝜔𝑑

sin𝜔𝑑𝑡′��ℎ(𝑡′)

In the above, 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 . To plot this solution, the following small script was used
and was run for both 𝜁 = 0.2 and 𝜁 = 0.002

For 𝜁 = 0.2
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For 𝜁 = 0.002

2.8.3.4 Conclusions

The analytical solution, using superposition agreed with the FFT solution for 𝜁 = 0.2.
However, for some reason which I am not able to determine why yet, the FFT solution
when 𝜁 = 0.002 did not agree with the analytical solution. The analytical solution was
verified to be correct using another numerical ODE solver. So the FFT method for some
reason is not giving accurate result for 𝜁 = 0.002. The same Matlab script was used for
both cases. I tried increasing the sampling rate but that did not change the result. Please
see Appendix for verification and the code used to plot the analytical solutions.

2.8.4 Problem 3
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2.8.4.1 Part(a)

Let 𝑇 be the kinetic energy and 𝑉 be the potential energy. Then equation of motion for a
generalized coordinate 𝑞𝑖 is given by

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇�𝑖

� −
𝜕𝐿
𝜕𝑞𝑖

= 𝑄𝑖

Where 𝐿 is the Lagrangian 𝐿 = 𝑇 − 𝑉 and 𝑄𝑖 is the generalized force in the 𝑞𝑖 direction.

Assuming 𝑥2 > 𝑥1 and masses are moving to the right. For 𝑥1 we obtain

𝑇 =
1
2
𝑚1�̇�21 +

1
2
𝑚1�̇�22

𝑉 =
1
2
𝑘1𝑥21 +

1
2
𝑘2(𝑥2 − 𝑥1)

2 +
1
2
𝑘4𝑥21 +

1
2
𝑘3𝑥22

𝑄1 = 𝐹
𝑄2 = 0

Hence

𝐿 = 𝑇 − 𝑉

=
1
2
𝑚1�̇�21 +

1
2
𝑚1�̇�22 − �

1
2
𝑘1𝑥21 +

1
2
𝑘2(𝑥2 − 𝑥1)

2 +
1
2
𝑘4𝑥21 +

1
2
𝑘3𝑥22�

𝜕𝐿
𝜕�̇�1

= 𝑚1�̇�1

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇�1

� = 𝑚1�̈�1

𝜕𝐿
𝜕𝑥1

= −𝑘1𝑥1 − 𝑘2(𝑥2 − 𝑥1)(−1) − 𝑘4𝑥1

and

𝜕𝐿
𝜕�̇�2

= 𝑚1�̇�2

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇�2

� = 𝑚1�̈�2

𝜕𝐿
𝜕𝑥2

= −𝑘2(𝑥2 − 𝑥1)(1) − 𝑘3𝑥2
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Hence the 2 EOM are for 𝑥1

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇�1

� −
𝜕𝐿
𝜕𝑥1

= 𝐹

𝑚1�̈�1 − (−𝑘1𝑥1 + 𝑘2(𝑥2 − 𝑥1) − 𝑘4𝑥1) = 𝐹
𝑚1�̈�1 + 𝑘1𝑥1 − 𝑘2(𝑥2 − 𝑥1) + 𝑘4𝑥1 = 𝐹

Therefore EOM 1
𝑚1�̈�1 + (𝑘1 + 𝑘2 + 𝑘4)𝑥1 − 𝑘2𝑥2 = 𝐹

and for 𝑥2

𝑑
𝑑𝑡�

𝜕𝐿
𝜕�̇�2

� −
𝜕𝐿
𝜕𝑥2

= 0

𝑚1�̈�2 − (−𝑘2(𝑥2 − 𝑥1) − 𝑘3𝑥2) = 0
𝑚1�̈�2 + 𝑘2(𝑥2 − 𝑥1) + 𝑘3𝑥2 = 0

Hence EOM 2
𝑚1�̈�2 + (𝑘2 + 𝑘3)𝑥2 − 𝑘2𝑥1 = 0

Hence in Matrix form EOM are

𝑀𝑋′′ + 𝐾𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎝
𝑚1 0

0 𝑚2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑥′′1
𝑥′′2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
(𝑘1 + 𝑘2 + 𝑘4) −𝑘2

−𝑘2 (𝑘2 + 𝑘3)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
𝐹
0

⎞
⎟⎟⎟⎟⎟⎠

2.8.4.2 Part(b)

If𝑚2 do not exist, then this means the springs 𝑘2 and 𝑘3 do not have a mass between them
and so these need to be replaced by single spring, say 𝑘5 found by finding equivalent
spring in series
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F
m1

k3k2k2k3k4k1k2k3

k2k3

Equivalent stiffness

F

m1

k 2
k 3

k 4

k 1

F

m1

k 4

k 1In series k 5

F

m1

k 1

In parallel

k 6

In series

1
𝑘5
=
1
𝑘2
+
1
𝑘3

𝑘5 =
𝑘3 + 𝑘2
𝑘2𝑘3

From above, EQM for 𝑚1 becomes

𝑚1�̈�1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑘1 +

𝑘5
�����������
�
𝑘3 + 𝑘2
𝑘2𝑘3

� + 𝑘4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥1 = 𝐹

So now 𝑘4 and 𝑘4 are in parallel, hence we replace 𝑘5 + 𝑘4 by 𝑘6 found from

𝑘6 = 𝑘5 + 𝑘4

= �
𝑘3 + 𝑘2
𝑘2𝑘3

� + 𝑘4

𝑘6 =
𝑘3 + 𝑘2 + 𝑘2𝑘3𝑘4

𝑘2𝑘3
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Hence EQM for 𝑚1 now becomes

𝑚1�̈�1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑘1 +

𝑘6
���������������������𝑘3 + 𝑘2 + 𝑘2𝑘3𝑘4

𝑘2𝑘3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥1 = 𝐹

and finally

𝑚1�̈�1 +
𝑘3 + 𝑘2 + 𝑘2𝑘3𝑘4 + 𝑘1𝑘2𝑘3

𝑘2𝑘3
𝑥1 = 𝐹
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2.8.5 Key solution for HW 7

Homework #7 
EMA 545, Spring 2013 

 
Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation 
system to the turbulent flight profile in  “FlightAccel.mat” on the course website.  (To do 
this, you will have to assume that the aircraft experiences this exact same flight profile 
over and over again.) 

a.) Provide at least one plot comparing the response of the aircraft to the (hopefully 
improved) response on the vibration isolator. 

b.) Report on the values of mass, stiffness and damping that you used and how they 
would be realized in practice (e.g. if you use a beam as a leaf spring, what would 
its dimensions be?). 

 
Problem 2: (20 pts) Do Problem 3.60 as given in the text.  Comment on how you 
selected adequate values for N (number of samples in the time history) and the length of 
the time window (in seconds). 
 
Problem 3: Exercise 1.11 from Ginsberg.  (For the proof described in (b), set m2=0 and 
see what your equation of motion reduces to.) 
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Problem 3.60.
A SDOF system is subjected to a pulse excitation of the form:






>
≤≤−=
Tt

TtT/)tT(t)t(Q
0

02000 2

We are told that m = 0.5 kg and that the natural frequency is 100Hz; i.e., the undamped period of
vibration is 1/100 = 0.01 sec.  Since the pulse-duration is said to be equal to an undamped period, T
= 0.01 sec. We are to find the response of the system for the case of (a) ζ  = 0.2 and (b) ζ  = 0.002.

(a)  For ζ  = 0.2, the time-constant of the system is 1/ζ ωn= 1/(0.2*2*π*100) = 0.007958 sec. Four
time constants would be about 0.032, so choosing a maximum time of Tmax = 0.05 sec will ensure
that we allow enough time for the transient response to die down to an acceptably small value. The
next parameter that we need to choose is N. Let's choose N = 256 and then check that our Nyquist
critical frequency is high enough relative to the natural frequency of the system and the bandwidth
of the input spectrum.  Figure 1 shows the FFT of the input spectrum, the FFT of the output
spectrum, and the system transfer function as a function of frequency ratio for Tmax = 0.05 sec and
N = 256. Each curve is scaled so that its maximum value is unity. Although difficult to see whether
there are enough points in the vicinity of the resonant peak, it is clearly the case that our Nyquist
frequency is high enough.  Figure 2 shows the displacement response of the system for Tmax = 0.05
sec and using 2 different values of N. Below N = 64, the errors in the response become much more
noticeable. Note that the response is very small at t = 0.05 sec, indicating that "wraparound errors"
are negligable.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency Ratio

In
pu

t, 
TF

, O
ut

pu
t

ζ  = 0.2

Input            
Transfer Function
Output           

Figure 1.
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Figure 2.

Figure 3 shows the effect of varying Tmax, keeping N = 256.  It is seen that as Tmax is
reduced, the solution begins to degrade. In particular, examining the curve for Tmax = 0.02 sec, it is
seen that the response no longer appears to begin with zero initial conditions. Thus, using a Tmax
which is twice the duration of the pulse is inadequate in this case to avoid warparound errors.
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(b) For ζ  = 0.002, the time-constant of the system is 1/ζ ωn= 1/(0.2*2*π*100) = 0.7958 sec. Four
time constants would be about 3.2, so choosing a maximum time of Tmax = 5 sec should ensure
that we allow enough time for the transient response to die down to an acceptably small value. As
before, we will choose a value for N (4096) and then check that our Nyquist critical frequency is
high enough relative to the natural frequency of the system and the bandwidth of the input spectrum.
Figure 4 shows the FFT of the input spectrum, the FFT of the output spectrum, and the system
transfer function as a function of frequency ratio for Tmax = 5 sec and N = 4096. As before, each
curve is scaled so that its maximum value is unity. We observe that there appear to be enough points
in the vicinity of the resonant peak and that the Nyquist frequency appears to be high enough.
Figure 5 shows the displacement response of the system for Tmax = 5 sec and N = 4096. The result
was checked using ode45 and found to be very close to the values produced using the FFT analysis.
Figure 6 shows the first 0.01 seconds of response from Figure 5 on a larger scale. The fact that the
response begins with nearly zero displacement and velocity shows that wraparound error has been
avoided.
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Figure 5. Tmax = 5 sec, N = 4096 points.
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Figure 6. Tmax = 5 sec, N = 4096. Same result as shown in Figure 5, but over a smaller time range.

The Matlab code used to generate these results is shown below:

% ME6442, Spring 2002
% Dr. Ferri
% Problem 3.60

% Q is a short-pulse parabolic input. The system is
% a damped SDOF system with m = 0.5kg, and fn = 100 Hz. The duration of
% the pulse is Tn, an undamped period of motion.

m = 0.5 ; %kg
zeta = 0.2;  % or zeta = 0.002 for part (b)
wn = 100*2*pi; % rad/s
timeconstant = 1/(zeta*wn)
T = 2*pi/wn; % duration of pulse
Tmax = input('Enter Tmax...  ');
N = input('Enter N...  ');
w1 = 2*pi/Tmax;
delt = Tmax/N;
t = 0:delt:(N-1)*delt;

% Define input pulse

Q = zeros(1,N);
for k = 1:N;
    if t(k) > T; break; end
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    Q(k) = 2000*t(k).*(T-t(k))/T^2;
end

plot(t,Q);
xlabel('Time (sec)')
ylabel('Q')
title(['N = ',num2str(N),' , \zeta = ',num2str(zeta)])
grid
pause

Q_trans = fft(Q);

r = (0:(N/2))*w1/wn;
D = 1./(1 - r.^2 + i*2*zeta*r);
Xhalf = Q_trans(1:(N/2+1)).*D/(m*wn^2);
rev_index = (N/2):-1:2;
X = [Xhalf conj(Xhalf(rev_index))];

% Plot input fft, output fft, and TF on same plot.

Qplot = Q_trans(1:(N/2+1))/max(abs(Q_trans(1:(N/2+1))));
Dplot = D/max(abs(D));
Xplot = Xhalf/max(abs(Xhalf));
plot(r,abs(Qplot),'o--',r,abs(Dplot),'k-',r,abs(Xplot),'*--')
xlabel('Frequency Ratio')
ylabel('Input, TF, Output')
title(['\zeta = ',num2str(zeta)]);
grid
legend('Input','Transfer Function','Output')
pause

xifft = ifft(X);

% Check that the ifft is "mostly real-valued." The quantity
% imag_check is the ratio of the norms of the imaginary and
% reak parts. This term should be very small (<1e-5).

imag_check = norm(imag(xifft))/norm(real(xifft))

% Assuming that imag_check is small, discard the imaginary part
% of xifft:

xifft=real(xifft);

plot(t,xifft);
xlabel('Time');
ylabel('x');
title(['N = ',num2str(N),' , \zeta = ',num2str(zeta)])
grid
zoom on
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Exercise 3.60

M 0.5 ω nat 200 π. τ
2 π.

ω nat
Note: Change pulse duration to τ

Superposition solution

ramp t ζ,( ) t 0>( ) 1

M ω nat
3.

. ω nat t. 2 ζ. exp ζ ω nat. t. 2 ζ. cos 1 ζ
2
ω nat. t..

1 2 ζ
2.

1 ζ
2
sin 1 ζ

2
ω nat. t..+

.....

quad t ζ,( ) t 0>( ) 1

M ω nat
4.

. ω nat t.
2 4 ζ. ω nat. t. 2 1 4 ζ

2..

exp ζ ω nat. t. 2 1 4 ζ
2.. cos 1 ζ

2
ω nat. t..

6 ζ. 8 ζ
3.

1 ζ
2
sin 1 ζ

2
ω nat. t..+

....+

....

q super t ζ,( ) 2000
τ

ramp t ζ,( ) ramp t τ ζ,( )( ). 2000

τ
2

quad t ζ,( ) quad t τ ζ,( )( ).
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First case ζ 0.20

4
ζ ω nat.

0.032= This is greater than τ = 0.01, so let T' = 4/ζ*ωnat T' 4
ζ ω nat.

Because damped period is larger than the undamped period, select 
∆'>π/2ωnat

∆' π

8 ω nat.

N' 2 T'.

∆'
N' 101.859= N 128 T 2 T'. ∆

T
N

j 1 N.. tj j 1( ) ∆. Qj 2000
tj τ tj.

τ
2

. tj τ<.

F FFT Q( ) r fund
2 π.

ω nat T.
K M ω nat

2.

n 1 N
2

1..
Xn

Fn
K

1

1 n 1( ) r fund. 2 2i ζ. n 1( ) r fund..

.
x IFFT X( )

x supern
q super tn ζ,

0 0.01 0.02 0.030.002

0

0.002xn

x supern

tn

τ 0.01=
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Second case ζ 0.0020

4
ζ ω nat.

3.183= This is greater than τ = 0.01, so let T' = 4/ζ*ωnat T' 4
ζ ω nat.

Because damped is larger than the undamped period, select ∆'>π/2ωnat ∆' π

8 ω nat.

N' 2 T'.

∆'
N' 1.019 104.= N 1024 16. T 2 T'. ∆

T
N

j 1 N.. tj j 1( ) ∆. Qj 2000
tj τ tj.

τ
2

. tj τ<.

F FFT Q( ) r fund
2 π.

ω nat T.
K M ω nat

2.

n 1 N
2

1..
Xn

Fn
K

1

1 n 1( ) r fund. 2 2i ζ. n 1( ) r fund..

.
x IFFT X( )

0 0.5 1 1.5 2 2.5 3 3.50.005

0

0.005

xn

tn

x supern
q super tn ζ,

0 0.01 0.02 0.030.005

0

0.005

xn

x supern

tn
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2.8.6 appendix

Appendix, HW7, EMA 545, spring 2013

� Analytical (superposition) solution for HW7 EMA 545

T = 0.01;

wn = 2.0 * Pi * 100;

m = 0.5;

In[108]:= wd@Ζ_D := wn 1 - Ζ
2

;

Β =

2000

T2
;

tp = t - T;

f1@t_, Ζ_D :=

Β T
1

m wn3
wn t - 2 Ζ + Exp@-Ζ wn tD 2 Ζ Cos@wd@ΖD tD - I1 - 2 Ζ

2M
wn

wd@ΖD
Sin@wd@ΖD tD ;

f2@t_, Ζ_D := Β

1

m wn4
Hwn tL2

- 4 Ζ wn t - 2 I1 - 4 Ζ
2M +

Exp@-Ζ wn tD 2 I1 - 4 Ζ
2M Cos@wd@ΖD tD + I6 Ζ - 8 Ζ

3M
wn

wd@ΖD
Sin@wd@ΖD tD ;

f3@t_, Ζ_D := 2 Β T
1

m wn3
wn tp - 2 Ζ + Exp@-Ζ wn tpD

2 Ζ Cos@wd@ΖD tpD - I1 - 2 Ζ
2M

wn

wd@ΖD
Sin@wd@ΖD tpD ;

f4@t_, Ζ_D := Β

1

m wn4
Hwn tpL2

- 4 Ζ wn tp - 2 I1 - 4 Ζ
2M +

Exp@-Ζ wn tpD 2 I1 - 4 Ζ
2M Cos@wd@ΖD tpD + I6 Ζ - 8 Ζ

3M
wn

wd@ΖD
Sin@wd@ΖD tpD ;

f5@t_, Ζ_D := 2 Β T
2

1

m wn2
1 - Exp@-Ζ wn tpD Cos@wd@ΖD tpD +

Ζ wn

wd@ΖD
Sin@wd@ΖD tpD ;

f6@t_, Ζ_D :=

Β T
1

m wn3
wn tp - 2 Ζ + Exp@-Ζ wn tpD 2 Ζ Cos@wd@ΖD tpD - I1 - 2 Ζ

2M
wn

wd@ΖD
Sin@wd@ΖD tpD ;

freeResponse@t_, q0_, v0_, Ζ_D := Exp@-Ζ wn tD q0 Cos@wd@ΖD tD +

v0 + Ζ wn q0

wd@ΖD
Sin@wd@ΖD tD ;

In[118]:= impulseResponse@t_, Ζ_D := f1@t, ΖD UnitStep@tD - f2@t, ΖD UnitStep@tD - f3@t, ΖD UnitStep@tpD +

f4@t, ΖD UnitStep@tpD + f5@t, ΖD UnitStep@tpD - f6@t, ΖD UnitStep@tpD;

� case Ζ=0.2

In[121]:= Ζ = 0.2;

p1 = Plot@impulseResponse@t, ΖD HUnitStep@tD - UnitStep@tpDL, 8t, 0, T<D;

� Evaluate IC at end of impulse to use for free vibration response

In[123]:= q0 = Hf1@t, ΖD - f2@t, ΖD - f3@t, ΖD + f4@t, ΖD + f5@t, ΖD - f6@t, ΖDL �. t ® T

Out[123]= 0.00120186

Printed by Wolfram Mathematica Student Edition
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In[124]:= v0 = D@f1@t, ΖD - f2@t, ΖD - f3@t, ΖD + f4@t, ΖD + f5@t, ΖD - f6@t, ΖD, tD �. t ® T

Out[124]= -1.21014

In[125]:= p2 = Plot@freeResponse@tp, q0, v0, ΖD UnitStep@tpD,

8t, T, 3 * T<, Exclusions ® None, PlotStyle ® 8Dashed, Thick<D;

� Plot the complete solution by combining the above 2 plots

In[126]:= Show@p1, p2, PlotRange ® All, Frame ® True, FrameLabel ® 88"response", None<,

8"time HsecL", Row@8"solution using Superposition Impulse response for Ζ=", Ζ<D<<,

GridLines ® Automatic, GridLinesStyle ® LightGray, Axes ® False, ImageSize ® 500D

Out[126]=
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solution using Superposition Impulse response for Ζ=0.2

2   problem_2.nb

Printed by Wolfram Mathematica Student Edition

199



2.8. HW7 CHAPTER 2. HW’S

� case Ζ=0.002

In[137]:= Ζ = 0.002;

p1 = Plot@impulseResponse@t, ΖD HUnitStep@tD - UnitStep@tpDL, 8t, 0, T<D;

q0 = Hf1@t, ΖD - f2@t, ΖD - f3@t, ΖD + f4@t, ΖD + f5@t, ΖD - f6@t, ΖDL �. t ® T;

v0 = D@f1@t, ΖD - f2@t, ΖD - f3@t, ΖD + f4@t, ΖD + f5@t, ΖD - f6@t, ΖD, tD �. t ® T;

p2 = Plot@freeResponse@tp, q0, v0, ΖD UnitStep@tpD,

8t, T, 3 * T<, Exclusions ® None, PlotStyle ® 8Dashed, Thick<D;

Show@p1, p2, PlotRange ® All, Frame ® True, FrameLabel ® 88"response", None<,

8"time HsecL", Row@8"solution using Superposition Impulse response for Ζ=", Ζ<D<<,

GridLines ® Automatic, GridLinesStyle ® LightGray, Axes ® False, ImageSize ® 500D

Out[142]=
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solution using Superposition Impulse response for Ζ=0.002

� Verify the solutions using Numerical DE solver

In[143]:= Ζ = 0.002;

eq = y''@tD + 2 Ζ wn y'@tD + wn^2 y@tD � f@tD � m

Out[144]= 394 784. y@tD + 2.51327 y
¢@tD + y

¢¢@tD � 4. ´ 10
7 H0.01 - tL t H-UnitStep@-0.01 + tD + UnitStep@tDL

In[145]:= sol = First�NDSolve@8eq, y'@0D � 0, y@0D � 0<, y@tD, 8t, 0, 3 T<D;

In[147]:= Plot@y@tD �. sol, 8t, 0, 3 T<, GridLines ® Automatic, GridLinesStyle ® LightGrayD

Out[147]=

0.005 0.010 0.015 0.020 0.025 0.030
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-0.001

0.001
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0.003

0.004

problem_2.nb  3

Printed by Wolfram Mathematica Student Edition
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The above shows that the analytical solution using superposition is correct. 

4   problem_2.nb

Printed by Wolfram Mathematica Student Edition
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2.9.1 problem description

Homework #8 
EMA 545, Spring 2013 

 
Problem 1: (40 points) 

a.) Find the nonlinear equation of motion for the system pictured below.  The block 
has mass m and the guide can be approximated as frictionless.  In the position 
shown the spring is unstretched and the angle between the spring and guide bar is 
0. 

b.) Linearize your equation of motion for small deflections from the position shown 
(i.e. using a Taylor series expansion on k(x) about x=0).  Use a computer to plot 
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 0 = 45 degrees 
for x ranging from -1 m to +1 m. 

c.) Find the equations of motion for the system using the stiff spring approximation 
and assuming small displacements from an equilibrium position defined by L=1 
m, k=1000 N/m and 0 = 45 degrees.  Compare your result with your linearized 
result from part (b). 

d.) Using m=1, find the response of the nonlinear system (in part a) using ode45 and 
plot the displacement of the mass over a few cycles when it is released from rest 
at x(0)=0.1 and also at x(0)=0.5 meters.  Overlay both curves on the same set of 
axes.  How does the period of the response compare with the linearized natural 
frequency in each case?  In what other way(s) does the nonlinearity manifest itself 
in the response of the system when x(0)=0.5? 

 



k

L

x

 
 
Problem 2: Exercise 1.27 from Ginsberg. 

A standard model for a wing has a translational spring ky and a torsional spring kT 
representing the elastic rigidity.  Point E represents the elastic center because static 
application of a vertical force at that point results in upward displacement without an 
associated rotation.  The design of the wing is such that horizontal movement of point E 
is negligible.  The lift force L acts at point P, which is called the center of pressure.  The 
lift force may be treated as known.  When the wing is in its static equilibrium position, 
points G, E and P form a horizontal line.  Point G is the center of mass, and the radius of 
gyration of the wing about that point is rG.  Denote the mass of the wing m.  Derive the 
equations of motion for the wing, assuming small displacements (and small rotational 
displacements).  Put the equations in matrix form and check the units and sign of each 
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term in your EOM.  (Hint: use the displacement of the center of gravity and the rotation 
of the wing as generalized coordinates.) 
 

   
 
Problem 3: Use the power balance method and the stiff spring approximation to find the 
equation of motion of the system pictured in Problem 1.16. 
 
Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression 
for the acceleration of the small block.)  Check the unit and sign of each term in your 
EOM. 

 
 
Problem 5: Exercise 1.30 from Ginsberg:  Use the stiff spring approximation and 
assume small deflections of both bars.  Check the units and sign of each term in your 
EOM.  Gravity acts downward (same direction as the force, F). 

 
 

Problem 6: Exercise 4.1 in Ginsberg.  Solve the eigenvalue problem by hand to get the 
natural frequencies and mode shapes.  You may check your answers with Matlab. 
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2.9.2 problem 1

2.9.2.1 part(a)

Let initial length of the spring (un stretched length) be 𝐿0 and when the mass 𝑚 has
moved to the right by an amount 𝑥 then let the current length be 𝐿𝑐𝑢𝑟.

Therefore the stretch in the spring is

Δ = 𝐿𝑐𝑢𝑟 − 𝐿0

Let the height of the bar by 𝐻,where tan𝜃0 =
𝐻
𝐿 or 𝐻 = 𝐿 tan𝜃0
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L0

H

Hence from the above diagram we see that 𝐿0 = √𝐻2 + 𝐿2 and 𝐿𝑐𝑢𝑟 = �𝐻
2 + (𝐿 + 𝑥)2 ,

therefore

Δ = �𝐻
2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

Δ2 = ��𝐻
2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �

2

Now we can derive the equation of motion using energy methods.

Let 𝑇 be the current kinetic energy in the system, and let𝑉 be the current potential energy.
This system is one degree of freedom, since we only need one generalized coordinate to
determine the position of the mass 𝑚. This coordinate is 𝑥.

𝑇 =
1
2
𝑚�̇�2

𝑉 =
1
2
𝑘Δ2

=
1
2
𝑘��𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �
2

Hence the Lagrangian Φ is
Φ = 𝑇 − 𝑉 = 𝑇 − 𝑉

=
1
2
𝑚�̇�2 −

1
2
𝑘��𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �
2

Now the equation of motion for coordinate 𝑥 is (using the standard Lagrangian form)
𝑑
𝑑𝑡�

𝜕Φ
𝜕�̇� �

−
𝜕Φ
𝜕𝑥

= 𝑄𝑥
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But 𝑄𝑥, then generalized force, is zero since there is no external force and no damping.
Now we just need to evaluate each part of the above expression to obtain the EOM.

𝜕Φ
𝜕�̇�

= 𝑚�̇�

𝑑
𝑑𝑡�

𝜕Φ
𝜕�̇� �

= 𝑚�̈�

and

𝜕Φ
𝜕𝑥

=
𝜕
𝜕𝑥

⎛
⎜⎜⎜⎜⎝
1
2
𝑚�̇�2 −

1
2
𝑘��𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �
2⎞⎟⎟⎟⎟⎠

= −𝑘��𝐻
2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2 �

1
2
�𝐻2 + (𝐿 + 𝑥)2�

−1
2 2(𝐿 + 𝑥)

= −𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥)

Hence EOM becomes
𝑑
𝑑𝑡�

𝜕Φ
𝜕�̇� �

−
𝜕Φ
𝜕𝑥

= 0

𝑚�̈� + 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥) = 0

2.9.2.2 part(b)

For small 𝑥 we need to expand 𝑓(𝑥) = 𝑘
⎛
⎜⎜⎜⎜⎝
�𝐻2+(𝐿+𝑥)2 −√𝐻2+𝐿2

�𝐻2+(𝐿+𝑥)2

⎞
⎟⎟⎟⎟⎠(𝐿 + 𝑥) around 𝑥 = 0 in Taylor

series and let higher powers of 𝑥 go to zero.

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2𝑓′′(0)
2!

+ 𝐻𝑂𝑇.

𝑓(0) = 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 0)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 0)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 0)

= 𝑘
⎛
⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2 − √𝐻2 + 𝐿2

√𝐻2 + 𝐿2

⎞
⎟⎟⎟⎟⎠𝐿

= 0
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and now for 𝑓′(0)

𝑓′(0) =
𝑑
𝑑𝑥
𝑓(𝑥)𝑥=0

= 𝑘
𝑑
𝑑𝑥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝑥=0

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
(𝐿 + 𝑥)

𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑑
𝑑𝑥
(𝐿 + 𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑥=0

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
(𝐿 + 𝑥)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2

𝐿 + 𝑥

�𝐻2 + 𝐿2 + 2𝐿𝑥 + 𝑥2�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑥=0

Now we evaluate it at 𝑥 = 0

𝑓′(0) = 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
(𝐿 + 0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2

𝐿 + 0

�𝐻2 + 𝐿2 + 2𝐿0 + 0�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 0)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 0)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2

𝐿

�𝐻2 + 𝐿2�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
⎛
⎜⎜⎜⎜⎝
√𝐻2 + 𝐿2 − √𝐻2 + 𝐿2

√𝐻2 + 𝐿2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�𝐻2 + 𝐿2�
1
2

�𝐻2 + 𝐿2�
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑘
⎛
⎜⎜⎜⎜⎝

𝐿2

�𝐻2 + 𝐿2�

⎞
⎟⎟⎟⎟⎠

Therefore, EOM of motion becomes (notice we ignored higher order terms, which con-
tains 𝑥2 in them)

𝑚�̈� + �𝑓(0) + 𝑥𝑓′(0)� = 0

Hence the linearized EOM is

𝑚�̈� + 𝑘 𝐿2

�𝐻2+𝐿2�
𝑥 = 0
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Or in terms of 𝜃0 the EOM can be written as

𝑚�̈� + 𝑘
𝐿2

�(𝐿 tan𝜃0)
2 + 𝐿2�

𝑥 = 0

𝑚�̈� + 𝑘
1

1 + tan2 𝜃0
𝑥 = 0

This is the linearized EOM around 𝑥 = 0. Using numerical values given in the problem
𝐿 = 1,𝑚 = 1, 𝑘 = 1000𝑁/𝑚, 𝜃0 =

𝜋
4 , it becomes

�̈� + 1000
1

1 + �tan 𝜋
4
�
2𝑥 = 0

�̈� + 500𝑥 = 0

Therefore the linearized stiffness is 500𝑥 while the nonlinearized stiffness is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
𝐿=1,𝜃=450

= 1000

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�tan 𝜋

4
�
2
+ (1 + 𝑥)2 −

�
�tan 𝜋

4
�
2
+ 1

�
�tan 𝜋

4
�
2
+ (1 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1 + 𝑥)

= 1000

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�(𝑥 + 1.0)

2 + 1.0 − 1.4142

�(𝑥 + 1.0)
2 + 1.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(1 + 𝑥)

Here is a plot of linearized vs. non-linearized stiffness for 𝑥 = −1⋯1
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2.9.2.3 part(c)

The spring extension Δ is first found by assuming there is a point 𝐴 at 𝑥 = 0 and point 𝐵
where the spring is attached to the ceiling. Hence

A

B
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Δ̇ = (�̇�𝐴 − �̇�𝐵)𝑒𝐴/𝐵
= ��̇� ̂𝚤 − 0 ̂𝚥� ⋅ �cos𝜃0 ̂𝚤 − sin𝜃0 ̂𝚥�
= �̇� cos𝜃0

Therefore
Δ = 𝑥 cos𝜃0

Now we repeat the same calculations but using Δ = 𝑥 cos𝜃0 for the spring extension.

𝑇 =
1
2
𝑚�̇�2

𝑉 =
1
2
𝑘Δ2

=
1
2
𝑘(𝑥 cos𝜃0)

2

Hence the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝑚�̇�2 −

1
2
𝑘(𝑥 cos𝜃0)

2

Now the equation of motion for coordinate 𝑥 is (using the standard Lagrangian form)

𝑑
𝑑𝑡�

𝜕Φ
𝜕�̇� �

−
𝜕Φ
𝜕𝑥

= 0

It is equal to zero above, since there is no generalized force associated with coordinate 𝑥.
Now we just need to evaluate each part of the above expression to obtain the EOM.

𝜕Φ
𝜕�̇�

= 𝑚�̇�

𝑑
𝑑𝑡�

𝜕Φ
𝜕�̇� �

= 𝑚�̈�

and

𝜕Φ
𝜕𝑥

=
𝜕
𝜕𝑥�

1
2
𝑚�̇�2 −

1
2
𝑘(𝑥 cos𝜃0)

2�

= −𝑘(𝑥 cos𝜃0) cos𝜃0
= −𝑘𝑥 cos2 𝜃0
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Hence EOM becomes

𝑑
𝑑𝑡�

𝜕Φ
𝜕�̇� �

−
𝜕Φ
𝜕𝑥

= 0

𝑚�̈� + 𝑘𝑥 cos2 𝜃0 = 0

But cos𝜃0 =
𝐿

√𝐻2+𝐿2
hence

𝑚�̈� + 𝑘𝑥 𝐿2

𝐻2+𝐿2 = 0

This is the same as the EOM for the linearized case found in part(c)
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2.9.2.4 part(d)

Now we need to solve numerically the nonlinear EOM found in part(a) which is

𝑚�̈� + 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
�𝐻

2 + (𝐿 + 𝑥)2 − √𝐻2 + 𝐿2

�𝐻
2 + (𝐿 + 𝑥)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(𝐿 + 𝑥) = 0

using 𝑚 = 1, 𝑘 = 1000, 𝐿 = 1, 𝜃0 = 450. For IC we use 𝑥(0) = 0.1, 𝑥′(0) = 0 for first case, and
for second case using 𝑥(0) = 0.5, 𝑥′(0) = 0. This is a plot showing both responses on same
diagram

The period for the response for case of IC given by x(0) = 0.5 is seen to be about 0.375
seconds and for the case 𝑥(0) = 0.1 it is 0.275 sec.

The linearized EOM is �̈� + 500𝑥 = 0 and hence 𝜔2
𝑛 = 500 or 𝜔𝑛 = √500 = 22.361 rad/sec,

hence 𝑇 = 2𝜋
𝜔𝑛
= 2𝜋

22.361 = 0.281 sec .

We notice this agrees well with the period of the response of the nonlinear equation for
only the case 𝑥 = 0.1.This is because 𝑥 = 0.1 is very close to 𝑥 = 0 the point at which the
linearization happened. Therefore, the linearized EOM gave an answer of 0.281 sec that is
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very close the more exact value of 0.275 seconds. But when the initial conditions changed
to 𝑥(0) = 0.5, then 𝑇 found from linearized EOM does not agree with the exact value of
0.375 seconds.

This is because 𝑥 = 0.5 is far away from the point 𝑥 = 0 where the linearized was done.
Hence the linearized EOM can be used for only initial conditions that are close to the
point where the linearization was done.

Additionally, the nonlinearity manifests itself in the response of the system by noticing
that the frequency of the free vibration response has actually changed depending on
initial conditions. In a linear system, only the phase and amplitude of the free vibration
response will change as initial conditions is changed, while the natural frequency of
vibrations does not change.

2.9.3 problem 2

Use 𝑦 and 𝜃 as generalized coordinates as shown in this diagram in the positive direction
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
G

Ky

l

l

L

y

u E

u B

Using Lagrangian method, we start by finding the kinetic energy of the system, then the
potential energy.

𝑇 =
1
2
𝑚�̇�2 +

1
2
�𝑚𝑟2𝐺��̇�2

For the potential energy, there will be potential energy due to 𝑘𝑦 spring extension and
due to 𝑘𝑇 spring angle of rotation in system. From the diagram above, we see that, for
small angle 𝜃

𝑉 =
1
2
𝑘𝑦Δ2 +

1
2
𝑘𝑇𝜃2

To find Δ we use the stiff spring approximation. Let the point the spring is attached at
the top be 𝐵, then

Δ̇ = (�̇�𝐸 − �̇�𝐵)𝑒𝐸/𝐵
= ��𝑙�̇� − �̇�� ̂𝚥 − 0� ⋅ �− ̂𝚥�

= �𝑙�̇� − �̇�� ̂𝚥 ⋅ �− ̂𝚥�

= ��̇� − 𝑙�̇��

Hence
Δ = 𝑦 − 𝑙𝜃

Therefore, the potential energy now can be found to be

𝑉 =
1
2
𝑘𝑦�𝑦 − 𝑙𝜃�

2
+
1
2
𝑘𝑇𝜃2
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Therefore, the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝑚�̇�2 +

1
2
�𝑚𝑟2𝐺��̇�2 −

1
2
𝑘𝑦�𝑦 − 𝑙𝜃�

2
−
1
2
𝑘𝑇𝜃2

We now find the equations for each coordinate. For 𝑦

𝜕Φ
𝜕�̇�

= 𝑚�̇�

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�

= 𝑚�̈�

𝜕Φ
𝜕𝑦

= −𝑘𝑦�𝑦 − 𝑙𝜃�

Hence EOM is

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�

−
𝜕Φ
𝜕𝑦

= 𝑄𝑦

𝑚�̈� + 𝑘𝑦�𝑦 − 𝑙𝜃� = 𝑄𝑦

We just need to find 𝑄𝑦 the generalized force in the 𝑦 direction. Using virtual work, we
make small virtual displacement 𝛿𝑦 in positive 𝑦 direction while fixing all other gener-
alized coordinates from moving (in this case 𝜃) and then find out the work done by
external forces. In this case, there is only one external force which is 𝐿. Hence

𝛿𝑊 = 𝐿𝛿𝑦

Therefore 𝑄𝑦 = 𝐿 since that is the force that is multiplied by 𝛿𝑦. Hence EOM for 𝑦 is now
found

𝑚�̈� + 𝑘𝑦�𝑦 − 𝑙𝜃� = 𝐿

verification: As 𝐿 increases, then we see that 𝑦′′ gets larger. This makes sense since 𝑦 is
upwards acceleration, so wing accelerates in the same direction.

Now we find EOM for 𝜃

𝜕Φ
𝜕�̇�

= 𝑚𝑟2𝐺�̇�

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�

= 𝑚𝑟2𝐺�̈�

𝜕Φ
𝜕𝜃

= 𝑘𝑦𝑙�𝑦 − 𝑙𝜃� − 𝑘𝑇𝜃
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Therefore the EOM is

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�

−
𝜕Φ
𝜕𝜃

= 𝑄𝜃

𝑚𝑟2𝐺�̈� − 𝑘𝑦𝑙�𝑦 − 𝑙𝜃� + 𝑘𝑇𝜃 = 𝑄𝜃

𝑚𝑟2𝐺�̈� − 𝑘𝑦𝑙𝑦 + 𝑘𝑦𝑙2𝜃 + 𝑘𝑇𝜃 = 𝑄𝜃

𝑚𝑟2𝐺�̈� − 𝑘𝑦𝑙𝑦 + �𝑘𝑇 + 𝑘𝑦𝑙2�𝜃 = 𝑄𝜃

We just need to find 𝑄𝜃 the generalized force in the 𝜃 direction. Using virtual work, we
make small virtual displacement 𝛿𝜃 in positive 𝜃 direction (i.e. anticlock wise) while
fixing all other generalized coordinates from moving (in this case 𝑦) and then find out
the work done by external forces. In this case, there is only one external force which is 𝐿.
When wemake 𝛿𝜃 rotation in the positive 𝜃 direction, the displacement where the force 𝐿
acts is (𝑙 + 𝑠)𝛿𝜃 for small angle. But this displacement is in the downward direction, hence
it is negative, since we are using 𝑦 as positive upwards. Hence

𝛿𝑊 = −𝐿(𝑙 + 𝑠)𝛿𝜃

Therefore 𝑄𝜃 = −𝐿(𝑙 + 𝑠) since that is the force that is multiplied by 𝛿𝜃.Hence EOM for 𝜃
is now found

𝑚𝑟2𝐺�̈� − 𝑘𝑦𝑙𝑦 + �𝑘𝑇 + 𝑘𝑦𝑙2�𝜃 = −𝐿(𝑙 + 𝑠)

Verification: As 𝐿 gets larger, then �̈� gets negative (since 𝐿 has negative sign). This makes
sense, since as 𝐿 gets larger, the rotation as shown in the positive direction will change
sign and the wing will now swing the opposite direction (i.e. anticlockwise).

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎜⎝
𝑚 0

0 𝑚𝑟2𝐺

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
�̈�

�̈�

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝑦 −𝑙𝑘𝑦

−𝑙𝑘𝑦 𝑘𝑇 + 𝑘𝑦𝑙2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑦

𝜃

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝐿
−𝐿(𝑙 + 𝑠)

⎞
⎟⎟⎟⎟⎟⎠

Notice that for [𝑘] the matrix is symmetric as expected, and also positive on the diagonal
as expected. The mass matrix [𝑚] is symmetric and positive definite as well.
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2.9.4 problem 3

Let 𝜃 be the small angle of rotation that the rod rotates by in the anti clockwise direction.
Let the point the spring is fixed be 𝐵 and the moving point where the spring is attached
to the rod be 𝐴.To find spring extension Δ we use the stiff spring approximation. Let the
angle 𝛼 = 53.130, hence

Δ̇ = (�̇�𝐴 − �̇�𝐵) ⋅ e𝐴/𝐵

= ��
𝐿
3
�̇�� ̂𝚥 − 0� ⋅ �cos𝛼 ̂𝚤 + sin𝛼 ̂𝚥�

=
𝐿
3
�̇� sin𝛼
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Hence
Δ =

𝐿
3
𝜃 sin𝛼

Using Lagrangian method, we start by finding the kinetic energy of the system, then the
potential energy. 𝜃 is the only generalized coordinate. Assume bar has mass𝑚 and hence
𝐼 = 𝑚𝐿2

3

𝑇 =
1
2
𝐼�̇�2

For the potential energy, there will be potential energy due to 𝑘 spring extension. From
the diagram above, we see that

𝑉 =
1
2
𝑘�
𝐿
3
𝜃 sin𝛼�

2

Therefore, the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝐼�̇�2 −

1
2
𝑘
𝐿2

9
𝜃2 sin2 𝛼

Now we find EOM for 𝜃

𝜕Φ
𝜕�̇�

= 𝐼�̇�

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�

= 𝐼�̈�

𝜕Φ
𝜕𝜃

= −
𝑘𝐿2 sin2 𝛼

9
𝜃

Therefore the EOM is

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�

−
𝜕Φ
𝜕𝜃

= 𝑄𝜃

𝐼�̈� +
𝑘𝐿2 sin2 𝛼

9
𝜃 = 𝑄𝜃

We now need to find the generalized force due to virtual 𝛿𝜃 rotation using the virtual
work method. There are 2 external forces, the damping force which will have negative
sign since it takes energy away from the system, and the external force 𝐹 which will add
energy hence will have positive sign.

We start by making 𝛿𝜃 and then find the work done by these 2 forces.
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Work done by 𝐹 is 𝐹𝐿𝛿𝜃 since the displacement is 𝐿𝛿𝜃 for small angle. Now the work
done by damping is�𝑐𝐿3 �̇��

𝐿
3𝛿𝜃 hence total work is

𝛿𝑊 = 𝐹𝐿𝛿𝜃 − �𝑐
𝐿
3
�̇��
𝐿
3
𝛿𝜃

= �𝐹𝐿 − 𝑐
𝐿2

9
�̇��𝛿𝜃

Notice that work due to damping was added with negative sign since damping removes
energy from the system.

Hence 𝑄𝜃 = �𝐹𝐿 − 𝑐
𝐿2

9 �̇�� therefore the EOM is

𝐼�̈� +
𝑘𝐿2 sin2 𝛼

9
𝜃 = 𝐹𝐿 − 𝑐

𝐿2

9
�̇�

𝐼�̈� + 𝑐
𝐿2

9
�̇� +

𝑘𝐿2 sin2 𝛼
9

𝜃 = 𝐹𝐿

Hence the damping coefficient is 𝑐𝐿
2

9 .
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2.9.5 problem 4

Let 𝑥1 and 𝑥2 be the generalized coordinates as shown in this diagram

x 1

x 2

Let mass of cart be 𝑚1 and mass of small sliding block be 𝑚2 (at the end, they will be
replaced by values given). Let 𝑘 for spring attached to wall be 𝑘1 and 𝑘 for spring for small
block be 𝑘2.We start by finding the kinetic energy of the system

𝑇 =
1
2
𝑚1�̇�21 +

1
2
𝑚2𝑣2

where 𝑣 is the velocity of the block. To find this 𝑣 it is easier to resolve components on the
𝑥 and 𝑦 direction. Therefore we find that

�⃗� = �̇�2 sin𝜃𝑗 + (�̇�2 cos𝜃 + �̇�1)𝑖
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x 2 sin

x 2 cos  x 1



x 2



Hence

��⃗��2 = (�̇�2 sin𝜃)
2 + (�̇�2 cos𝜃 + �̇�1)

2

= ��̇�22 sin2 𝜃� + ��̇�22 cos2 𝜃 + �̇�21 + 2�̇�2�̇�1 cos𝜃�

= �̇�22�sin2 𝜃 + cos2 𝜃� + �̇�21 + 2�̇�2�̇�1 cos𝜃
= �̇�22 + �̇�21 + 2�̇�2�̇�1 cos𝜃

Therefore
𝑇 =

1
2
𝑚1�̇�21 +

1
2
𝑚2��̇�22 + �̇�21 + 2�̇�2�̇�1 cos𝜃�

Now we find the potential energy.

𝑉 =
1
2
𝑘1𝑥21 +

1
2
𝑘2𝑥22 − 𝑚2𝑔(𝑥2 sin𝜃)

There are no external forces, hence generalized forces 𝑄𝑥1, 𝑄𝑥2 are zero. The Lagrangian
Φ is

Φ = 𝑇 − 𝑉

=
1
2
𝑚1�̇�21 +

1
2
𝑚2��̇�22 + �̇�21 + 2�̇�2�̇�1 cos𝜃� −

1
2
𝑘1𝑥21 −

1
2
𝑘2𝑥22 + 𝑚2𝑔(𝑥2 sin𝜃)

Now we find EOM for 𝑥1 is

𝜕Φ
𝜕�̇�1

= 𝑚1�̇�1 + 𝑚2�̇�1 + 𝑚2�̇�2 cos𝜃

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�1

= 𝑚1�̈�1 + 𝑚2�̈�1 + 𝑚2�̈�2 cos𝜃

= (𝑚1 + 𝑚2)�̈�1 + 𝑚2�̈�2 cos𝜃
𝜕Φ
𝜕𝑥1

= −𝑘1𝑥1
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Therefore the EOM for 𝑥1 is
𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�1

−
𝜕Φ
𝜕𝑥1

= 0

(𝑚1 + 𝑚2)�̈�1 + 𝑚2�̈�2 cos𝜃 + 𝑘1𝑥1 = 0

Now we replace the actual values for 𝑚1 = 2𝑚,𝑚2 = 𝑚, 𝑘1 = 3𝑘 hence

3𝑚�̈�1 + 𝑚�̈�2 cos𝜃 + 3𝑘𝑥1 = 0

Now we find EOM for 𝑥2 is
𝜕Φ
𝜕�̇�2

= 𝑚2(�̇�2 + �̇�1 cos𝜃)

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�1

= 𝑚2(�̈�2 + �̈�1 cos𝜃)

= 𝑚2 cos𝜃�̈�1 + 𝑚2�̈�2
𝜕Φ
𝜕𝑥2

= −𝑘2𝑥2 + 𝑚2𝑔 sin𝜃

Therefore the EOM for 𝑥2 is
𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�2

−
𝜕Φ
𝜕𝑥2

= 0

𝑚2 cos𝜃�̈�1 + 𝑚2�̈�2 + 𝑘2𝑥2 − 𝑚2𝑔 sin𝜃 = 0

Now we replace the actual values for 𝑚1 = 2𝑚,𝑚2 = 𝑚, 𝑘2 = 𝑘 hence

𝑚 cos𝜃�̈�1 + 𝑚�̈�2 + 𝑘𝑥2 = 𝑚2𝑔 sin𝜃

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎝

3𝑚 𝑚 cos𝜃
𝑚 cos𝜃 𝑚

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
3𝑘 0
0 𝑘

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
𝑚2𝑔 sin𝜃

⎞
⎟⎟⎟⎟⎟⎠

Hence

𝑚

⎛
⎜⎜⎜⎜⎜⎝
3 cos𝜃

cos𝜃 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎠ + 𝑘

⎛
⎜⎜⎜⎜⎜⎝
3 0
0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
𝑚2𝑔 sin𝜃

⎞
⎟⎟⎟⎟⎟⎠

Notice that there zeros now off diagonal in the [𝐾]matrix, which means the springs are
not coupled. (which is expected, as motion of one is not affected by the other). But mass
matrix [𝑚] has non-zeros off the diagonal. So the masses are coupled. i.e. EOM is coupled.
This means we can’t solve on EOM on its own and both have to be solved simultaneously.
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2.9.6 problem 5

There are 2 degrees of freedom, 𝜃1 and 𝜃2 as shown in this diagram, using anticlock wise
rotation as positive

1

2

The Lagrangian Φ = 𝑇 − 𝑉 where

𝑇 =
1
2
𝐼1�̇�21 +

1
2
𝐼2�̇�22

Where 𝐼1 =
𝑚1𝐿2

3 and 𝐼2 =
𝑚2𝐿2

12 + 𝑚2�
𝐿
4
�
2
(using parallel axis theorem). Hence 𝐼2 =

𝑚2𝐿2

12 +

𝑚2
𝐿2

16 =
7
48𝐿

2𝑚2

Nowwe find the potential energy, assuming springs remain straight (stiff spring assump-
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tion) and assuming small angles

𝑉 =
1
2
𝑘1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ1

�����������������3𝐿
4
𝜃1 +

3𝐿
4
𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+
1
2
𝑘2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ2

�������������
𝐿𝜃1 +

𝐿
2
𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ 𝑚1𝑔
𝐿
2
𝜃1 − 𝑚2𝑔

𝐿
4
𝜃2

Hence
Φ = 𝑇 − 𝑉

= �
1
2
𝐼1�̇�21 +

1
2
𝐼2�̇�22� −

⎛
⎜⎜⎜⎜⎝
1
2
𝑘1�

3𝐿
4
𝜃1 +

3𝐿
4
𝜃2�

2

+
1
2
𝑘2�𝐿𝜃1 +

𝐿
2
𝜃2�

2

+ 𝑚1𝑔
𝐿
2
𝜃1 − 𝑚2𝑔

𝐿
4
𝜃2

⎞
⎟⎟⎟⎟⎠

Now we find EOM for 𝜃1
𝜕Φ
𝜕�̇�1

= 𝐼�̇�1

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�1

= 𝐼�̈�1

𝜕Φ
𝜕𝜃1

= −𝑘1�
3𝐿
4
𝜃2 +

3𝐿
4
𝜃1��

3𝐿
4 �

− 𝑘2�
𝐿
2
𝜃2 + 𝐿𝜃1�(𝐿) − 𝑚1𝑔

𝐿
2

= −
3𝐿
4
𝑘1�

3𝐿
4
𝜃2 +

3𝐿
4
𝜃1� − 𝑘2𝐿�

𝐿
2
𝜃2 + 𝐿𝜃1� − 𝑚1𝑔

𝐿
2

Therefore the EOM for 𝜃1 is
𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�1

−
𝜕Φ
𝜕𝜃1

= 𝑄𝜃1

𝐼1�̈�1 +
3𝐿
4
𝑘1�

3𝐿
4
𝜃2 +

3𝐿
4
𝜃1� + 𝑘2𝐿�

𝐿
2
𝜃2 + 𝐿𝜃1� + 𝑚1𝑔

𝐿
2
= 0

The generalized force is zero, since there is no direct external force acting on top rod.

Hence EOM for 𝜃1 is from above

𝑚1𝐿2

3
�̈�1 + 𝜃1

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2𝐿2
⎞
⎟⎟⎟⎟⎠ + 𝜃2

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2
𝐿2

2

⎞
⎟⎟⎟⎟⎠ = −𝑚1𝑔

𝐿
2

Now we find EOM for 𝜃2
𝜕Φ
𝜕�̇�2

= 𝐼�̇�2

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�2

= 𝐼�̈�2

𝜕Φ
𝜕𝜃2

= −𝑘1�
3𝐿
4
𝜃2 +

3𝐿
4
𝜃1��

3𝐿
4 �

− 𝑘2�
𝐿
2
𝜃2 + 𝐿𝜃1��

𝐿
2�
+ 𝑚2𝑔

𝐿
4
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Therefore the EOM for 𝜃2 is

𝑑
𝑑𝑡
𝜕Φ
𝜕�̇�2

−
𝜕Φ
𝜕𝜃2

= 𝑄𝜃2

𝐼2�̈�2 + 𝑘1�
3𝐿
4
𝜃2 +

3𝐿
4
𝜃1��

3𝐿
4 �

+ 𝑘2�
𝐿
2
𝜃2 + 𝐿𝜃1��

𝐿
2�
− 𝑚2𝑔

𝐿
4
= 𝑄𝜃1

Now𝑄𝜃2is found by virtual work. Making a virtual displacement 𝛿𝜃2 while fixing 𝜃1 and
finding the work done by all external forces.

𝛿𝑊 = 𝐹
𝐿
2
𝛿𝜃2

Hence 𝑄𝜃2 = 𝐹
𝐿
2 with positive sign since it add energy to the system. Hence EOM for 𝜃2

is
7
48
𝐿2𝑚2�̈�2 + 𝜃1

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2
𝐿2

2

⎞
⎟⎟⎟⎟⎠ + 𝜃2

⎛
⎜⎜⎜⎜⎝𝑘1�

3𝐿
4 �

2

+ 𝑘2�
𝐿
2�

2⎞⎟⎟⎟⎟⎠ = 𝑚2𝑔
𝐿
4
+ 𝐹

𝐿
2

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1𝐿2

3 0

0 7
48𝐿

2𝑚2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1
9𝐿2

16 + 𝑘2𝐿
2 𝑘1�

3𝐿
4
�
2
+ 𝑘2

𝐿2

2

𝑘1�
3𝐿
4
�
2
+ 𝑘2

𝐿2

2 𝑘1�
3𝐿
4
�
2
+ 𝑘2�

𝐿
2
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑚1𝑔
𝐿
2

𝑚2𝑔
𝐿
4 + 𝐹

𝐿
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix [𝑘] is coupled but the mass matrix [𝑚] is not.

2.9.7 problem 6

The inertia and stiffness matrices for a system are [𝑀] =

⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦ kg, [𝐾] =

⎡
⎢⎢⎢⎢⎢⎣
200 200
200 800

⎤
⎥⎥⎥⎥⎥⎦N/m.

determine the corresponding natural frequencies and modes of free vibration.

�[𝑘] − 𝜔2[𝑀]�{Φ} = {0}
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Solving for eigenvalues

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
200 200
200 800

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔

2

⎡
⎢⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 0

det

⎡
⎢⎢⎢⎢⎢⎣
200 − 4𝜔2 200

200 800 − 2𝜔2

⎤
⎥⎥⎥⎥⎥⎦ = 0

�200 − 4𝜔2��800 − 2𝜔2� − 2002 = 0
8𝜔4 − 3600𝜔2 + 120000 = 0

Hence, taking the positive square root only we find

𝜔1 = 20.341 rad/sec
𝜔2 = 6.0211 rad/sec

When 𝜔 = 𝜔1
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

1 200

200 800 − 2𝜔2
1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ11

Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let Φ11 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

1 200

× ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

200 − 4𝜔2
1 + 200Φ21 = 0

Φ21 =
−200 + 4𝜔2

1
200

=
−200 + 4(20.341)2

200
= 7.2751

Hence the first mode associated with 𝜔 = 20.341 rad/sec is
⎧⎪⎪⎨
⎪⎪⎩

1
7.2751

⎫⎪⎪⎬
⎪⎪⎭

When 𝜔 = 𝜔2
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

2 200

200 800 − 2𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ12

Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
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Let Φ12 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎢⎣
200 − 4𝜔2

2 200

× ×

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

200 − 4𝜔2
2 + 200Φ22 = 0

Φ22 =
−200 + 4𝜔2

2
200

=
−200 + 4(6.0211)2

200
= −0.27493

Hence the first mode associated with 𝜔 = 6.0211 rad/sec is
⎧⎪⎪⎨
⎪⎪⎩

1
−0.27493

⎫⎪⎪⎬
⎪⎪⎭

Summary
𝜔𝑛 (rad/sec) mode shape

6.0211

⎧⎪⎪⎨
⎪⎪⎩

1
−0.27493

⎫⎪⎪⎬
⎪⎪⎭

20.341

⎧⎪⎪⎨
⎪⎪⎩

1
7.2751

⎫⎪⎪⎬
⎪⎪⎭

Verification using Matlab:

EDU>> M=[4 0;0 2]; K=[200 200;200 800];
EDU>> [phi,omega]=eig(K,M);
EDU>> sqrt(omega)

6.0211 0
0 20.3407

EDU>> phi(:,1)/abs(phi(1,1))

-1.0000
0.2749

EDU>> phi(:,2)/abs(phi(1,2))

1.0000
7.2749

Which matches the result derived. One mode shape has both displacement in phase, and
the other mode shape shows the displacements to be out of phase.
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2.9.8 Key solution for HW 8

Homework #8 
EMA 545, Spring 2013 

 
Problem 1: (40 points) 

a.) Find the nonlinear equation of motion for the system pictured below.  The block 
has mass m and the guide can be approximated as frictionless.  In the position 
shown the spring is unstretched and the angle between the spring and guide bar is 
0. 

b.) Linearize your equation of motion for small deflections from the position shown 
(i.e. using a Taylor series expansion on k(x) about x=0).  Use a computer to plot 
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 0 = 45 degrees 
for x ranging from -1 m to +1 m. 

c.) Find the equations of motion for the system using the stiff spring approximation 
and assuming small displacements from an equilibrium position defined by L=1 
m, k=1000 N/m and 0 = 45 degrees.  Compare your result with your linearized 
result from part (b). 

d.) Using m=1, find the response of the nonlinear system (in part a) using ode45 and 
plot the displacement of the mass over a few cycles when it is released from rest 
at x(0)=0.1 and also at x(0)=0.5 meters.  Overlay both curves on the same set of 
axes.  How does the period of the response compare with the linearized natural 
frequency in each case?  In what other way(s) does the nonlinearity manifest itself 
in the response of the system when x(0)=0.5? 

 



k

L

x

 
 
Problem 2: Exercise 1.27 from Ginsberg. 

A standard model for a wing has a translational spring ky and a torsional spring kT 
representing the elastic rigidity.  Point E represents the elastic center because static 
application of a vertical force at that point results in upward displacement without an 
associated rotation.  The design of the wing is such that horizontal movement of point E 
is negligible.  The lift force L acts at point P, which is called the center of pressure.  The 
lift force may be treated as known.  When the wing is in its static equilibrium position, 
points G, E and P form a horizontal line.  Point G is the center of mass, and the radius of 
gyration of the wing about that point is rG.  Denote the mass of the wing m.  Derive the 
equations of motion for the wing, assuming small displacements (and small rotational 
displacements).  Put the equations in matrix form and check the units and sign of each 
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term in your EOM.  (Hint: use the displacement of the center of gravity and the rotation 
of the wing as generalized coordinates.) 
 

   
 
Problem 3: Use the power balance method and the stiff spring approximation to find the 
equation of motion of the system pictured in Problem 1.16. 
 
Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression 
for the acceleration of the small block.)  Check the unit and sign of each term in your 
EOM. 

 
 
Problem 5: Exercise 1.30 from Ginsberg:  Use the stiff spring approximation and 
assume small deflections of both bars.  Check the units and sign of each term in your 
EOM.  Gravity acts downward (same direction as the force, F). 

 
 

Problem 6: Exercise 4.1 in Ginsberg.  Solve the eigenvalue problem by hand to get the 
natural frequencies and mode shapes.  You may check your answers with Matlab. 
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% Part (b) 
% Plot nonlinear k(x) for large deformations of spring-mass system. 
% M.S. Allen, Spring 2011, EMA 545 
  
k=1000; %N/m 
L = 1; %m 
theta = 45*pi/180; % rad 
xs = [-1:0.01:1]; % m 
h = L*tan(theta); 
  
kx = k*((h^2+(L+xs).^2).^(1/2)-
sqrt(h^2+L^2)).*((L+xs)./(h^2+(L+xs).^2).^(1/2)); 
  
klin = k*(L^2/(h^2+L^2)); 
  
figure(1) 
plot(xs,kx,xs,klin*xs,'-.'); set(get(gca,'Children'),'LineWidth',2); 
grid on; 
xlabel('Disp x (m)'); ylabel('Spring Force (N)'); 
title('Spring Force-Displacement Curve'); 
legend('Nonlinear','Linear'); 
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% Part (d) 
% Find response to a small disturbance. 
m=1; 
wn_lin = sqrt(klin/m) 
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eom = @(t,x) [x(2)+0*t; -(1/m)*(k*((h^2+(L+x(1)).^2).^(1/2)-
sqrt(h^2+L^2)).*((L+x(1))./(h^2+(L+x(1)).^2).^(1/2)))] 

[ts1,y1]=ode45(eom,[0,1],[0.1; 0]); 
[ts2,y2]=ode45(eom,[0,1],[0.5; 0]); 

figure(2) 
plot(ts1,y1(:,1),ts2,y2(:,1)); hold on; grid on; 
xlabel('Time (s)'); ylabel('Response (m)'); 
title('Response of Nonlinear System'); 
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x0=0.1

x
0
=0.5

x
0
=0.53

The period of the nonlinear response in each case is given below (found using 
ginput on the plot).  The linearized natural frequency is 22.36 rad/s and the corresponding 
period is 0.281 seconds. 

Initial 
Displacement Period (s) 

x0=0.1 0.2823
x0=0.5 0.3698

x0=0.53 0.5311
The behavior of the system is quite peculiar.  The period becomes longer 

(frequency lower) as the system approaches the region where the stiffness vanishes.  As 
shown, with a slightly larger initial displacement of 0.53, the mass almost comes to rest 
as the mass approaches x=-1, which is the other equilibrium position. Incidentally, the 
body panels of a hypersonic aircraft, which I am studying as part of an Air Force grant, 
can behave very similarly.  They buckle due to thermal expansion and then as they 
vibrate they may jump between two equilibria.      
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2.10.1 problem description

Homework #9 
EMA 545, Spring 2013 

 
For the following problems, you may have the equations of motion for some of 

these systems in your past homework assignments or in the solutions to those that were 
posted online, so you may use those if you wish. 

For all of these problems you may use Matlab or some other package to find the 
natural frequencies and mode vectors and to mass normalize the mode vectors (if 
needed). 

 
1.)  Problem 4.3 in Ginsberg.  Sketch the deformation of the system when it moves in 
each of the modes.  (Notice that you can pull out factors such as k and m so that only 
numbers remain in the mass and stiffness matrices.  Then it is possible to check your 
answers using Matlab.) 

 
2.)  Problem 4.7 as given in the text.  You may use the following equations of motion: 

12 1

22

4 1 32 03 2 2
1 1 01

2 3 2

mL mgL
  

  

                             


  

 
3.)  Problem 4.11 as given in the text.  Hint: normal modes = mass normalized modes 
 
4.)  Problem 4.29 as given in the text.  Also, plot the motion of the automobile as a 
function of time.  Is the response a pure-sinusoid?  Why or why not?  Note: The answer 
provided by the book is incorrect.  The correct answer is: 

y1(t) = 0.16cos(1.5t’) + 0.84cos(2.0t’) 
y2(t) = 0.45cos(1.5t’) – 0.45cos(2.0t’) 
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2.10.2 problem 1
After solving problem 4.3 in text, Sketch the deformation of the system when it moves in
each of the modes.

There are 2 degrees of freedom, 𝜃1 and 𝜃2 as shown in this diagram, using anticlock wise
rotation as positive

1

2

We solved this problem in HW8, using classical Lagrangian method. This problem will
now be solved using power balance method. The static equilibrium position must be cho-
sen so that all generalized coordinates have value zero. Hence, using the above diagram
as the static equilibrium, we take 𝜃1 = 𝜃2 = 0 in this position.
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Now, as in Lagrangian method, we always start by finding kinetic energy 𝑇

𝑇 =
1
2
𝐼1�̇�21 +

1
2
𝐼2�̇�22

Where 𝐼1 =
𝑚1𝐿2

3 and 𝐼2 =
𝑚2𝐿2

12 + 𝑚2�
𝐿
4
�
2
(using parallel axis theorem). Hence 𝐼2 =

𝑚2𝐿2

12 + 𝑚2
𝐿2

16 =
7
48𝐿

2𝑚2

Now we compare the above expression to the quadratic form

𝑇 =
1
2
�𝑀11�̇�21 +𝑀22�̇�22 + 2𝑀12�̇�1�̇�2�

Hence we see that𝑀11 = 𝐼1,𝑀22 = 𝐼2,𝑀12 = 𝑀21 = 0, therefore the mass matrix is

[𝑀] =

⎛
⎜⎜⎜⎜⎜⎝
𝐼1 0

0 𝐼2

⎞
⎟⎟⎟⎟⎟⎠

We now find the potential energy due to springs. For this, we need to write down the
relative displacement between end points of each spring. Let Δ1 be the relative displace-
ment in the first spring 𝑘1 and let Δ2 be the relative displacement in the second spring 𝑘2.
Hence (and assuming springs remain straight, since we are assuming very stiff springs
and small angles) then

Δ1 =
3𝐿
4
𝜃1 +

3𝐿
4
𝜃2

Δ2 = 𝐿𝜃1 +
𝐿
2
𝜃2

Then

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝑘1Δ21 +

1
2
𝑘1Δ22

=
1
2
𝑘1�

3𝐿
4
𝜃1 +

3𝐿
4
𝜃2�

2

+
1
2
𝑘2�𝐿𝜃1 +

𝐿
2
𝜃2�

2

=
1
2
𝑘1�

9
16
𝐿2𝜃21 +

9
8
𝐿2𝜃1𝜃2 +

9
16
𝐿2𝜃22� +

1
2
𝑘2�𝐿2𝜃21 + 𝐿2𝜃1𝜃2 +

1
4
𝐿2𝜃22�

=
9
32
𝐿2𝜃21𝑘1 +

1
2
𝐿2𝜃21𝑘2 +

9
32
𝐿2𝜃22𝑘1 +

1
8
𝐿2𝜃22𝑘2 +

9
16
𝐿2𝜃1𝜃2𝑘1 +

1
2
𝐿2𝜃1𝜃2𝑘2

= �
9
32
𝐿2𝑘1 +

1
2
𝐿2𝑘2�𝜃21 + �

9
32
𝐿2𝑘1 +

1
8
𝐿2𝑘2�𝜃22 + �

9
16
𝐿2𝑘1 +

1
2
𝐿2𝑘2�𝜃1𝜃2
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Now we compare the above to quadratic form

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
�𝐾11𝜃21 + 𝐾22𝜃22 + 2𝐾12𝜃1𝜃2�

We see that

𝐾11 =
9
16
𝐿2𝑘1 + 𝐿2𝑘2

𝐾22 =
9
16
𝐿2𝑘1 +

1
4
𝐿2𝑘2

𝐾12 =
9
16
𝐿2𝑘1 +

𝐿2

2
𝑘2

Now we need to find 𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦.Taking the static equilibrium position as the datum, then
upward displacement of center of gravity will be positive and downward displacement
is negative. This means the left bar will add positive potential energy due to gravity and
the right bar will add negative potential energy, hence

𝑉𝑔 = 𝑚1𝑔
𝐿
2
sin𝜃1 − 𝑚2𝑔

𝐿
4
sin𝜃2

Now we need to find the components of the gravity potential energy stiffness matrix.
Notice that each term is evaluated at static equilibrium

𝑉𝑔11 =
⎛
⎜⎜⎜⎝
𝜕𝑉2

𝑔

𝜕𝜃21

⎞
⎟⎟⎟⎠
𝜃1=0
𝜃2=0

= �−𝑚1𝑔
𝐿
2
sin𝜃1�

𝜃1=0
= 0

𝑉𝑔22 =
⎛
⎜⎜⎜⎝
𝜕𝑉2

𝑔

𝜕𝜃22

⎞
⎟⎟⎟⎠
𝜃1=0
𝜃2=0

= �−𝑚1𝑔
𝐿
2
sin𝜃2�

𝜃2=0
= 0

𝑉𝑔12 =
⎛
⎜⎜⎜⎝
𝜕𝑉2

𝑔

𝜕𝜃1𝜕𝜃2

⎞
⎟⎟⎟⎠
𝜃1=0
𝜃2=0

= 0

Hence, no contribution from gravity is added to the stiffness matrix. All contribution
comes from the springs potential energy. Therefore, the stiffness matrix is

[𝐾] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
16𝐿

2𝑘1 + 𝐿2𝑘2
9
16𝐿

2𝑘1 +
𝐿2

2 𝑘2

9
16𝐿

2𝑘1 +
𝐿2

2 𝑘2
9
16𝐿

2𝑘1 +
1
4𝐿

2𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now since there is no damping, then 𝑃𝑑𝑖𝑠𝑝 = 0. To find 𝑃𝑖𝑛 we need to find

𝑃𝑖𝑛 = 𝑄1𝜃1 + 𝑄2𝜃2
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The only external force is 𝐹 which generates a torque 𝐹𝐿
2𝜃2, hence by comparing to the

above

𝑃𝑖𝑛 = 𝐹
𝐿
2
𝜃2

𝑄2 = 𝐹
𝐿
2

Now we can make the matrix of EOM

𝑀𝑋′′ + 𝑘𝑋 = 𝑄
⎛
⎜⎜⎜⎜⎜⎝
𝐼1 0

0 𝐼2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
16𝐿

2𝑘1 + 𝐿2𝑘2
9
16𝐿

2𝑘1 +
𝐿2

2 𝑘2

9
16𝐿

2𝑘1 +
𝐿2

2 𝑘2
9
16𝐿

2𝑘1 +
1
4𝐿

2𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

𝐹𝐿
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1
3 0

0 7
48𝑚2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝐿

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
16𝑘1 + 𝑘2

9
16𝑘1 +

1
2𝑘2

9
16𝑘1 +

1
2𝑘2

9
16𝑘1 +

1
4𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

𝐹𝐿
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Now we can solve the problem given.

When 𝑚1 = 𝑚,𝑚2 = 2𝑚, 𝑘1 = 𝑘, 𝑘2 =
𝑘
2 we obtain

𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3 0

0 7
24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑘𝐿

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

17
16

13
16

13
16

11
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

𝐹𝐿
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

To find modes of free vibration, let the RHS {0} then we write

�[𝐾] − 𝜔2𝑚
𝑘
[𝑀]�{Φ} = {0}

Let 𝜆 = 𝜔2 𝑚
𝑘 , hence

[[𝐾] − 𝜆[𝑀]]{Φ} = {0}
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Solving for eigenvalues

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

17
16

13
16

13
16

11
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜆

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3 0

0 7
24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
16 −

1
3𝜆

13
16

13
16

11
16 −

7
24𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

9.7222 × 10−2𝜆2 − 0.53906𝜆 + 7.0313 × 10−2 = 0

Hence, taking the positive square root only we find

𝜆1 = 0.13366
𝜆2 = 5.4110

When 𝜆1 = 0.13366
[[𝑘] − 𝜆1[𝑀]]{Φ}1 = {0}

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
16 −

1
3𝜆1

13
16

13
16

11
16 −

7
24𝜆1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ11

Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let Φ11 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
16 −

1
3𝜆1

13
16

13
16

11
16 −

7
24𝜆1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

17
16
−
1
3
𝜆1 +

13
16
Φ21 = 0

Φ21 =
16
13�

1
3
𝜆1 −

17
16�

=
16
13�

1
3
(0.137) −

17
16�

= −1.253

Hence the first mode associated with 𝜆1 = 0.13366 is
⎧⎪⎪⎨
⎪⎪⎩

1
−1.253

⎫⎪⎪⎬
⎪⎪⎭

When 𝜆2 = 5.4110
[[𝑘] − 𝜆1[𝑀]]{Φ}1 = {0}
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
16 −

1
3𝜆2

13
16

13
16

11
16 −

7
24𝜆2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ12

Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let Φ12 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
16 −

1
3𝜆2

13
16

13
16

11
16 −

7
24𝜆2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

17
16
−
1
3
𝜆2 +

13
16
Φ22 = 0

Φ22 =
16
13�

1
3
𝜆2 −

17
16�

=
16
13�

1
3
(5.411) −

17
16�

= 0.912

Hence the second mode associated with 𝜆2 = 5.411 is
⎧⎪⎪⎨
⎪⎪⎩

1
0.912

⎫⎪⎪⎬
⎪⎪⎭

Summary

𝜔 (rad/sec) mode shape

𝜆 = 𝜔2 𝑚
𝑘 ⇒ 𝜔 = �

𝑘
𝑚 √0.137 = 0.366�

𝑘
𝑚

⎧⎪⎪⎨
⎪⎪⎩

1
−1.253

⎫⎪⎪⎬
⎪⎪⎭

𝜆 = 𝜔2 𝑚
𝑘 ⇒ 𝜔 = �

𝑘
𝑚 √5.411 = 2.326�

𝑘
𝑚

⎧⎪⎪⎨
⎪⎪⎩

1
0.912

⎫⎪⎪⎬
⎪⎪⎭

2.10.2.1 verification using Matlab

EDU>> M=[1/3 0;0 7/24]; K=[17/16 13/16;13/16 11/16];
EDU>> [phi,omega]=eig(K,M);
EDU>> sqrt(omega)

0.3656 0
0 2.3262

EDU>> phi(:,1)/abs(phi(1,1))
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1.0000
-1.2529

EDU>> phi(:,2)/abs(phi(1,2))

-1.0000
-0.9122

2.10.2.2 Sketch of each mode
⎧⎪⎪⎨
⎪⎪⎩

1
0.912

⎫⎪⎪⎬
⎪⎪⎭
means that 𝜃1 and 𝜃2 are in phase, and for each 1 unit rotation of 𝜃1 there will be

0.912 units of rotation of 𝜃2, while

⎧⎪⎪⎨
⎪⎪⎩

1
−1.253

⎫⎪⎪⎬
⎪⎪⎭
means that 𝜃1 and 𝜃2 are out of phase, and

for each 1 unit rotation of 𝜃1 there will be 1.253 units of rotation of 𝜃2 but in the opposite
direction. This is a sketch of both modes

1

0.91229

1

1. 2529

1

1

2

2
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2.10.3 problem 2

Using power balance method, we start by finding the kinetic energy.
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1

2

I1  1

3
mL2

L 1

L

2
 2

I2  1

12
mL2

Since the top bar does not have a point that is fixed in inertial space as the lower bar does,
then we take its moment of inertia around its center of mass, and add a translational
kinetic energy due to the motion of its center of mass in space. For the lower bar, since it
has a point that is fixed in space, then we take the moment of inertia around that point,
and we do not need to account for translational kinetic energy for the lower bar. To find
the speed of the center of mass of the top bar, we can either use its coordinates system 𝑥, 𝑦
differentiate these w.r.t time, or we can use the angular motion of the base of the second
bar and add it to the speed of the center of mass of the second bar relative to the base.
This is what will be done next:
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1

2 2
2

L

2
 2 cos2

L

2
 2 sin2

1

1
L 1 cos1

L 1 sin1

Therefore, the speed components of the center of mass of the top bar is

𝑣𝑥 =
𝐿
2
�̇�2 cos𝜃2 + 𝐿�̇�1 cos𝜃1

𝑣𝑦 = −
𝐿
2
�̇�2 sin𝜃2 − 𝐿�̇�1 sin𝜃1

So the velocity of the center of mass is

𝑣𝑐.𝑔. = �𝑣
2
𝑥 + 𝑣2𝑦

Now that we have the translation velocity of the top bar, and we know its moment of
inertia around its c.g. then we have all the terms needed to obtain the kinetic energy.

𝑇 =
1
2
𝐼1�̇�21 +

1
2
𝐼2�̇�22 +

1
2
𝑚𝑣2𝑐.𝑔.

Again, the important thing is to note that 𝐼1 is taken around the base of lower rod while
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𝐼2 is taken around the center of mass of the top rod. Hence

𝑇 =
1
2
𝑚𝐿2

3
�̇�21 +

1
2
𝑚𝐿2

12
�̇�22 +

1
2
𝑚�𝑣2𝑥 + 𝑣2𝑦�

=
1
2
𝑚𝐿2

3
�̇�21 +

1
2
𝑚𝐿2

12
�̇�22 +

1
2
𝑚
⎛
⎜⎜⎜⎜⎝�
𝐿
2
�̇�2 cos𝜃2 + 𝐿�̇�1 cos𝜃1�

2

+ �−
𝐿
2
�̇�2 sin𝜃2 − 𝐿�̇�1 sin𝜃1�

2⎞⎟⎟⎟⎟⎠

=
1
2
𝑚𝐿2

3
�̇�21 +

1
2
𝑚𝐿2

12
�̇�22 +

1
2
𝑚

��
𝐿2

4
�̇�22 cos2 𝜃2 + 𝐿2�̇�21 cos2 𝜃1 + 𝐿2�̇�2�̇�1 cos𝜃2 cos𝜃1� + �

𝐿2

4
�̇�22 sin2 𝜃2 + 𝐿2�̇�21 sin2 𝜃1 + 𝐿2�̇�2�̇�1 sin𝜃2 sin𝜃1��

Simplifying the last term, and using cos2 𝜃1 + sin2 sin2 𝜃1 = 1 we obtain

𝑇 =
1
2
𝑚𝐿2

3
�̇�21 +

1
2
𝑚𝐿2

12
�̇�22 +

1
2
𝑚�
𝐿2

4
�̇�22 + 𝐿2�̇�21 + 𝐿2�̇�2�̇�1(cos𝜃2 cos𝜃1 + sin𝜃2 sin𝜃1)�

To compare with the quadratic form, we collect all terms as follows

𝑇 = �̇�21�
1
2
𝑚𝐿2

3
+
1
2
𝐿2𝑚� + �̇�22�

1
2
𝑚𝐿2

12
+
1
8
𝑚𝐿2� + �̇�2�̇�1�

1
2
𝑚𝐿2(cos𝜃2 cos𝜃1 + sin𝜃2 sin𝜃1)�

Using cos𝜃2 cos𝜃1 + sin𝜃2 sin𝜃1 = cos(𝜃2 − 𝜃1) the above becomes

𝑇 = �̇�21�
4
6
𝑚𝐿2� + �̇�22�

1
6
𝑚𝐿2� + �̇�2�̇�1�

1
2
𝑚𝐿2 cos(𝜃2 − 𝜃1)�

We now compare the above to

𝑇 =
1
2
𝑀11�̇�21 +

1
2
𝑀22�̇�22 +𝑀12�̇�2�̇�1

Therefore

𝑀11 =
4
3
𝑚𝐿2

𝑀22 =
1
3
𝑚𝐿2

𝑀12 = 𝑀21 =
1
2
𝑚𝐿2 cos(𝜃2 − 𝜃1)

I am not sure how to get the same answer given for the mass matrix. Even if I assume
that 𝜃2 − 𝜃1 is very small, hence𝑀12 =

1
2𝑚𝐿

2 then the mass matrix is

[𝑀] = 𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Now we find the 𝑉𝑠𝑝𝑟𝑖𝑛𝑔 the potential energy due to springs.

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝛽𝑚𝑔𝐿𝜃21 +

1
2
𝛽𝑚𝑔𝐿(𝜃2 − 𝜃1)

2

=
1
2
𝛽𝑚𝑔𝐿𝜃21 +

1
2
𝛽𝑚𝑔𝐿�𝜃22 + 𝜃21 − 2𝜃2𝜃1�

= 𝜃21�𝛽𝑚𝑔𝐿� + 𝜃22�
1
2
𝛽𝑚𝑔𝐿� + 𝜃2𝜃1�−𝛽𝑚𝑔𝐿�

Comparing to quadratic form

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝐾11𝜃21 +

1
2
𝐾11𝜃21 + 𝐾12𝜃1𝜃2

Then

𝐾11 = 2𝛽𝑚𝑔𝐿
𝐾22 = 𝛽𝑚𝑔𝐿
𝐾12 = 𝐾21 = −𝛽𝑚𝑔𝐿

Hence the stiffness matrix due to springs only is

[𝐾] = 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝
2𝛽 −𝛽

−𝛽 𝛽

⎞
⎟⎟⎟⎟⎟⎟⎠

We know need to find the gravity contribution to stiffness. We start by finding the 𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦.
We take the datum as the horizontal line at the bottom the lower bar.

𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔
𝐿
2
cos𝜃1 + 𝑚𝑔�𝐿 cos𝜃1 +

𝐿
2
cos𝜃2�

Hence

𝑉11 =
𝜕2𝑉𝑔

𝜕2𝜃1
= −𝑚𝑔

𝐿
2
cos𝜃1 − 𝑚𝑔(𝐿 cos𝜃1)

evaluate at 𝜃1 = 0 gives

𝑉11 = −𝑚𝑔
𝐿
2
− 𝑚𝑔𝐿

= −
3
2
𝑚𝑔𝐿

and

𝑉22 =
𝜕2𝑉𝑔

𝜕2𝜃2
= −𝑚𝑔�

𝐿
2
cos𝜃2�
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evaluate at 𝜃2 = 0 gives

𝑉22 = −𝑚𝑔
𝐿
2

and

𝑉12 =
𝜕2𝑉𝑔

𝜕𝜃1𝜕𝜃2
= 0

Hence the stiffness matrix due to gravity is

[𝐾] = 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
2 0

0 −1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Combine the above with the stiffness matrix due to springs we obtain

[𝐾] = 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
2 0

0 −1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝
2𝛽 −𝛽

−𝛽 𝛽

⎞
⎟⎟⎟⎟⎟⎟⎠

= 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝛽 − 3
2 −𝛽

−𝛽 𝛽 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

There is no 𝑃𝑑𝑖𝑠𝑝 and no 𝑃𝑖𝑛 hence the equations of motion are

𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝛽 − 3
2 −𝛽

−𝛽 𝛽 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎟⎠

For 𝛽 = 4

𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
2 −4

−4 7
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎟⎠

To find modes of free vibration, we write

�[𝑘] − 𝜔2[𝑀]�{Φ} = {0}
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Solving for eigenvalues

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
2 −4

−4 7
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜔2𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
2 −4

−4 7
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜔2𝐿

𝑔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Let 𝜔2 𝐿
𝑔 = 𝜂, hence

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
2 −4

−4 7
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13
2 −

4
3𝜂 −4 − 1

2𝜂

−4 − 1
2𝜂

7
2 −

1
3𝜂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

7
36
𝜂2 −

65
6
𝜂 +

27
4
= 0

Hence 𝜂 = 55.084, 𝜂 = 0.63023

When 𝜂 = 55.084

�[𝑘] − 𝜂[𝑀]�{Φ}1 = {0}
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13
2 −

4
3𝜂 −4 − 1

2𝜂

−4 − 1
2𝜂

7
2 −

1
3𝜂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ11

Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
−66.945 −31.542
−31.542 −14.861

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ11

Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let Φ11 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎣
−66.945 −31.542
−31.542 −14.861

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
Φ21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

−66.945 − 31.542Φ21 = 0

Φ21 = −
66.945
31.542

= −2.1224
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Hence the first mode associated with 𝜂 = 55.084 is
⎧⎪⎪⎨
⎪⎪⎩

1
−2.1224

⎫⎪⎪⎬
⎪⎪⎭

When 𝜂 = 0.63023

�[𝑘] − 𝜔2
2[𝑀]�{Φ}2 = {0}

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13
2 −

4
3𝜂 −4 − 1

2𝜂

−4 − 1
2𝜂

7
2 −

1
3𝜂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ12

Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
5.6597 −4.3151
−4.3151 3.2899

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
Φ12

Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let Φ12 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎣
5.6597 −4.3151
−4.3151 3.2899

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
Φ22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

5.6597 − 4.3151Φ22 = 0

Φ22 =
−5.6597
−4.3151

= 1.3116

Hence the second mode associated with 𝜂 = 0.630 is
⎧⎪⎪⎨
⎪⎪⎩

1
1.3116

⎫⎪⎪⎬
⎪⎪⎭

Summary, 𝜔2 𝐿
𝑔 = 𝜂 hence 𝜔 = √𝜂�

𝑔
𝐿

𝜔𝑛 (rad/sec) mode shape

7.422�
𝑔
𝐿

⎧⎪⎪⎨
⎪⎪⎩

1
−2.1224

⎫⎪⎪⎬
⎪⎪⎭

0.794�
𝑔
𝐿

⎧⎪⎪⎨
⎪⎪⎩

1
1.3116

⎫⎪⎪⎬
⎪⎪⎭
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For 𝛽 = 2

𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�̈�1
�̈�2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 − 3
2 −2

−2 2 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝜃1
𝜃2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎟⎠

To find modes of free vibration, we write

�[𝑘] − 𝜔2[𝑀]�{Φ} = {0}

Solving for eigenvalues

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑚𝑔𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
2 −2

−2 3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜔2𝑚𝐿2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
2 −2

−2 3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜔2𝐿

𝑔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Let 𝜔2 𝐿
𝑔 = 𝜂, hence

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
2 −2

−2 3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

1
2

1
2

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
2 −

4
3𝜂 −2 − 1

2𝜂

−2 − 1
2𝜂

3
2 −

1
3𝜂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

7
36
𝜂2 −

29
6
𝜂 −

1
4
= 0

Hence 𝜂 = 24.909, 𝜂 = −5.162 × 10−2

Since 𝜔2 𝐿
𝑔 = 𝜂 hence when 𝜂 = −5.162 × 10−2 then 𝜔 = √𝜂�

𝑔
𝐿 which means there will

a complex number for 𝜔 which is not possible as the frequency must be positive. This
means such a system is not stable .It is not possible to obtain the shape functions when
𝜔 is complex.
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2.10.4 Problem 3

problem 4.11 in text: the mass and stiffness matrices of a system are [𝑀] =

⎡
⎢⎢⎢⎢⎢⎣
4 1
1 3

⎤
⎥⎥⎥⎥⎥⎦kg,

[𝐾] =

⎡
⎢⎢⎢⎢⎢⎣
300 1
1 200

⎤
⎥⎥⎥⎥⎥⎦kN/m, determine the system natural frequencies and normal vibration

modes. (hint, normal modes means mass normalized modes).

Answer:

To find modes of free vibration, we write

�[𝑘] − 𝜔2[𝑀]�{𝑣} = {0}

Solving for eigenvalues

det

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣
300 × 103 1000

1000 200 × 103

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔

2

⎡
⎢⎢⎢⎢⎢⎣
4 1
1 3

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦ = 0

det

⎡
⎢⎢⎢⎢⎢⎣
300 × 103 − 4𝜔2 1000 − 𝜔2

1000 − 𝜔2 200 × 103 − 3𝜔2

⎤
⎥⎥⎥⎥⎥⎦ = 0

11𝜔4 − 1698000𝜔2 + 59999000000 = 0

Hence the positive roots are 𝜔 = 234.02, 𝜔 = 315.59

When 𝜔1 = 234.02 rad/sec then

�[𝑘] − 𝜔2
1[𝑀]�{𝑣}1 = {0}

⎡
⎢⎢⎢⎢⎢⎢⎣
300 × 103 − 4𝜔2

1 1000 − 𝜔2
1

1000 − 𝜔2
1 200 × 103 − 3𝜔2

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣11
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
300 × 103 − 4(234.02)2 1000 − (234.02)2

1000 − (234.02)2 200 × 103 − 3(234.02)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣11
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
80939. −53765.
−53765. 35704.

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣11
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
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Let 𝑣11 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎣
80939. −53765.
−53765. 35704.

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

80939. − 53765𝑣21 = 0

𝑣21 = −
80939
53765

= 1.5054

Hence

{𝑣}1 =

⎧⎪⎪⎨
⎪⎪⎩

1
1.5054

⎫⎪⎪⎬
⎪⎪⎭

When 𝜔2 = 315.59 rad/sec then

�[𝑘] − 𝜔2
2[𝑀]�{𝑣}2 = {0}

⎡
⎢⎢⎢⎢⎢⎢⎣
300 × 103 − 4𝜔2

2 1000 − 𝜔2
2

1000 − 𝜔2
2 200 × 103 − 3𝜔2

2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣12
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
300 × 103 − 4(315.59)2 1000 − (315.59)2

1000 − (315.59)2 200 × 103 − 3(315.59)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣12
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
−98388. −98597.
−98597. −98791.

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣12
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let 𝑣12 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎣
−98388. −98597.
−98597. −98791.

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

−98388 − 98597𝑣22 = 0

𝑣22 = −
98388
98597

= −0.998

Hence

{𝑣}2 =

⎧⎪⎪⎨
⎪⎪⎩

1
−0.998

⎫⎪⎪⎬
⎪⎪⎭
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To obtain the mass normalized shape functions:

𝜇1 = {𝑣}
𝑇
1 [𝑀]{𝑣}1

=

⎧⎪⎪⎨
⎪⎪⎩

1
1.5054

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
4 1
1 3

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
1.5054

⎫⎪⎪⎬
⎪⎪⎭

= �5.5054 5.5162�

⎧⎪⎪⎨
⎪⎪⎩

1
1.5054

⎫⎪⎪⎬
⎪⎪⎭

= 13.809

And

𝜇2 = {𝑣}
𝑇
2 [𝑀]{𝑣}2

=

⎧⎪⎪⎨
⎪⎪⎩

1
−0.999

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
4 1
1 3

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
−0.998

⎫⎪⎪⎬
⎪⎪⎭

= �3.002 −1.994�

⎧⎪⎪⎨
⎪⎪⎩

1
−0.998

⎫⎪⎪⎬
⎪⎪⎭

= 4.992

Hence

{Φ}1 =
{𝑣}1
√𝜇1

=

⎧⎪⎪⎨
⎪⎪⎩

1
1.505

⎫⎪⎪⎬
⎪⎪⎭

√13.809
=

⎧⎪⎪⎨
⎪⎪⎩
0.269
0.405

⎫⎪⎪⎬
⎪⎪⎭

and

{Φ}2 =
{𝑣}2
√𝜇2

=

⎧⎪⎪⎨
⎪⎪⎩

1
−0.999

⎫⎪⎪⎬
⎪⎪⎭

√4.992
=

⎧⎪⎪⎨
⎪⎪⎩
0.446
−0.447

⎫⎪⎪⎬
⎪⎪⎭

Summary

𝜔𝑛 (rad/sec) original mode shape normal mode shapes

234.02

⎧⎪⎪⎨
⎪⎪⎩

1
1.5054

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
0.269
0.405

⎫⎪⎪⎬
⎪⎪⎭

315.59

⎧⎪⎪⎨
⎪⎪⎩

1
0.999

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
0.44759
−0.44665

⎫⎪⎪⎬
⎪⎪⎭
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Hence

[Φ] =

⎡
⎢⎢⎢⎢⎢⎣
0.2691 0.448
0.40511 −0.447

⎤
⎥⎥⎥⎥⎥⎦

To verify

[Φ]𝑇[𝑀][Φ] =

⎡
⎢⎢⎢⎢⎢⎣
0.269 0.448
0.405 −0.447

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
4 1
1 3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.269 0.446
0.405 −0.447

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
0.269 0.405
0.448 −0.447

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
4 1
1 3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.269 0.448
0.405 −0.447

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1.0 8.840 × 10−5

8.840 × 10−5 1.0

⎤
⎥⎥⎥⎥⎥⎦

Which is approximately

⎡
⎢⎢⎢⎢⎢⎣
1.0 0
0 1.0

⎤
⎥⎥⎥⎥⎥⎦ as expected. calculations were not done with high

enough accuracy, so that is why the off-diagonal numerical values were not an exact
zeros.

To verify with the [𝐾]matrix

[Φ]𝑇[𝐾][Φ] =

⎡
⎢⎢⎢⎢⎢⎣
0.269 0.448
0.405 −0.447

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
300 × 103 1000

1000 200 × 103

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.269 0.448
0.405 −0.447

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
54765. 6.594
6.594 99600.0

⎤
⎥⎥⎥⎥⎥⎦

Note 𝜔2
1 = 234.022 = 54765. and 𝜔2

2 = 315.592 = 99597 and these are the values on the
diagonal as expected. The values off the diagonal should be an exact zero, since the [𝐾]
matrix should be decoupled. Due to low precision in the above calculations, the values
did not come out to be zero.

Verify using Matlab. Note that Matlab eig() returns the shape function that are mass
normalized

EDU>> M=[4 1;1 3];
EDU>> K=[300*10^3 1000;1000 200*10^3];
EDU>> [eig,lam]=eig(K,M)

eig =
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-0.2691 -0.4476
-0.4051 0.4467

lam =

1.0e+04 *

5.4764 0
0 9.9600

EDU>> eig'*M*eig

1.0000 0
0 1.0000

EDU>> eig'*K*eig

1.0e+04 *

5.4764 0
0 9.9600

2.10.5 Problem 4
problem 4.29 in text.
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The mapping between the generalized coordinates 𝑦1, 𝑦2 and 𝑦𝑔, 𝜃 is given by
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yg

y1 y2

A B

𝑦𝑔(𝐴 + 𝐵) = 𝑦1𝐴 + 𝑦2𝐵
𝜃(𝐴 + 𝐵) = 𝑦2 − 𝑦1

In our care, 𝐴 = 𝐵 = 𝐿
2 , hence the above becomes

𝑦𝑔 =
𝑦1

𝐿
2 + 𝑦2

𝐿
2

𝐿
=
𝑦1 + 𝑦2
2

𝜃 =
𝑦2 − 𝑦1
𝐿

Hence taking derivative

�̇�𝑔 =
�̇�1 + �̇�2
2

�̇� =
�̇�2 − �̇�1
𝐿

Using the power balance method, we start by finding the kinetic energy 𝑇

𝑇 =
1
2
𝑚�̇�2𝑔 +

1
2
𝐼𝑐𝑔�̇�2

=
1
2
𝑚�
�̇�1 + �̇�2
2

�
2
+
1
2
�𝑚𝑟2𝐺��

�̇�2 − �̇�1
𝐿

�
2
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where 𝑟𝐺 is the radius of gyration 0.4𝐿, hence

𝑇 =
1
8
𝑚��̇�21 + �̇�22 + 2�̇�1�̇�2� +

1
2

⎛
⎜⎜⎜⎜⎝𝑚�

4
10
𝐿�

2⎞⎟⎟⎟⎟⎠
1
𝐿2
��̇�22 + �̇�21 − 2�̇�1�̇�2�

=
1
8
𝑚��̇�21 + �̇�22 + 2�̇�1�̇�2� +

8
100

𝑚��̇�22 + �̇�21 − 2�̇�1�̇�2�

= �̇�21�
1
8
𝑚 +

8
100

𝑚� + �̇�22�
1
8
𝑚 +

8
100

𝑚� + �̇�1�̇�2�
2
8
𝑚 −

16
100

𝑚�

=
41
200

𝑚�̇�21 +
41
200

𝑚�̇�22 +
9
100

𝑚�̇�1�̇�2

Comparing the above to quadratic form 𝑇 = 1
2𝑀11�̇�21 +

1
2𝑀22�̇�22 +𝑀12�̇�1�̇�2 then

𝑀11 =
41
100

𝑚 = 0.41𝑚

𝑀22 =
41
100

𝑚 = 0.41𝑚

𝑀12 = 0.09𝑚

Hence the mass matrix is

[𝑀] = 𝑚

⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝑘𝑙𝑒𝑓𝑡𝑦21 +

1
2
𝑘𝑟𝑖𝑔ℎ𝑡𝑦21

=
1
2�
3
2
𝑘�𝑦21 +

1
2
𝑘𝑦21

Comparing to quadratic form 1
2𝐾11𝑦21 +

1
2𝐾22𝑦22 + 𝐾12𝑦1𝑦2 then

�𝑘𝑠𝑝𝑟𝑖𝑛𝑔� = 𝑘

⎡
⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

𝑉𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔𝑦𝑔 = 𝑚𝑔
𝑦1 + 𝑦2
2

Since this will be evaluated at 𝑦1 = 𝑦2 = 0 then we see right away that there is no contri-
bution to potential energy to the stiffness matrix. Hence the EOM are

𝑚

⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
�̈�1(𝑡)

�̈�2(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎦ + 𝑘

⎡
⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑦1(𝑡)

𝑦2(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦
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To convert to 𝑡′ space, given by 𝑡′ = �
𝑘
𝑚 𝑡 as required, then we see that 𝑑𝑦

𝑑𝑡 =
𝑑𝑦
𝑑𝑡′

𝑑𝑡′

𝑑𝑡 =
𝑑𝑦
𝑑𝑡′�

𝑘
𝑚 ,

and 𝑑2𝑦
𝑑𝑡2 =

𝑑2𝑦
𝑑𝑡′2

𝑘
𝑚

Hence the ODE becomes

𝑚

⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
�̈�1(𝑡′)

�̈�2(𝑡′)

⎤
⎥⎥⎥⎥⎥⎥⎦
𝑘
𝑚
+ 𝑘

⎡
⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑦1(𝑡′)

𝑦2(𝑡′)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

𝑘

⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
�̈�1(𝑡′)

�̈�2(𝑡′)

⎤
⎥⎥⎥⎥⎥⎥⎦ + 𝑘

⎡
⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑦1(𝑡′)

𝑦2(𝑡′)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

Since 𝑘 ≠ 0 we can divide by it, hence
⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
�̈�1(𝑡′)

�̈�2(𝑡′)

⎤
⎥⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑦1(𝑡′)

𝑦2(𝑡′)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

To find modes of free vibration, we write

�[𝐾] − 𝜔2[𝑀]�{𝑣} = {0}

Solving for eigenvalues

det

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔

2

⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦ = 0

det

⎡
⎢⎢⎢⎢⎢⎣
1.5 − 0.41𝜔2 −𝜔20.09

−𝜔20.09 1 − 𝜔20.41

⎤
⎥⎥⎥⎥⎥⎦ = 0

0.16𝜔4 − 1.025𝜔2 + 1.5 = 0

Hence the positive roots are 𝜔1 = 2.0357, 𝜔2 = 1.5041

When 𝜔1 = 2.0357 then
�[𝑘] − 𝜔2

1[𝑀]�{𝑣}1 = {0}

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
1.5 − 0.41(2.0357)2 −(2.0357)20.09

−(2.0357)20.09 1 − (2.0357)20.41

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣11
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
−0.199 −0.373
−0.373 −0.699

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣11
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
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Let 𝑣11 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎣
−0.199 −0.373
−0.373 −0.699

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
𝑣21

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

−0.199 − 0.373𝑣21 = 0

𝑣21 = −
0.199
0.373

= −0.534

Hence

{𝑣}1 =

⎧⎪⎪⎨
⎪⎪⎩

1
−0.534

⎫⎪⎪⎬
⎪⎪⎭

When 𝜔2 = 1.5041 then
�[𝑘] − 𝜔2

2[𝑀]�{𝑣}2 = {0}

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
1.5 − 0.41(1.504)2 −(1.504)20.09

−(1.504)20.09 1 − (1.504)20.41

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣12
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
0.572 −0.204
−0.204 0.072

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣12
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Let 𝑣12 be the arbitrary value 1 hence
⎡
⎢⎢⎢⎢⎢⎣
0.572 −0.204
−0.204 0.072

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
𝑣22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
×

⎫⎪⎪⎬
⎪⎪⎭

0.572 − 0.204𝑣22 = 0

𝑣22 =
0.572
0.204

= 2.812

Hence

{𝑣}2 =

⎧⎪⎪⎨
⎪⎪⎩

1
2.812

⎫⎪⎪⎬
⎪⎪⎭

To obtain the mass normalized shape functions:

𝜇1 = {𝑣}
𝑇
1 [𝑀]{𝑣}1

=

⎧⎪⎪⎨
⎪⎪⎩

1
−0.534

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
−0.534

⎫⎪⎪⎬
⎪⎪⎭

= 0.43073
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And

𝜇2 = {𝑣}
𝑇
2 [𝑀]{𝑣}2

=

⎧⎪⎪⎨
⎪⎪⎩

1
2.812

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
2.812

⎫⎪⎪⎬
⎪⎪⎭

= 4.1569

Hence

{Φ}1 =
{𝑣}1

√0.43073
=

⎧⎪⎪⎨
⎪⎪⎩

1
−0.53374

⎫⎪⎪⎬
⎪⎪⎭

√0.43073
=

⎧⎪⎪⎨
⎪⎪⎩
1.5237
−0.81326

⎫⎪⎪⎬
⎪⎪⎭

and

{Φ}2 =
{𝑣}2
√𝜇2

=

⎧⎪⎪⎨
⎪⎪⎩

1
2.812

⎫⎪⎪⎬
⎪⎪⎭

√4.1569
=

⎧⎪⎪⎨
⎪⎪⎩
0.491
1.379

⎫⎪⎪⎬
⎪⎪⎭

Summary

𝜔 (rad/sec) original mode shape normal mode shapes

2.0357

⎧⎪⎪⎨
⎪⎪⎩

1
−0.534

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
1.524
−0.813

⎫⎪⎪⎬
⎪⎪⎭

1.5041

⎧⎪⎪⎨
⎪⎪⎩

1
2.812

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
0.491
1.379

⎫⎪⎪⎬
⎪⎪⎭

Hence

[Φ] =

⎡
⎢⎢⎢⎢⎢⎣
1.524 0.491
−0.813 1.379

⎤
⎥⎥⎥⎥⎥⎦

To verify

[Φ]𝑇[𝑀][Φ] =

⎡
⎢⎢⎢⎢⎢⎣
1.524 0.491
−0.813 1.379

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1.524 0.491
−0.813 1.379

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1.0 −1.9688 × 10−4

−1.9688 × 10−4 1.0

⎤
⎥⎥⎥⎥⎥⎦
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Which is approximately

⎡
⎢⎢⎢⎢⎢⎣
1.0 0
0 1.0

⎤
⎥⎥⎥⎥⎥⎦ as expected. calculations were not done with high

enough accuracy, so that is why the off-diagonal numerical values were not an exact
zeros.

To verify with the [𝐾]matrix

[Φ]𝑇[𝐾][Φ] =

⎡
⎢⎢⎢⎢⎢⎣
1.5237 0.49047
−0.81326 1.3790

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
1.5 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1.5237 0.49047
−0.81326 1.3790

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

4.1439 −4.9183 × 10−4

−4.9183 × 10−4 2.2625

⎤
⎥⎥⎥⎥⎥⎦

Verify using Matlab

EDU>> K=[1.5 0;0 1]; M=[0.41 0.09;0.09 0.41];
EDU>> [eig,lam]=eig(K,M)

eig =
-0.4905 -1.5238
-1.3789 0.8130

lam =
2.2624 0

0 4.1439

Now we can solve the problem. Using {𝑥} = [Φ]�𝜂�, where

�𝜂� = [Φ]−1{𝑥}

= [Φ]𝑇[𝑀]{𝑥}
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Hence, initial conditions in the �𝜂� space is

�𝜂�
0
= [Φ]𝑇[𝑀]{𝑥}0

= [Φ]𝑇[𝑀]

⎧⎪⎪⎨
⎪⎪⎩
𝑦1(0)

𝑦2(0)

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣
1.524 0.491
−0.813 1.379

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
0.41 0.09
0.09 0.41

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑚𝑔
𝑘

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.552𝑔𝑘𝑚

0.325𝑔𝑘𝑚

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and

�𝜂′�
0
= [Φ]𝑇[𝑀]{𝑥′}0

= [Φ]𝑇[𝑀]

⎧⎪⎪⎨
⎪⎪⎩
𝑦′1(0)

𝑦′2(0)

⎫⎪⎪⎬
⎪⎪⎭

= [Φ]𝑇[𝑀]

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

So, we need to solve
⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�̈�1
�̈�2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
4.1439 0
0 2.2625

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

with the initial conditions

⎧⎪⎪⎨
⎪⎪⎩
𝜂1(0)

𝜂2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.552𝑔𝑘𝑚

0.325𝑔𝑘𝑚

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1(0)

𝜂′2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
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The solution is given by

𝜂1(𝑡) = 𝐴 cos√4.144 𝑡 + 𝐵 sin√4.144 𝑡

When 𝑡 = 0, 𝜂1(0) = 0.55152𝑔𝑘𝑚 = 𝐴. Taking derivative gives 𝜂′1(𝑡) = −𝐴 sin√4.144 𝑡 +
𝐵 cos√4.144 𝑡, hence when 𝑡 = 0 we have 0 = 𝐵, therefore

𝜂1(𝑡) = 0.552
𝑔
𝑘
𝑚 cos√4.144 𝑡

Now we solve for 𝜂2(𝑡),The solution is given by

𝜂2(𝑡) = 𝐴 cos√2.263 𝑡 + 𝐵 sin√2.263 𝑡

When 𝑡 = 0, 𝜂2(0) = 0.3252
𝑔
𝑘𝑚 = 𝐴. and 0 = 𝐵, therefore

𝜂2(𝑡) = 0.325
𝑔
𝑘
𝑚 cos√2.263 𝑡

Now we obtain the solution in the 𝑦 space

�𝑦� = [Φ]�𝜂�
⎧⎪⎪⎨
⎪⎪⎩
𝑦1(𝑡′)

𝑦2(𝑡′)

⎫⎪⎪⎬
⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎣
1.524 0.491
−0.813 1.379

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.552𝑔𝑘𝑚 cos√4.1439 𝑡

0.325𝑔𝑘𝑚 cos√2.2625 𝑡

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.840𝑔𝑘𝑚 cos(2.036𝑡′) + 0.1595𝑔𝑘𝑚 cos(1.504𝑡′)

0.448𝑔𝑘𝑚 cos(1.504𝑡′) − 0.449𝑔𝑘𝑚 cos(2.036𝑡′)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We are supposed to obtain the answer
⎧⎪⎪⎨
⎪⎪⎩
𝑦1(𝑡)

𝑦2(𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.16 cos(1.5𝑡′) + 0.84 cos(2𝑡′)

0.45 cos(1.5𝑡′) − 0.45 cos(2𝑡′)

⎫⎪⎪⎬
⎪⎪⎭

The answers agree. The scalar 𝑔
𝑘𝑚 for some reason is not shown in the key solution.
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2.10.6 Key solution for HW 9

Homework #9 
EMA 545, Spring 2013 

 
For the following problems, you may have the equations of motion for some of 

these systems in your past homework assignments or in the solutions to those that were 
posted online, so you may use those if you wish. 

For all of these problems you may use Matlab or some other package to find the 
natural frequencies and mode vectors and to mass normalize the mode vectors (if 
needed). 

 
1.)  Problem 4.3 in Ginsberg.  Sketch the deformation of the system when it moves in 
each of the modes.  (Notice that you can pull out factors such as k and m so that only 
numbers remain in the mass and stiffness matrices.  Then it is possible to check your 
answers using Matlab.) 

 
2.)  Problem 4.7 as given in the text.  You may use the following equations of motion: 

12 1

22

4 1 32 03 2 2
1 1 01

2 3 2

mL mgL
  

  

                             


  

 
3.)  Problem 4.11 as given in the text.  Hint: normal modes = mass normalized modes 
 
4.)  Problem 4.29 as given in the text.  Also, plot the motion of the automobile as a 
function of time.  Is the response a pure-sinusoid?  Why or why not?  Note: The answer 
provided by the book is incorrect.  The correct answer is: 

y1(t) = 0.16cos(1.5t’) + 0.84cos(2.0t’) 
y2(t) = 0.45cos(1.5t’) – 0.45cos(2.0t’) 
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Solution: Ch. 4, Problem 4.29 
 
See handwritten notes for derivation. 
Matlab Code: 
% Define Mass and Stiffness matrices: 
M = [0.5+0.4^2, 0.5-0.4^2; 
    0.5-0.4^2, 0.5+0.4^2]; 
K = [1.5, 0; 0, 1]; 
% q_0 = [1; 1]; 
% q_0 = [1; 0]; 
q_0 = [1; 0]; 
q_dot_0 = [0; 0]; 
% Solve the eigenvalue problem: 
[Phi,Lam] = eig(K,M); 
% Matlab solves an eigenvalue problem [A]{x} = lam*[B]{x}, where lam is 
a  
% scalar if we input eig(A,B).  the matrix Lam output by Matlab is a 
% diagonal matrix of eigenvalues lam, so by comparing with our 
eigenvalue 
% problem, we see that each nat. freq wn = sqrt(lam), or the vector of 
% natural frequencies is wns = diag(Lam).^(1/2) 
Phi 
wns = diag(Lam).^(1/2) 
% Check that the eigenvectors are mass normalized.  If this is not an 
% identity, then we need to normalize 
Phi.'*M*Phi 
% Note that Matlab sometimes gives the first eigenvector as the 
negative of 
% what we found.  Either is a valid mode for the system. 
  
% Now the initial conditions give: 
eta_0 = Phi.'*M*q_0 
eta_dot_0 = Phi.'*M*q_dot_0 
  
% and the constants in the solutions eta(t) = a1*cos(wns(1)*t)+etc... 
a1 = eta_0(1); a2 = eta_dot_0(1)/wns(1); 
b1 = eta_0(2); b2 = eta_dot_0(2)/wns(2); 
  
% Define a time vector with 5 cycles of the lowest frequency: 
ts = [0:1:200]/200*5*(2*pi/wns(1)); 
eta_t = [a1*cos(wns(1)*ts)+a2*sin(wns(1)*ts); 
    b1*cos(wns(2)*ts)+b2*sin(wns(2)*ts)]; 
% each column of the matrix above gives {eta(t)} at some instant t.  
Since 
% the eta values are in columns, we obtain {q} by multiplying by [Phi] 
q_t = Phi*eta_t; 
  
figure(1); 
subplot(2,1,1) 
plot(ts,eta_t(1,:),'-o',ts,eta_t(2,:),':.'); legend('\eta_1','\eta_2'); 
xlabel('time (s)'); 
subplot(2,1,2) 
plot(ts,q_t(1,:),'-o',ts,q_t(2,:),':.'); legend('y_1','y_2'); 
xlabel('time (s)');  ylabel('y*k/(m*g)'); 
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Results: 
>> M 
M = 
         0.41         0.09 
         0.09         0.41 
>> K 
K = 
          1.5            0 
            0            1 
Phi = 
      -0.4905      -1.5238 
      -1.3789      0.81302 
wns = 
       1.5041 
       2.0357 
ans = 
            1  5.5511e-017 
 -5.5511e-017            1 
eta_0 = 
     -0.32521 
     -0.55158 
eta_dot_0 = 
     0 
     0 
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Response plotted over 5 cycles.  Notice that the initial 
conditions are satisfied.  Both modes are excited and 
oscillate at different frequencies.  The superposition of 
both modes causes the response in y1, y2 coordinates to 
look quite complicated. 
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2.11.1 problem description

Homework #10 
EMA 545, Spring 2013 

 
For all of these problems you may use Matlab or some other package to find the natural 
frequencies and mode vectors and to mass normalize the mode vectors (if needed). 
 
1.)  Exercise 4.8 from Ginsberg.  (Note:  the spring constants are defined such that the 
frequencies given are the natural frequencies that each spring-mass system would have if 
it were attached to a rigid base.  Notice that there is not a simple relationship between 
those frequencies and the natural frequencies of the system as a whole.) 
 
2.)  Exercise 4.30 as given in the text.  Repeat the analysis for k=2mg/L and graph that 
response as well.  (Questions to consider: What do you notice about the natural 
frequencies of this system in each case?  How does that affect the way the response 
looks?  Why?) 
 
3.)  Exercise 4.43 from Ginsberg.  How does the time required to reach steady state 
compare with r=1/(rr) for each mode, r=1,2,3? 
 
4.)  Exercise 4.47 from Ginsberg. 
 
5.)  (Covering material from Chapter 5) 

 
a.)  Let F(t)=Re[Fexp(it)], x(t) = Re[Xexp(it)] and (t)=Re[Yexp(it)].  Find 
analytical expressions for the complex transfer functions X/F and Y/F. 
b.) Find the magnitude and phase of the response of x and  when the system is forced at 
its natural frequencies =1 and =2.  Compare these values to the eigenvectors for 
modes 1 and 2.  Use the following numerical values: m1=m2=1 kg, k=3 N/m, L=1 m, 
g=9.81 m/s^2, and c=0.1 N-s/m.  
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c.)  Plot the transfer functions Y/F and X/F over a range of frequencies encompassing 
both modes of vibration.  Use the plot to determine at what frequency m2 acts as a 
vibration absorber for the rod. How does that frequency compare with the natural 
frequency that the system would have if the rod were held fixed: cart = (k/m2)

1/2 ? 

6.)  Consider Exercise 3.45 and 3.46 in the text (you solved 
this in problem #3 in HW#6).  Use the steady-state 
displacement that you computed using FFT techniques for  
= 3/n to compute the maximum stress in the spring.  
Assume that the spring is a cantilever beam (in bending) 
modeled after one of the pillars supporting the ERB, which 
have length L=40m, rectangular cross section with height h, 
equal to the width b=h=0.6m, and is constructed from a 
material with modulus E=30 GPa and ultimate tensile 
strength =40 MPa.  (The mass of the beam is assumed to be 
included in m, so its density is not needed.)  Let the mass m 
be such that the natural frequency of the mass-spring system 
is n=0.2Hz.  What is the amplitude of the force, P, such that 
the beam fails due to the dynamic load?  Compare that to the 
static load required to cause the beam to fail (also in 
bending). 

f(t) 

x 

m 
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2.11.2 problem 1

y1

y3

y2

Generalized coordinates are 𝑦3, 𝑦2, 𝑦1. Kinetic energy is𝑇 = 1
2𝑚3�𝑦′3�

2
+ 1

2𝑚2�𝑦′2�
2
+ 1

2𝑚1�𝑦′1�
2
.

Potential energy due to springs is 𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2𝑘3𝑦

2
3+

1
2𝑘2�𝑦2 − 𝑦3�

2
+ 1

2𝑘1�𝑦1 − 𝑦2�
2
. Therefore

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝑘3𝑦23 +

1
2
𝑘2�𝑦22 + 𝑦23 − 2𝑦2𝑦3� +

1
2
𝑘1�𝑦21 + 𝑦22 − 2𝑦1𝑦2�

= 𝑦23�
1
2
𝑘3 +

1
2
𝑘2� + 𝑦22�

1
2
𝑘2 +

1
2
𝑘1� + 𝑦21�

1
2
𝑘1� + 𝑦1𝑦2(−𝑘1) + 𝑦1𝑦3(0) + 𝑦2𝑦3(−𝑘2)

The EOM is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1 0 0

0 𝑚2 0

0 0 𝑚3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦′′1
𝑦′′2
𝑦′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1 −𝑘1 0

−𝑘1 𝑘2 + 𝑘1 −𝑘2
0 −𝑘2 𝑘3 + 𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1
𝑦2
𝑦3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Following values are for mass (units in kg) 𝑚1 = 100,𝑚2 = 200,𝑚3 = 300. Following
values are for spring constants (units in N/m) 𝑘1 = 402(100), 𝑘2 = 502(200), 𝑘3 = 602(300).
EOM becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦′′1
𝑦′′2
𝑦′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

160000 −160000 0
−160000 660000 −500000

0 −500000 1580000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1
𝑦2
𝑦3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Characteristic equation is

det�[𝐾] − 𝜔2[𝑀]� = 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

160000 −160000 0
−160000 660000 −500000

0 −500000 1580000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜔2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

160000 − 100𝜔2 −160000 0

−160000 660000 − 200𝜔2 −500000

0 −500000 1580000 − 300𝜔2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

−6 × 106𝜔6 + 6.1 × 1010𝜔4 − 1.54 × 1014𝜔2 + 8.64 × 1016 = 0

Positive roots of the above polynomial are the natural frequencies (units in rad/sec).

𝜔1 = 28.1
𝜔2 = 52.6
𝜔3 = 81.3

To obtain mode shapes, the eigenvector associated with each eigenvalue is found. Starting
with 𝜔1 = 28.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

160000 −160000 0
−160000 660000 −500000

0 −500000 1580000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 28.12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑21

𝜑31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.1 × 104 −160000 0

−160000 5.02 × 105 −500000

0 −500000 1.34 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑21

𝜑31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.1 × 104 − 1.6 × 105𝜑21

5.02 × 105𝜑21 − 5.0 × 105𝜑31 − 1.6 × 105

1.34 × 106𝜑31 − 5 × 105𝜑21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving gives 𝜑21 = 0.506 and 𝜑31 = 0.188. First eigenvector is

𝜑1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.506
0.188

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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For 𝜔2 = 52.6,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

160000 −160000 0
−160000 660000 −500000

0 −500000 1580000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 52.62

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑22

𝜑32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.17 × 105 −1.6 × 105 0

−1.6 × 105 1.07 × 105 −5.0 × 105

0 −5.0 × 105 7.50 × 105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑22

𝜑32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.6 × 105𝜑22 − 1.17 × 105

1.07 × 105𝜑22 − 5.0 × 105𝜑32 − 1.6 × 105

7.5 × 105𝜑32 − 5.0 × 105𝜑22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving gives 𝜑22 = −0.731 and 𝜑32 = −0.476 .Second eigenvector is

𝜑2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−0.731
−0.476

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For 𝜔3 = 81.3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

160000 −160000 0
−160000 660000 −500000

0 −500000 1580000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 81.32

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑23

𝜑33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5. 01 × 105 −1.6 × 105 0

−1.6 × 105 −6.62 × 105 −5.0 × 105

0 −5.0 × 105 −4.03 × 105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑23

𝜑33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.6 × 105𝜑23 − 5.01 × 105

−6.62 × 105𝜑23 − 5.0 × 105𝜑33 − 1.6 × 105

−5.0 × 105𝜑23 − 4.03 × 105𝜑33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solving gives 𝜑23 = −3.13 and 𝜑32 = 𝜑33 = 3.82 . Third eigenvector is

𝜑3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3.13
3.82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvectors are mass normalized. Mass normalization factors 𝜇𝑖 are found for each
eigenvector

𝜇1 = 𝜑𝑇
1 [𝑀]𝜑1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.506
0.188

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.506
0.188

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 162.

and

𝜇2 = 𝜑𝑇
2 [𝑀]𝜑2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−0.731
−0.476

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−0.731
−0.476

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 275.

and

𝜇3 = 𝜑𝑇
3 [𝑀]𝜑3

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3.13
3.82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0
0 200 0
0 0 300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3.13
3.82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 6.44 × 103
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Normalized eigenvectors are

Φ1 =
𝜑1

√𝜇1
=

1

√162

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.506
0.188

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.86 × 10−2

3.98 × 10−2

1.48 × 10−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ2 =
𝜑2

√𝜇2
=

1

√275.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−0.731
−0.476

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.03 × 10−2

−4.41 × 10−2

−2.87 × 10−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ3 =
𝜑3

√𝜇3
=

1

√6.44 × 103

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3.13
3.82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.25 × 10−2

−0.039

4.76 × 10−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Verification of the above result follows

EDU>> k=[160000 -160000 0;-160000 660000 -500000;0 -500000 1580000];
EDU>> M=[100 0 0;0 200 0;0 0 300];
EDU>> [eigV,lam]=eig(k,M)

eigV =
0.0786 0.0606 0.0124
0.0398 -0.0437 -0.0389
0.0148 -0.0289 0.0477

lam =

1.0e+03 *
0.7897 0 0

0 2.7528 0
0 0 6.6242

EDU>> sqrt(diag(lam))

ans =

28.1013
52.4674
81.3889
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2.11.3 Problem 2

1
2 3

Initial conditions are 𝜃𝑖(0) = 0 for 𝑖 = 1, 2, 3 and 𝜃′1(0) = 𝜃′3(0) = 0 but 𝜃′2(0) = 2 rad/sec.

The generalized coordinates are shown above. kinetic energy is

𝑇 =
1
2
𝐼�𝜃′1�

2
+
1
2
𝐼�𝜃′2�

2
+
1
2
𝐼�𝜃′3�

2
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where 𝐼 = 1
3𝑚𝐿

2.Mas matrix becomes

[𝑀] =
1
3
𝑚𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃′′1
𝜃′′2
𝜃′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Spring potential energy is

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝑘(𝐿𝜃2 − 𝐿𝜃1)

2 +
1
2
𝑘(𝐿𝜃3 − 𝐿𝜃2)

2

=
1
2
𝑘𝐿2�𝜃22 + 𝜃21 − 2𝜃1𝜃2� +

1
2
𝑘𝐿2�𝜃23 + 𝜃22 − 2𝜃2𝜃3�

= 𝜃21�
1
2
𝑘𝐿2� + 𝜃22�

1
2
𝑘𝐿2 +

1
2
𝑘𝐿2� + 𝜃23�

1
2
𝑘𝐿2� + 𝜃1𝜃2�−𝑘𝐿2� + 𝜃1𝜃3(0) + 𝜃2𝜃3�−𝑘𝐿2�

Hence stiffness matrix due to spring is

[𝐾]𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝐿
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assume the zero PE for gravity is taken as the top of the bar. Stiffness due to gravity is

𝑉𝑔 = −𝑚𝑔
𝐿
2
(cos𝜃1 + cos𝜃2 + cos𝜃3)

𝑉11 =
𝜕2𝑉𝑔

𝜕𝜃21
= 𝑚𝑔𝐿2 (cos𝜃1). Evaluate this at static position 𝜃1 = 0,hence𝑉11 = 𝑚

𝐿
2 . Similarly,

𝑉22 = 𝑉33 = 𝑚
𝐿
2 . All other terms are zero.

Hence stiffness matrix due to gravity is

[𝐾]𝑔 = 𝑚𝑔
𝐿
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, complete stiffness matrix is

𝑘𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑚𝑔

𝐿
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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There are no generalized forces. Hence EOM is

1
3
𝑚𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃′′1
𝜃′′2
𝜃′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑘𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑚𝑔

𝐿
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.11.3.1 Part (a) 𝑘 = 0.05𝑚𝑔𝐿
For case 𝑘 = 0.05𝑚𝑔𝐿 , Hence for 𝜎 = 0.05 then 𝑘 = 𝜎𝑚𝑔

𝐿 . EOM becomes

1
3
𝑚𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃′′1
𝜃′′2
𝜃′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝜎𝑚𝑔𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑚𝑔

𝐿
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
3
𝑚𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃′′1
𝜃′′2
𝜃′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑚𝑔𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 + 𝜎 −𝜎 0

−𝜎 1
2 + 2𝜎 −𝜎

0 −𝜎 1
2 + 𝜎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃′′1
𝜃′′2
𝜃′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
3𝑔
𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 + 𝜎 −𝜎 0

−𝜎 1
2 + 2𝜎 −𝜎

0 −𝜎 1
2 + 𝜎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝐿 = 1, 𝑔 = 10. The above becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃′′1
𝜃′′2
𝜃′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 + 30𝜎 −30𝜎 0
−30𝜎 15 + 60𝜎 −30𝜎
0 −30𝜎 15 + 30𝜎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Natural frequencies of the system are found by solving the eigenvalue problem.

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 + 30𝜎 −30𝜎 0
−30𝜎 15 + 60𝜎 −30𝜎
0 −30𝜎 15 + 30𝜎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜔2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0
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Substituting 𝜎 = 0.05 gives

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16.5 −1.5 0
−1.5 18.0 −1.5
0 −1.5 16.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜔2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16.5 − 𝜔2 −1.5 0

−1.5 18 − 𝜔2 −1.5

0 −1.5 16.5 − 𝜔2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

−𝜔6 + 51𝜔4 − 861.75𝜔2 + 4826.3 = 0

Positive roots of this polynomial are 𝜔 = 3.87, 𝜔 = 4.062, 𝜔 = 4.416.

Associated eigenvectors are found by solving for 𝜑𝑖 in �[𝐾] − 𝜔2[𝑀]�𝜑𝑖 = 0 for each eigen-
value 𝜔𝑖.

For 𝜔1 = 3.87
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16.5 − 𝜔2
1 −1.5 0

−1.5 18 − 𝜔2
1 −1.5

0 −1.5 16.5 − 𝜔2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑21

𝜑31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16.5 − 3.872 −1.5 0

−1.5 18 − 3.872 −1.5

0 −1.5 16.5 − 3.872

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑21

𝜑31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.523 −1.5 0
−1.5 3.023 −1.5
0 −1.5 1.523

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑21

𝜑31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.523 − 1.5𝜑21

3.023𝜑21 − 1.5𝜑31 − 1.5

1.523𝜑31 − 1.5𝜑21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving gives 𝜑21 = 1.015 3 and 𝜑31 = 1.046 2. First eigenvector is

𝜑1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜑21

𝜑31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1.0153
1.0462

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Similarly, second and the third eigenvectors are found.

Eigenvectors are mass normalized. First the mass normalization factors 𝜇𝑖 are found for
each eigenvector

𝜇1 = 𝜑𝑇
1 [𝑀]𝜑1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1.015 3
1.046 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1.0153
1.0462

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 3.125 4

Normalized eigenvector is

Φ1 =
𝜑1

√3.125 4
=

1

√3.792

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1.015 3
1.046 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.51353
0.52139
0.53726

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Verification of the above result (Matlab result is more accurate due to more accurate
method used)

EDU>> k=[0.55 -0.05 0;-0.05 0.6 -0.05;0 -0.05 0.55];
EDU>> M=eye(3);
EDU>> [eigV,lam]=eig(k,M)

eigV =

-0.5774 -0.7071 0.4082
-0.5774 -0.0000 -0.8165
-0.5774 0.7071 0.4082

EDU>> sqrt(diag(lam))

ans =

0.7071
0.7416
0.8062

Transformation matrix (based on Matlab more accurate result) is

Φ = [Φ1Φ2Φ3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.577 −0.7073 0.4082
−0.577 0 −0.8165
−0.577 0.706 9 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Mapping from physical coordinates 𝜃 to modal coordinates 𝜂 is

= [Φ]

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates
resulting in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂′′1
𝜂′′2
𝜂′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 𝜔2
2 0

0 0 𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1
𝜂2
𝜂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂′′1
𝜂′′2
𝜂′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.70712 0 0

0 0.74162 0

0 0 0.80622

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1
𝜂2
𝜂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Initial conditions are transformed to modal coordinates using (0) = [Φ]𝑇[𝑀](0) and ′(0) =
[Φ]𝑇[𝑀]′(0), since (0) = 0 then (0) = 0, however ′(0) is not all zero, hence

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂′1(0)

𝜂′2(0)

𝜂′3(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.577 −0.7073 0.4082
−0.577 0 −0.8165
−0.577 0.7069 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.154
0

−1.633

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Initial conditions inmodal coordinates are found. The solution can be found. The solution
to 𝜂′′ + 𝜔2𝜂 = 0 with initial conditions 𝜂(0) and 𝜂′(0) is 𝜂(𝑡) = 𝜂(0) cos𝜔𝑡 + 𝜂′(0)

𝜔 sin𝜔𝑡.
Therefore modal solutions are

𝜂1(𝑡) =
−1.154
0.7071

sin(0.7071𝑡) = −1.632 sin(0.707 𝑡)

𝜂2(𝑡) = 0

𝜂3(𝑡) =
−1.633
0.8062

sin(0.8062𝑡) = −2.026 sin(0.8062𝑡)
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Solution in the normal coordinates is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1(𝑡)

𝜃2(𝑡)

𝜃3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.577 −0.7073 0.4082
−0.577 0 −0.8165
−0.577 0.706 9 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.632 sin(0.707 𝑡)

0
−2.026 sin(0.8062𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.94166 sin(0.707 𝑡) − 0.82701 sin(0.8062𝑡)

0.94166 sin(0.707 𝑡) + 1.6542 sin(0.8062𝑡)

0.94166 sin(0.707 𝑡) − 0.82701 sin(0.8062𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.11.3.2 Part (b) 𝑘 = 2𝑚𝑔𝐿
Using part (a), but with 𝜎 = 2 results in

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 + 30𝜎 −30𝜎 0
−30𝜎 15 + 60𝜎 −30𝜎
0 −30𝜎 15 + 30𝜎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜔2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 + 30(2) −30(2) 0

−30(2) 15 + 60(2) −30(2)

0 −30(2) 15 + 30(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜔2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

75.0 − 𝜔2 −60.0 0

−60.0 135.0 − 𝜔2 −60.0

0 −60.0 75.0 − 𝜔2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Similar steps as repeated as part (a) above. The final result are shown below usingMatlab

EDU>> k=[75 -60 0;-60 135 -60;0 -60 75]
EDU>> M=eye(3);
[eigV,lam]=eig(k,M)

eigV =

-0.5774 -0.7071 0.4082
-0.5774 0.0000 -0.8165
-0.5774 0.7071 0.4082

EDU>> sqrt(diag(lam))
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3.8730
8.6603

13.9642

Transformation matrix is Φ = [Φ1Φ2Φ3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.577 −0.7071 0.4082
−0.577 0 −0.816 5
−0.577 0.7071 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.Mapping from 𝜃

to modal coordinates 𝜂 is
= [Φ]

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates
resulting in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂′′1
𝜂′′2
𝜂′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 𝜔2
2 0

0 0 𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1
𝜂2
𝜂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂′′1
𝜂′′2
𝜂′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.87302 0 0

0 8.66032 0

0 0 13.96422

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1
𝜂2
𝜂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Initial conditions are transformed to modal coordinates using (0) = [Φ]𝑇[𝑀]x(0) and
′(0) = [Φ]𝑇[𝑀]𝜃′(0), since 𝜃(0) = 0 then (0) = 0, however 𝜃′(0) is not all zero. Similar to
part (a), initial conditions are found

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂′1(0)

𝜂′2(0)

𝜂′3(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.154
0

−1.633

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The solution to 𝜂′′ + 𝜆2𝜂 = 0 with initial conditions 𝜂(0) and 𝜂′(0) is given by 𝜂(𝑡) =
𝜂(0) cos𝜆𝑡 + 𝜂′(0)

𝜆 sin𝜆𝑡. The solutions are

𝜂1(𝑡) =
−1.154
3.8730

sin(3.873𝑡) = −0.297 96 sin(3.873 𝑡)

𝜂2(𝑡) = 0

𝜂3(𝑡) =
−1.633
13.9642

sin(13.9642) = −0.116 94 sin(13.9642)
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Solution in the physical coordinates is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1(𝑡)

𝜃2(𝑡)

𝜃3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.577 −0.7071 0.4082
−0.577 0 −0.816 5
−0.577 0.7071 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.297 96 sin(3.8730 𝑡)

0
−0.116 94 sin(13.9642𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.171 92 sin(3.873𝑡) − 4.773 5 × 10−2 sin(13.964𝑡)

9.548 2 × 10−2 sin(13.964𝑡) + 0.171 92 sin(3.873𝑡)

0.171 92 sin(3.873𝑡) − 4.773 5 × 10−2 sin(13.964𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Summary table

𝑘 frequencies [Φ] solutions in 𝜃

0.05𝑚𝑔𝐿

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.7071
0.7416
0.8062

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5774 −0.7071 0.4082
−0.5774 0 −0.8165
−0.5774 0.7071 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.94166 sin(0.707 𝑡) − 0.82701 sin(0.8062𝑡)

0.94166 sin(0.707 𝑡) + 1.6542 sin(0.8062𝑡)

0.94166 sin(0.707 𝑡) − 0.82701 sin(0.8062𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2𝑚𝑔𝐿

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3.8730
8.6603
13.9642

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5774 −0.7071 0.4082
−0.5774 0 −0.8165
−0.5774 0.7071 0.4082

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.17192 sin(3.873𝑡) − 4.773 5 × 10−2 sin(13.964𝑡)

9.5482 × 10−2 sin(13.964𝑡) + 0.171 92 sin(3.873𝑡)

0.17192 sin(3.873𝑡) − 4.773 5 × 10−2 sin(13.964𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Even though the normalized natural frequencies are different, the shape functions are
the same.

Plots of the solutions of 𝜃𝑖(𝑡) for both cases are made. For the case of 𝑘 = 0.05𝑚𝑔𝐿
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For 𝑘 = 2𝑚𝑔𝐿
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In addition, a small program is written to animate both the full solution and the modal
solutions. The program to animate the full solution is at http://12000.org/my_courses/
univ_wisconson_madison/spring_2013/EMA_545_Mechanical_Vibrations/HWs/HW10/HW10p2.m.
txt while the program that animate the modal solution is number 112 at bottom of this
page http://12000.org/my_notes/my_matlab_functions/index.htm

2.11.4 Problem 3

EOM is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600 400 200
400 1200 0
200 0 800

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥′′1
𝑥′′2
𝑥′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

500 300 −400
300 900 600
−400 600 1300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥′1
𝑥′2
𝑥′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+103

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

300 0 −200
0 500 300

−200 300 700

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥1
𝑥2
𝑥3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

200 cos(16𝑡)

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Initial conditions are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥1(0)

𝑥2(0)

𝑥3(0)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥′1(0)

𝑥′2(0)

𝑥′3(0)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Solve the eigenvalue problem to determine the natural frequencies of the system

det�[𝐾] − 𝜔2[𝑀]� = 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

300 × 103 0 −200 × 103

0 500 × 103 300 × 103

−200 × 103 300 × 103 700 × 103

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜔2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600 400 200
400 1200 0
200 0 800

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

−4.0 × 108𝜔6 + 1.044 × 1012𝜔4 − 4.72 × 1014𝜔2 + 5.8 × 1016 = 0

Positive roots are {𝜔 = 15.052, 𝜔 = 17.562, 𝜔 = 45.552}. For each natural frequency the
corresponding eigenvector is found. A program is now used to compute these values.

EDU>> k = [300 0 -200;0 500 300;-200 300 700]*10^3;
M = [600 400 200;400 1200 0;200 0 800];
C = [500 300 -400;300 900 600;-400 600 1300];
[PHI,lam] = eig(k,M);
PHI
lam = sqrt(diag(lam))
CC = PHI'*C*PHI;
zeta1 = CC(1,1)/(2*lam(1))
zeta2 = CC(2,2)/(2*lam(2))
zeta3 = CC(3,3)/(2*lam(3))

PHI =
-0.0216 0.0232 -0.0373
0.0203 0.0168 0.0201

-0.0220 0.0023 0.0302

lam =
15.0519

306



2.11. HW10 CHAPTER 2. HW’S

17.5624
45.5522

zeta1 =
0.0018

zeta2 =
0.0219

zeta3 =
0.0376

[Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0216 0.0232 −0.0373
0.0203 0.0168 0.0201
−0.0220 0.0023 0.0302

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. In modal coordinates EOM is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+ [Φ]𝑇

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

500 300 −400
300 900 600
−400 600 1300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[Φ]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′1
𝜂′2
𝜂′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 𝜔2
2 0

0 0 𝜔2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
= [Φ]𝑇

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

200 cos(16𝑡)

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.419 × 10−2 5.331 × 10−2 −0.416

5.331 × 10−2 0.768 −3.52 × 10−4

−0.4156 −3.52 × 10−4 3.428

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′1
𝜂′2
𝜂′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 𝜔2
2 0

0 0 𝜔2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
= [Φ]𝑇

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

200 cos(16𝑡)

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜁1𝜔1 0 0

0 2𝜁2𝜔2 0

0 0 2𝜁3𝜔3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′1
𝜂′2
𝜂′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 𝜔2
2 0

0 0 𝜔2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
= [Φ]𝑇

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

200 cos(16𝑡)

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

In the above 2𝜁1𝜔1 = 0.0542, 2𝜁2𝜔2 = 0.7676 and 2𝜁3𝜔3 = 3.424 7. Hence 𝜁1 =
5.419 3×10−2

2(15.0519) =

0.0018 and 𝜁2 =
0.76755

2(17.5624) = 0.0219 and 𝜁3 =
3.424 7

2(45.5522) = 0.0376

Final EOM in modal coordinates is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0542 0 0
0 0.768 0
0 0 3.425

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′1
𝜂′2
𝜂′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

226.56 0 0
0 308.44 0
0 0 2075

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−4.32 cos(16.0𝑡)

4.64 cos(16.0𝑡)

−7.46 cos(16.0𝑡)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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EOM’s to solve are

𝜂′′1 + 2𝜁1𝜔1𝜂′1 + 𝜔2
1𝜂1 = −4.32 cos(16.0𝑡)

𝜂′′2 + 2𝜁2𝜔2𝜂′2 + 𝜔2
2𝜂2 = 4.64 cos(16.0𝑡)

𝜂′′3 + 2𝜁3𝜔3𝜂′3 + 𝜔2
3𝜂3 = −7.46 cos(16.0𝑡)

Initial conditions are zero. The solution in modal coordinates is given in appendix B for
underdamped case. Complete solution for the case of underdamped is given in appendix
B as

𝜂(𝑡) =
𝐹0

𝛽2 + 4𝜁2𝜔2𝜛2�𝛽 cos(𝜛𝑡) + 2𝜁𝜔𝜛 sin(𝜛𝑡) − 𝑒−𝜁𝜔𝑡�𝛽 cos(𝜔𝑑𝑡) +
𝜁𝜔𝛽
𝜔𝑑

sin(𝜔𝑑𝑡)��ℎ(𝑡)

𝛽 = �𝜔2 − 𝜛2�, 𝜔𝑑 = 𝜔√1 − 𝜁2 .

The solutions inmodal coordinates are now found. Recall that𝜔1 =15.0519, 𝜔2 = 17.5624, 𝜔3 =
45.5522 and 𝜁1 = 0.0018,𝜁2 = 0.0219 and 𝜁3 = 0.0376

Next step is to transform the solution to the physical coordinates using 𝑞𝑗 =
3
�
𝑚=1

Φ�𝑗,𝑚�𝜂(𝑚),
or

q = [Φ]

In component form

𝑞1(𝑡) = Φ(1, 1)𝜂1(𝑡) + Φ(1, 2)𝜂2(𝑡) + Φ(1, 3)𝜂3(𝑡)
𝑞2(𝑡) = Φ(2, 1)𝜂1(𝑡) + Φ(2, 2)𝜂2(𝑡) + Φ(2, 3)𝜂3(𝑡)
𝑞3(𝑡) = Φ(3, 1)𝜂1(𝑡) + Φ(3, 2)𝜂2(𝑡) + Φ(3, 3)𝜂3(𝑡)

Program was written to complete the computation and make plots. Here is the result
showing plots of each of the above 𝑞𝑖(𝑡) vs. time

function nma_HW10_problem_3_EMA_545()
%solve for q(t) using modal analysis, by Nasser M. Abbasi
close all;

syms t;
N = 3;
k = [300 0 -200;0 500 300;-200 300 700]*10^3;
M = [600 400 200;400 1200 0;200 0 800];
C = [500 300 -400;300 900 600;-400 600 1300];
wF = 16;
F = [200*cos(wF*t); 0; 0];

[PHI,lam] = eig(k,M);
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lam = sqrt(diag(lam));
CC = PHI'*C*PHI

F = PHI.'*F;
eta = sym(zeros(N, 1));
time_constant = zeros(3,1);

for i=1:N
w = lam(i);
b = w^2-wF^2;
zeta = CC(i,i)/(2*w);
wd = w*sqrt(1-zeta^2);
eta(i) = F(i)/(b^2+4*zeta^2*w^2*wF^2) * ...

( b*cos(wF*t)+2*zeta*w*wF*sin(wF*t)- ...
exp(-zeta*w*t)* ( b*cos(wd*t)+ zeta*w*b/wd * sin(wd*t) ) ...
);

time_constant(i) = 1/(zeta*w);
end

q=PHI*eta;
time_constant
time_constant = sum(time_constant);

% plot the generalized solutions
lims= [-0.004 0.003;

-0.002 0.007;
-0.006 0.002
];

for i=1:N
subplot(3,1,i);
ezplot(q(i),[0,100]);
ylim(lims(i,:));
title(sprintf('q(%d) solution, time constant = %f',i,time_constant));
xlabel('time (sec)');
ylabel('q(t) Newton');

end

end
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From above, the time to reach steady state is about 90 seconds based on looking at 𝑞1(𝑡)
since that takes the longest time to each steady state out of the three coordinates.

The time constant for each 𝜂𝑖(𝑡) solution was calculated giving 𝜏1 =
1

𝜁1𝜔1
= 37.4471 and

𝜏2 = 2.602 and 𝜏3 = 0.58. The first time constant 𝜏1 = 37.4 seconds dominated the result
in the response in the physical coordinates.

This means the dominant time constant found in modal analysis is one to use to estimate
how long it will take for the response in physical coordinates to reach steady state. Each
modal solution contributes to each physical solution. The one with the longest time con-
stant affects more than any other mode how long the physical solution takes to reach
steady state.
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2.11.5 Problem 4

[𝑀] =

⎡
⎢⎢⎢⎢⎢⎣
5 −3
−3 4

⎤
⎥⎥⎥⎥⎥⎦kg,𝜔1 = 15.68 rad/sec,𝜔2 = 40.78 rad/sec. 1 =

⎧⎪⎪⎨
⎪⎪⎩

1
1.366

⎫⎪⎪⎬
⎪⎪⎭
, 2 =

⎧⎪⎪⎨
⎪⎪⎩

1
−0.366

⎫⎪⎪⎬
⎪⎪⎭

𝜇1 =

⎧⎪⎪⎨
⎪⎪⎩

1
1.366

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
5 −3
−3 4

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
1.366

⎫⎪⎪⎬
⎪⎪⎭
= 4.267 8

𝜇2 =

⎧⎪⎪⎨
⎪⎪⎩

1
−0.366

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
5 −3
−3 4

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

1
−0.366

⎫⎪⎪⎬
⎪⎪⎭
= 7.731 8
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Normalized eigenvectors are

1 =
1

√𝜇1
1 =

1

√4.267 8

⎧⎪⎪⎨
⎪⎪⎩

1
−0.366

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.484 06
−0.177 17

⎫⎪⎪⎬
⎪⎪⎭

2 =
1

√𝜇2
2 =

1

√7.731 8

⎧⎪⎪⎨
⎪⎪⎩

1
−0.366

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.359 63
−0.131 63

⎫⎪⎪⎬
⎪⎪⎭

Hence

[Φ] = [12] =

⎡
⎢⎢⎢⎢⎢⎣
0.484 06 0.359 63
−0.177 17 −0.131 63

⎤
⎥⎥⎥⎥⎥⎦

EOM in modal coordinates is
⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′′1
𝜂′′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
2(0.08)(15.68) 0

0 2(0.08)(40.78)

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1
𝜂′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
15.682 0

0 40.782

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
= [Φ]𝑇

⎧⎪⎪⎨
⎪⎪⎩
50 sin(20𝑡)

100 cos(20𝑡)

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′′1
𝜂′′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
2.509 0
0 6.524 8

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1
𝜂′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
245.86 0
0 1663

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎣
24.203 sin(20.0𝑡) − 17.717 cos(20.0𝑡)

17.982 sin(20.0𝑡) − 13.163 cos(20.0𝑡)

⎤
⎥⎥⎥⎥⎥⎦

The two EOMs to solve are

𝜂′′1 (𝑡) + 2.509𝜂′1(𝑡) + 245.86𝜂1(𝑡) = 24.203 sin(20𝑡) − 17.717 cos(20𝑡) = Re�
24.203
𝑖

𝑒𝑖20𝑡� + Re�−17.717𝑒𝑖20𝑡�

𝜂′′2 (𝑡) + 6.525𝜂′2(𝑡) + 1663𝜂2(𝑡) = 17.982 sin(20𝑡) − 13.163 cos(20𝑡) = Re�
17.982
𝑖

𝑒𝑖20𝑡� + Re�−13.163𝑒𝑖20𝑡�

Hence

𝜂′′1 (𝑡) + 2.509𝜂′1(𝑡) + 245.86𝜂1(𝑡) = 24.203 sin(20𝑡) − 17.717 cos(20𝑡) = Re�(−24.203𝑖 − 17.717)𝑒𝑖20𝑡�

𝜂′′2 (𝑡) + 6.525𝜂′2(𝑡) + 1663𝜂2(𝑡) = 17.982 sin(20𝑡) − 13.163 cos(20𝑡) = Re�(−17.982𝑖 − 13.163)𝑒𝑖20𝑡�

In matrix form
[𝐼]′′ + [𝐶]′ + [𝐾] =Re�F𝑒𝑖𝜛𝑡�

Where 𝜛 = 20 rad/sec. F is the complex amplitude of the input

F =

⎧⎪⎪⎨
⎪⎪⎩
−24.203𝑖 − 17.717
−17.982𝑖 − 13.163

⎫⎪⎪⎬
⎪⎪⎭
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Using method of transfer functions (since steady state response is needed), response is

=Re�X𝑒𝑖20𝑡�

Where
𝑋𝑗 =

𝐹𝑗
−𝜛2 + 2𝑖𝜁𝑗𝜔𝑗𝜛 + 𝜔2

𝑗

Steady state solutions in modal coordinates is

𝜂1(𝑡) = Re�
−24.203𝑖 − 17.717

−𝜛2 + 2.5088𝑖𝜛 + 245.86
𝑒𝑖𝜛𝑡�

= Re�
−24.203𝑖 − 17.717

−400 + 50.176𝑖 + 245.86
𝑒𝑖𝜛𝑡�

= Re��5.77 × 10−2 + 0.176𝑖�𝑒𝑖𝜛𝑡�

𝜂2(𝑡) = Re�
−17.982𝑖 − 13.163

−𝜛2 + 6.525𝑖𝜛 + 1663
𝑒𝑖𝜛𝑡�

= Re�
−17.982𝑖 − 13.163

−400 + 130.5𝑖 + 1663
𝑒𝑖𝜛𝑡�

= Re��−1.178 × 10−2 − 1.302 × 10−2𝑖�𝑒𝑖𝜛𝑡�

Solutions are transformed back to normal coordinates

q = [Φ]

Hence

𝑞𝑗(𝑡) =
2
�
𝑛
Φ�𝑗, 𝑛�𝜂(𝑛)

=
2
�
𝑛
Φ�𝑗, 𝑛�Re�𝑋(𝑛)𝑒𝑖𝜛𝑡�

= Re
2
�
𝑛
Φ�𝑗, 𝑛�𝑋(𝑛)𝑒𝑖𝜛𝑡

Since[Φ] =

⎡
⎢⎢⎢⎢⎢⎣
0.484 06 0.359 63
−0.177 17 −0.131 63

⎤
⎥⎥⎥⎥⎥⎦ then

𝑞1(𝑡) = Re��0.484 06�5.77 × 10−2 + 0.176𝑖� + 0.359 63�−1.178 × 10−2 − 1.302 × 10−2𝑖��𝑒𝑖20𝑡�

𝑞2(𝑡) = Re��−0.177 17�5.77 × 10−2 + 0.176𝑖� − 0.131 63�−1.178 × 10−2 − 1.302 × 10−2𝑖��𝑒𝑖20𝑡�
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or

𝑞1(𝑡) = Re��2.369 × 10−2 + 8.051 × 10−2𝑖�𝑒𝑖20𝑡�

𝑞2(𝑡) = Re��−8.672 × 10−3 − 2.947 × 10−2𝑖�𝑒𝑖20𝑡�

Therefore

𝑌1 = 2.369 × 10−2 + 8.051 × 10−2𝑖
𝑌2 = −8.672 × 10−3 − 2.947 × 10−2𝑖

sectionProblem 5

2.11.5.1 Part(a)

First step is to determine EOM. The kinetic energy 𝑇 is

𝑇 =
1
2
𝐼(𝜃′)2 +

1
2
𝑚2(𝑥′)

2
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𝐼 = 1
3𝑚1𝐿2.Assuming small angle, stiff spring approximation and zero gravity datum at

the level where pendulum is hinged, spring potential energy 𝑉 is

𝑉 =
1
2
𝑘�𝑥 −

𝐿
2
𝜃�

2

=
1
2
𝑘�𝑥2 +

𝐿2

4
𝜃2 − 𝑥𝐿𝜃�

= 𝜃2�
𝐿2

8
𝑘� + 𝑥2�

1
2
𝑘� + 𝑥𝜃�−

𝑘𝐿
2 �

Stiffness matrix due to spring is

𝐾𝑠𝑝𝑟𝑖𝑛𝑔 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿2

4 𝑘 −𝑘𝐿
2

−𝑘𝐿
2 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Potential energy due to gravity is𝑉𝑔 = −𝑚𝑔
𝐿
2 cos𝜃. Hence𝑉𝑔11 =

𝜕2𝑉𝑔

𝜕2𝜃 = �𝑚𝑔𝐿2 cos𝜃�𝜃=0
=

𝑚𝑔𝐿2 . All other terms are zero. The stiffness matrix due to gravity is

𝐾𝑠𝑝𝑟𝑖𝑛𝑔 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
𝑚𝑔𝐿2 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Combined stiffness matrix is

𝐾 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿2

4 𝑘 + 𝑚𝑔
𝐿
2 −𝑘𝐿

2

−𝑘𝐿
2 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EOM is
⎡
⎢⎢⎢⎢⎢⎣
𝐼 0
0 𝑚2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃′′

𝑥′′

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿2

4 𝑘 + 𝑚𝑔
𝐿
2 −𝑘𝐿

2

−𝑘𝐿
2 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃
𝑥

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
𝑄𝜃

𝑄𝑥

⎫⎪⎪⎬
⎪⎪⎭

Generalized forces are now found. 𝑄𝜃 = 𝐹𝐿 since 𝐹 is only external forces acting on the
first d.o.f. 𝜃 and the work done by this force is 𝐹𝐿𝛿𝜃 for small virtual angle. For 𝑄𝑥 work
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is done only by damper and acts to remove energy, hence negative in sign.𝑄𝑥 = −𝑐𝑥′. The
above becomes

⎡
⎢⎢⎢⎢⎢⎣
𝐼 0
0 𝑚2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃′′

𝑥′′

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿2

4 𝑘 + 𝑚𝑔
𝐿
2 −𝑘𝐿

2

−𝑘𝐿
2 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃
𝑥

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
𝐹𝐿
−𝑐𝑥′

⎫⎪⎪⎬
⎪⎪⎭

Rearranging

⎡
⎢⎢⎢⎢⎢⎣
𝐼 0
0 𝑚2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃′′

𝑥′′

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
0 0
0 𝑐

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃′

𝑥′

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐿2

4 𝑘 + 𝑚2𝑔
𝐿
2 −𝑘𝐿

2

−𝑘𝐿
2 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃
𝑥

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
𝐹𝐿
0

⎫⎪⎪⎬
⎪⎪⎭

Each EOM is

𝐼𝜃′′ + �
𝐿2

4
𝑘 + 𝑚1𝑔

𝐿
2�
𝜃 −

𝑘𝐿
2
𝑥 = 𝐹𝐿

𝑚2𝑥′′ + 𝑐𝑥′ −
𝑘𝐿
2
𝜃 + 𝑘𝑥 = 0

Units checking: First EOM. each termmust have units of torque. 𝐿
2

4 𝑘𝜃 have units of torque
OK. 𝑚𝑔𝐿2𝜃 have units of torque OK. 𝑘𝐿𝑥 have units of torque OK.

second EOM Each term must have units of force. 𝑐𝑥′ have units of force OK. 𝑘𝐿𝜃 have
units of force, OK. 𝑘𝑥 have units of force, OK.

Transfer function is now found Let 𝑥 = Re�𝑋𝑒𝑖𝜛𝑡�, 𝜃 = Re�𝑌𝑒𝑖𝜛𝑡�, 𝐹 = Re��̂�𝑒𝑖𝜛𝑡�.Substitute
in the above EOM

Re���−𝐼𝜛2𝑌� + �
𝐿2

4
𝑘 + 𝑚2𝑔

𝐿
2�
𝑌 −

𝑘𝐿
2
𝑋�𝑒𝑖𝜛𝑡� = Re��̂�𝐿𝑒𝑖𝜛𝑡�

Re��−𝑚2𝜛2𝑋 + 𝑖𝑐𝜛𝑋 −
𝑘𝐿
2
𝑌 + 𝑘𝑋�𝑒𝑖𝜛𝑡� = 0

Simplify

�−𝐼𝜛2 +
𝐿2

4
𝑘 + 𝑚2𝑔

𝐿
2�
𝑌 −

𝑘𝐿
2
𝑋 = �̂�𝐿 (2.107)

�−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘�𝑋 =
𝑘𝐿
2
𝑌 (2.108)

The above two equations are solved to obtain the required transfer functions𝑋/𝐹 and 𝑌/𝐹 .
To obtain 𝑌/𝐹, the second equation solved for 𝑋 in terms of 𝑌

𝑋 =
𝑘𝐿
2

−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘
𝑌
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𝑋 in first equation is replaced by the giving

�−𝐼𝜛2 +
𝐿2

4
𝑘 + 𝑚2𝑔

𝐿
2�
𝑌 −

𝑘𝐿
2

𝑘𝐿
2

−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘
𝑌 = �̂�𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝−𝐼𝜛

2 +
𝐿2

4
𝑘 + 𝑚2𝑔

𝐿
2
−

𝑘2𝐿2

4
−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑌 = �̂�𝐿

Hence
𝑌 =

1

�−1
3𝑚1𝐿𝜛2 + 𝐿

4𝑘 +
𝑚2𝑔
2 − 𝑘2𝐿/4

−𝑚2𝜛2+𝑖𝑐𝜛+𝑘
�
�̂�

To obtain the transfer function 𝑋/𝐹, the second equation is solved for 𝑌 in terms of 𝑋

𝑌 =
�−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘�

𝑘𝐿/2
𝑋

This is substituted in the first equation giving

�−𝐼𝜛2 +
𝐿2

4
𝑘 + 𝑚2𝑔

𝐿
2�
�−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘�

𝑘𝐿/2
𝑋 −

𝑘𝐿
2
𝑋 = �̂�𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−1
3𝑚1𝐿𝜛2 + 𝐿

4𝑘 +
𝑚2𝑔
2
��−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘�

𝑘/2
−
𝑘𝐿
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑋 = �̂�𝐿

Hence
𝑋 =

𝑘𝐿

�−1
3𝑚1𝐿𝜛2 + 𝐿

4𝑘 +
𝑚2𝑔
2
��−𝑚2𝜛2 + 𝑖𝑐𝜛 + 𝑘� − 𝑘2𝐿

�̂�

This complete part(a). These are the analytical expressions for the transfer functions.

2.11.5.2 Part(b)

Let 𝑚1 = 𝑚2 = 1 kg, 𝑘 = 3 N/m, 𝐿 = 1m, 𝑔 = 9.81m/s2, 𝑐 = 0.1 N-s/m.

A program was written to plot the magnitude and phase spectrums of 𝑥(𝑡) and 𝜃(𝑡) using
the above numerical values. This was done for a range of forcing frequencies to cover both
natural frequencies and beyond. Natural frequencies are found by solving the eigenvalue
problem det�[𝐾] − 𝜔2[𝑀]� = 0

𝜔1 = 1.1308 rad/sec
𝜔2 = 4.3228 rad/sec
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The magnitude and phase of each transfer function are evaluated when𝜛 = 𝜔1 and when
𝜛 = 𝜔2.𝐹 = 1was assumed since its numerical value was not given. Result is shown below.
From these plots, magnitude and phase values are determined at the natural frequencies.

𝑥(𝑡) = Re�𝑋𝑒𝑖𝜛𝑡�

𝜃(𝑡) = Re�𝑌𝑒𝑖𝜛𝑡�

Table of results

response magnitude at 𝜔1 phase at 𝜔1 magnitude at 𝜔2 phase at 𝜔2

𝑥(𝑡) 4.25 −830 2.62 131.70

𝜃(𝑡) 2.55 −800 11.5 −500

ratio 4.25/2.55 = 1.666 7 11.5/2.62 = 4. 389 3

Plots used to obtain these results
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The function used to generate the plots

function nma_HW10_problem_5_EMA_545_spectrum()
%plots the spectrums of problem 5, HW10, by Nasser M. Abbasi
close all;

c = 0.1;
g = 9.81;
L = 1;
k = 3;
m1 = 1;
m2 = 1;
F = 1;

M = [1/3*m1*L^2 0;0 m2];
K = [L^2/4*k+m2*g*L/2 -k*L/2;-k*L/2 k];
C = [0 0;0 c];

[PHI,w] = eig(K,M);
lam = sqrt(diag(w))

I = sqrt(-1);
X = @(wf) ((k*L)./((-1/3*m1*L*wf.^2+L/4*k+m2*g/2).*(-m2*wf.^2+I*c*wf+k)- (k^2*L)))*F;
Y = @(wf) (1./((-1/3*m1*L*wf.^2+L/4*k+m2*g/2-( k^2*L./(-m2*wf.^2+I*c*wf+k)))))*F;
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N = 2;

for i=1:N
figure(i);
wf = 0:0.1:6.5;

if i==1
name_='X';
tf_ = X(wf);

else
name_='Y';
tf_ = Y(wf);

end

subplot(2,1,1);
plot(wf,abs(tf_));
hold on;
line([lam(1) lam(1)],[0 5],'LineStyle','-.');
line([lam(2) lam(2)],[0 5],'LineStyle','-.');
title(sprintf('magnitude spectrum of %c, $\\omega_1=%f$, $\\omega_2=%f$',name_,lam(1),lam(2)),'interpreter','latex','FontSize',12);
xlabel('forcing frequency (rad/sec)');
ylabel(sprintf('$|%c|$',name_),'interpreter','latex','FontSize',12);
grid;

subplot(2,1,2);
plot(wf,angle(tf_));
line([lam(1) lam(1)],[-5 5],'LineStyle','-.');
line([lam(2) lam(2)],[-5 5],'LineStyle','-.');
title(sprintf('phase spectrum of X, $\\omega_1=%f$, $\\omega_2=%f$',lam(1),lam(2)),'interpreter','latex','FontSize',12);
xlabel('forcing frequency (rad/sec)');
ylabel(sprintf('$arg(%c)$',name_),'interpreter','latex','FontSize',12);
grid;

end

end

EigenvectorsΦ1 andΦ1 are now found, usingmodal analysis, which de-couples the EOM.
The ratio of one component of the same eigenvector to its other component is found and
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compared with the result found above. The eigenvectors found are

Φ1 =

⎧⎪⎪⎨
⎪⎪⎩
−0.5446
−0.9493

⎫⎪⎪⎬
⎪⎪⎭

Φ2 =

⎧⎪⎪⎨
⎪⎪⎩
−1.6442
0.3145

⎫⎪⎪⎬
⎪⎪⎭

The ratios are 0.9493/0.5446 = 1.743 1 and 1.6442/0.3145 = 5.228 0. Compare these to the
ratios found

response magnitude at 𝜔1 phase at 𝜔1 magnitude at 𝜔2 phase at 𝜔2

𝑥(𝑡) 4.25 −830 2.62 131.70

𝜃(𝑡) 2.55 −800 11.5 −500

ratio 4.25/2.55 = 1.666 7 11.5/2.62 = 4.389 3

These ratios are close to each others. Ratio Φ1𝑗/Φ2𝑗 shows how much one dof (1) will
change relative to dof (2) in mode 𝑗

2.11.5.3 Part(c)

Transfer functions are plotted in part(a). From magnitude spectrum of 𝑌 it is seen that

|𝑌| = 0 when 𝜛 between 1.5 and 2.0 rad/sec and also when 𝜛 > 6 rad/sec. 𝜔𝑐𝑎𝑟𝑡 =
�

𝑘
𝑚2

=

�
3
1 = 1.732 1 rad/sec. This agrees with range found in plots. When

�
𝑘
𝑚2

= 1.73, top mass

acts as vibration absorber, and rod will not oscillate when 𝐹(𝑡) is at this specific frequency.
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2.11.6 Problem 6

From HW6, problem 3

𝑓(𝑡) =
𝑃
𝜏 𝑡 0 < 𝑡 < 𝜏

0 𝜏 < 𝑡 < 2𝜏

Let 𝑦𝑠𝑠(𝑡) be the solution from problem 3 found using FFT technique. Let the full solution
for deflection of the above pillar be

𝜒�𝑦, 𝑡� = 𝑦(𝑡)𝜓(𝑦)

𝑦(𝑡) is the time dependent (dynamic) part of the solution. This solution is 𝑦𝑠𝑠(𝑡) found
in problem 3. 𝜓�𝑦� is solution due to static loading. Also called the shape function. For
cantilever beam with static force 𝑃 at its end, deflection curve due to static loading 𝑃 at
end is

𝜓(𝑥) =
𝑃
6𝐸𝐼

�3𝐿𝑥2 − 𝑥3�

Internal bending moment 𝑀(𝑥, 𝑡) = 𝐸𝐼𝑑
2𝜒(𝑥,𝑡)
𝑑𝑥2 and direct stress 𝜎 = 𝑀(𝑥,𝑡)𝑐

𝐼 where 𝑐 is the

section modulus. Assume 𝑐 = ℎ
2 . For yield, let 𝜎 = 40𝑀𝑃𝑎, then

𝑀(𝑥, 𝑡) =
𝜎𝐼
𝑐

𝐸𝐼
𝑑2𝜒(𝑥, 𝑡)
𝑑𝑥2

=
𝜎𝐼
𝑐
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𝐼 = 1
12𝑏ℎ

3.

𝑑2𝜒(𝑥, 𝑡)
𝑑𝑥2

= 𝑦𝑠𝑠(𝑡)
𝑑2

𝑑𝑥2
𝑃
6𝐸𝐼

�3𝐿𝑥2 − 𝑥3�

= 𝑦𝑠𝑠(𝑡)
𝑃𝐿
𝐸𝐼

Solve for 𝑃 at yield

𝑦𝑠𝑠(𝑡)
𝑃𝐿
𝐸𝐼

=
𝜎𝑦𝑖𝑒𝑙𝑑𝐼
𝑐

𝑃 =
𝜎𝑦𝑖𝑒𝑙𝑑𝐼

𝑦𝑠𝑠(𝑡)
ℎ
2𝐿
𝐸𝐼

𝑦𝑠𝑠(𝑡) from problem 3 has maximum value of 1.8 at 𝑡 = 10 sec. Given numerical values in
the problem and using this maximum value of 𝑦𝑠𝑠(𝑡) then 𝑃 can be found from above.

I am not sure this is the correct approach to solve this.We did not have any practice or
examples on solving this type of vibration problem before. Need more time to study this
subject.
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2.11.7 Key solution for HW 10

Homework #10 
EMA 545, Spring 2013 

 
For all of these problems you may use Matlab or some other package to find the natural 
frequencies and mode vectors and to mass normalize the mode vectors (if needed). 
 
1.)  Exercise 4.8 from Ginsberg.  (Note:  the spring constants are defined such that the 
frequencies given are the natural frequencies that each spring-mass system would have if 
it were attached to a rigid base.  Notice that there is not a simple relationship between 
those frequencies and the natural frequencies of the system as a whole.) 
 
2.)  Exercise 4.30 as given in the text.  Repeat the analysis for k=2mg/L and graph that 
response as well.  (Questions to consider: What do you notice about the natural 
frequencies of this system in each case?  How does that affect the way the response 
looks?  Why?) 
 
3.)  Exercise 4.43 from Ginsberg.  How does the time required to reach steady state 
compare with r=1/(rr) for each mode, r=1,2,3? 
 
4.)  Exercise 4.47 from Ginsberg. 
 
5.)  (Covering material from Chapter 5) 

 
a.)  Let F(t)=Re[Fexp(it)], x(t) = Re[Xexp(it)] and (t)=Re[Yexp(it)].  Find 
analytical expressions for the complex transfer functions X/F and Y/F. 
b.) Find the magnitude and phase of the response of x and  when the system is forced at 
its natural frequencies =1 and =2.  Compare these values to the eigenvectors for 
modes 1 and 2.  Use the following numerical values: m1=m2=1 kg, k=3 N/m, L=1 m, 
g=9.81 m/s^2, and c=0.1 N-s/m.  
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c.)  Plot the transfer functions Y/F and X/F over a range of frequencies encompassing 
both modes of vibration.  Use the plot to determine at what frequency m2 acts as a 
vibration absorber for the rod. How does that frequency compare with the natural 
frequency that the system would have if the rod were held fixed: cart = (k/m2)

1/2 ? 

6.)  Consider Exercise 3.45 and 3.46 in the text (you solved 
this in problem #3 in HW#6).  Use the steady-state 
displacement that you computed using FFT techniques for  
= 3/n to compute the maximum stress in the spring.  
Assume that the spring is a cantilever beam (in bending) 
modeled after one of the pillars supporting the ERB, which 
have length L=40m, rectangular cross section with height h, 
equal to the width b=h=0.6m, and is constructed from a 
material with modulus E=30 GPa and ultimate tensile 
strength =40 MPa.  (The mass of the beam is assumed to be 
included in m, so its density is not needed.)  Let the mass m 
be such that the natural frequency of the mass-spring system 
is n=0.2Hz.  What is the amplitude of the force, P, such that 
the beam fails due to the dynamic load?  Compare that to the 
static load required to cause the beam to fail (also in 
bending). 

f(t) 

x 

m 
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HW 4.30 Solution 
M.S. Allen 
Spring 2013 

 
Using the equations of motion and modal responses derived on the previous page, the 
following Matlab code can then be used to find the transient response: 
 
M = eye(3)/3; %*mL^2 
 K = [1 -1 0; -1 2 -1; 0 -1 1]*0.05 + eye(3)*0.5; % Kspr + Kgrav 
  
 [phi,lam] = eig(K,M); 
 wns = sqrt(diag(lam)); 
  
 % Sort & Normalize Eigenvectors to unity modal mass and Check 
Orthogonality 
[lam_sort,lam_indx] = sort(diag(lam)); 
wns = sqrt(lam_sort) % *sqrt(k/m) 
  
phi_sort = (phi(:,lam_indx)); 
mu = phi_sort.'*M*phi_sort; 
PHI = real(phi_sort*sqrt(inv(mu))) 
  
check_orth = norm(PHI.'*M*PHI-eye(size(phi))) 
  
n_0 = [0; 0; 0]; 
nd_0 = PHI'*M*[0; 2; 0]./wns % *m/k 
t = [0:0.5:80]; 
q = PHI*[nd_0(1)*sin(wns(1)*t); 
        nd_0(2)*sin(wns(2)*t); 
        nd_0(3)*sin(wns(3)*t)]; 
  
figure(1) 
plot(t,q(1,:), t,q(2,:), t,q(3,:), '.'); grid on; 
xlabel('time t*(k/m)^0^.^5'); ylabel('Displacement (m)*k/m'); 
legend('\theta_1', '\theta_2', '\theta_3'); 
title('Response to Initial Velocity in \theta_2') 
 
% To animate the solution 
%{ 
figure(2) 
for ii = 1:1:length(t); 
    sf = 50; 
    plot([-0.5 0.5].', [0 0].','o:',[-0.7 0.7].', [0 0].','k'); 
    line([-0.5 -0.5+10*sin(q(1,ii)/sf)],[0 -
10*cos(q(1,ii)/sf)],'LineWidth', 4); grid on; 
    line([0 0+10*sin(q(2,ii)/sf)],[0 -10*cos(q(2,ii)/sf)],'LineWidth', 
4); grid on; 
    line([0.5 0.5+10*sin(q(3,ii)/sf)],[0 -
10*cos(q(3,ii)/sf)],'LineWidth', 4); grid on; 
    xlabel('X-position (*L)'); ylabel('Displacement (m)*k/m'); 
    title(['Time (m/k)^0.5 = ' num2str(t(ii))]) 
    axis([-0.7 0.7 -12 2]); 
    mov1(ii) = getframe(2); 
end 
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movie(mov1,2,20) 
%} 
 
The natural frequencies and mode shapes are (only the first and third modes are excited): 
wns = 
       1.2247 
       1.2845 
       1.3964 
PHI = 
           -1      -1.2247      0.70711 
           -1  -7.4506e-09      -1.4142 
           -1       1.2247      0.70711 
 
The response is given below for k=0.05 mg/L 
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The response shows a beating phenomenon, since each bar is influenced by modes 1 and 
3 and the modes’ frequencies are close (1.22 and 1.39 rad/s). 
 
On the other hand, for k=2*mg/L, the natural frequencies differ by a factor of more than 
three and the response does not look as simple: 
wns = 
       1.2247 
       2.7386 
       4.4159 
PHI = 
           -1      -1.2247      0.70711 
           -1  -1.2905e-08      -1.4142 
           -1       1.2247      0.70711 
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Exercise 4.43 

M

600

400

200

400

1200

0

200

0

800

K 1000

300

0

200

0

500

300

200

300

700

. C

500

300

400

300

900

600

400

600

1300

Eigensolution

λ genvals K M,( ) φ genvecs K M,( )

φ submatrix rsort stack λ
T

φ, 1, 2, rows λ( ) 1, 1, rows λ( ),

λ sort λ( ) ω λ

λ
T 226.558845 308.438284 2.075003 103.=

ω
T 15.051872 17.562411 45.552199( )=

φ

0.586168

0.549759

0.595123

0.806945

0.585395

0.078432

0.717

0.386503

0.580109

=
j 1 rows λ( )..

Φ
j< > if φ1 j, 0 φ

j< >

φ
j< > T

M. φ
j< >.

1 1,

, φ
j< >

φ
j< > T

M. φ
j< >.

1 1,

,

Φ

0.021637

0.020293

0.021968

0.023197

0.016828

2.254691 10 3.

0.037332

0.020124

0.030205

= Φ
T M. Φ. identity rows λ( )( )

0

0

0

0

0

0

0

0

0

=

Light damping approximation
C' Φ

T C. Φ.

C'

0.053409

0.052984

0.413171

0.052984

0.768463

2.49957 10 3.

0.413171

2.49957 10 3.

3.428128

=

ζj
C'j j,
2 ωj. ζ

T 1.774153 10 3. 0.021878 0.037629=
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Unit cosine response from Appendix B

c trans t ω, ω nat, ζ,

ω nat
2

ω
2 cos ω t.( ). 2 ζ. ω nat. ω. sin ω t.( ).

exp ζ ω nat. t. ω nat
2

ω
2 cos ω nat 1 ζ

2. t..

ζ

1 ζ
2

ω nat
2

ω
2. sin ω nat 1 ζ

2. t..+

....+

...

ω nat
2

ω
2 2 4 ζ

2. ω nat
2. ω

2.

Generalized force coefficents
F 200 0 0( )T

Transient solution for modal coordinates when ω = 16 rad/s:

T max
4

min ζ ω.( )
∆t 1

4
2 π.

max ω( )
. P ceil

T max
∆t

p 1 P.. tp p 1( ) ∆t.
P 4.344 103.=

ηj p, Φ1 j, F1. c trans tp 16, ωj, ζj,. q Φ η.

0 20 40 60 80 100 120 1400.005

0

0.005

q1 p,

tp

0 20 40 60 80 100 120 140 1600.01

0

0.01

q2 p,

tp
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0 20 40 60 80 100 120 140 1600.01

0.005

0

0.005

0.01

q3 p,

tp

Plot responses vs. t nondimensionalized by the forced period to check for steady-state

300 302 304 306 308 310 312 314 316 318 3200.01

0.005

0

0.005

0.01

q1 p,

q2 p,

q3 p,

tp
2 π.

16

Response seems to periodic at ω=16 rad/s after 300 forced cycles

300 2 π.

16
. 117.809725=
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Exercise 4.47 

M
5

3

3

4
ω1 15.38

ω2 40.78

φ
1

1.366

1

0.366 ζ1 0.08
ζ2 0.08

j 1 2..

Φ
j< > φ

j< >

φ
j< >T M. φ

j< >.
1 1,

Φ
0.484057

0.661222

0.359633

0.131626
=

F
50
i

100 Ω 20

Xj
Φ

j< >T F. 1 1,

ωj
2 2i ζj. ωj

. Ω. Ω
2

Y Φ X. Y 0.203556 6.975392i 10 3.

0.270729 0.017639i
=
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2.12.1 problem description

Homework #A1 
EMA 545, Spring 2013 

Instructions: 
 If you scored 23 or below on Problem #2 on Exam #1, do Problems 1, 2 and 3. 
 If you scored 23 or below on Problem #4 on Exam #1, do Problems 4 and 5 
 If neither of those criteria apply to you then you do not need to turn in this assignment. 

 
When working out your solutions to the following problems, you must derive your answers 
starting from the following.  You may not use any equations from the book without first deriving 
them from these basic principles: 
The general solution to an underdamped SDOF system 

22 0n nx x x      

is: 

 i( ) Re n dt tx t Ae e   

where 21d n     and A is a complex constant. 

You are free to use Appendix B as needed and the fact that the forced response of a system is 

( ) IC Fx t x x   

Where xIC and xF are found in Appendix B for a variety of forcing functions. 

 i( ) Re tf t Fe                   i( ) Re tx t Xe   

The half power points in a transfer function occur at frequencies  peakn  
 
Problem 1: 3.1 from Ginsberg.  Begin by writing the equation of motion for 
the system (shown to the right after replacing z(t) with q(t)). 
 
Problem 2: 3.11 from Ginsberg. Begin by writing the equation of motion for 
the system (shown to the right after replacing z(t) with x(t)). 
 
Problem 3: (3e2) 
The equations of motion for the 2DOF system studied in class are given 
below.  If the applied force is f(t)=Fcos(t), then the response of both 
coordinates x1 and x2 will also be harmonic.  Use this fact to derive the transfer function between 
the force F and the response X1. 

1 1

2 2

0 2 0

0 ( )

x xm k k

x xm k k f t

        
                 


  

 
Problem 4: 2.52 from Ginsberg. Check your answer by comparing it to the solution from ode45 
in Matlab. 
 
Problem 5: 2.54 from Ginsberg. Choose values for the parameters and check your answer by 
plotting the response and comparing it to the solution from ode45 in Matlab. 

m

k

z

f(t)

c

337



2.12. HWA1 CHAPTER 2. HW’S

2.12.2 problem 1
A system has mass 𝑀 = 20𝑘𝑔 and 𝜔𝑛 = 100 rad/sec. It is observed that steady state
response is 𝑞 = 20 cos(110𝑡 − 1.5)𝑚𝑚, where 𝑡 is in seconds.Determine harmonic excitation
causing this response for 𝜁 = 0 and 𝜁 = 0.4

Let the harmonic excitation be
𝐹(𝑡) = Re��̂�𝑒𝑖𝜔𝑡�

where �̂� is its complex amplitude. Also let

𝑞 = Re��̂�𝑒𝑖𝜔𝑡�

be the steady state response. We are given that 𝑞 = 20 × 10−3 cos(110𝑡 − 1.5), therefore

𝑞 = Re�20 × 10−3𝑒𝑖(100𝑡−1.5)�

= Re�20 × 10−3𝑒−1.5𝑖𝑒𝑖100𝑡�

Therefore
�̂� = 20 × 10−3𝑒−1.5𝑖

But the transfer function for second order system is

�̂� =
�̂�
𝑘

1
�1 − 𝑟2� + 2𝑖𝜁𝑟

where 𝑟 = 𝜔
𝜔𝑛

, hence we can now solve for �̂� from the above.

�̂� = �̂��𝑘��1 − 𝑟2� + 2𝑖𝜁𝑟��

But 𝑘 = 𝑀𝜔2
𝑛 hence

�̂� = �̂��𝑀𝜔2
𝑛��1 − 𝑟2� + 2𝑖𝜁𝑟��

When 𝜁 = 0 we find

�̂� = 20 × 10−3𝑒−1.5𝑖
⎛
⎜⎜⎜⎜⎝20 × 100

2

⎛
⎜⎜⎜⎜⎝1 − �

110
100�

2⎞⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= 20 × 10−3𝑒−1.5𝑖(−42000.0)
= −42000.0 × 20 × 10−3𝑒−1.5𝑖

= −840.0𝑒−1.5𝑖
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Hence

𝐹(𝑡) = Re��̂�𝑒𝑖𝜔𝑡�

= Re�−840.0𝑒−1.5𝑖𝑒𝑖110𝑡�

= Re�−840.0𝑒𝑖(100𝑡−1.5)�

Therefore
𝐹(𝑡) = −840 cos(100𝑡 − 1.5)

When 𝜁 = 0.4 we find

�̂� = �̂��𝑀𝜔2
𝑛��1 − 𝑟2� + 2𝑖𝜁𝑟��

= 20 × 10−3𝑒−1.5𝑖
⎛
⎜⎜⎜⎜⎝20 × 100

2

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝1 − �

110
100�

2⎞⎟⎟⎟⎟⎠ + 𝑖2(0.4)�
110
100�

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= 20 × 10−3𝑒−1.5𝑖�20 × 1002(−0.21 + 0.88𝑖)�
= 4000𝑒−1.5𝑖(−0.21 + 0.88𝑖)

= 4000𝑒−1.5𝑖��(0.21)
2 + (0.88)2 𝑒

𝑖 tan−1� .88
−0.21 ��

In[4]:= ArcTan[-0.21, 0.88]

Out[4]= 1.80505

Hence

�̂� = 4000𝑒−1.5𝑖�0.90471𝑒𝑖1.80505�
= 3618.8𝑒−1.5𝑖+1.80505𝑖

= 3618.8𝑒0.30505𝑖

Therefore

𝐹(𝑡) = Re��̂�𝑒𝑖𝜔𝑡�

= Re�3618.8𝑒0.30505𝑖𝑒𝑖110𝑡�

= Re�3618.8𝑒𝑖(100𝑡+0.30505)�

Hence
𝐹(𝑡) = 3618.8 cos(100𝑡 + 0.30505)
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2.12.3 Problem 2

Let
𝑃(𝑡) = Re��̂�𝑒𝑖𝜔𝑡�

where �̂� is the complex amplitude of the excitation. Hence by comparing this to 𝑃(𝑡) =
𝐹 cos𝜔𝑡 = Re�𝐹𝑒𝑖𝜔𝑡�we see that �̂� = 𝐹.

When 𝜔 = 2𝜋100 then the response was 𝑞 = Re��̂�𝑒𝑖𝜔𝑡� = 4 sin(2𝜋100𝑡) hence 𝑞 =

Re

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�̂�
�
4𝑒−𝑖

𝜋
2 𝑒𝑖𝜔𝑡

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= 𝑞 = Re�4𝑒𝑖�𝜔𝑡−

𝜋
2 �� therefore

�̂� = 4𝑒−𝑖
𝜋
2

But, from the transfer function of second order system we know that

�̂� =
�̂�
𝑘

1
�1 − 𝑟2� + 2𝑖𝜁𝑟
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Hence

4𝑒−𝑖
𝜋
2 =

�̂�
𝑘

1

�1 − �
2𝜋100
𝜔𝑛

�
2
� + 2𝑖𝜁�

2𝜋100
𝜔𝑛

�

=
�̂�
𝑘

1

�
�1 − �

2𝜋100
𝜔𝑛

�
2
�
2

+ �2𝜁�2𝜋100𝜔𝑛
��

2
𝑒
−𝑖 tan−1� 2𝜁𝑟

1−𝑟2
�

(2.109)

By comparing sides we see that

𝜋
2
=

2𝜁𝑟
1 − 𝑟2

=
2𝜁2𝜋100𝜔𝑛

1 − �2𝜋100𝜔𝑛
�
2 (2.110)

When 𝜔 = 105𝐻𝑧we are told it is half power point, which means the amplitude there is
0.707 of the maximum amplitude which occurs when 𝑟 = 1. Hence

0.707
�̂�
𝑘

1

��1 − (1)
2�

2
+ (2𝜁(1))2

=
�̂�
𝑘

1

�
�1 − �

2𝜋105
𝜔𝑛

�
2
�
2

+ �2𝜁�2𝜋105𝜔𝑛
��

2

0.707
1
2𝜁

=
1

�
�1 − �

2𝜋105
𝜔𝑛

�
2
�
2

+ �2𝜁�2𝜋105𝜔𝑛
��

2
(2.111)

We now have 2 equations 2.110 and 2.111 to solve numerically for 𝜁 and 𝜔𝑛 . Solving and
keeping the positive solutions results in

𝜁 = 0.0309
𝜔𝑛 = 640.8 rad/sec

= 101.987 Hz

Hence at 𝜔 = 105 hz the phase is

tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(0.0309)2𝜋(105)640.8

1 − �2𝜋(105)640.8
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 133.3050

In[35]:= ArcTan[1 - ((2 Pi 105)/640.8)^2, 2 (0.0309) ((2 Pi 105)/640.8)]*180/Pi
Out[35]= 133.305
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2.12.3.1 Part(b)

When 𝜔 = 100 Hz we found from Eq 2.109 that

4 =
�̂�
𝑘

1

�
�1 − �

2𝜋100
𝜔𝑛

�
2
�
2

+ �2𝜁�2𝜋100𝜔𝑛
��

2

But we found that 𝜔𝑛 = 640.8 rad/sec and 𝜁 = 0.0309, hence

�̂�
𝑘
= 4

�
⃓
⃓
⎷

⎛
⎜⎜⎜⎜⎝1 − �

2𝜋100
640.8 �

2⎞⎟⎟⎟⎟⎠

2

+ �2(0.0309)�
2𝜋100
640.8 ��

2

= 0.28733

At 𝜔 = 110 Hz

��̂�� =
�̂�
𝑘

1

�
�1 − �

2𝜋110
𝜔𝑛

�
2
�
2

+ �2𝜁�2𝜋110𝜔𝑛
��

2

= 0.28733
1

�
�1 − �

2𝜋110
640.8

�
2
�
2

+ �2(0.0309)�2𝜋110640.8
��

2

= 1.6288

The phase is

tan−1�
2𝜁𝑟
1 − 𝑟2 �

= tan−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(0.0309)�2𝜋110640.8
�

1 − �2𝜋110640.8
�
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 157.7980

In[37]:= ArcTan[1 - ((2 Pi 110)/640.8)^2, 2 (0.0309) ((2 Pi 110)/640.8)]*180/Pi
Out[37]= 157.798

2.12.4 Problem 3
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The two equations are

𝑚𝑥′′1 + 2𝑘𝑥1 − 𝑘𝑥2 = 0
𝑚𝑥′′2 − 𝑘𝑥1 + 𝑘𝑥2 = 𝑓(𝑡)

Since the responses are harmonic and the input is harmonic, then we can write

𝑥1(𝑡) = Re��̂�1𝑒𝑖𝜔𝑡�

𝑥1(𝑡) = Re��̂�2𝑒𝑖𝜔𝑡�

Therefore the two equations can be written in terms of the complex amplitudes as

−𝑚𝜔2�̂�1 + 2𝑘�̂�1 − 𝑘�̂�2 = 0 (2.112)
−𝑚𝜔2�̂�2 − 𝑘�̂�1 + 𝑘�̂�2 = 𝐹 (2.113)

From Eq 2.117
�−𝑚𝜔2 + 2𝑘�

𝑘
�̂�1 = �̂�2

Substitute the above into Eq 2.113 gives

−𝑚𝜔2
�−𝑚𝜔2 + 2𝑘�

𝑘
�̂�1 − 𝑘�̂�1 + 𝑘

�−𝑚𝜔2 + 2𝑘�
𝑘

�̂�1 = 𝐹
⎛
⎜⎜⎜⎜⎝
�−𝑚2𝜔4 − 𝑚𝜔22𝑘�

𝑘
+ 𝑘 − 𝑚𝜔2

⎞
⎟⎟⎟⎟⎠�̂�1 = 𝐹

�̂�1 = 𝑘𝐹
1

�−𝑚2𝜔4 − 𝑚𝜔22𝑘 + 𝑘2 − 𝑘𝑚𝜔2�

Dividing the numerator and denominator of the RHS by 𝑘2, and using 𝑘2 = 𝜔4
𝑛𝑚2 and

using 𝑟 = 𝜔
𝜔𝑛

�̂�1 =
𝐹
𝑘

1

�−𝑚
2𝜔4

𝜔4𝑛𝑚2 −
𝑚𝜔22
𝜔2𝑛𝑚

+ 1 − 𝑚𝜔2

𝜔2𝑛𝑚
�

�̂�1 =
𝐹
𝑘

1
�−𝑟4 − 2𝑟2 + 1 − 𝑟2�

Hence the transfer function is

�̂�1 =
𝐹
𝑘

1
�1 − 𝑟4 − 3𝑟2�
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2.12.5 Problem 4

Summary of method of solution: There are 2 ways to solve these problem. We will solve
it using both methods. The first method is using known standard solution for step input,
the solution 𝑦(𝑡) is found for the period of 0 < 𝑡 < 3𝜋

𝜔𝑛
using zero initial conditions. Next,

the solution 𝑦(𝑡) and 𝑦′(𝑡) is evaluated again at 𝑡 = 3𝜋
𝜔𝑛

. These values are now used as the

initial conditions for the solution for 𝑡 > 3𝜋
𝜔𝑛

. The solution for 𝑡 > 3𝜋
𝜔𝑛

will have the same
form, but the step input now is 200𝑁 instead of 100N.

The second method as follows: Let 𝐹(𝑡) = 100ℎ(𝑡) + 100ℎ�𝑡 − 3𝜋
𝜔𝑛
� or 𝐹(𝑡) = 100ℎ(𝑡) + 100ℎ� ̃𝑡�

where ̃𝑡 = 𝑡− 3𝜋
𝜔𝑛

, then assuming the transient solution to ℎ(𝑡) is 𝑠(𝑡) then the solution to

𝐹(𝑡) is 100𝑠(𝑡) + 100𝑠� ̃𝑡�. The second method is simplet than the first method.

Solution using first method:

The system is
𝑚𝑦′′(𝑡) + 𝑘𝑦(𝑡) = 𝐹(𝑡)

When 𝐹(𝑡) is a fixed input, such as a step input of magnitude 𝐹 then the response is given
by

𝑦(𝑡) = �𝑦0 −
𝐹
𝑘�

cos𝜔𝑛𝑡 +
𝑦′0
𝜔𝑛

sin𝜔𝑛𝑡 +
𝐹
𝑘

Where in the above, 𝑦0 and 𝑦′0 are the initial position and initial velocity. For 0 < 𝑡 < 1.5𝑇𝑛
the solution is

𝑦(𝑡) = −
𝐹
𝑘
cos𝜔𝑛𝑡 +

𝐹
𝑘

=
𝐹
𝑘
(1 − cos𝜔𝑛𝑡)
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Let 𝐹 = 𝑄1 = 100N, and since 𝑘 = 𝑚𝜔2
𝑛 then the above becomes

𝑦(𝑡) =
𝑄1
𝑚𝜔2

𝑛
(1 − cos𝜔𝑛𝑡) 0 < 𝑡 <

3𝜋
𝜔𝑛

Now we need first to evaluate 𝑦�𝑡 = 3𝜋
𝜔𝑛
� and 𝑦′�𝑡 = 3𝜋

𝜔𝑛
�. From the above

𝑦′(𝑡) =
𝑄1
𝑚𝜔𝑛

sin𝜔𝑛𝑡 0 < 𝑡 <
3𝜋
𝜔𝑛

Hence

𝑦�𝑡 =
3𝜋
𝜔𝑛
� =

𝑄1
𝑚𝜔2

𝑛
�1 − cos𝜔𝑛

3𝜋
𝜔𝑛
� =

𝑄1
𝑚𝜔2

𝑛
(1 − cos 3𝜋) =

𝑄1
𝑚𝜔2

𝑛
(1 − (−1)) =

2𝑄1
𝑚𝜔2

𝑛

and
𝑦′�𝑡 =

3𝜋
𝜔𝑛
� =

𝑄1
𝑚𝜔𝑛

sin�𝜔𝑛
3𝜋
𝜔𝑛
� =

𝑄1
𝑚𝜔𝑛

sin(3𝜋) = 0

Now let ̃𝑡 = 𝑡 − 3𝜋
𝜔𝑛

Hence the solution for ̃𝑡 > 0 is

𝑦� ̃𝑡� = �𝑦� ̃𝑡 = 0� −
𝑄2
𝑚𝜔2

𝑛
� cos𝜔𝑛 ̃𝑡 +

𝑦′� ̃𝑡 = 0�
𝜔𝑛

sin𝜔𝑛 ̃𝑡 +
𝑄2
𝑘

= �
2𝑄1
𝑚𝜔2

𝑛
−
𝑄2
𝑚𝜔2

𝑛
� cos𝜔𝑛 ̃𝑡 +

𝑄2
𝑘

Therefore, we have obtain the complete solution, which is

time solution

0 < 𝑡 < 3𝜋
𝜔𝑛

𝑄1
𝑚𝜔2𝑛

(1 − cos𝜔𝑛𝑡) =
100

5(50)2
(1 − cos 50𝑡) = 0.008(1 − cos 50𝑡)

̃𝑡 = 𝑡 − 3𝜋
𝜔𝑛

� 2𝑄1
𝑚𝜔2𝑛

− 𝑄2
𝑘
� cos𝜔𝑛 ̃𝑡 +

𝑄2
𝑘 = �2(100)

5(50)2
− 200

5(50)2
� cos𝜔𝑛 ̃𝑡 +

200
5(50)2

= 0.016

This is a plot of the solution. Then a numerical ODE solver is used to verify the result

345



2.12. HWA1 CHAPTER 2. HW’S

Now a numerical ODE solver was used to verify. Here is the result
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We can see the solutions match very well.

Solution using second method:

Let 𝐹(𝑡) = 100ℎ(𝑡) + 100ℎ�𝑡 − 3𝜋
𝜔𝑛
� then assuming the transient solution to ℎ(𝑡) is 𝑠(𝑡) then

the solution to 𝐹(𝑡) is 100𝑠(𝑡) + 100𝑠�𝑡 − 3𝜋
𝜔𝑛
�ℎ�𝑡 − 3𝜋

𝜔𝑛
�. From appendix 𝐵, the solution to ℎ(𝑡)

is given by

𝑠(𝑡) =
1

𝑚𝜔2
𝑛
(1 − cos𝜔𝑛𝑡)
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hence the solution to 𝐹(𝑡) = 100ℎ(𝑡) + 100ℎ�𝑡 − 3𝜋
𝜔𝑛
� is

𝑦(𝑡) = 100𝑠(𝑡) + 100𝑠�𝑡 −
3𝜋
𝜔𝑛
�ℎ�𝑡 −

3𝜋
𝜔𝑛
�

=
100
𝑚𝜔2

𝑛
(1 − cos𝜔𝑛𝑡) +

100
𝑚𝜔2

𝑛
�1 − cos𝜔𝑛�𝑡 −

3𝜋
𝜔𝑛
��ℎ�𝑡 −

3𝜋
𝜔𝑛
�

To verify, this is a plot of the above solution. We see it is the same as the first analytical
solution, and it is the same solution as the one using numerical ODE solver as well.
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2.12.6 Problem 5

The input can be written as 𝐹0ℎ(𝑡) −𝐹0ℎ(𝑡 − 𝑇)+𝐹0𝑒−𝛽(𝑡−𝑇)ℎ(𝑡 − 𝑇) or, by letting ̃𝑡 = 𝑡 −𝑇, the
input becomes

𝐹0ℎ(𝑡) − 𝐹0ℎ� ̃𝑡� + 𝐹0𝑒−𝛽
̃𝑡ℎ� ̃𝑡�

If the response to ℎ(𝑡) is 𝑠(𝑡) and the response to 𝑒−𝛽 ̃𝑡 is 𝑠1� ̃𝑡� then the response to the above
becomes

𝐹0𝑠(𝑡) − 𝐹0𝑠� ̃𝑡�ℎ� ̃𝑡� + 𝐹0𝑠1� ̃𝑡�ℎ� ̃𝑡�

From appendix B, we see that

𝑠(𝑡) =
1

𝑚𝜔2
𝑛
(1 − cos𝜔𝑛𝑡)

and
𝑠1� ̃𝑡� =

1
𝑚�𝜔2

𝑛 + 𝛽2�
�𝑒−𝛽 ̃𝑡 − �cos�𝜔𝑛 ̃𝑡� +

−𝛽
𝜔𝑛

sin𝜔𝑛 ̃𝑡��ℎ� ̃𝑡�

Therefore the the final response is

𝑦(𝑡) = 𝐹0ℎ(𝑡) − 𝐹0ℎ� ̃𝑡� + 𝐹0𝑒−𝛽
̃𝑡ℎ� ̃𝑡�

= 𝐹0
1

𝑚𝜔2
𝑛
(1 − cos𝜔𝑛𝑡)ℎ(𝑡) − 𝐹0

1
𝑚𝜔2

𝑛
�1 − cos𝜔𝑛 ̃𝑡�ℎ� ̃𝑡�+

𝐹0
1

𝑚�𝜔2
𝑛 + 𝛽2�

�𝑒−𝛽 ̃𝑡 − �cos�𝜔𝑛 ̃𝑡� +
−𝛽
𝜔𝑛

sin𝜔𝑛 ̃𝑡��ℎ� ̃𝑡�

= 𝐹0
1

𝑚𝜔2
𝑛
(1 − cos𝜔𝑛𝑡) − 𝐹0

1
𝑚𝜔2

𝑛
(1 − cos(𝜔𝑛(𝑡 − 𝑇)))ℎ(𝑡 − 𝑇)+

𝐹0
1

𝑚�𝜔2
𝑛 + 𝛽2�

�𝑒−𝛽(𝑡−𝑇) − �cos(𝜔𝑛(𝑡 − 𝑇)) +
−𝛽
𝜔𝑛

sin𝜔𝑛(𝑡 − 𝑇)��ℎ(𝑡 − 𝑇)
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To plot this, we need to choose values for parameters. Let 𝐹0 = 100, 𝜔𝑛 = 50𝑟𝑎𝑑/ sec, 𝑚 =
5𝑘𝑔, 𝛽 = 1, 𝑇 = 1, then a plot of the above is below, followed by solution from numerical
ODE solver.

Plot of the analytical solution

To verify, this is the result from numerical ODE solver
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We can see that the solutions agree.
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2.12.7 Key solution for HW A1

Homework #A1 
EMA 545, Spring 2013 

Instructions: 
 If you scored 23 or below on Problem #2 on Exam #1, do Problems 1, 2 and 3. 
 If you scored 23 or below on Problem #4 on Exam #1, do Problems 4 and 5 
 If neither of those criteria apply to you then you do not need to turn in this assignment. 

 
When working out your solutions to the following problems, you must derive your answers 
starting from the following.  You may not use any equations from the book without first deriving 
them from these basic principles: 
The general solution to an underdamped SDOF system 

22 0n nx x x      

is: 

 i( ) Re n dt tx t Ae e   

where 21d n     and A is a complex constant. 

You are free to use Appendix B as needed and the fact that the forced response of a system is 

( ) IC Fx t x x   

Where xIC and xF are found in Appendix B for a variety of forcing functions. 

 i( ) Re tf t Fe                   i( ) Re tx t Xe   

The half power points in a transfer function occur at frequencies  peakn  
 
Problem 1: 3.1 from Ginsberg.  Begin by writing the equation of motion for 
the system (shown to the right after replacing z(t) with q(t)). 
 
Problem 2: 3.11 from Ginsberg. Begin by writing the equation of motion for 
the system (shown to the right after replacing z(t) with x(t)). 
 
Problem 3: (3e2) 
The equations of motion for the 2DOF system studied in class are given 
below.  If the applied force is f(t)=Fcos(t), then the response of both 
coordinates x1 and x2 will also be harmonic.  Use this fact to derive the transfer function between 
the force F and the response X1. 

1 1

2 2

0 2 0

0 ( )

x xm k k

x xm k k f t

        
                 


  

 
Problem 4: 2.52 from Ginsberg. Check your answer by comparing it to the solution from ode45 
in Matlab. 
 
Problem 5: 2.54 from Ginsberg. Choose values for the parameters and check your answer by 
plotting the response and comparing it to the solution from ode45 in Matlab. 

m

k

z

f(t)

c
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M 5 ω nat 50

u t( )
1

M ω nat
2.
1 cos ω nat t.. t 0>( ). q t( ) 100 u t( ) u t

3 π.

ω nat
.

N 201 n 1 N.. tn
n 1
N 1

10 π.

ω nat
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.005

0.01

0.015

0.02

q tn

tn
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2.13.1 problem description

Homework #11 
EMA 545, Spring 2013 

 
Problem 1.) 

 

 
 
Problem 2.) 
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(a) Find the natural frequencies and mass-normalized modes of the system. 
(b) Find the magnitude and phase of the steady-state response x5(t) assuming the forcing to 

be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*5.  Plot the 
magnitude and phase of the response, clearly indicating the location of the natural 
frequencies. 

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C] 
matrix that gives 2% modal damping to each mode.  Overlay the frequency response of 
this system with that which you found in (b). 

(d) Compare your answer for part (c) to that obtained using a structural damping model and 
a loss factor of =0.04. 

 
(You will need the following to compare this problem with problem 3 below.)  As discussed in 
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters 
EA and L are as follows: ki = N*EA/L, i=2,N where N is the number of masses. The spring 
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness 
twice as high, k1 = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N: 
mi = AL/N, where is the mass density of the bar. 
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Problem 3.) (40 points) 
Use a three-term Ritz series to predict the first 3 natural frequencies and natural modes of a 
fixed-free bar of length L, elastic modulus E, and constant cross-sectional area A.  
(5 pts) a.)  Use the potential and kinetic energy expressions in the book (eq. 6.1.1 and 6.1.2) to 
derive the expressions for the mass and stiffness matrices in eq. 6.1.11 and 6.1.13. 
(5 pts) b.)  Use the following Ritz basis functions to find the 3x3 mass and stiffness matrices: 

 
(10 pts) c.)  Repeat the analysis using the following basis functions.  I suggest using a computer 
package to estimate the numerical terms in the mass and stiffness matrices. 

2 1
sin , , 1, 2,3

2n n n

x n
n

L
           

   
 

What do you notice about the M and K matrices using this set of basis functions? 
(10 pts) d.)  Compare the natural frequencies obtained parts (b) and (c) of this problem with 
those obtained in Problem 2.    (Use the relationships given in the problem statement above to 
find EA/L and AL values that agree with those used in problem 2.) 
(10 pts) e.)  Generate a plot of the mode shapes of the systems based on the models in (b) and 
(c), and also overlay the mode shapes obtained in problem 2.  How do the three sets of results 
compare? 
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2.13.2 problem 1

The columns of matrix [Φ] are orthogonal w.r.t to the mass matrix. Hence the following
two relations will be assumed as given in the derivation that follows

[Φ]𝑇[𝑀][Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 ⋱ 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.114)

[Φ]𝑇[𝐾][Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 ⋱ 0

0 0 𝜔2
𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Starting with the coupled EOM given, which is

[𝑀]�𝑞′′� + [𝐶]�𝑞′� + [𝐾]�𝑞� = {𝑄}

Since �𝑞� = [Φ]�𝜂�, then �𝑞′′� = [Φ]�𝜂′′� and �𝑞′� = [Φ]�𝜂′�. Substituting these in the above
EOM gives

[𝑀][Φ]�𝜂′′� + [𝐶][Φ]�𝜂′� + [𝐾][Φ]�𝜂� = {𝑄}
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premultiplying by [Φ]𝑇 both the LHS and RHS results in

[Φ]𝑇[𝑀][Φ]�𝜂′′� + [Φ]𝑇[𝐶][Φ]�𝜂′� + [Φ]𝑇[𝐾][Φ]�𝜂� = [Φ]𝑇{𝑄}

Using Eq 3.1 the above simplifies to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 ⋱ 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂′′� + [Φ]𝑇[𝐶][Φ]�𝜂′� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 ⋱ 0

0 0 𝜔2
𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂� = [Φ]𝑇{𝑄}

Replacing [𝐶] by the expression given in the problem description, the above becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 ⋱ 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂′′� + [Φ]𝑇

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
[𝑀][Φ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 ⋱ 0

0 0 𝜔2
𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[Φ]𝑇[𝑀]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[Φ]�𝜂′� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 ⋱ 0

0 0 𝜔2
𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂� = [Φ]𝑇{𝑄}

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 ⋱ 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂′′� +

𝐼

���������������[Φ]𝑇[𝑀][Φ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜁1𝜔1 0 0

0 ⋱ 0
0 0 2𝜁𝑁𝜔𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐼

���������������[Φ]𝑇[𝑀][Φ]�𝜂′� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 ⋱ 0

0 0 𝜔2
𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂� = [Φ]𝑇{𝑄}

Since [Φ]𝑇[𝑀][Φ] is the identity matrix, then the above reduces to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 ⋱ 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂′′� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜁1𝜔1 0 0

0 ⋱ 0
0 0 2𝜁𝑁𝜔𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂′� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 ⋱ 0

0 0 𝜔2
𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�𝜂� = [Φ]𝑇{𝑄}

This is decoupled OEM since there is no coupling in the mass matrix, and no coupling in
the damping matrix and no coupling in the stiffness matrix.

QED
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2.13.3 Problem 2
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EOM is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1 0 0 0 0

0 𝑚2 0 0 0

0 0 𝑚3 0 0

0 0 0 𝑚4 0

0 0 0 0 𝑚5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥′′1
𝑥′′2
𝑥′′3
𝑥′′4
𝑥′′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1 + 𝑐2 −𝑐2 0 0 0

−𝑐2 𝑐2 + 𝑐3 −𝑐3 0 0

0 −𝑐3 𝑐3 + 𝑐4 −𝑐4 0

0 0 −𝑐4 𝑐4 + 𝑐5 −𝑐5
0 0 0 −𝑐5 𝑐5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥′1
𝑥′2
𝑥′3
𝑥′4
𝑥′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1 + 𝑘2 −𝑘2 0 0 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3 0 0

0 −𝑘3 𝑘3 + 𝑘4 −𝑘4 0

0 0 −𝑘4 𝑘4 + 𝑘5 −𝑘5
0 0 0 −𝑘5 𝑘5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
𝐹(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

substituting the numerical values gives 𝑐1 = 0.2, 𝑐𝑖 = 0.1, 𝑖 = 2, 5, hence EOM becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥′′1
𝑥′′2
𝑥′′3
𝑥′′4
𝑥′′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
1
10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥′1
𝑥′2
𝑥′3
𝑥′4
𝑥′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
𝐹(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2.13.3.1 part(a)

Natural frequency and mass normalized modes are found by solving the eigenvalue
problem to find the natural frequencies and the mass normalized modes.

K=[3 -1 0 0 0;-1 2 -1 0 0;0 -1 2 -1 0;0 0 -1 2 -1;0 0 0 -1 1]
M=diag(ones(5,1));
[phi,omega]=eig(K,M);
omega = sqrt(diag(omega));
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[Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0989 0.2871 −0.4472 −0.5635 −0.6247
−0.2871 0.6247 −0.4472 0.0989 0.5635
−0.4472 0.4472 0.4472 0.4472 −0.4472
−0.5635 −0.0989 0.4472 −0.6247 0.2871
−0.6247 −0.5635 −0.4472 0.2871 −0.0989

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜔 = {0.3129, 0.9080, 1.4142, 1.7820, 1.9754} rad/sec
= {0.0498, 0.1445, 0.225, 0.284, 0.314} hz

2.13.3.2 Part(b)

in modal coordinates, EOM is decoupled to become

𝐼�𝜂′′� + [Φ]𝑇[𝐶][Φ]�𝜂′� + [Φ]𝑇[𝑘][Φ]�𝜂� = [Φ]𝑇

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
𝐹(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EDU>> C = 0.1*K;
C = phi.'*C*phi
K = phi.'*K*phi
syms f(t);
F = zeros(5,1); F(5)=1;
F = phi.'*F
C =

0.0098 0.0000 -0.0000 0.0000 0.0000
0.0000 0.0824 -0.0000 0.0000 -0.0000

-0.0000 -0.0000 0.2000 -0.0000 0.0000
0.0000 0.0000 -0.0000 0.3176 -0.0000
0.0000 -0.0000 0.0000 -0.0000 0.3902

K =
0.0979 0.0000 -0.0000 0.0000 0.0000
0.0000 0.8244 -0.0000 0.0000 -0.0000

-0.0000 -0.0000 2.0000 -0.0000 0.0000
0.0000 0.0000 -0.0000 3.1756 -0.0000
0.0000 0 0.0000 -0.0000 3.9021

F =
-0.6247
-0.5635
-0.4472
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0.2871
-0.0989

Hence EOM in modal coordinates is

[𝐼]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3
𝜂′′4
𝜂′′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0098 0 0 0 0
0 0.0824 0 0 0
0 0 0.2 0 0
0 0 0 0.3176 0
0 0 0 0 0.3902

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂′1
𝜂′2
𝜂′3
𝜂′4
𝜂′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0979 0 0 0 0
0 0.8244 0 0 0
0 0 2 0 0
0 0 0 3.1756 0
0 0 0 0 3.9021

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.6247𝐹(𝑡)

−0.5635𝐹(𝑡)

−0.4472𝐹(𝑡)

0.2871𝐹(𝑡)

−0.0989𝐹(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Where in the above 𝐹(𝑡) = cos(𝜛𝑡) with 𝜛 being the forcing frequency in the range 0 to
1.2𝜔5 where 𝜔5 = 1.9754 rad/sec.

Since the equations are now decoupled, the 5𝑡ℎ equation can solved on its own

𝜂′′5 + 0.3902𝜂′5 + 3.9021𝜂5 = Re�−0.0989𝑒𝑖𝜛𝑡�

Assuming 𝜂5(𝑡) = Re�𝑋𝑒𝑖𝜛𝑡� and substituting in the above and simplifying gives

�−𝜛2 + 𝑖𝜛0.3902 + 3.9021�𝑋 = −0.0989

𝑋 =
−0.0989

−𝜛2 + 𝑖𝜛0.3902 + 3.9021

Hence
𝜂5(𝑡) = Re�

−0.0989
−𝜛2 + 𝑖𝜛0.3902 + 3.9021

𝑒𝑖𝜛𝑡�
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Similarly, all other 𝜂𝑖, 𝑖 = 1, 5 are found. Hence

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.6247
−𝜛2+𝑖𝜛0.0098+0.0979

−0.5635
−𝜛2+𝑖𝜛0.0824+0.8244

−0.4472
−𝜛2+𝑖𝜛0.2+2

0.2871
−𝜛2+𝑖𝜛0.3176+3.176

−0.0989
−𝜛2+𝑖𝜛0.3902+3.9021

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the solution in physical coordinates is now found from {𝑥} = [Φ]�𝜂�. Hence

𝑥5 =
5
�
𝑗=1
Φ�5, 𝑗�𝜂(𝑗)

=
5
�
𝑗=1
Φ�5, 𝑗�Re�𝑋(𝑗)𝑒𝑖𝜛𝑡�

= Re
⎛
⎜⎜⎜⎜⎝

5
�
𝑗=1
Φ�5, 𝑗�𝑋(𝑗)𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎠

= Re�(−0.6247𝑋1(𝑡) − 0.5635𝑋2(𝑡) − 0.4472𝑋3(𝑡) + 0.2871𝑋4(𝑡) − 0.0989𝑋5(𝑡))𝑒𝑖𝜛𝑡�

= Re

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−0.6247)(−0.6247)
−𝜛2+𝑖𝜛0.0098+0.0979 +

(−0.5635)(−0.5635)
−𝜛2+𝑖𝜛0.0824+0.8244 +

(−0.4472)(−0.4472)
−𝜛2+𝑖𝜛0.2+2 +

(0.2871)0.2871
−𝜛2+𝑖𝜛0.3176+3.176 +

(−0.0989)(−0.0989)
−𝜛2+𝑖𝜛0.3902+3.9021

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒𝑖𝜛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Re

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.390 25
−𝜛2+0.0098𝑖𝜛+0.098 +

0.08243
−𝜛2+0.3178𝑖𝜛+3.176 +

0.31753
−𝜛2+0.0824𝑖𝜛+0.8244+

0.00978
−𝜛2+0.3902𝑖𝜛+3.9021 +

0.19999
−𝜛2+0.2𝑖𝜛+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒𝑖𝜛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore
𝑥5 = Re�𝑌5𝑒𝑖𝜛𝑡�

where

𝑌5 =
0.390 25

−𝜛2 + 0.0098𝑖𝜛 + 0.098
+

0.08243
−𝜛2 + 0.3178𝑖𝜛 + 3.176

+
0.31753

−𝜛2 + 0.0824𝑖𝜛 + 0.8244
+

0.00978
−𝜛2 + 0.3902𝑖𝜛 + 3.9021

+
0.19999

−𝜛2 + 0.2𝑖𝜛 + 2

Here is a plot of the magnitude spectrum of 𝑌5 and the phase spectrum for the range of
𝜛 of 0 to 1.2𝜔5. This shows that 𝑥5(𝑡) response will have the largest magnitude when the
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forcing frequency coincides with the first natural frequency (the fundamental frequency).
In otherwords when 𝜛 = 𝜔1.

The amplitude of 𝑥5(𝑡) at resonance is smaller for the remaining 4 natural frequencies.
For higher order natural frequencies, resonances at those frequencies produces lower
amplitudes than lower order natural frequencies.
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2.13.3.3 part(c)

Using 𝜁𝑖 = 𝜁 = 0.02 for 𝑖 = 1, 5 the EOM is

[𝐼]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3
𝜂′′4
𝜂′′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ 2𝜁

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔1 0 0 0 0

0 𝜔2 0 0 0

0 0 𝜔3 0 0

0 0 0 𝜔4 0

0 0 0 0 𝜔5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂′1
𝜂′2
𝜂′3
𝜂′4
𝜂′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0 0 0

0 𝜔2
2 0 0 0

0 0 𝜔2
3 0 0

0 0 0 𝜔2
4 0

0 0 0 0 𝜔2
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.6247𝐹(𝑡)

−0.5635𝐹(𝑡)

−0.4472𝐹(𝑡)

0.2871𝐹(𝑡)

−0.0989𝐹(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Hence the solution
𝜂𝑗 = Re�𝑋𝑗𝑒𝑖𝜛𝑡�

where now
𝑋𝑗 =

𝐹𝑗
−𝜛2 + 2𝑖𝜁𝑗𝜛𝜔𝑗 + 𝜔2

𝑗

Hence, since𝜔 = {0.3129, 0.9080, 1.4142, 1.7820, 1.9754} the solutions in modal coordinates
is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.6247
−𝜛2+2𝑖𝜛(0.02)(0.3129)+0.0979

−0.5635
−𝜛2+2𝑖𝜛(0.02)(0.9080)+0.8244

−0.4472
−𝜛2+2𝑖𝜛(0.02)(1.4142)+2

0.2871
−𝜛2+2𝑖𝜛(0.02)(1.7820)+3.176

−0.0989
−𝜛2+2𝑖𝜛(0.02)(1.9754)+3.9021

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and the solution in physical coordinates is now found from {𝑥} = [Φ]�𝜂�. Hence

𝑥5 =
5
�
𝑗=1
Φ�5, 𝑗�𝜂(𝑗)

=
5
�
𝑗=1
Φ�5, 𝑗�Re�𝑋(𝑗)𝑒𝑖𝜛𝑡�

= Re
⎛
⎜⎜⎜⎜⎝

5
�
𝑗=1
Φ�5, 𝑗�𝑋(𝑗)𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎠

= Re�(−0.6247𝑋1(𝑡) − 0.5635𝑋2(𝑡) − 0.4472𝑋3(𝑡) + 0.2871𝑋4(𝑡) − 0.0989𝑋5(𝑡))𝑒𝑖𝜛𝑡�

= Re

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−0.6247)(−0.6247)
−𝜛2+2𝑖𝜛(0.02)(0.3129)+0.0979 +

(−0.5635)(−0.5635)
−𝜛2+2𝑖𝜛(0.02)(0.9080)+0.8244 +

(−0.4472)(−0.4472)
−𝜛2+2𝑖𝜛(0.02)(1.4142)+2+

(0.2871)0.2871
−𝜛2+2𝑖𝜛(0.02)(1.7820)+3.176 +

(−0.0989)(−0.0989)
−𝜛2+2𝑖𝜛(0.02)(1.9754)+3.9021

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒𝑖𝜛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Re

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.390 25
−𝜛2+1.251 6×10−2𝑖𝜛+0.097 9 +

0.317 53
−𝜛2+0.036 32𝑖𝜛+0.824 4 +

0.19999
−𝜛2+5.656 8×10−2𝑖𝜛+2.0+

8.242 6×10−2

−𝜛2+0.071 28𝑖𝜛+3.176 +
9.781 2×10−3

−𝜛2+7. 901 6×10−2𝑖𝜛+3.902 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒𝑖𝜛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore
𝑥5 = Re�𝑌5𝑒𝑖𝜛𝑡�

where

𝑌5 =
0.390 25

−𝜛2 + 1.2516 × 10−2𝑖𝜛 + 0.0979
+

0.317 53
−𝜛2 + 0.036 32𝑖𝜛 + 0.8244

+
0.19999

−𝜛2 + 5.656 8 × 10−2𝑖𝜛 + 2.0
+

8.2426 × 10−2

−𝜛2 + 0.07128𝑖𝜛 + 3.176
+

9.7812 × 10−3

−𝜛2 + 7.9016 × 10−2𝑖𝜛 + 3.902 1

Here is a plot of the magnitude spectrum of 𝑌5 and the phase spectrum for the range of
𝜛 of 0 to 1.2𝜔5 for both part(b) and (c) on the same plot
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  2%

Original C

When 𝜁 = 2% was used, the resonance is seen to be higher (part c) compared to part (b).
Here is a full range plot of the above.

Comparing the phase between part(b) and (c) gives
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Which shows the effect on the phase spectrum.

2.13.3.4 Part (d)

In structural damping, the damping force is proportional to the elastic force. For example
given an EOM 𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑓, and converting to frequency domain to obtain transfer
function

𝑌 =
𝐹

−𝜛2𝑚 + 𝑖𝑐𝜛 + 𝑘

Then structural damping implies replacing 𝑐𝜛with 𝛾𝑘 in the above, giving

𝑌 =
𝐹

−𝜛2𝑚 + 𝑖𝛾𝑘 + 𝑘
=

𝐹
−𝜛2𝑚 + �1 + 𝑖𝛾�𝑘

The above method is now applied to the EOM given, and the resulting transfer function
for 𝑥5 is compared to the last results in order to see the effect of using structural damping
on the response. The eigenvalue problem was solved in part (a) where the result was

[Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0989 0.2871 −0.4472 −0.5635 −0.6247
−0.2871 0.6247 −0.4472 0.0989 0.5635
−0.4472 0.4472 0.4472 0.4472 −0.4472
−0.5635 −0.0989 0.4472 −0.6247 0.2871
−0.6247 −0.5635 −0.4472 0.2871 −0.0989

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜔 = {0.3129, 0.9080, 1.4142, 1.7820, 1.9754}
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Hence the modal EOM is now

[𝐼]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3
𝜂′′4
𝜂′′5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ �1 + 𝑖𝛾�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0979 0 0 0 0
0 0.8244 0 0 0
0 0 2 0 0
0 0 0 3.1756 0
0 0 0 0 3.9021

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.6247𝐹(𝑡)

−0.5635𝐹(𝑡)

−0.4472𝐹(𝑡)

0.2871𝐹(𝑡)

−0.0989𝐹(𝑡)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Hence the steady state solution now in modal coordinates is Hence the solution

𝜂𝑗 = Re�𝑋𝑗𝑒𝑖𝜛𝑡�

where now
𝑋𝑗 =

𝐹𝑗
−𝜛2 + �1 + 𝑖𝛾�𝜔2

𝑗

The solutions in modal coordinates are (where 𝛾 = 0.04)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3
𝜂4
𝜂5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.6247
−𝜛2+�1+𝑖𝛾�0.0979

−0.5635
−𝜛2+�1+𝑖𝛾�0.8244

−0.4472
−𝜛2+�1+𝑖𝛾�2

0.2871
−𝜛2+�1+𝑖𝛾�3.176

−0.0989
−𝜛2+�1+𝑖𝛾�3.9021

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and the solution in physical coordinates is now found from {𝑥} = [Φ]�𝜂�. Hence

𝑥5 =
5
�
𝑗=1
Φ�5, 𝑗�𝜂(𝑗)

=
5
�
𝑗=1
Φ�5, 𝑗�Re�𝑋(𝑗)𝑒𝑖𝜛𝑡�

= Re
⎛
⎜⎜⎜⎜⎝

5
�
𝑗=1
Φ�5, 𝑗�𝑋(𝑗)𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎠

= Re�(−0.6247𝑋1(𝑡) − 0.5635𝑋2(𝑡) − 0.4472𝑋3(𝑡) + 0.2871𝑋4(𝑡) − 0.0989𝑋5(𝑡))𝑒𝑖𝜛𝑡�

= Re

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.390 25
−𝜛2+�1+𝑖𝛾�0.0979

+ 0.317 53
−𝜛2+�1+𝑖𝛾�0.8244

+ 0.199 99
−𝜛2+�1+𝑖𝛾�2

+

8.242 6×10−2

−𝜛2+�1+𝑖𝛾�3.176
+ 9.781 2×10−3

−𝜛2+�1+𝑖𝛾�3.9021

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑒𝑖𝜛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore
𝑥5 = Re�𝑌5𝑒𝑖𝜛𝑡�

where

𝑌5 =
0.39025

−𝜛2 + �1 + 𝑖𝛾�0.0979
+

0.31753
−𝜛2 + �1 + 𝑖𝛾�0.8244

+
0.19999

−𝜛2 + �1 + 𝑖𝛾�2
+

8.2426 × 10−2

−𝜛2 + �1 + 𝑖𝛾�3.176
+

9.7812 × 10−3

−𝜛2 + �1 + 𝑖𝛾�3.9021

Here is a plot of the magnitude spectrum of 𝑌5 and the phase spectrum for the range of
𝜛 of 0 to 1.2𝜔5 using the above transfer function, and superimposed on top of part (c).
The magnitude spectrum is identical and no difference can be seen . Looking the phase
spectrum there is very small change. Here are the plots. In the following plot, part(d)
and (c) can not be distinguished. (the x-axis is drawn using dashed as well, not to be
confused with the actual response curve).
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To better see the difference, the plot was reproduced by taking the difference of the
absolute values from part(d) and part(c) and plotting the log to base 20 of this difference.
Now the difference can be better seen as very small.

The following the phase difference between case d and c.
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The above plots show that using structural damping instead of using the same value of 𝜁
for each EOM made very little difference in the result.

2.13.4 Problem 3
2.13.4.1 part(a)

Given 𝑢(𝑥, 𝑡) equations 6.1.1 and 6.1.2 in the text are

𝑇𝑏𝑎𝑟 =
1
2 �

𝐿

0
�̇�2𝜌𝐴𝑑𝑥 (2.115)

𝑉𝑏𝑎𝑟 =
1
2 �

𝐿

0
𝐸𝐴�

𝜕𝑢
𝜕𝑥�

2

𝑑𝑥 (2.116)

To obtain themassmatrix components 𝑇𝑏𝑎𝑟 is evaluated and each set of quadratic term are

used to generate𝑀𝑗𝑛 as follows. Using Ritzmethod, Let 𝑢(𝑥, 𝑡) =
𝑁
�
𝑗=1
Ψ𝑗(𝑥)𝑞𝑗(𝑡). Substituting

this in Eq 2.115 gives

𝑇𝑏𝑎𝑟 =
1
2 �

𝐿

0

⎛
⎜⎜⎜⎜⎝
𝜕
𝜕𝑡

𝑁
�
𝑗=1
Ψ𝑗(𝑥)𝑞𝑗(𝑡)

⎞
⎟⎟⎟⎟⎠

2

𝜌𝐴𝑑𝑥 =
1
2 �

𝐿

0

⎛
⎜⎜⎜⎜⎝
𝑁
�
𝑗=1
Ψ𝑗(𝑥)𝑞′𝑗 (𝑡)

⎞
⎟⎟⎟⎟⎠

2

𝜌𝐴𝑑𝑥

=
1
2 �

𝐿

0

⎛
⎜⎜⎜⎜⎝
𝑁
�
𝑗=1
Ψ𝑗(𝑥)𝑞′𝑗 (𝑡)

⎞
⎟⎟⎟⎟⎠�

𝑁
�
𝑛=1
Ψ𝑛(𝑥)𝑞′𝑛(𝑡)�𝜌𝐴𝑑𝑥

=
1
2 �

𝐿

0

⎛
⎜⎜⎜⎜⎝
𝑁
�
𝑗=1

𝑁
�
𝑛=1
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝑞′𝑗 (𝑡)𝑞′𝑛(𝑡)

⎞
⎟⎟⎟⎟⎠𝜌𝐴𝑑𝑥
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Replacing order or integration with summation (since both are linear operations) and
moving 𝑞′𝑗 (𝑡)𝑞′𝑛(𝑡) outside the integration since it does not depend on 𝑥 results in

𝑇𝑏𝑎𝑟 =
1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
��

𝐿

0
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝜌𝐴𝑑𝑥�𝑞′𝑗 (𝑡)𝑞′𝑛(𝑡) (2.117)

Let
𝑀𝑗𝑛 = �

𝐿

0
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝜌𝐴𝑑𝑥

Then eq 2.117 becomes Eq 6.1.11 in the textbook

𝑇𝑏𝑎𝑟 =
1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
𝑀𝑗𝑛𝑞′𝑗 (𝑡)𝑞′𝑛(𝑡) (2.118)

Now, obtain the components of the stiffness matrix. Starting with eq 2.116 and replacing
𝑢(𝑥, 𝑡) in this equation gives

𝑉𝑏𝑎𝑟 =
1
2 �

𝐿

0
𝐸𝐴

⎛
⎜⎜⎜⎜⎝
𝜕
𝜕𝑥

𝑁
�
𝑗=1
Ψ𝑗(𝑥)𝑞𝑗(𝑡)

⎞
⎟⎟⎟⎟⎠

2

𝑑𝑥 =
1
2 �

𝐿

0
𝐸𝐴

⎛
⎜⎜⎜⎜⎝
𝑁
�
𝑗=1

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑞𝑗(𝑡)
⎞
⎟⎟⎟⎟⎠

2

𝑑𝑥

=
1
2 �

𝐿

0
𝐸𝐴

⎛
⎜⎜⎜⎜⎝
𝑁
�
𝑗=1

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑞𝑗(𝑡)
⎞
⎟⎟⎟⎟⎠�

𝑁
�
𝑛=1

𝑑Ψ𝑛(𝑥)
𝑑𝑥

𝑞𝑛(𝑡)�𝑑𝑥

=
1
2 �

𝐿

0
𝐸𝐴

⎛
⎜⎜⎜⎜⎝
𝑁
�
𝑗=1

𝑁
�
𝑛=1

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑑Ψ𝑛(𝑥)
𝑑𝑥

𝑞𝑗(𝑡)𝑞𝑛(𝑡)
⎞
⎟⎟⎟⎟⎠𝑑𝑥

Replacing order of integration with summation and moving 𝑞𝑗(𝑡)𝑞𝑛(𝑡) outside the integra-
tion since it does not depend on 𝑥 gives

𝑉𝑏𝑎𝑟 =
1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
��

𝐿

0
𝐸𝐴

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑑Ψ𝑛(𝑥)
𝑑𝑥

𝑑𝑥�𝑞𝑗(𝑡)𝑞𝑛(𝑡)

Let 𝐾𝑗𝑛 = ∫
𝐿

0
𝐸𝐴

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑑Ψ𝑛(𝑥)
𝑑𝑥 𝑑𝑥 then the above becomes

𝑉𝑏𝑎𝑟 =
1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
𝐾𝑗𝑛𝑞𝑗𝑞𝑛

Which is eq 6.1.13 in the book. QED.
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2.13.4.2 Part(b)

The basic function to use are Ψ1 =
𝑥
𝐿 ,Ψ2 = � 𝑥

𝐿
�
2
,Ψ3 = � 𝑥

𝐿
�
3
. Let 𝑢(𝑥, 𝑡) =

3
�
𝑗=1
Ψ𝑗(𝑥)𝑞𝑗(𝑡).

Now eq 6.1.11 and eq. 6.1.13 are used to obtain the mass matrix and the stiffness matrix

components based on the power balancemethod. 𝑇𝑏𝑎𝑟 =
1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
𝑀𝑗𝑛𝑞′𝑗 (𝑡)𝑞′𝑛(𝑡)where𝑀𝑗𝑛 =

∫𝐿

0
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝜌𝐴𝑑𝑥 hence

𝑀𝑗𝑛 = �
𝐿

0
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝜌𝐴𝑑𝑥

= �
𝐿

0
�
𝑥
𝐿
�
𝑗
�
𝑥
𝐿
�
𝑛
𝜌𝐴𝑑𝑥

= �
𝐿

0
�
𝑥
𝐿
�
𝑗+𝑛
𝜌𝐴𝑑𝑥

=
𝜌𝐴
𝐿𝑗+𝑛

�
𝐿

0
𝑥𝑗+𝑛𝑑𝑥

=
𝜌𝐴
𝐿𝑗+𝑛 �

𝑥𝑗+𝑛+1

𝑗 + 𝑛 + 1�
𝐿

0
=

𝜌𝐴
�𝑗 + 𝑛 + 1�𝐿𝑗+𝑛

𝐿𝑗+𝑛+1

=
𝜌𝐴𝐿

𝑗 + 𝑛 + 1

Therefore, the mass matrix is

𝑀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝜌𝐴𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1+1+1

1
1+2+1

1
1+3+1

1
2+1+1

1
2+2+1

1
2+3+1

1
3+1+1

1
3+2+1

1
3+3+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝜌𝐴𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
4

1
5

1
4

1
5

1
6

1
5

1
6

1
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and 1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
𝐾𝑗𝑛𝑞𝑗𝑞𝑛 where 𝐾𝑗𝑛 = ∫

𝐿

0
𝐸𝐴

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑑Ψ𝑛(𝑥)
𝑑𝑥 𝑑𝑥, hence

𝐾𝑗𝑛 = �
𝐿

0
𝐸𝐴

𝑑� 𝑥𝐿�
𝑗

𝑑𝑥
𝑑� 𝑥𝐿�

𝑛

𝑑𝑥
𝑑𝑥 = �

𝐿

0
𝐸𝐴𝑗�

𝑥𝑗−1

𝐿𝑗 �
𝑛�
𝑥𝑛−1

𝐿𝑛 �
𝑑𝑥

=
𝐸𝐴𝑗𝑛
𝐿𝑗𝐿𝑛

�
𝐿

0
𝑥𝑗−1𝑥𝑛−1𝑑𝑥

=
𝐸𝐴𝑗𝑛
𝐿𝑗+𝑛

�
𝐿

0
𝑥𝑗+𝑛−2𝑑𝑥

=
𝐸𝐴𝑗𝑛
𝐿𝑗+𝑛 �

𝑥𝑗+𝑛−1

𝑗 + 𝑛 − 1�
𝐿

0

=
𝐸𝐴𝑗𝑛

�𝑗 + 𝑛 − 1�𝐿𝑗+𝑛
�𝑥𝑗+𝑛−1�

𝐿

0

=
𝐸𝐴𝑗𝑛

�𝑗 + 𝑛 − 1�𝐿𝑗+𝑛
𝐿𝑗+𝑛−1

=
𝐸𝐴
𝐿

𝑗𝑛
𝑗 + 𝑛 − 1

Hence the stiffness matrix is

𝐾 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
𝐸𝐴
𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1(1)
1+1−1

1(2)
1+2−1

1(3)
1+3−1

2(1)
2+1−1

2(2)
2+2−1

2(3)
2+3−1

3(1)
3+1−1

3(2)
3+2−1

3(3)
3+3−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
𝐸𝐴
𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 4
3

3
2

1 3
2

9
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.13.4.3 Part(c)

The basic function to use areΨ𝑟 = sin�𝛼𝑟
𝑥
𝐿
�where 𝛼𝑟 = �

2𝑟−1
2
�𝜋 for 𝑟 = 1, 2, 3.

Let 𝑢(𝑥, 𝑡) =
3
�
𝑗=1
Ψ𝑗(𝑥)𝑞𝑗(𝑡). Now eq 6.1.11 and eq. 6.1.13 are used to obtain the mass ma-

trix and the stiffness matrix components based on the power balance method. 𝑇𝑏𝑎𝑟 =
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1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
𝑀𝑗𝑛𝑞′𝑗 (𝑡)𝑞′𝑛(𝑡)where𝑀𝑗𝑛 = ∫

𝐿

0
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝜌𝐴𝑑𝑥 hence

𝑀𝑗𝑛 = �
𝐿

0
Ψ𝑗(𝑥)Ψ𝑛(𝑥)𝜌𝐴𝑑𝑥

= �
𝐿

0
sin�𝛼𝑗

𝑥
𝐿
� sin�𝛼𝑛

𝑥
𝐿
�𝜌𝐴𝑑𝑥

= �
𝐿

0
sin��

2𝑗 − 1
2 �𝜋

𝑥
𝐿�

sin��
2𝑛 − 1
2 �𝜋

𝑥
𝐿�
𝜌𝐴𝑑𝑥

Using sin𝐴 sin𝐵 = 1
2
(cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵)) the above can be solved.

𝑀𝑗𝑛 = �
𝐿

0

1
2�

cos��
2𝑗 − 1
2 �𝜋

𝑥
𝐿
− �

2𝑛 − 1
2 �𝜋

𝑥
𝐿�
− cos��

2𝑗 − 1
2 �𝜋

𝑥
𝐿
+ �

2𝑛 − 1
2 �𝜋

𝑥
𝐿��

𝜌𝐴𝑑𝑥

= �
𝐿

0

1
2

⎡
⎢⎢⎢⎢⎣cos

⎛
⎜⎜⎜⎜⎝
�2𝑗 − 1� − (2𝑛 − 1)

2

⎞
⎟⎟⎟⎟⎠𝜋
𝑥
𝐿
− cos

⎛
⎜⎜⎜⎜⎝
�2𝑗 − 1� + (2𝑛 − 1)

2

⎞
⎟⎟⎟⎟⎠𝜋
𝑥
𝐿

⎤
⎥⎥⎥⎥⎦𝜌𝐴𝑑𝑥

= �
𝐿

0

1
2

⎡
⎢⎢⎢⎢⎣cos

⎛
⎜⎜⎜⎜⎝
2�𝑗 − 𝑛�

2

⎞
⎟⎟⎟⎟⎠𝜋
𝑥
𝐿
− cos

⎛
⎜⎜⎜⎜⎝
2�𝑗 + 𝑛� − 2

2

⎞
⎟⎟⎟⎟⎠𝜋
𝑥
𝐿

⎤
⎥⎥⎥⎥⎦𝜌𝐴𝑑𝑥

= �
𝐿

0

1
2�
cos�𝑗 − 𝑛�𝜋

𝑥
𝐿
− cos��𝑗 + 𝑛� − 1�𝜋

𝑥
𝐿�
𝜌𝐴𝑑𝑥

For 𝑗 = 1, 𝑛 = 1 the above gives

𝑀𝑗𝑛 = �
𝐿

0

1
2�
1 − cos𝜋

𝑥
𝐿�
𝜌𝐴𝑑𝑥 =

𝜌𝐴
2 �

𝐿

0
1 − cos𝜋

𝑥
𝐿
𝑑𝑥 =

𝜌𝐴
2

⎛
⎜⎜⎜⎜⎜⎜⎝𝐿 −

⎛
⎜⎜⎜⎜⎝
sin𝜋 𝑥

𝐿
𝜋
𝐿

⎞
⎟⎟⎟⎟⎠

𝐿

0

⎞
⎟⎟⎟⎟⎟⎟⎠ =

𝜌𝐴
2
𝐿

For 𝑗 = 1, 𝑛 = 2

𝑀𝑗𝑛 = �
𝐿

0

1
2�
cos�−𝜋

𝑥
𝐿
� − cos 2𝜋

𝑥
𝐿�
𝜌𝐴𝑑𝑥 =

𝜌𝐴
2 �

𝐿

0
cos�𝜋

𝑥
𝐿
� − cos�2𝜋

𝑥
𝐿
�𝑑𝑥

=
𝜌𝐴
2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝
sin�𝜋 𝑥

𝐿
�

𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

−

⎛
⎜⎜⎜⎜⎜⎝
sin�2𝜋 𝑥

𝐿
�

2𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=
𝜌𝐴
2
[0 − 0] = 0

The rest of the computation is now done using a small code below to generate the final
mass and stiffness matrix
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Therefore, the mass matrix is

𝑀 =
𝐴𝐿𝜌
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and 1
2

𝑁
�
𝑗=1

𝑁
�
𝑛=1
𝐾𝑗𝑛𝑞𝑗𝑞𝑛 where 𝐾𝑗𝑛 = ∫

𝐿

0
𝐸𝐴

𝑑Ψ𝑗(𝑥)
𝑑𝑥

𝑑Ψ𝑛(𝑥)
𝑑𝑥 𝑑𝑥, hence

𝐾𝑗𝑛 = �
𝐿

0
𝐸𝐴

𝑑�Ψ𝑗�
𝑑𝑥

𝑑(Ψ𝑛)
𝑑𝑥

𝑑𝑥
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From the above code, the result is

𝐾 =
𝐴𝐸𝜋2

8𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 9 0
0 0 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using this set of basis functions produces mass and stiffness matrices that are already
decoupled. This is good.

2.13.4.4 part (d)

The natural frequencies obtained in problem 2 were

𝑝𝑟𝑜𝑏𝑙𝑒𝑚2 ⇒ 𝑀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐾 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜔 = (0.3129, 0.9080, 1.4142, 1.7820, 1.9754) rad/sec
= (0.0498, 0.1445, 0.225, 0.284, 0.314) hz

Now the eigenvalue problem det�[𝑘] − 𝜔2[𝑀]� is solved again using themass and stiffness
matrices in parts b,c above and the natural frequencies are comparedwith the above result
from problem 2. Recall, the𝑀 and 𝐾 from part b were

𝑝𝑎𝑟𝑡(𝑏) ⇒ 𝑀 = 𝜌𝐴𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
4

1
5

1
4

1
5

1
6

1
5

1
6

1
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐾 =
𝐸𝐴
𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 4
3

3
2

1 3
2

9
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑝𝑎𝑟𝑡(𝑐) ⇒ 𝑀 =
𝐴𝐿𝜌
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐾 =

𝐴𝐸𝜋2

8𝐿

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 9 0
0 0 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

First, a numerical values given at end of problem 2 are used, therefore 𝜌𝐴𝐿 = 𝑚 = 1 and
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𝐸𝐴
𝐿 = 1

2 , hence the 𝐾 and𝑀 for part(b) and c become

𝑝𝑎𝑟𝑡(𝑏) ⇒ 𝑀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
4

1
5

1
4

1
5

1
6

1
5

1
6

1
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐾 =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 4
3

3
2

1 3
2

9
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑝𝑎𝑟𝑡(𝑐) ⇒ 𝑀 =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐾 =

𝜋2

16

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 9 0
0 0 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The natural frequencies are found. Here is a summary table

𝜔 (rad/sec) 𝑓 hz

problem 2 0.3129, 0.9080, 1.4142, 1.7820, 1.9754 0.0498, 0.1445, 0.225, 0.284, 0.314

part(b) 1.1108, 3.4199, 7.3872 0.1768, 0.5443, 1.1757

part(c) 1.1107, 3.3322, 5.5536 0.1768, 0.5303, 0.8839

It can be seen that the first three natural frequencies using Ritz basic functions as given
for both part b and c are higher than the natural frequencies generated by part b.

The stiffness matrix 𝐾 for both parts b and c contains much smaller numerical values than
the one used in problem 2. Since 𝜔2 = 𝑘

𝑚 then one expects this result.

2.13.4.5 Part(e)

The first 3 mode shapes from problem 2 were

[Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0989 0.2871 −0.4472
−0.2871 0.6247 −0.4472
−0.4472 0.4472 0.4472
−0.5635 −0.0989 0.4472
−0.6247 −0.5635 −0.4472

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The mode shapes from part(b)

[Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.2642 −11.2099 13.0082
−0.2314 25.3536 −47.2984
−0.6181 −12.7003 37.5941

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The mode shapes from part(c)

[Φ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4142 0 0
0 1.4142 0
0 0 1.4142

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here is a plot of the above mode shapes

Part c

Here is a plot of the mode shapes overlay.
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2.13.5 Key solution for HW 11

Homework #11 
EMA 545, Spring 2013 

 
Problem 1.) 

 

 
 
Problem 2.) 
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(a) Find the natural frequencies and mass-normalized modes of the system. 
(b) Find the magnitude and phase of the steady-state response x5(t) assuming the forcing to 

be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*5.  Plot the 
magnitude and phase of the response, clearly indicating the location of the natural 
frequencies. 

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C] 
matrix that gives 2% modal damping to each mode.  Overlay the frequency response of 
this system with that which you found in (b). 

(d) Compare your answer for part (c) to that obtained using a structural damping model and 
a loss factor of =0.04. 

 
(You will need the following to compare this problem with problem 3 below.)  As discussed in 
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters 
EA and L are as follows: ki = N*EA/L, i=2,N where N is the number of masses. The spring 
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness 
twice as high, k1 = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N: 
mi = AL/N, where is the mass density of the bar. 
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Problem 1)  (Creating a damping matrix with any desired modal damping ratios.) 
 
The goal is to show that one can use the modal transformation together with the given 
damping matrix to obtain uncoupled equations of motion. 

 
Now, starting with the coupled equations of motion: 

square of the natural frequencies, we now have N uncoupled equations of motion. 
 

 
 
Note that we have also used the fact that each row of [Φ]T{Q} is equal to the jth mode 
vector transposed times {Q}. 
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HW 12, PROBLEM 2:  LUMPED MASS APPROXIMATION FOR A BAR IN EXTENSION 
 
Part (a): 
The mass and stiffness matrices are given, so it is easy to find the natural frequencies and 
mode shapes in Matlab.  Here is the result:  (Matlab code given at the end.) 
 
wns = 
      0.31287 
      0.90798 
       1.4142 
        1.782 
       1.9754 
PHI = 
    -0.098938      0.28713     -0.44721     -0.56352     -0.62467 
     -0.28713      0.62467     -0.44721     0.098938      0.56352 
     -0.44721      0.44721      0.44721      0.44721     -0.44721 
     -0.56352    -0.098938      0.44721     -0.62467      0.28713 
     -0.62467     -0.56352     -0.44721      0.28713    -0.098938 
 
Part (b): 
The input is harmonic, so the steady-state response of each mass will also be harmonic.  
Their complex amplitudes can be found with the equation: inv([K+iωC-ω^2*M]).  See 
the Matlab code for details.  The complex amplitude of the 5th DOF is plotted below.  
Note that this stiffness proportional damping approach gives the following modal 
damping ratios, which are clearly different than those for part (c) below: 
zts = 
     0.015643 
     0.045399 
     0.070711 
     0.089101 
     0.098769 
 
Part (c): 
The solution here is the same as for (b), only now we use C = 
M*PHI*2*0.02*diag(wns)*PHI.'*M 
Both solutions are plotted below. 
 
Part(d): (not included in Spring 2011) 
For the structural damping case, K = K*(1+iγ). 
 
The plot shows that the stiffness proportional damping approach gives heavier damping 
for the higher frequency modes.   
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The mode shapes were requested as part of the next problem. They are plotted below: 
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Matlab Code: 
% ME 6442 Homework #10, MDOF Systems-LUMPED MASS APPROX TO BAR IN EXTENSION 
clear all; close all 
  
M = eye(5); % Identity matrix since each mj=1; 
K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1); 
    % Above is a fancy way to make the banded stiffness matrix, although 
    % the two terms below must be fixed manually. 
K(1,1) = 1+2; K(5,5) = 1; 
C = 0.1*K; 
  
[phi,lam] = eig(K,M); 
wns = sqrt(diag(lam)) 
  
% Normalize Eigenvectors 
[natfreqs,Isort]=sort(sqrt(diag(lam))); % sort by nat freq 
phi=phi(:,Isort);  % sort eigenvectors 
scale= phi.'*M*phi; 
PHI=real(phi*inv(sqrt(scale))) % normalize e.vectors 
zts = (diag(PHI.'*C*PHI)/2)./wns 
  
% Check Orthogonality 
check_m = norm(PHI.'*M*PHI-eye(size(PHI))) 
check_k = norm(PHI.'*K*PHI-lam) 
  
% Plot Mode Shapes 
% Create x-vector.  Remember that the masses are at the center of each 
% element, so the first node is at 0.5*(L/N) 
xs = [0, 0.5:1:4.5]/5; 
    % Will have to stack zeros above PHI below for the displacement at x=0. 
figure(1) 
plot(xs.',[0 0 0 0 0; PHI],'o-'); grid on; 
xlabel('X Location'); ylabel('Modal Amplitude'); 
legend('Mode #1', 'Mode #2','Mode #3','Mode #4','Mode #5'); 
  
ws = [0:max(wns)*1.2/2000:max(wns)*1.2]; 
% TF Using Proportional C-Matrix 
for ii = 1:1:length(ws); 
    Gn(:,ii) = [K+i*ws(ii)*C-ws(ii)^2*M]\([0 0 0 0 1].'); 
end 
Gb = Gn(5,:); 
  
% TF Using modal damping ratios 
Cc = M*PHI*2*0.02*diag(wns)*PHI.'*M 
for ii = 1:1:length(ws); 
    Gn(:,ii) = [K+i*ws(ii)*Cc-ws(ii)^2*M]\([0 0 0 0 1].'); 
end 
Gc = Gn(5,:); 
  
% TF Using Structural Damping 
Kd = K*(1+i*0.04); 
for ii = 1:1:length(ws); 
    Gn(:,ii) = [Kd-ws(ii)^2*M]\([0 0 0 0 1].'); 
end 
Gd = Gn(5,:); 
  
figure(2) 
subplot(211); 
semilogy(ws,abs(Gb),ws,abs(Gc),':',ws,abs(Gd),'-.'); grid on; 
xlabel('Frequency (rad/s)'); ylabel('|X_5/F|'); 
legend('Proportional','Modal','Structural'); 
title('Transfer Function of X_5 with 3 Kinds of Damping'); 
axis([0 2.5 0.09 200]); 
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subplot(212); 
plot(ws,angle(Gb)*180/pi,ws,angle(Gc)*180/pi,':',ws,angle(Gd)*180/pi,'-.'); 
grid on; 
xlabel('Frequency (rad/s)'); ylabel('Phase(X_5/F) (^o)'); 
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Parts (a & b): 
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Note that the dimensional factors can be pulled out so that the eigenvalue problem can be 
solved in Matlab (for part (d)).  To do so, we define: 

 
Part (c): 
The integrals are not convenient to evaluate analytically using these basis functions, so 
the solution is carried out only in Matlab.  The resulting matrices are: 
>> M 
M = 
          0.5            0            0 
            0          0.5            0 
            0            0          0.5 
>> K 
K = 
       1.2337            0            0 
            0       11.103            0 
            0            0       30.843 
Notice that the matrices are diagonal.  This occurs because the chosen basis functions 
happen to be the eigenfunctions for this continuous system.  So, the coordinate governing 
each basis function is independent of all of the others and the natural frequencies can be 
found by inspection, for example: ω1=sqrt(1.2337/0.5)=1.5708, etc… 
 
Part (d): 
COMPARISON OF NATURAL FREQUENCIES: 
First we observe that since ρAL/(EA/L) = 25, we must multiply the natural frequencies 
found in Problem 2 by (25)^(1/2) to compare with the results from the nondimensional 
Ritz analysis.  The results are summarized in the table below, where the natural 
frequencies for other Ritz Series lengths are also shown FYI.  Notice that as the series 
length increases, new modes appear at higher frequencies, and the lower natural 
frequencies decrease slightly, converging towards the true values.  The lumped parameter 
method in Problem 2 gives similar results although the frequencies are sometimes lower 
than the true values, while the Ritz method always over predicts the natural frequencies. 
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Natural Frequencies (nondimensional) Ritz 
Series 
Length ω1 ω2 ω3 ω4 ω5 

2 1.5767 5.6728 - - - 
3 1.5709 4.8365 10.4471 - - 
4 1.5708 4.7246 8.3309 16.3036 - 
5 1.5708 4.7132 7.9390 12.1739 23.3614 

Results for Lumped Parameter Approximation with N=5 below 
N=5 1.5643 4.539 7.0711 8.9101 9.8769 

 
With the second set of basis functions from part (c), one obtains the true analytical 
natural frequency for any length Ritz Series. 
 

Natural Frequencies (nondimensional) Ritz 
Series 
Length ω1 ω2 ω3 ω4 ω5 

2 1.5708 4.7124 - - - 
3 1.5708 4.7124 7.8540 - - 
4 1.5708 4.7124 7.8540 10.9956 - 
5 1.5708 4.7124 7.8540 10.9956 14.1372 

 
MODE SHAPES 
 
Using the polynomials in part (b): 
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The three mode shapes obtained from the Ritz method for part (b) are shown below.  The 
first mode closely resembles a “1/4 sine,” which is the exact mode shape for a fixed-free 
rod.  The second resembles a “3/4 sine.”  The theoretical prediction of the third mode is a 
“5/4 sine,” but one can see that there is considerable error in the Ritz approximation for 
that mode since the basis is inadequate to describe it. 
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Mode 1 Ritz
Mode 2 Ritz
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Mode 1 Analytical
Mode 1 Lumped
Mode 2 Lumped
Mode 3 Lumped

 
When using the basis functions from part (c), the modes are exact and are given in the 
figure below. 
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The Matlab code used for these calculations follows.  Symbolic variables were used to 
check the answer for part c), and to compute the M and K matrices for part d). 
 
Part b.) 
% EMA 545, HW12 
% Ritz Series solution for Clamped-free rod in extension 
% 
% M.S. Allen, May 2011 
  
clear all; close all 
syms x jj kk real; 
tic 
N = 5; 
  
% Create basis functions as symbolic functions in Matlab - Symbolic 
% variables x and jj and kk defined above  
for jj = 1:N; 
    psi(jj) = x^jj; 
end 
% Loop to create (jj,kk) terms of mass and stiffness matrices 
for jj = 1:N; 
    for kk = 1:jj; 
        % Usig Matlab symbolics 
        MM(jj,kk) = int(psi(jj)*psi(kk),x,0,1);% *rho*A*L 
        KK(jj,kk) = int((diff(psi(jj),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L 
        % Using analytically derived formulas for M and K 
        M1(jj,kk) = 1/(jj+kk+1); 
        K1(jj,kk) = (jj*kk)/(jj+kk-1); 
        % note - matrices are symmetric, so we can fill the rest of the 
        % matrix in with the same terms. 
        MM(kk,jj) = MM(jj,kk); KK(kk,jj) = KK(jj,kk); 
        M1(kk,jj) = M1(jj,kk); K1(kk,jj) = K1(jj,kk); 
    end 
end 
M = double(MM); % convert symbolic expressions to numbers. 
C = 0; K = double(KK); 
toc 
% display the difference, which is on the order of numerical round off 
% error. 
M-M1 
K-K1 
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% Use Embedding Property to find Eigensolutions for 2 <= N <= 5.  For 
% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant 
% of M and K. 
for p = 2:1:N; 
    [phi,lambda] = eig(K(1:p,1:p),M(1:p,1:p)); 
    wnd(p-1,1:p) = sqrt(diag(lambda))' 
end 
  
% Finding Mode Functions 
Ns = [3]; % number of basis functions to use for mode shape plots. 
delta = 1/(100-1); % spacing for y-axis on mode shapes. 
yd = [0:delta:1]'; 
for q = 1:length(Ns); 
    psi_vals = 0; phi = 0; lambda = 0; 
    [phi lambda] = eig(K(1:Ns(q),1:Ns(q)),M(1:Ns(q),1:Ns(q))); 
    wns = sqrt(diag(lambda)); 
    for p = 1:1:100; 
        for n = 1:Ns(q); 
            % evaluate each basis function 'n' at each point 'p'.  (or use 
yd(p)^n) 
            psi_vals(p,n) = subs(psi(n),'x',yd(p)); % Matlab symbolics - sub 
yd(p) for 'y' 
        end 
    end 
% mode shapes for plotting are psi_vals*phi 
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi; 
end 
  
% Analytical Mode Shape 
psi_an = sin((2*1-1)/2*pi*yd); 
psi_an = psi_an/max(psi_an)*max(psi_c(:,1,1)); % scale to same amplitude as 
psi_c 
  
% Plotting 
figure(3) 
plot(yd, psi_c(:,1,1),yd, psi_c(:,2,1), yd, psi_c(:,3,1),... 
    yd, psi_an,'b.'); grid on;%, yd, psi_c(:,1,2), '.:', yd, 
psi_c(:,3,2),'.:'); grid; 
legend('Mode 1 Ritz','Mode 2 Ritz','Mode 3 Ritz','Mode 1 Analytical'); 
xlabel('Position (X/L)'); ylabel('Mode Function'); 
title(['Mode Functions for First Three Modes, N = ',num2str(Ns)]); 
  
return 
%% Plot the solution to Problem 2 on top: 
M = eye(5); % Identity matrix since each mj=1; 
K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1); 
    % Above is a fancy way to make the banded stiffness matrix, although 
    % the two terms below must be fixed manually. 
K(1,1) = 1+2; K(5,5) = 1; 
M = M/5; K = K*5; % change to non-dimensional 
  
[phi,lam] = eig(K,M); 
PHI=real(phi*inv(sqrt(phi.'*M*phi))); 
xs = [0, 0.5:1:4.5]/5; 
  
% To get a good plot, have to manually adjust the sign of some of the mode 
% vectors (the sign of a mode vector is arbitrary).  Make all end values 
% positive: 
PHI = PHI*diag(sign(PHI(end,:))); 
hold on; plot(xs.',[0 0 0; PHI(:,1:3)],'o-'); hold off; 
legend('Mode 1 Ritz','Mode 2 Ritz','Mode 3 Ritz','Mode 1 Analytical','Mode 1 
Lumped','Mode 2 Lumped','Mode 3 Lumped'); 
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Part (c): 
% EMA 545, HW12 
% Ritz Series solution for Clamped-free rod in extension 
% 
% M.S. Allen, April 2008 
  
clear all; close all 
syms x jj kk real; 
tic 
N = 3; 
  
% Create basis functions as symbolic functions in Matlab - Symbolic 
% variables x and jj and kk defined above  
for jj = 1:N; 
    psi(jj) = sin((2*jj-1)/2*pi*x); 
end 
% Loop to create (jj,kk) terms of mass and stiffness matrices 
for jj = 1:N; 
    for kk = 1:jj; 
        % Usig Matlab symbolics 
        MM(jj,kk) = int(psi(jj)*psi(kk),x,0,1);% *rho*A*L 
        KK(jj,kk) = int((diff(psi(jj),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L 
        % note - matrices are symmetric, so we can fill the rest of the 
        % matrix in with the same terms. 
        MM(kk,jj) = MM(jj,kk); KK(kk,jj) = KK(jj,kk); 
    end 
end 
M = double(MM); % convert symbolic expressions to numbers. 
C = 0; K = double(KK); 
toc 
  
% Use Embedding Property to find Eigensolutions for 2 <= N <= 5.  For 
% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant 
% of M and K. 
for p = 2:1:N; 
    [phi,lambda] = eig(K(1:p,1:p),M(1:p,1:p)); 
    wnd(p-1,1:p) = sqrt(diag(lambda))' 
end 
  
% Finding Mode Functions 
Ns = [3]; % number of basis functions to use for mode shape plots. 
delta = 1/(100-1); % spacing for y-axis on mode shapes. 
yd = [0:delta:1]'; 
for q = 1:length(Ns); 
    psi_vals = 0; phi = 0; lambda = 0; 
    [phi lambda] = eig(K(1:Ns(q),1:Ns(q)),M(1:Ns(q),1:Ns(q))); 
    wns = sqrt(diag(lambda)); 
    for p = 1:1:100; 
        for n = 1:Ns(q); 
            % evaluate each basis function 'n' at each point 'p'.  (or use 
yd(p)^n) 
            psi_vals(p,n) = subs(psi(n),'x',yd(p)); % Matlab symbolics - sub 
yd(p) for 'y' 
        end 
    end 
% mode shapes for plotting are psi_vals*phi 
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi; 
end 
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3.1 Design project, team 4

Local contents

3.2 Introduction
By Nasser M. Abbasi, Donny Kuettel III and Paul Frisch.

This report outlines a simple passive vibration isolation system design for use in the
first class cabin of a Boeing 757-200 airplane with the goal of reducing the vibrations
felt by the passengers in the first class cabin. This was done by simulation in order to
select suitable design parameters that produced an acceptable absolute acceleration time
history compared the rest of the airplane during a turbulent flight.
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3.2.1 Discussion and results
3.2.1.1 Notations used in the report

𝑀 mass of first class cabin

𝑘 spring constant

𝜁 critical damping constant

𝑟 ratio of external load frequency to the natural frequency of first class
cabin 𝜛

𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙

𝑟𝑛 ratio of external load 𝑛𝑡ℎ harmonic frequency to the natural frequency
of first class cabin 𝜛𝑛

𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙

𝑇𝑟 Transmissibility. The ratio of cabin absolute displacement to base ab-
solute displacement

𝜔𝑛𝑎𝑡 Natural frequency of first class cabin

𝜔1 Fundamental frequency of the external load frequency.

EOM Equation Of Motion

𝑐 damping constant for damper under first class cabin

𝑍𝑎𝑐𝑐
𝑛 the complex amplitude of the term associated with the 𝑛𝑡ℎ harmonic

of the frequency 𝑧′′(𝑡)

𝑍𝑑𝑖𝑠𝑝
𝑛 the complex amplitude of the term associated with the 𝑛𝑡ℎ harmonic

of the displacement 𝑧(𝑡)

𝑌𝑛 the complex amplitude of the term associated with the 𝑛𝑡ℎ harmonic
of the displacement of 𝑦(𝑡)

Table 1. Description of mathematical notations used in report

3.2.1.2 Mathematical model

Reducing the vibration effect felt by the passengers in the first class cabin was based
on reducing the transmissibility ratio (𝑇𝑟) of the absolute acceleration of the airplane to
that of the first class cabin. A passive vibration isolation system was used for its ease of
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implementaion and its low cost. The model is based on figure 1 below

z

ÿ

k
c

First 
class 

economy 
class 

Airplane 
body

Figure 1. Mechanical model view of vibration isolation system in place.

The absolute acceleration of the first class cabin, 𝑦′′(𝑡), was calculated with the vibration
isolation system in place and then compared to the absolute acceleration, 𝑧′′(𝑡), of the
rest of the airplane. The goal was to produce a smooth absolute acceleration time history
when compared to the rest of the airplane. This was done by adjusting𝑀, 𝜁 and 𝐾 and
running a simulation of the motion of the plane with our vibration isolation system in
place. A plot of 𝑇𝑟 vs. 𝑟was also used to insure that the maximum 𝑇𝑟 remained small as
the frequency ratio 𝑟was increased.

Assuming the mass of cabin is 𝑀,which includes the live load (passengers), then apply-
ing Newton’s laws the the first class cabin results in the equation of motion

𝑚𝑦′′ + 𝑐�𝑦′ − 𝑧′� + 𝑘�𝑦 − 𝑧� = 0
𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑐𝑧′ + 𝑘𝑧

The transfer function between 𝑦(𝑡) and 𝑧(𝑡) in the frequency domain can now be derived
(Appendix contains complete derivation) resulting in
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𝑇(𝑟) = �
𝑌𝑛

𝑍𝑑𝑖𝑠𝑝
𝑛

� = �1 + (2𝜁𝑟𝑛)
2

��1 − 𝑟
2
𝑛�

2
+ (2𝜁𝑟𝑛)

2

To compare the absolute acceleration of the first class cabin with the rest of the airplane,
the absolute acceleration, 𝑦′′(𝑡), is now found from𝑌𝑛. Since 𝑦(𝑡) = Re�𝑌𝑛𝑒𝑖𝜛𝑛𝑡� then 𝑦′′(𝑡) =
Re�−𝜛2

𝑛𝑌𝑛𝑒𝑖𝜛𝑛𝑡�.

3.2.1.3 Design results

𝑧′′(𝑡) (given) and 𝑦′′(𝑡) (computed) are now plotted on the same plot in order to compare
the effect of our vibration isolation system to the comfort of the first class passengers. The
final design parameters used are (Appendix 5.1)

𝑀Mass of first class cabin (dead+live) 3050 kg

𝜁 0.7

𝑘 9700 N/M

Table 3. Final values of design parameters

Figure 2 below shows the result using the above parameters

Figure 2. First class cabin absolute acceleration compared to rest of airplane.

We see from figure 2 that the absolute acceleration of the first class cabin has much less
variation and is much smoother than the absolute acceleration of the rest of the airplane.
From this we can see that the first class passengers experience a much more comfortable
flight than the rest of the airplane. In addition, the transmissibility plot was found to be
acceptable since 𝑇𝑟 decreases with increasing 𝑟
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Figure 3. Transmissibility plot of first class cabin.

In addition to producing a smooth absolute acceleration time history, the goal was also to
insure that 𝑇𝑟 decreased as 𝑟 increased. This implies that at higher external acceleration
relative to the natural frequency, our vibration isolation system remained effective. The
simulation program generated a mechanical view showing the absolute position of the
first class cabin, with an offset, and the absolute position of the airplane during the flight
as shown in figure 4 below.
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Figure 4. Animation of vibration isolation during flight.

The force shown in Figure 4. below the airplane is the numerical value of −𝑀𝑧′′ where 𝑧′′
is the absolute acceleration of the airplane and𝑀 is the total mass of the first class cabin.

3.2.2 Implementation of the vibration isolation system
The vibration dampening system proposed for the first class cabin is a simple spring
dashpot system that utilizes the additive properties of springs and dashpots to dampen
the vibration of the first class cabin in the Boeing 757-200.
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Figure 5. Schematic diagram of vibration isolation system in place

The design of our passive vibration isolation system is simple and effectivewith aminimal
costs. It starts by defining the area that represents the first class cabin, which is at the
front of the plane right behind the cockpit.

The cabin spans the entire inside width of the airplane body, which is 3.53m (11.58 ft),
and then extends down the body of the plane roughly 3.35m (11 ft) giving the first class
cabin a total area of 3.53 × 3.35m2 (11.58 × 11 ft2).

The next step in our design is to define the area that will actually be part of the vibration
isolation system.We cannot use thewhole floor of the first class cabin because the rounded
body of the airplane would not allow the floor to travel up and down rendering our
whole system ineffective. To solve this problem we started at the center of the plane’s
cross section and went out 1.524 m (5 ft) in either direction giving a total area of the
platform used in our vibration isolation system 3.048× 3.35m2 (10× 11 ft2) as seen above
in figure 5.

To begin the actual design, additional support must be given to the aluminum floor of
the cabin. The use of 6061 T6 Aluminum I-beams (specifications are given in appendix 5)
spanning the width of the platform provides the needed support. In addition the I-beams
provide a sturdy surface for the spring and dashpot system to contact the cabin floor.

The key component of the vibration dampening system is the use of carbon fiber leaf
springs. We chose carbon fiber leaf springs in place of steel for several reasons. They
provide a softer ride at a lower noise level and excellent stability due to better damping
characteristics than steel. Placed in series, the use of 5 carbon fiber leaf springs provides
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the spring constant required (9700 N/m) and a low increase in weight.

The dashpots needed for our design, 2𝐾325 Dashpots, can be purchased from many
manufactures. When added in parallel they provided the necessary damping coefficient
of 7425N*s/m needed when the first class cabin is full and 5800N/s*m when the cabin
is empty.

Our design for this passive vibration isolation system works whether the first class cabin
is full, empty, or half way in-between. The system works best when the cabin is fully
loaded with passengers, and has almost identical results with no passengers on board.
Even though the results are slightly diminished with fewer passengers, the system still
creates a noticeably smoother flight.

3.2.3 Cost estimate of the vibration isolation system
The total cost of our vibration isolation system is around $16500 (appendix 5). The cost
of the aluminum support beams, dashpots and carbon fiber leaf springs make up the
majority of the material cost totaling only about $3000. The majority of the total cost
comes from the additional weight of the system and the resulting price of fuel used
during the planes lifetime. The additional weight results in an expected cost of about
$13500 over the lifetime of the plane.

The damping effects of the system could be improved if weight were added to the cabin.
However the additional cost of the added weight over the lifetime of the plane would
outweigh the benefits for the passengers. If however some heavy components of the plane
were to be attached to the first class cabin, the system could be redesigned for an even
better ride. This would require further investigation into the balance of the plane, flight
dynamics and a deeper knowledge of the various components of the plane so it falls out
of the scope of this project.
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3.2.4 Appendix
3.2.4.1 Design values

weight

This table shows the design values based on weight

Description of item Mass (kg)

15 Chairs @ 100 kg/chair 1500

10 ft by 11 ft aluminum flooring 200

5 Aluminum I-beams @ 20 kg/beam 100

5 Carbon Fiber leaf springs @ 5 kg/spring 25

Miscellaneous weight 25

15 Passengers @ 80 kg 1200

Weight of First Class Cabin before vibration isolation system 1700

Weight of First Class Cabin after vibration isolation system 1850

Weight of First Class Cabin with maximum passengers 3050

Table 3. Mass of items used in design calculations

The total mass𝑀 has the value of 3050 kg. For our 𝜁 value we choose the value 0.7 as it
workedwell in simulations to provide a smooth ride for the passengers while still keeping
𝑇𝑟 small.

Leaf springs and spring K value

The most important aspect of picking a 𝑘 value is the total allowed clearance the first class
cabin floor has to move. The first class cabin’s floor has a displacement relative to the
body of the aircraft and if that gets too large the floor will make contact with the body
of the airplane. The lower the 𝑘 value we choose, the larger the displacement of the first
class cabin relative to the body of the airplane will become. The maximum travel distance
of the first class cabin is around 20 cm (7.87 in) and we can use this value to pick an
appropriate 𝑘 value. A 𝑘 value around 10000 N/m keeps the first class cabin floor within
this tolerance. The following plot shows the absolute acceleration of the cabin vs. the rest
of the airplane during the turbulent flight 1.

1absolute position of the first class cabin was computed from the absolute acceleration of the cabin in
the frequency domain. Hence the average value was not used due to the division by zero problem with
this method. We do not have another method to find absolute position from absolute acceleration (unless
we use more advanced numerical integration method in time domain, which is beyond the scope of this
course)
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Figure 6. absolute acceleration of first class cabin compared to rest of airplane

To keep the weight of our vibration isolation system as small as possible we opted to use
carbon fiber leaf springs. The 𝑘 value of any leaf spring system can be calculated by the
equation

𝑘 =
8𝐸𝑛𝑏𝑡3

3𝐿3
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Figure 7. Leaf spring design used in vibration isolation system

Since our springs are in parallel, the 𝑘 values add to give a total equivalent 𝑘. We took the
𝑘 value selected (10000 N/m) and divided it by 5 giving us an individual 𝑘 value of 2000
N/m. Using the following dimensions for the leaf spring resulted in a 𝑘 value of 1940
N/m for a total 𝑘 value of 9700 N/m.

• 𝐸 = 17 Gpa

• 𝑛 = 3

• 𝐿 = 3.048meter (10 ft)

• 𝑏 = 0.1016meter (4 in)

• 𝑡 = 0.015875meter (5/8 in)

3.2.4.2 Cost values

After finding the materials we needed, the following describes how we calculated the
total cost of our vibration isolation system.

• 5 @ 10 ft 6061 T6 Aluminum I-beams @ $180/beam results in $900.
Width 6 in, Flange 4 in, Web 0.19 in, Thickness 0.28 in.

• 5 Carbon Fiber leaf Springs @ $300/spring results in $1500.

• 150 kg of extra weight, total weight of the airplane is 59350 kg.
Fuel costs for this aircraft was estimated to be $3, 500/hour and a typical aircraft
operates 3000 hours per year. An increase of 1% in the weight of the aircraft is
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expected to increase fuel costs by 0.5%
150 kg

2∗59350 kg× $3500 × 3000 = $13270

• 5 2𝑘325 Dashpots @ $100/dashpot = $500
Needed 𝑐 is around 2000N*s/m. These dashpots have an adjustable 𝑐 from 0 to 7000
N*s/m

• Total cost estimate $16500

3.2.4.3 Simulation program description

The simulation program was a GUI program written in Matlab version 2013a, which
made it easier to determine the parameters to use for the design. The following is a screen
shot of the program. The program can be downloaded from the project web site
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Figure 6. Simulation Matlab program used for obtaining the design parameters.

The first step is to load the Matlab .mat file which contains the acceleration time history.
Then one can use the sliders to adjust the system parameters and see the effect on the abso-
lute acceleration of the first class cabin. Computation was done in the FFT domain using
the functions 𝑓𝑓𝑡_𝑒𝑎𝑠𝑦() and 𝑖𝑓𝑓𝑡_𝑒𝑎𝑠𝑦() in the class web site. The absolute displacement
was found from the absolute acceleration in the frequency domain. Due to the problem
of division by zero for the first component in the frequency vector, this was set to zero
before using 𝑖𝑓𝑓𝑡_𝑒𝑎𝑠𝑦().
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3.2.4.4 Derivation of the transfer function

Assuming the mass of cabinet is 𝑀which includes passengers weight, by applying New-
ton’s laws the EOM for the first class cabin is

𝑚𝑦′′ + 𝑐�𝑦′ − 𝑧′� + 𝑘�𝑦 − 𝑧� = 0
𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝑐𝑧′ + 𝑘𝑧 (3.1)

The time history of the turbulent acceleration 𝑧′′(𝑡)was given to us in the matlab mat file.
Therefore in the frequency domain, and assuming the time history represents one period
we can write

𝑧′′ = Re�𝑍𝑎𝑐𝑐
𝑛 𝑒𝑖(𝜔1𝑛)𝑡�

Substituting back into Eq 3.1 and simplifying, themagnitude of the absolute displacement
of the first class cabin relative to absolute displacement of airplane is found to be

�
𝑌𝑛

𝑍𝑑𝑖𝑠𝑝
𝑛

� = �1 + (2𝜁𝑟𝑛)
2

��1 − 𝑟
2
𝑛�

2
+ (2𝜁𝑟𝑛)

2

Where 𝑍𝑎𝑐𝑐
𝑛 is the complex amplitude of the 𝑛𝑡ℎ harmonic component in the acceleration

data. Letting 𝜔1𝑛 ≡ 𝜛𝑛 then in the frequency domain Eq 3.1 becomes

Re��−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘�𝑌𝑛𝑒𝑖𝜛𝑛𝑡� = Re��𝑐

𝑍𝑎𝑐𝑐
𝑛
𝑖𝜛𝑛

+ 𝑘
𝑍𝑎𝑐𝑐
𝑛

−𝜛2
𝑛
�𝑒𝑖𝜛𝑛𝑡�

𝑌𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
𝑖𝜛𝑛

− 𝑘
𝜛2𝑛

−𝑚𝜛2
𝑛 + 𝑖𝜛𝑛𝑐 + 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠𝑍

𝑎𝑐𝑐
𝑛

= −
𝑍𝑎𝑐𝑐
𝑛
𝜛2
𝑛

1 + 𝑖2𝜁𝑟𝑛
�1 − 𝑟2𝑛� + 2𝑖𝜁𝑟𝑛

Where
𝑟𝑛 =

𝜛𝑛
𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙

But −𝑍𝑎𝑐𝑐𝑛
𝜛2𝑛

is the absolute displacement of the airplane, say 𝑍𝑑𝑖𝑠𝑝
𝑛 , hence the transfer function

between the absolute displacement of first class cabin and the absolute displacement of
the airplane is

𝑌𝑛 =
1 + 𝑖2𝜁𝑟𝑛

�1 − 𝑟2𝑛� + 2𝑖𝜁𝑟𝑛
𝑍𝑑𝑖𝑠𝑝
𝑛
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The magnitude of the absolute displacement of first class cabinet relative to absolute
displacement of the airplane is

�
𝑌𝑛

𝑍𝑑𝑖𝑠𝑝
𝑛

� = �1 + (2𝜁𝑟𝑛)
2

��1 − 𝑟
2
𝑛�

2
+ (2𝜁𝑟𝑛)

2

3.2.4.5 References

1. Aluminum data http://www.onlinemetals.com

2. Airpot Dashpot Performance Specifications. N.p., n.d. Web. 15 Apr. 2013.

http://www.airpot.com/html/dashpot.html

3. Boeing Commercial Airplanes. 757 Program. n.d. Web. 5 Apr. 2013.

http://www.boeing.com/boeing/commercial/757family/index.page

4. Engineering ToolBox. Young’s Modulus. Fabrication Extrusion Company, n.d. Web.
9 Apr. 2013.

5. Ginsberg, Jerry H. Mechanical and structural vibrations: theory and applications.
New York: Wiley, 2001.

6. Online Metal Store Metal Product Guides at OnlineMetals.com. Metal Product
Guides atOnlineMetals.com.N.p., n.d.Web. 15Apr. 2013. http://www.onlinemetals.
com/merchant.cfm?id=980

7. 7575-200 Airliner flugzeuginfo.net-the aircraft encyclopedia. N.p., n.d. Web. 10 Apr.
2013 http://www.flugzeuginfo.net/acdata_php/acdata_7572_en.php

3.2.5 software
The following zip file contains the current version of Matlab software to use to design
the vibration isolation system.
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4.1 Practice exam Spring 2013

Name: _____________________________ 

Page 1 of 5 

EMA 545 – Practice Exam #1 
Spring 2013 - Prof. M. S. Allen 

 

Honor Pledge:  On my honor, I pledge that I have neither given nor received inappropriate aid 
in the preparation of this exam. 
 
 
 

_____________________________________ 
Signature      

 
Calculators are allowed but not really needed.  You may use one sheet of notes (one side). 
Formulas: 

   cos sinie i     

Transient Response 
The general solution to an underdamped SDOF system 

22 0n nx x x      

is: 

 i( ) Re n dt tx t Ae e   

where 21d n     and A is a complex constant. 

Forced Transient Response: 

( ) ( ) ( )IC Fx t x t x t   

where xF(t) can be found in Appendix B 
 
Forced Steady-State Response: 

 i( ) Re tf t Fe                   i( ) Re tx t Xe   
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Name: _____________________________ 

Page 2 of 5 

Appendix B from Ginsberg, Wiley, 2001: 
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Name: _____________________________ 

Page 3 of 5 

Short Answer Questions: (10 pts each) 
1.)  A very lightly damped single-degree-of-freedom system is observed to oscillate at 200 Hz 
after being excited by an impulsive force at t = 0.  The oscillations are observed to fall below 1% 
of the initial amplitude after t = 1.5 seconds.  What is the damping ratio, ?  (Show your work! 
An unjustified answer will not receive credit.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.)  A certain single-degree of freedom system is excited by a force f(t) = -cos(t)-1.5sin(t), 
resulting in a response x(t) = 1.2cos(t)+0.226sin(t).  By what angle does the response lag the 
force?  (Show your work! An unjustified answer will not receive credit.)  Is this possible?  If it 
is, would this require that the excitation frequency be smaller or larger than the natural 
frequency?
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Name: _____________________________ 

Page 4 of 5 

Problem #3 (40 pts) 
 A single-degree-of-freedom system is initially at rest in its static 
equilibrium position when, at t=0, a force, f(t) = Re(F0e

it) is applied, 
where the drive frequency, , is one fourth of the natural frequency of 
the system and F0 is a real constant.  The stiffness of the system is 10 
N/m, its mass is 0.1 kg, and the system can be modeled as undamped 
over the time interval of interest, so c = 0. 
a.)  Find an expression for the response of the system for t > 0. 
b.)  Sketch the response noting any important features.

k

m
x

c

f(t)
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Name: _____________________________ 

Page 5 of 5 

 Problem #4 (40 pts) 
The schematic shows a simplified model for an automotive suspension, 
where the mass represents a wheel and the springs and dashpots 
represent the suspension and tire.  The equations of motion for the 
system shown are: 
 

2

0 0 0

0 0 0 0 ( )
g gc c cm x x k x

c c cy y y f t

             
                          

 
 

 

 
All of the system parameters, m, c, cg, c2, and kg are known.  A harmonic 
force f(t) excites the system and steady state conditions have been 
reached so the motion of the massless point, y(t), is harmonic, y(t) = 
Re(Yeit).  This motion has been measured so the complex amplitude, Y, 
and frequency, , are known. 
 

(a) (20 pts)  Derive the transfer function relating the complex 
amplitude of x(t) to that of y(t). 

(b) (10 pts)  What would the amplitude of x(t) be for very small and very large drive 
frequencies?  You may express your answer in terms of m, c, cg, c2, and kg, Y and . 

k
g

m
x

y

c
2

c

c
g

f(t)
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4.2 first practice exam for finals. 2011

EMA 545 – Review Problems for Final Exam - Prof. M. S. Allen 
Spring 2011 

 
Problem #1: 

 
 
Problem #2:  
The system below consists of two pendulums on frictionless pins, connected at their tips by a 
soft spring k = αmg(L/2) where α is a small constant.  The equations of motion are the following, 
where θ1 corresponds to the left bar. 

12 1

22

1 0 0.5 01
0 1 0.5 03 2

LmL mg
θα αθ
θα αθ

⎧ ⎫ + − ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭⎩ ⎭

 

The bar on the left is given an initial displacement of 2 degrees with the bar on the right vertical 
and the response is recorded and is shown below.  The blue line corresponds to θ1 while the 
dashed green line corresponds to θ2.  The amplitude of the motion of the left beam decays and 
then grows with time as the vibration energy transfers from one pendulum to the other and then 
back again.  The beat period is 63 seconds.  What is the value of α?  Justify your answer, but you 
need only do those parts of the analysis that are critical to understand what is happening. 

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 
FYI: You can see a video of a system such as this at: 
http://www.youtube.com/watch?v=RoSYKPTdlxs  
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Problem #3: 

 
For all of the following you may assume that the base of spring k1 never looses contact with the 
platform. 

a.) Find the steady-state response x1(t) and x2(t) when ω is equal to the first natural frequency 
of the system.  Use k1 = k and k2 = 2k. 

b.) Are there any frequencies of excitation for which the steady-state response amplitude for 
x1 is identically zero?  Use k1 = k and k2 = 2k. 

c.) If k1 = k2 = k, what is the steady-state response amplitude of each mass when the system 
is excited at a resonant frequency?  Can you explain the result? 

d.) For arbitrary k1 and k2, if y(t) is such that x1(t) = Acos(ωt), what is the response x2(t)? 
 

 
 
Extra credit – under what conditions does the base of the spring k1 loose contact with the 
platform? 
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Problem #4 
Find the linearized equations of motion for the system pictured below.  Model the cable as a 
massless spring with stiffness k.  The system is in static equilibrium in the position shown when 
the dynamic force F is not present. 

Problem #5 
Sorry, I didn’t have time to write a 5th problem.  This final probably isn't quite long enough.
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key solution
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4.3 extra one problem practice

Name: _____________________________ 

Page 1 of 4 

EMA 545 –Exam #2 
 Spring 2013 - Prof. M. S. Allen 

 

Honor Pledge:  On my honor, I pledge that I have neither given nor received inappropriate aid 
in the preparation of this exam. 
 

_____________________________________ 
Signature      

Formulas: 
Stiff spring approx: 

  /B A B A B Au u v v e           
Newton’s Laws (2D): 

or

if 0

g g

A A A

F ma

M I

M I a









 





 




 

moment of inertia of a thin 
rod about its center of mass: 

Ig = (1/12)mL2 
about its end: 

Iend = (1/3)mL2 

 
Appendix B from Ginsberg, Wiley, 2001: (Corrected) 

433
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Name: _____________________________ 

Page 2 of 4 

Problem #1 (20 pts) 
The system pictured below consists of two identical bars of mass m and length L.  The bars are 
connected as shown with stiff springs, so that the left bar is inclined at an angle  while the right 
bar is horizontal.  This position is the static equilibrium position.  Both springs have stiffnesses k.  
The generalized coordinates are the position of the mass, denoted y, and the angular deflections 
of the bars from static equilibrium, denoted 1 and 2.  The angles 1 and 2 are positive in the 
directions shown. 

k
L/2

F(t)
gravity




1


2

m

yk
m , L

m , L

 
 
A co-worker asserts that one of the equations of motion for this system is the following. 

 

 1 2 1

1
cos cos cos

3 2

FL
mL kL L L kLy          

 
Consider the physics of the problem and check the sign and units of each term.  Does each term 
produce the expected effect?  Explain your reasoning. 
 
 
 
 
 
 
 

434



4.4. practice exam 2 CHAPTER 4. EXAMS

4.4 practice exam 2
practice exam 2 . checking validity of 𝐾matrix, derive EOM for 2 DOF system, bar, spring,
damper full modal analysis, find solution due to impulse.
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4.4.1 questions

Name: _____________________________ 

Page 1 of 3 

EMA 545 – Practice Exam #2 
Spring 2013 

Prof. M. S. Allen 
 
 

Honor Pledge:  On my honor, I pledge that I have neither given nor received inappropriate aid 
in the preparation of this exam. 

_____________________________________ 
Signature      

 
One (1) 8.5x11” double-sided sheet of notes allowed and must be turned in with your exam. 
 
Problem #1 (10 pts) 
a.)  A colleague asserts that the linearized 
equations of motion for this system are as given 
below, where  ’s denote terms that are not given 
to you, which may be zero or constant.  []|springs 
denotes the portion of the stiffness matrix due to 
the springs and []|gravity denotes that portion due to 
gravity.  Check the units and the sign on the 
K12|springs term.  If incorrect, please provide the 
corrected term and explain your reasoning.  (The 
left mass is constrained so that it slides along the 
bar as the bar rotates.) 
 

20 0

0 0

0
gravitysprings

I kL k

m x k x x

y y y

                  
                               
                              






 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



k

m

m

x
y

k

k
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Name: _____________________________ 

Page 2 of 3 

Problem #2 (45 pts) 
Gravity acts downward (along dashpot c), 
and the initial lengths of the springs are 
such that the position shown corresponds to 
the static equilibrium when the applied 
dynamic force F(t) is not present. The 
moment of inertia of a rod about its mass 
center is Ig = (1/12)mL2 and about its end is 
Iend = (1/3)mL2. 
a.) Identify generalized coordinates and 

derive the corresponding equations of 
motion.  Employ the stiff-spring 
approximation to simplify your analysis.  
Friction is negligible in the pin joint A 
and the friction force between the guide 
and m2 is equal to f=c2v, where v is the speed of the mass.  (30 pts) 

b.) Check that your answers make sense.  Explain each check that you perform and why it shows 
that your EOM are/are not correct.  (15 pts) 

 



1

k2
k1
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Name: _____________________________ 

Page 3 of 3 

Problem #3 (45 pts) 
The system pictured is initially at rest when an impulsive force f(t) = F0(t-T) is applied to the 
mass on the right.  The masses are constrained so that they only translate in the horizontal 
direction, and there is no friction between the masses and ground. 

k

x
2

f(t)
m

2m

x
1

 
 
The equations of motion of this system are: 

1 1

2 2

0 0

0 2 ( )

x xm k k

x xm k k f t

        
                 


  

Find the response of the first mass, x1(t), as a function of time. 
 

438



4.4. practice exam 2 CHAPTER 4. EXAMS

439



4.4. practice exam 2 CHAPTER 4. EXAMS

4.4.2 Problem 1

Taking 𝑥 as positive as shown, and 𝑦 as positive as shown, then the middle spring is in
compression with change of length Δ = (𝑥 + 𝐿𝜃) and the right most spring is in tension
with change of length Δ = 𝑥, hence

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝑘𝑦2 +

1
2
𝑘(𝑥 + 𝐿𝜃)2 +

1
2
𝑘𝑥2

=
1
2
𝑘𝑦2 +

1
2
𝑘�𝑥2 + 𝐿2𝜃2 + 2𝑥𝐿𝜃� +

1
2
𝑘𝑥2

= 𝜃2�
1
2
𝑘𝐿2� + 𝑥2(𝑘) + 𝑦2�

1
2
𝑘� + 𝑥𝜃(𝑘𝐿)

Compare to quadratic form

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =
1
2
𝐾11𝜃2 +

1
2
𝐾22𝑥2 +

1
2
𝐾33𝑦2 + 𝐾12𝑥𝜃 + 𝐾13𝜃𝑦 + 𝐾23𝑥𝑦

Then

𝐾11 = 𝑘𝐿2

𝐾22 = 𝑘
𝐾33 = 𝑘
𝐾12 = 𝑘𝐿
𝐾13 = 0
𝐾23 = 0
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Hence the 𝐾matrix due to stiffness is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝐿2 𝑘𝐿 0
𝑘𝐿 𝑘 0
0 0 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃
𝑥
𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, 𝐾12 had the wrong units. This reason is as follows: result of multiplying the

first row of the 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 matrix with the column

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃
𝑥
𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
should have units of torque. Therefore

the units should be 𝑓𝑜𝑟𝑐𝑒 × 𝑚𝑒𝑡𝑒𝑟 and hence 𝐾12𝑥 should come out as 𝑁𝑚 units. But as
given in the problem, it has units 𝑁 only, ie. units of force. But now, the units will come
out to be 𝑁𝑚.

Similarly, the second row of the 𝐾 matrix when multiplied by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃
𝑥
𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
should have units of

force only (not torque). We can see this this is the case with this correction. So the sign
was correct, but the units did not match before.
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4.4.3 Problem 2

4.4.3.1 Part a

This is a 2 degrees of freedom system. The first generalized coordinate is taken as 𝛼which
the angle of rotation of the top bar around joint𝐴. The second degree of freedom is taken
as 𝑥which is the sliding distance that mass 𝑚2 moves as it slides over the lower bar


x
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Static equilibrium is at 𝛼 = 0 and 𝑥 = 0.

We start by finding the kinetic energy. Since bar 𝑚1 is fixed at one point to inertial space,
then only its rotational kinetic energy is added to the system kinetic energy

𝑇 =
1
2�

1
12
𝑚1𝐿2�(𝛼′)

2 +
1
2
𝑚2(𝑥′)

2

Nowwefind the potential energy, assuming springs remain straight. Spring 𝑘1 will extend
by amount

Δ1 =
𝐿
2
𝛼

and spring 𝑘2 will extend by amount

Δ2 = 𝐿𝛼 − 𝑥 sin𝜃2

Hence potential energy of the system is

𝑉 =
1
2
𝑘1(Δ1)

2 +
1
2
𝑘2(Δ2)

2 + 𝑚1𝑔
𝐿
2
sin𝛼 + 𝑚2𝑔𝑥 sin𝜃2

Therefore the Lagrangian Φ is

Φ = 𝑇 − 𝑉

=
1
2�

1
12
𝑚1𝐿2�(𝛼′)

2 +
1
2
𝑚2(𝑥′)

2 − �
1
2
𝑘1(Δ1)

2 +
1
2
𝑘2(Δ2)

2 + 𝑚1𝑔
𝐿
2
sin𝛼 + 𝑚2𝑔𝑥 sin𝜃2�

=
1
2�

1
12
𝑚1𝐿2�(𝛼′)

2 +
1
2
𝑚2(𝑥′)

2 −
⎛
⎜⎜⎜⎜⎝
1
2
𝑘1�

𝐿
2
𝛼�

2

+
1
2
𝑘2(𝐿𝛼 − 𝑥 sin𝜃2)

2 + 𝑚1𝑔
𝐿
2
sin𝛼 + 𝑚2𝑔𝑥 sin𝜃2

⎞
⎟⎟⎟⎟⎠

=
1
24
𝑚1𝐿2(𝛼′)

2 +
1
2
𝑚2(𝑥′)

2 − 𝑘1
𝐿2

8
𝛼2 −

1
2
𝑘2�𝐿2𝛼2 + 𝑥2 sin2 𝜃2 − 2𝐿𝛼𝑥 sin𝜃2� − 𝑚1𝑔

𝐿
2
sin𝛼 − 𝑚2𝑔𝑥 sin𝜃2

EOM for 𝑥 is
𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥′ �

−
𝜕Φ
𝜕𝑥

= 𝑄𝑥

where 𝑄𝑥 is the generalized for for the 𝑥 coordinate. To find 𝑄𝑥 we make virtual dis-
placement 𝛿𝑥 while fixing all other coordinates and obtain virtual work done by non-
conservative forces. Only non-conservative force acting on 𝑚2 is the friction force 𝑓 = 𝑐2𝑣
where 𝑣 is the speed of the mass 𝑚2. The speed of the mass 𝑚2 is the vertical direction is
𝑣 = 𝑥′ sin𝜃2, hence the non-conservative force acting on 𝑚2 is 𝑐2(�̇� sin𝜃2) and is acting in
negative direction. Hence taking projection of this force along 𝑥 gives

𝛿𝑊 = −𝑐2(𝑥′ sin𝜃2) sin𝜃2𝛿𝑥
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Therefore
𝑄𝑥 = −𝑐2𝑥′ sin2 𝜃2

Hence

𝑑
𝑑𝑡�

𝜕Φ
𝜕𝑥′ �

−
𝜕Φ
𝜕𝑥

= −𝑐2𝑥′ sin2 𝜃2

𝑑
𝑑𝑡
(𝑚2𝑥′) − �−𝑘2𝑥 sin2 𝜃2 + 2𝑘2𝐿𝛼 sin𝜃2 − 𝑚2𝑔 sin𝜃2� = −𝑐2𝑥′ sin2 𝜃2

𝑚2𝑥′′ + 𝑐2𝑥′ sin2 𝜃2 + 𝑘2𝑥 sin2 𝜃2 − 2𝑘2𝐿𝛼 sin𝜃2 = −𝑚2𝑔 sin𝜃2

EOM for 𝛼 is
𝑑
𝑑𝑡�

𝜕Φ
𝜕𝛼′ �

−
𝜕Φ
𝜕𝛼

= 𝑄𝛼

where 𝑄𝛼 is the generalized for for the 𝛼 coordinate. To find 𝑄𝛼 we make virtual dis-
placement 𝛿𝛼 while fixing all other coordinates and obtain virtual work done by non-
conservative forces. We see that the work is

𝛿𝑊 = −𝑐(𝐿𝛼′)
𝐿
2
𝛿𝛼 + (𝐹 sin𝜃1)𝐿𝛿𝛼

= �𝐹𝐿 sin𝜃1 −
𝑐𝐿2

2
𝛼′�𝛿𝛼

Hence
𝑄𝛼 = 𝐹𝐿 sin𝜃1 −

𝑐𝐿2

2
𝛼′

Therefore

𝑑
𝑑𝑡�

𝜕Φ
𝜕𝛼′ �

−
𝜕Φ
𝜕𝛼

= 𝐹𝐿 sin𝜃1 −
𝑐𝐿2

2
𝛼′

𝑑
𝑑𝑡�

1
12
𝑚1𝐿2𝛼′� − �−𝑘1

𝐿2

4
𝛼 − 𝑘2𝐿2𝛼 + 2𝐿𝑥 sin𝜃2 − 𝑚1𝑔

𝐿
2
cos𝛼� = 𝐹𝐿 sin𝜃1 −

𝑐𝐿2

2
𝛼′

1
12
𝑚1𝐿2𝛼′′ + 𝑘1

𝐿2

4
𝛼 + 𝑘2𝐿2𝛼 − 2𝑘2𝐿𝑥 sin𝜃2 + 𝑚1𝑔

𝐿
2
cos𝛼 = 𝐹𝐿 sin𝜃1 −

𝑐𝐿2

2
𝛼′

1
12
𝑚1𝐿2𝛼′′ +

𝑐𝐿2

2
𝛼′ + �𝑘1

𝐿2

4
+ 𝑘2𝐿2�𝛼 − 2𝑘2𝐿𝑥 sin𝜃2 = 𝐹𝐿 sin𝜃1 − 𝑚1𝑔

𝐿
2
cos𝛼

Hence the 2 EOM are

𝑚2𝑥′′ + 𝑐2𝑥′ sin2 𝜃2 + 𝑘2𝑥 sin2 𝜃2 − 2𝑘2𝐿𝛼 sin𝜃2 = −𝑚2𝑔 sin𝜃2
1
12
𝑚1𝐿2𝛼′′ +

𝑐𝐿2

2
𝛼′ + �𝑘1

𝐿2

4
+ 𝑘2𝐿2�𝛼 − 2𝑘2𝐿𝑥 sin𝜃2 = 𝐹𝐿 sin𝜃1 − 𝑚1𝑔

𝐿
2
cos𝛼
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Linearize around static equilibrium, 𝛼 = 0, 𝑥 = 0 then we obtain

𝑚2𝑥′′ + 𝑐2𝑥′ sin2 𝜃2 + 𝑘2𝑥 sin2 𝜃2 − 2𝑘2𝐿𝛼 sin𝜃2 = −𝑚2𝑔 sin𝜃2
1
12
𝑚1𝐿2𝛼′′ +

𝑐𝐿2

2
𝛼′ + �𝑘1

𝐿2

4
+ 𝑘2𝐿2�𝛼 − 2𝑘2𝐿𝑥 sin𝜃2 = 𝐹𝐿 sin𝜃1 − 𝑚1𝑔

𝐿
2

In Matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
12𝑚1𝐿2 0

0 𝑚2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝛼′′

𝑥′′

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝐿2

2 0

0 𝑐2 sin2 𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝛼′

𝑥′

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1
𝐿2

4 + 𝑘2𝐿
2 −2𝑘2𝐿 sin𝜃2

−2𝑘2𝐿 sin𝜃2 𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝛼
𝑥

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝐹𝐿 sin𝜃1 − 𝑚1𝑔

𝐿
2

−𝑚2𝑔 sin𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

I think the weight contributions should be zero. So I need to look more into this, but I
think the OEM should be as follows
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
12𝑚1𝐿2 0

0 𝑚2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝛼′′

𝑥′′

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝐿2

2 0

0 𝑐2 sin2 𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝛼′

𝑥′

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1
𝐿2

4 + 𝑘2𝐿
2 −2𝑘2𝐿 sin𝜃2

−2𝑘2𝐿 sin𝜃2 𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝛼
𝑥

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
𝐹𝐿 sin𝜃1

0

⎞
⎟⎟⎟⎟⎟⎠

4.4.4 Part b

Checking the Damping matrix units. First row of 𝐶

⎛
⎜⎜⎜⎜⎜⎝
𝛼′

𝑥′

⎞
⎟⎟⎟⎟⎟⎠ should give units of torque.

looking at 𝑐𝐿2

2 𝛼
′ . viscous damping coefficient 𝑐 has units of 𝑁𝑇

𝐿 , hence the units of the

expression 𝑐𝐿2

2 𝛼
′ are𝑁𝑇

𝐿
(𝐿)2 1𝑇 = 𝑁𝐿, in other words, a torque. (in here, 𝐿 stands for length

units, 𝑇 stands for time units and 𝑁 stands for force units). Now to verify the second row
of 𝐶. We see it is 𝑐2 sin2 𝜃2𝑥′ which has units of force (given in the problem). Since the
second must have units of force, this is verified.

Now checking the stiffness matrix units. First row of 𝐾

⎛
⎜⎜⎜⎜⎜⎝
𝛼
𝑥

⎞
⎟⎟⎟⎟⎟⎠ should have units of torque.

But �𝑘1
𝐿2

4 + 𝑘2𝐿
2�𝛼 has units of torque since 𝑘 has units of force per unit length. and

2𝑘2𝐿 sin𝜃2𝑥 has units of torque also (note 𝛼 has no units as it is an angle).

For the second row of 𝐾, it should have units of force, which it does, since 𝑘2𝑥 has units
of force and −2𝑘2𝐿 sin𝜃2𝛼 has units of force. Hence verified.

Check signs on the 𝑥 EOM:

𝑚2𝑥′′ + 𝑐2𝑥′ sin2 𝜃2 + 𝑘2𝑥 sin2 𝜃2 − 2𝑘2𝐿𝛼 sin𝜃2 = 0
𝑚2𝑥′′ + 𝑐2𝑥′ sin2 𝜃2 + 𝑘2𝑥 sin2 𝜃2 = 2𝑘2𝐿𝛼 sin𝜃2
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𝑥′′ > 0, 𝑥′ > 0, 𝑥 > 0 then 𝛼 > 0,checks OK, since when 𝑥 > 0 then the top bar will be
rotating in the positive direction and 𝛼 > 0, i.e. the top bar will be above the horizontal.

Check signs on the 𝛼 EOM:

1
12
𝑚1𝐿2𝛼′′ +

𝑐𝐿2

2
𝛼′ + �𝑘1

𝐿2

4
+ 𝑘2𝐿2�𝛼 − 2𝑘2𝐿𝑥 sin𝜃2 = 𝐹𝐿 sin𝜃1

1
12
𝑚1𝐿2𝛼′′ +

𝑐𝐿2

2
𝛼′ + �𝑘1

𝐿2

4
+ 𝑘2𝐿2�𝛼 = 𝐹𝐿 sin𝜃1 + 2𝑘2𝐿𝑥 sin𝜃2

𝛼′′ > 0, 𝛼′ > 0, 𝛼 > 0 then 𝑥 > 0,checks OK, since when 𝛼 > 0 then the top bar will be
rotating in the positive direction and 𝑥 > 0, means the lower mass𝑚2 is moving upwards.
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4.4.5 Problem 3

We solve this in modal coordinates so to de-couple the EOM’s. First find the 2 natural
frequencies

�𝑘

⎛
⎜⎜⎜⎜⎜⎝
1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎠ − 𝜔

2𝑚

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎟⎠� = 0

�

⎛
⎜⎜⎜⎜⎜⎝
1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎠ − 𝜔

2𝑚
𝑘

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎟⎠� = 0

Let 𝜔2 𝑚
𝑘 = 𝜂

2 then

�

⎛
⎜⎜⎜⎜⎜⎝
1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎠ − 𝜂

2

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎟⎠� = 0

�
�

⎛
⎜⎜⎜⎜⎜⎜⎝
1 − 𝜂2 −1

−1 1 − 2𝜂

⎞
⎟⎟⎟⎟⎟⎟⎠
�
�
= 0

�1 − 𝜂2��1 − 2𝜂2� − 1 = 0
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Hence taking positive roots 𝜂 = 1.2247, 𝜂 = 0 . When 𝜂 = 0

⎛
⎜⎜⎜⎜⎜⎜⎝
1 − 𝜂2 −1

−1 1 − 2𝜂2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
𝜑11

𝜑12

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎛
⎜⎜⎜⎜⎜⎝
1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
1
𝜑12

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Hence 1 − 𝜑12 = 0 or 𝜑12 = 1, therefore 𝜑1 =

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭

When 𝜂 = 1.2247
⎛
⎜⎜⎜⎜⎜⎜⎝
1 − 𝜂2 −1

−1 1 − 2𝜂2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
𝜑12

𝜑22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎛
⎜⎜⎜⎜⎜⎝
−0.5 −1
−1 −2

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
1
𝜑22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Hence −0.5 − 𝜑22 = 0 or 𝜑22 = −0.5, therefore 𝜑2 =

⎧⎪⎪⎨
⎪⎪⎩
1

−0.5

⎫⎪⎪⎬
⎪⎪⎭
. Now do mass normalization

𝜇1 = �𝜑�
𝑇

1
[𝑀]�𝜑�

1

=

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎛
⎜⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭

= 3

and

𝜇2 = �𝜑�
𝑇

2
[𝑀]�𝜑�

2

=

⎧⎪⎪⎨
⎪⎪⎩
1

−0.5

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎛
⎜⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
1

−0.5

⎫⎪⎪⎬
⎪⎪⎭

= 1.5
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Hence

{Φ}1 =
�𝜑�

1

√𝜇1
=

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭

√3
=

⎧⎪⎪⎨
⎪⎪⎩
0.57735
0.57735

⎫⎪⎪⎬
⎪⎪⎭

{Φ}2 =
�𝜑�

2

√𝜇2
=

⎧⎪⎪⎨
⎪⎪⎩
1

−0.5

⎫⎪⎪⎬
⎪⎪⎭

√1.5
=

⎧⎪⎪⎨
⎪⎪⎩
0.81650
−0.40825

⎫⎪⎪⎬
⎪⎪⎭

Hence

[Φ] =

⎛
⎜⎜⎜⎜⎜⎝
0.57735 0.81650
0.57735 −0.40825

⎞
⎟⎟⎟⎟⎟⎠

Then the modal EOM are
[Φ]𝑇[𝑀][Φ] + [Φ]𝑇[𝐾][Φ] = [Φ]𝑇{𝐹}

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
�̈�1
�̈�2

⎫⎪⎪⎬
⎪⎪⎭
+

⎛
⎜⎜⎜⎜⎜⎜⎝
𝜂21 0

0 𝜂22

⎞
⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
=

⎛
⎜⎜⎜⎜⎜⎝
0.57735 0.57735
0.81650 −0.40825

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

0
𝐹0𝛿(𝑡)

⎫⎪⎪⎬
⎪⎪⎭

⎛
⎜⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
�̈�1
�̈�2

⎫⎪⎪⎬
⎪⎪⎭
+

⎛
⎜⎜⎜⎜⎜⎝
0 0
0 1.5

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.57735𝐹0𝛿(𝑡)

−0.40825𝐹0𝛿(𝑡)

⎫⎪⎪⎬
⎪⎪⎭

For the first mass, EOM is
�̈�1 = 0.57735𝐹0𝛿(𝑡)

�̇�1 = �
𝑡

0
0.57735𝐹0𝛿(𝑡)𝑑𝑡 + 𝐶1

= 0.57735𝐹0�ℎ(𝑡) −
1
2�
+ 𝐶1

𝜂1(𝑡) = �
𝑡

0
�0.57735𝐹0�ℎ(𝑡) −

1
2�
+ 𝐶1�𝑑𝑡 + 𝐶2

= 0.57735𝐹0𝑡�ℎ(𝑡) −
1
2�
+ 𝑡𝐶1 + 𝐶2

Now initial conditions are zero since

⎧⎪⎪⎨
⎪⎪⎩
𝑥1(0)

𝑥2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
and also

⎧⎪⎪⎨
⎪⎪⎩
𝑥′1(0)

𝑥′2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
then

⎧⎪⎪⎨
⎪⎪⎩
𝜂1(0)

𝜂2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
and also

⎧⎪⎪⎨
⎪⎪⎩
�̇�1(0)

�̇�2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
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Initial conditions 𝜂1(0) = 0 implies
𝐶2 = 0

while and �̇�1(0) = 0 implies

𝐶1 = −0.57735𝐹0�ℎ(𝑡) −
1
2�

Hence the solution is

𝜂1(𝑡) = 0.57735𝐹0𝑡�ℎ(𝑡) −
1
2�
+ 𝑡𝐶1 + 𝐶2

= 0.57735𝐹0𝑡�ℎ(𝑡) −
1
2�
− 0.57735𝐹0�ℎ(𝑡) −

1
2�

= 0.57735𝐹0�ℎ(𝑡) −
1
2�
(𝑡 − 1)

Now the second EOM is solved.

�̈�2 + 1.5𝜂2 = −0.40825𝐹0𝛿(𝑡)

Which has solution (using appendix B) and using𝑀 = 1 and 𝜔𝐷 = 𝜔𝑛 = √1.5 = 1.2247
since 𝜁 = 0, hence

𝜂2(𝑡) =
−0.40825𝐹0
1.2247

sin(1.2247𝑡)

Now to obtain the solution in normal coordinates
⎧⎪⎪⎨
⎪⎪⎩
𝑥1(𝑡)

𝑥2(𝑡)

⎫⎪⎪⎬
⎪⎪⎭
= [Φ]

⎧⎪⎪⎨
⎪⎪⎩
𝜂1(𝑡)

𝜂2(𝑡)

⎫⎪⎪⎬
⎪⎪⎭

Then

⎧⎪⎪⎨
⎪⎪⎩
𝑥1(𝑡)

𝑥2(𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎛
⎜⎜⎜⎜⎜⎝
0.57735 0.81650
0.57735 −0.40825

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.57735𝐹0�ℎ(𝑡) −
1
2
�(𝑡 − 1)

−0.40825𝐹0
1.2247 sin(1.2247𝑡)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

So

𝑥1(𝑡) = 0.57735�0.57735𝐹0�ℎ(𝑡) −
1
2�
(𝑡 − 1)� − 0.81650�

0.40825𝐹0
1.2247

sin(1.225𝑡)�

𝑥2(𝑡) = 0.57735�0.57735𝐹0�ℎ(𝑡) −
1
2�
(𝑡 − 1)� + 0.40825�

0.40825𝐹0
1.2247

sin(1.225𝑡)�
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For example, if 𝐹0 = 1 then

𝑥1(𝑡) = 0.57735�0.57735�ℎ(𝑡) −
1
2�
(𝑡 − 1)� − 0.81650�

0.40825
1.2247

sin(1.2247𝑡)�

𝑥2(𝑡) = 0.57735�0.57735�ℎ(𝑡) −
1
2�
(𝑡 − 1)� + 0.40825�

0.40825
1.2247

sin(1.2247𝑡)�

Here is a plot of the solution 𝑥1(𝑡) and 𝑥2(𝑡). The 2 masses move to the right after the
impulse, while in sinusoidal motion at the same frequency, but different amplitudes.
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4.5 finals 2nd practice exam

4.5.1 questions

Name: _____________________________ 

Page 1 of 9 

EMA 545 – Final Exam - Prof. M. S. Allen 
Spring 2011 

 
 

Honor Pledge:  On my honor, I pledge that this exam represents my own work, and that I have 
neither given nor received inappropriate aid in the preparation of this exam. 
 
 

_____________________________________ 
Signature      

 
 
 
 
 

Problem 1 (20) ___________________ 

Problem 2 (20) ___________________ 

Problem 3 (30) ___________________ 

Problem 4 (10) ___________________ 

Problem 5 (10) ___________________ 

Problem 6 (10) ___________________ 

Total (100)  ___________________ 
 

 
 
 

You are allowed one sheet of notes for this exam, front and back.  Staple your note sheet 
to the back of your exam when you turn it in.  Calculators are allowed, but you must show all of 
your work to receive credit. 
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Appendix B from Ginsberg, Mechanical & Structural Vibration, Wiley, 2001: (corrected) 
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Name: _____________________________ 

Page 3 of 9 

Problem #1 (20 pts) 
Two rigid beams are pinned at their ends and arranged as shown below with a stiff spring 

connecting their tips.  Gravity acts in the direction indicated.  The position shown corresponds to 
the static equilibrium position.  The masses of the two beams are m1 and m2 and they both have 
the same length, L.  They are separated by a distance h.  A dynamic force is applied to the tip of 
the right beam as shown.  The moment of inertia of a bar is Ig=(1/12)mL2 about its center and 
Iend= (1/3)mL2 about its end. 

Find the linearized equation(s) of motion for this system and check that your equation(s) 
are physically reasonable. 
   

 

m
1

m
2

gravity F

h

L
k
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Name: _____________________________ 

Page 5 of 9 

Problem #2 (20 pts) 
The impact of a tennis ball with a racquet can be modeled using the two degree-of-freedom 
system shown below to represent the ball (the masses are only permitted to move in the 
horizontal direction).  A ball is initially traveling to the right at speed v0, (i.e. with 1 2 0x x v   ) 

when it strikes a racquet.  Suppose that the impact force is known and is modeled as a square 
pulse whose duration is T.  Damping is negligible. 
 

k

x
2

f(t)m

x
1

T

F
0

f(t)

t

2m

 
The equations of motion of this system are: 

1 1

2 2

2 0 0

0 ( )

x xm k k

x xm k k f t

        
                  


  

 
a.) (10 pts)  Find the natural frequencies and mass-normalized mode shapes of the system. 
b.) (10 pts)  Find two uncoupled, second-order differential equations that could be solved to 

find the response of the tennis ball.  Be sure to substitute all known quantities into each of 
the equations. 

c.) (3 pts extra credit)  Use the result from (b) to sketch the response of the first mass, x1(t), 
qualitatively for t > T, explaining any important features. 
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Name: _____________________________ 
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Problem #3 (30 pts) 
The system below is a simplified model of an aircraft with an engine mounted on its tail. 

 

m
1

x
1

k
1

m
2

k
2 k

2

f(t)

x
2

 
 
The equations of motion for certain values of the k1, m1, etc…, are known except for the mass 
matrix, 

11 12 1 1 1

12 22 2 2 2

0.04 0 100 100 ( )

0 0.05 100 200 0

M M x x x f t

M M x x x

            
                          

 
   

 
so M11, M12 and M22 are unknown constants.  The mass normalized modes are also known and 
are: 

   1 2

0.85 1.1

0.65 0.5

   
         

 

 
The second natural frequency is 2= 16.9 rad/s.  Suppose the system is initially at rest when the 
engine starts exerting a force ( ) cos( ) ( )f t A t h t  where h(t) is the unit step function. 

a.) (10 pts)  What is the first natural frequency 1? 
b.) (10 pts)  How long will it take for the system’s response to settle to within approximately 

1% of its steady state value?  (Think carefully about what is being asked here and only 
answer the question that was asked.) 

c.) (10 pts)  Find an expression for the steady state response of the first mass x1(t) in terms of 
the forcing frequency . 
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Problem #4 (10 pts) 
The system shown consists of a beam with a large mass mounted one fourth of the 

distance from its end.  This can be represented with the undamped spring-mass system shown to 
the right, with k=85EI/L3.  The system is initially in its static equilibrium position when a step 
force, f(t)=F0h(t), is applied to the mass. 

 

m

4

L f(t)

L

m

f(t)

T

F
0

f(t)

t
x

1
x

1 k

 
The following information is available from a static analysis of the beam.  When a static 

load, F, is applied to a beam, the maximum bending stress occurs in the outer fiber of the beam is 
given by max=-Mmaxc/I, where Mmax is the maximum bending moment in the beam, c is the 
(known) distance to the outer fiber and I is the area moment of inertia (also known).  See the 
figure below for additional details regarding a static loading scenario. 
 

 
 

What is the amplitude of the load, F0, that causes the beam to exceed its yield stress, y? 
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Problem #5 (10 pts) 

A single degree-of-freedom system’s response is given by  i( ) Re tx t Xe  , with X=ei2/3.  

Sketch the complex amplitude, X, in the complex plane and sketch the corresponding time 
function x(t) over at least one cycle. 
 
 
 
 
 
 
 
 
Problem #6 (10 pts) 

A three degree-of-freedom system is excited by a sinusoidal force, f(t)=cos(t). 

           ( )M x C x K x F f t     

The frequency response was computed using           12X M i C K F 


     and |X1| 

from that calculation is plotted below. 
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Suppose that the input, f(t), is replaced with a periodic function that can be expressed as follows, 

1
1 100

( )
2

in t

n

n
f t e

n






   
 

  

with 1 = 3.0 rad/s.  What frequencies would be present in the steady-state response x1(t)?  
Which of those would be dominant (i.e. have the largest amplitude)? 
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4.5.2 Problem 1

This is a 2 D.O.F. system. The degrees of freedom are 𝜃1 and 𝜃2 shown above in the
positive sense. The method of power balance is used to obtain the EOM.

The system kinetic energy is 𝑇 = 1
2𝑚1

𝐿2

3
�𝜃′1�

2
+ 1

2𝑚1
𝐿2

3
�𝜃′2�

2
, hence by comparing term to

the quadratic form, the mass matrix part of the EOM is obtained

𝐿2

3

⎡
⎢⎢⎢⎢⎢⎣
𝑚1 0

0 𝑚2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃′′1
𝜃′′2

⎫⎪⎪⎬
⎪⎪⎭

To find spring stiffness, the spring deformation is found using stiff spring approximation.

Δ′ = (𝑉𝐵 − 𝑉𝐴) ⋅ 𝑒𝐵/𝐴
= �𝐿𝜃′2i−𝐿𝜃′1j� ⋅ �cos 𝛽i − sin 𝛽j�

Where 𝑒𝐵/𝐴 is unit vector oriented to B from A and tan 𝛽 = 𝐿
ℎ . The above becomes

Δ′ = 𝐿𝜃′2 cos 𝛽+𝐿𝜃′1 sin 𝛽

Hence, integrating, squaring and collecting terms gives

Δ = 𝐿𝜃2 cos 𝛽+𝐿𝜃1 sin 𝛽
Δ2 = 𝐿2𝜃22 cos2 𝛽 + 𝐿2𝜃21 sin2 𝛽 + 2𝐿2𝜃1𝜃2 sin 𝛽 cos 𝛽
= 𝜃21�𝐿2 sin2 𝛽� + 𝜃22�𝐿2 cos2 𝛽� + 𝜃1𝜃2�2𝐿2 sin 𝛽 cos 𝛽�
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Using the quadratic form of the power balance method, the spring stiffness matrix part of
the EOM is found from 𝑉𝑠𝑝𝑟𝑖𝑛𝑔 =

1
2𝑘�Δ

2� and by comparing quadratic terms, which leads
to

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝐿2
⎡
⎢⎢⎢⎢⎢⎢⎣

sin2 𝛽 2 sin 𝛽 cos 𝛽

2 sin 𝛽 cos 𝛽 cos2 𝛽

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃1
𝜃2

⎫⎪⎪⎬
⎪⎪⎭

But sin 𝛽 cos 𝛽 = 1
2
�sin 2𝛽� hence

𝑉𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝐿2
⎡
⎢⎢⎢⎢⎢⎢⎣
sin2 𝛽 sin 2𝛽

sin 2𝛽 cos2 𝛽

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃1
𝜃2

⎫⎪⎪⎬
⎪⎪⎭

Stiffness due to gravity 𝑉𝑔 is now found. Let datum for zero potential energy be at the
horizontal level of the top bar, hence 𝑉𝑔 = 𝑚1𝑔

𝐿
2 sin𝜃1 −𝑚2𝑔

𝐿
2 cos𝜃2. Since the derivatives

are evaluated at static equilibrium 𝜃1 = 0 and 𝜃2 = 0, the only term that remains is 𝑚2𝑔
𝐿
2

which is now added to the 𝑘22 term of the stiffness matrix. 𝐹𝐿 is the generalized force for
𝜃2 since work done by 𝐹 in making virtual 𝛿𝜃2 is 𝐹𝐿𝛿𝜃2. Therefore, the EOM becomes

𝐿2

3

⎡
⎢⎢⎢⎢⎢⎣
𝑚1 0

0 𝑚2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃′′1
𝜃′′2

⎫⎪⎪⎬
⎪⎪⎭
+ 𝑘𝐿2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin2 𝛽 sin 2𝛽

sin 2𝛽 cos2 𝛽 + 𝑚2𝑔
𝐿
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜃1
𝜃2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
𝐹𝐿

⎫⎪⎪⎬
⎪⎪⎭

To check units of the above EOM, looking at the first EOM from above

𝐿2

3
𝑚1𝜃′′1 + 𝑘𝐿2�sin2 𝛽�𝜃1 + 𝑘𝐿2�sin 2𝛽�𝜃2 = 0

Let 𝜃1 = 0. Hence 𝐿2

3 𝑚1𝜃′′1 = −𝑘𝐿2�sin 2𝛽�𝜃2. Assume 𝜃2 ≥ 0 and the system is now
released to move. We should expect the top bar to accelerate down (negative), since the
spring is stretched. Looking at the above, we see that 𝜃′′1 ≤ 0. hence this is correct.

Now let 𝜃2 = 0. Hence 𝐿2

3 𝑚1𝜃′′1 = −𝑘𝐿2�sin2 𝛽�𝜃1. Assume 𝜃1 ≥ 0 and the system is now
released to move. We should expect the top bar to accelerate down (negative) since the
spring was stretched. Looking at the above, we see that 𝜃′′1 ≤ 0. This is correct.

Checking the second EOM

𝐿2

3
𝑚2𝜃′′2 + 𝑘𝐿2�sin 2𝛽�𝜃1 + 𝑘𝐿2�cos2 𝛽�𝜃2 = 𝐹𝐿 − 𝑚2𝑔

𝐿
2
𝜃2

Let 𝜃1 = 0 and 𝐹 = 0 then

𝐿2

3
𝑚2𝜃′′2 = −𝑚2𝑔

𝐿
2
𝜃2 − 𝐿2�cos2 𝛽�𝜃2
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Assume 𝜃2 ≥ 0 and the system is now released to move. We would expect the right bar to
accelerate back (negative) when released to move. From the equation we see that 𝜃′′2 ≤ 0.
This is correct.

Now let 𝜃2 = 0 and 𝐹 = 0 then

𝐿2

3
𝑚2𝜃′′2 = −𝑘𝐿2�sin 2𝛽�𝜃1

Assume 𝜃1 ≤ 0 and the system is now released to move. We would expect the bar to
accelerate to the right (positive) since the spring was compressed. From the equation we
see that 𝜃′′2 > 0. This is correct.

4.5.3 Problem 2
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4.5.3.1 part(a)

det�[𝑘] − 𝜔2[𝑚]� = 0

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
𝑘 −𝑘
−𝑘 𝑘

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔

2

⎡
⎢⎢⎢⎢⎢⎣
2𝑚 0
0 𝑚

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 0

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
1 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔

2𝑚
𝑘

⎡
⎢⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 0

For normalization, let 𝑡′ = 𝜔𝑡 then 𝑑𝑡′

𝑑𝑡 = 𝜔 and using 𝑡′ instead of 𝑡 as the independent
variable the above becomes

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
1 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ − 𝜔

2

⎡
⎢⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 0

det

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
1 − 2𝜔2 −1

−1 1 − 𝜔2

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 0

�1 − 2𝜔2��1 − 𝜔2� − 1 = 0

The roots are 𝜔 = 0 and 𝜔 = �
3
2 . When 𝜔 = 0 it is a rigid body motion, So any 𝜑 will do.

Let 𝜑1 =

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭
. When 𝜔 = �

3
2 then

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
1 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ −

3
2

⎡
⎢⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
𝜑12

𝜑22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1

−1 −1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜑12

𝜑22

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

let 𝜑12 = 1 then −2 − 𝜑22 = 0 or 𝜑22 = −2 hence 𝜑2 =

⎧⎪⎪⎨
⎪⎪⎩
1
−2

⎫⎪⎪⎬
⎪⎪⎭
.

𝜇1 = 𝜑𝑇
1 [𝑀]𝜑1 =

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭
= 3

𝜇2 = 𝜑𝑇
2 [𝑀]𝜑2 =

⎧⎪⎪⎨
⎪⎪⎩
1
−2

⎫⎪⎪⎬
⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
1
−2

⎫⎪⎪⎬
⎪⎪⎭
= 6
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Hence

Φ1 =
𝜑1

√𝜇1
=

1

√3

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.57735
0.57735

⎫⎪⎪⎬
⎪⎪⎭

Φ2 =
𝜑2

√𝜇2
=

1

√6

⎧⎪⎪⎨
⎪⎪⎩
1
−2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.40825
−0.81650

⎫⎪⎪⎬
⎪⎪⎭

4.5.3.2 part(b)

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

√3
1

√6

1

√3
− 2

√6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The EOM is

⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′′1
𝜂′′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
= Φ𝑇

⎧⎪⎪⎨
⎪⎪⎩

0
−𝑓(𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

√3
1

√6

1

√3
− 2

√6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇
⎧⎪⎪⎨
⎪⎪⎩

0
−𝑓(𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
3√3𝑓(𝑡)

1
3√6𝑓(𝑡)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

initial conditions are

⎧⎪⎪⎨
⎪⎪⎩
𝜂1(0)

𝜂2(0)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
and

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1(0)

𝜂′2(0)

⎫⎪⎪⎬
⎪⎪⎭
= Φ𝑇[𝑀]

⎧⎪⎪⎨
⎪⎪⎩
𝑣0
𝑣0

⎫⎪⎪⎬
⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

√3
1

√6

1

√3
− 2

√6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇
⎡
⎢⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑣0
𝑣0

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
√3 𝑣0
0

⎫⎪⎪⎬
⎪⎪⎭

Therefore, the first ODE is

𝜂′′1 = −
1
3√

3𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇))

with IC 𝜂1(0) = 0 and 𝜂′1(0) = √3 𝑣0. The second ODE is

𝜂′′2 +
3
2
𝜂2 =

1
3√

6𝐹0(ℎ(𝑡) − ℎ(𝑡 − 𝑇))

with IC 𝜂1(0) = 0 and 𝜂′1(0) = 0
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4.5.3.3 part(c)

𝑥1(𝑡) = Φ11𝜂1(𝑡) + Φ12𝜂2(𝑡)

=
1

√3
𝜂1(𝑡) +

1

√6
𝜂2(𝑡)

Therefore, 𝑥1(𝑡) solution has contribution from 𝜂1(𝑡) and 𝜂2(𝑡). But 𝜂1(𝑡) is linear with
positive slope of 𝜈0 and 𝜂2(𝑡) is a sinusoidal, with no damping. So adding both together,
here is a sketch of possible solution

1t
2t

x 1t

t
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4.5.4 Problem 3
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4.5.4.1 part(a)

Φ𝑇[𝐾]Φ𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎣
𝜔2
1 0

0 𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
100 −100
−100 200

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
𝜔2
1 0

0 𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
46.25 −0.5
−0.5 281.0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
𝜔2
1 0

0 𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence 𝜔2
1 = 46.25 or 𝜔1 = 6.8 rad/sec

4.5.4.2 part(b)

Using the first natural frequency, since this has the longest time constant 𝜏 = 1
𝜁1𝜔1

and
solving for the number of periods using logarithmic decrement method

1
𝑁

ln�
𝑦1
𝑦𝑁
� = 2𝜋𝜁1 (1)

𝜁1 is not known but can be found by evaluating Φ𝑇[𝐶]Φ𝑇

Φ𝑇[𝐾]Φ𝑇 =

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
0.04 0
0 0.05

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0.05 0.021
0.021 0.061

⎤
⎥⎥⎥⎥⎥⎦

and assuming small damping approximation, then 2𝜁1𝜔1 = 0.05. Hence 𝜁1 =
0.05
2𝜔1

=
0.05
2(6.8) = 0.0038. Now that the critical damping ratio for the first mode is found, we can use
the method of logarithmic decrement to find how many periods it takes to attenuate by
99%

Let 𝑦1
𝑦𝑁
= 1

0.01 = 100 then Eq (1) becomes

1
𝑁

ln(100) = 2𝜋(0.0038)

𝑁 =
(4.605)

2𝜋(0.0038)
= 192.87

= 193
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Where 𝑁 is the number or periods needed. But 𝑇 = 2𝜋
𝜔1

,hence the time needed is

𝑡 = 𝑁𝑇 = 192𝑇 = 192
2𝜋
𝜔1

= 192
2𝜋
6.8

= 177.41 sec

So it takes 178 seconds for the first modal (decoupled) solution to attenuate in amplitude
by 99%. Since this is the dominant time constant, we expect the physical solution to
attenuate in approximately the same amount of time as well.

4.5.4.3 part(c)

The EOM is, in modal coordinates
⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′′1
𝜂′′2

⎫⎪⎪⎬
⎪⎪⎭
+ Φ𝑇

⎡
⎢⎢⎢⎢⎢⎣
0.04 0
0 0.05

⎤
⎥⎥⎥⎥⎥⎦Φ

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1
𝜂′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎣
𝜔2
1 0

0 𝜔2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
= Φ𝑇

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re�𝐴𝑒𝑖𝜛𝑡�

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

But

Φ𝑇

⎡
⎢⎢⎢⎢⎢⎣
0.04 0
0 0.05

⎤
⎥⎥⎥⎥⎥⎦Φ =

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎡⎢⎢⎢⎢⎢⎣
0.04 0
0 0.05

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0.05 0.021
0.021 0.061

⎤
⎥⎥⎥⎥⎥⎦

Hence EOM in modal coordinates become
⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′′1
𝜂′′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
0.05 0.021
0.021 0.061

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1
𝜂′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
6.82 0

0 16.92

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎣
0.85 1.1
0.65 −0.5

⎤
⎥⎥⎥⎥⎥⎦

𝑇⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re�𝐴𝑒𝑖𝜛𝑡�

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and using small damping approximation
⎡
⎢⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′′1
𝜂′′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
0.05 0
0 0.061

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂′1
𝜂′2

⎫⎪⎪⎬
⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎣
6.82 0

0 16.92

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝜂1
𝜂2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.85Re�𝐴𝑒𝑖𝑡𝜛�

1.1Re�𝐴𝑒𝑖𝑡𝜛�

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Hence the 2 EOM’s are

𝜂′′1 + 0.05𝜂′1 + 46.24𝜂1 = Re�0.85𝐴𝑒𝑖𝜛𝑡�

𝜂′′2 + 0.061𝜂′2 + 285.61𝜂2 = Re�1.1𝐴𝑒𝑖𝜛𝑡�

Let 𝜂1 = Re�𝑋1𝑒𝑖𝑡𝜛� then𝑋1 =
0.85𝐴

−𝜛2+𝑖0.05𝜛+46.24and 𝜂2 = Re�𝑋2𝑒𝑖𝑡𝜛�then𝑋2 =
1.1𝐴

−𝜛2+𝑖0.0609𝜛+285. 61
then

x = Φ1𝜂1 + Φ2𝜂2⎧⎪⎪⎨
⎪⎪⎩
𝑥1(𝑡)

𝑥2(𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0.85
0.65

⎫⎪⎪⎬
⎪⎪⎭
Re�𝑋1𝑒𝑖𝜛𝑡� +

⎧⎪⎪⎨
⎪⎪⎩
1.1
−0.5

⎫⎪⎪⎬
⎪⎪⎭
Re�𝑋2𝑒𝑖𝜛𝑡�
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Hence

𝑥1(𝑡) = 0.85Re�𝑋1𝑒𝑖𝜛𝑡� + 1.1Re�𝑋2𝑒𝑖𝜛𝑡�

𝑥2(𝑡) = 0.65Re�𝑋1𝑒𝑖𝜛𝑡� − 0.5Re�𝑋2𝑒𝑖𝜛𝑡�

hence

𝑥1(𝑡) = 0.85Re�
0.85𝐴

−𝜛2 + 𝑖0.05𝜛 + 46.24
𝑒𝑖𝜛𝑡� + 1.1Re�

1.1𝐴
−𝜛2 + 𝑖0.061𝜛 + 285.61

𝑒𝑖𝜛𝑡�

𝑥2(𝑡) = 0.65Re�
0.85𝐴

−𝜛2 + 𝑖0.05𝜛 + 46.24
𝑒𝑖𝜛𝑡� − 0.5Re�

1.1𝐴
−𝜛2 + 𝑖0.061𝜛 + 285.61

𝑒𝑖𝜛𝑡�

These can be combined to

𝑥1(𝑡) = Re��
0.852𝐴

−𝜛2 + 𝑖0.05𝜛 + 46.24
+

1.12𝐴
−𝜛2 + 𝑖0.0609𝜛 + 285.61�

𝑒𝑖𝜛𝑡�

𝑥2(𝑡) = Re��
(0.65)(0.85)𝐴

−𝜛2 + 𝑖0.05𝜛 + 46.24
−

(0.5)(1.1)𝐴
−𝜛2 + 𝑖0.061𝜛 + 285.61�

𝑒𝑖𝜛𝑡�
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4.5.5 Problem 4

The transient response is given in appendix B as

𝑥(𝑡) =
𝐹0
𝑘
(1 − cos𝜔𝑛𝑡)ℎ(𝑡)

Hencemaximumamplitude of the response is 𝑢max =
2𝐹0
𝑘 .Compare this to static deflection

which is 𝑢𝑠𝑡𝑎𝑡𝑖𝑐 =
𝐹0
𝑘 then we can say that dynamic load is twice as large as the static load.
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Therefor using 2𝐹0 in place of 𝐹 in the expression for stress gives the result needed

𝜎𝑦 =
−𝑀𝑐
𝐼

=
−(2𝐹0)

𝐿
4
�3
4
�

𝐼/𝑐

= −
3
8
𝐿
𝑐
𝐼
𝐹0

Therefore
𝐹0 = −

8𝐼
3𝐿𝑐

𝜎𝑦

4.5.6 Problem 5

At 𝑡 = 0 then 𝑥(𝑡) = Re�𝑒𝑖
2𝜋
3 �which is − cos�600� = −1

2 . Using 𝜔 = 2𝜋 rad/sec then 𝑥(𝑡) can
be traced. Here is a plot

I=sqrt(-1);
w=2*pi;
x=@(t) real(exp(I*2*pi/3)*exp(I*w*t))
t=0:.01:1;
plot(t,x(t))
grid
xlabel('time (sec)'); ylabel('x(t)');
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4.5.7 Problem 6

Damped resonances are seen at 𝜔 = 8.5, 14 and 23 rad/sec. This is where 𝑟 = 𝜛
𝜔𝑖

is close
to unity, where 𝜛 is the forcing frequency and 𝜔𝑖 is the natural frequency. Since this is a
3 dof system, it will have 3 natural frequencies.

The response of each dof will take contributions from each mode of vibration. Each mode
vibrates at different natural frequency. From the plot above it is seen that the response of
𝑥1(𝑡) has the largest response when the forcing frequency is close to the 𝜔2 = 14 rad/sec.

The new force now has the following set of discrete harmonics in it: (𝑛 = 0 is not counted,
DC). 100

1 𝑒
3𝑡, 992 𝑒

6𝑡, 983 𝑒
9𝑡, 974 𝑒

12𝑡, 965 𝑒
15𝑡, 956 𝑒

18𝑡, 947 𝑒
21𝑡, 988 𝑒

24𝑡,⋯ or

𝑓(𝑡) = 100𝑒3𝑡, 49.5𝑒6𝑡, 32.7𝑒9𝑡, 24.3𝑒12𝑡, 19.2𝑒15𝑡, 15.8𝑒18𝑡, 13.4𝑒21𝑡, 12.3𝑒24𝑡

So the input force has only discrete frequencies. Since linear sum, each 𝑓𝑖(𝑡)will cause the
response |𝑋| at that specific forcing frequency as shown in the plot. Looking the plot it
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can be seen that when forcing frequency is 9 rad/sec, this will cause the largest |𝑋| among
all these set of discrete frequencies. Hence the dominant harmonic is 9 rad/sec and will
have amplitude around 2.4 from looking at the plot.
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5.1 Quiz 1
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5.2 Quiz 2

5.2.1 Problem description
Consider this 3 DOF system

Suppose a harmonic force 𝑓(𝑡) = 𝐴 cos(𝜛𝑡) is applied to the mass in the center. Usemodal
analysis to do the following:

1. Find the uncoupled modal equations of motion. Consider the steady state solution
for each of these equations. Sketch the modal amplitude (𝑋𝑗 in the book on page
275) for each mode versus frequency. A hand sketch is sufficient.

2. Use that result to sketch the frequency response of each of the masses, in other
words the complex amplitude 𝑌𝑛 versus 𝜔

5.2.2 Answer part (1)
A summary of the steps needed for full modal analysis is first given. In these steps, a
column vector is shown as bold letter Y and a matrix is shown as [𝑀]. In this summary,
the system is assumed to have 𝑛 degree of freedom.

The steps are

1. Determine the system of equations of motion and set up [𝑀]Y′′ + [𝐶]Y′ + [𝐾]Y = F
in matrix form.

2. Solve the eigenvalue problem det�[𝐾] − 𝜔2[𝑀]� = 0 in order to determine the 𝑛
natural frequencies.

3. For each natural frequency 𝜔𝑗 determine the corresponding 𝑗𝑡ℎ eigenvector 𝑗 by
solving �[𝐾] − 𝜔2

𝑗 [𝑀]�𝑗 = 0. In this step, the first component of 𝑗 is set to 1 and the
other components are solved relative to it.

4. Obtain the normalized eigenvectors Φ𝑗 for each 𝑗 using Φ𝑗 =
𝑗

√𝑢𝑗
where 𝑢𝑗 = 𝑇

𝑗 [𝑀]𝑗.
Each 𝑢𝑗 will be a scalar.

5. Set up the modal transformation matrix [Φ] = [Φ1Φ2⋯Φ𝑛]. This will be an 𝑛 × 𝑛
matrix.
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6. The transformation from normal solution 𝑦(𝑡) to modal 𝜂(𝑡) will be Y = [Φ] and
= [Φ]−1Y = [Φ]𝑇[𝑀]Y

7. Apply the above transformation on the original equations of motions in matrix
form to obtain the equations of motion in modal coordinates [Φ]𝑇[𝑀] [Φ]Y′′ +
[Φ]𝑇[𝐶][Φ]Y′+ [Φ]𝑇[𝐶][Φ]Y = [Φ]𝑇F. This becomes I′′(𝑡) + ��̃��′(𝑡) + ��̃��(𝑡) = [Φ]𝑇F
where I is the identity matrix, ��̃�� is a diagonal damping matrix obtained using
a method such as weak damping approximation and ��̃�� is diagonal matrix with
diagonal that contains the natural frequencies squared 𝜔2

𝑗 in each of entries.

8. For steady state solution in modal coordinates, the loading vector [Φ]𝑇F is assumed
to be Q = [Φ]𝑇F =Re�Q̂𝑒𝑖𝜛𝑡� where ̂Q is the complex amplitude of the loading
vector in modal coordinates. Therefore, the steady state solution is 𝑠𝑠(𝑡) = Re�X̂𝑒𝑖𝜛𝑡�

where X̂ is the complex amplitude of each modal response is �̂�𝑗=
𝑇
𝑗 F

−𝜛2+𝑖2𝜁𝑗𝜔𝑗𝜛+𝜔2
𝑗
. For

a system with no damping this simplifies to �̂�𝑗=
𝑇
𝑗 F

−𝜛2+𝜔2
𝑗
. In here, 𝑇𝑗 represents the

transpose of the 𝑗𝑡ℎ column of the modal transformationmatrix [Φ], or the transpose
of the 𝑗𝑡ℎ mass normalized eigenvector, and 𝜔𝑗 is the 𝑗𝑡ℎ natural frequency.

9. Now the steady state solution in modal coordinate is used to obtain the solution
in normal coordinates since Y = [Φ]. Therefore Y𝑠𝑠 = Re�X̂𝑒𝑖𝜛𝑡� = Re�[Φ]X̂𝑒𝑖𝜛𝑡� =

Re� ̂Y𝑒𝑖𝜛𝑡�. In component form Y𝑠𝑠 = Re
⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

𝑛
�
𝑗=1

𝑗�̂�𝑗

⎞
⎟⎟⎟⎟⎠𝑒

𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎠

The EOM are derived in the hand out given. The force 𝑓(𝑡) acting on the second mass is
now added, resulting in the following equations of motion for the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0
0 𝑚 0
0 0 𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑞′′1
𝑞′′2
𝑞′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘1 + 2𝑘2 −𝑘2
0 −𝑘2 𝑘1 + 𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑞1
𝑞2
𝑞3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
𝐴 cos(𝜛𝑡)

0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The first step is to obtain the natural frequencies of the system. This is done by solving the
eigenvalue problem det�[𝐾] − 𝜔2[𝑀]� = 0. The solutions are also given in handout. They
are 𝜔2

1 =
𝑘1
𝑚 , 𝜔

2
2 =

𝑘1+𝑘2
𝑚 , 𝜔2

3 =
𝑘1+3𝑘2

𝑚 . The non mass normalized eigenvectors associated
with these eigenvalues are found as

1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, 2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
0
−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, 3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
−2
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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The next step is to mass normalize the eigenvectors as follows

𝜇1 = 𝑇
1 [𝑀]1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0
0 𝑚 0
0 0 𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= 3𝑚

𝜇2 = 𝑇
2 [𝑀]2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
0
−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0
0 𝑚 0
0 0 𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
0
−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= 2𝑚

𝜇3 = 𝑇
3 [𝑀]3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
−2
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

𝑇⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0
0 𝑚 0
0 0 𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
−2
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= 6𝑚

Hence the mass normalized eigenvectors are

1 =
1

√𝜇1
=

1

√3𝑚

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2 =
2

√𝜇2
=

1

√2𝑚

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
0
−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3 =
3

√𝜇3
=

1

√6𝑚

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
−2
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Hence the modal transformation matrix [Φ] is

[Φ] = �123� =
1

√𝑚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

√3
1

√2
1

√6

1

√3
0 −2

√6

1

√3
−1

√2
1

√6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

√𝑚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.577 0.707 0.408
0.577 0 −0.816
0.577 −0.707 0.408

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The modal EOM’s are now found using the modal transformation matrix [Φ]

[Φ]𝑇[𝑀][Φ]�𝜂′′� + [Φ]𝑇[𝐾][Φ]�𝜂� = [Φ]𝑇Q
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔2
1 0 0

0 𝜔2
2 0

0 0 𝜔2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
= [Φ]𝑇

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
𝐴 cos(𝜛𝑡)

0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+
1
𝑚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1 0 0

0 𝑘1 + 𝑘2 0

0 0 𝑘1 + 3𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

1

√𝑚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.577 0.707 0.408
0.577 0 −0.816
0.577 −0.707 0.408

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
𝐴 cos(𝜛𝑡)

0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂′′1
𝜂′′2
𝜂′′3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
+
1
𝑚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1 0 0

0 𝑘1 + 𝑘2 0

0 0 𝑘1 + 3𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜂1
𝜂2
𝜂3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

1

√𝑚

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.577𝐴 cos(𝜛𝑡)

0
−0.816𝐴 cos(𝜛𝑡)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Therefore, the 3 uncoupled modal EOM’s are

𝜂′′1 (𝑡) +
𝑘1
𝑚
𝜂1(𝑡) =

0.577𝐴

√𝑚
cos(𝜛𝑡)

𝜂′′2 (𝑡) +
𝑘1 + 𝑘2
𝑚

𝜂2(𝑡) = 0

𝜂′′3 (𝑡) +
𝑘1 + 3𝑘2
𝑚

𝜂3(𝑡) = −
0.816𝐴

√𝑚
cos(𝜛𝑡)

To complete the solution, the above EOM are written as follows by using complex form
for the loading vector

𝜂′′1 (𝑡) +
𝑘1
𝑚
𝜂1(𝑡) = Re�

0.577𝐴

√𝑚
𝑒𝑖𝜛𝑡�

𝜂′′2 (𝑡) +
𝑘1 + 𝑘2
𝑚

𝜂2(𝑡) = 0

𝜂′′3 (𝑡) +
𝑘1 + 3𝑘2
𝑚

𝜂3(𝑡) = Re�
−0.816𝐴

√𝑚
𝑒𝑖𝜛𝑡�

Assuming the steady state solution is

= Re�X̂𝑒𝑖𝜛𝑡�
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or in expanded form

𝜂1(𝑡) = Re��̂�1𝑒𝑖𝜛𝑡�

𝜂2(𝑡) = Re��̂�2𝑒𝑖𝜛𝑡�

𝜂3(𝑡) = Re��̂�3𝑒𝑖𝜛𝑡�

Where

�̂�1 =

0.577𝐴

√𝑚

𝜔2
1 + 2𝑖𝜁1𝜔1𝜛 − 𝜛2

�̂�2 = 0

�̂�3 =

−0.816𝐴

√𝑚

𝜔2
3 + 2𝑖𝜁3𝜔3𝜛 − 𝜛2

Dividing the numerator and the denominator by 𝜔2
𝑖 where 𝑖 = 1, 2, 3 and using 𝑟𝑖 =

𝜛
𝜔𝑖

and letting 𝜁 = 0 since no damping exists, results in

�̂�1 =
𝐴√𝑚
𝑘1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
0.577

1 − 𝑚𝜛2

𝑘1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�̂�2 = 0

�̂�3 =
𝐴√𝑚
𝑘1 + 3𝑘2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−0.816

1 − 𝑚 𝜛2

𝑘1+3𝑘2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

To sketch these amplitudes, the equations are normalized. This is in effect the same as
setting 𝑚 = 1, 𝑘1 = 𝑘2 = 1,𝐴 = 1 resulting in

X̂ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�̂�1

�̂�2

�̂�3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.577
1−𝜛2

0

1
4

⎛
⎜⎜⎜⎜⎝
−0.816

1−𝜛2
4

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here is a plot of each 𝑋𝑖 vs 𝜛. The x-axis is the nondimensional forcing frequency Ω
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Since there is no damping, resonance will occur at Ω = 1 in first mode and at Ω = 2 for
mode 3.

5.2.3 Answer part (2)
The transformation from modal coordinates to normal coordinates is

q = [Φ]

In expanded form
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑞1
𝑞2
𝑞3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φ𝑇
1 �𝜂�

Φ𝑇
2 �𝜂�

Φ𝑇
3 �𝜂�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
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But [Φ] = 1

√𝑚

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.577 0.707 0.408
0.577 0 −0.816
0.577 −0.707 0.408

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and = Re�X̂𝑒𝑖𝜛𝑡� hence the above becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑞1
𝑞2
𝑞3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.577
0.577
0.577

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

𝑇
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Re��̂�1𝑒𝑖𝜛𝑡�

Re��̂�2𝑒𝑖𝜛𝑡�

Re��̂�3𝑒𝑖𝜛𝑡�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.707
0

−0.707

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

𝑇
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Re��̂�1𝑒𝑖𝜛𝑡�

Re��̂�2𝑒𝑖𝜛𝑡�

Re��̂�3𝑒𝑖𝜛𝑡�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.408
−0.816
0.408

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

𝑇
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Re��̂�1𝑒𝑖𝜛𝑡�

Re��̂�2𝑒𝑖𝜛𝑡�

Re��̂�3𝑒𝑖𝜛𝑡�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.577 Re�𝑋1𝑒𝑖𝑡𝜛� + 0.577 Re�𝑋2𝑒𝑖𝑡𝜛� + 0.577 Re�𝑋3𝑒𝑖𝑡𝜛�

0.707 Re�𝑋1𝑒𝑖𝑡𝜛� − 0.707 Re�𝑋3𝑒𝑖𝑡𝜛�

0.408 Re�𝑋1𝑒𝑖𝑡𝜛� − 0.816 Re�𝑋2𝑒𝑖𝑡𝜛� + 0.408 Re�𝑋3𝑒𝑖𝑡𝜛�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.577𝑋1 + 0.577𝑋2 + 0.577𝑋3

0.707𝑋1 − 0.707𝑋3

0.408𝑋1 − 0.816𝑋2 + 0.408𝑋3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
𝑒𝑖𝜛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Comparing the above to q𝑠𝑠 = Re�Y𝑒𝑖𝜛𝑡� shows that

Y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.577𝑋1 + 0.577𝑋2 + 0.577𝑋3

0.707𝑋1 − 0.707𝑋3

0.408𝑋1 − 0.816𝑋2 + 0.408𝑋3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

To plot each 𝑌𝑖, let 𝑚 = 1, 𝑘1 = 1, 𝑘2 = 1,𝐴 = 1, and letting 𝑋2 = 0 as found earlier, results
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in

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.577 0.577
1−𝜛2 +

0.577
4

⎛
⎜⎜⎜⎜⎝
−0.816

1−𝜛2
4

⎞
⎟⎟⎟⎟⎠

0.7070.5771−𝜛2 −
0.707
4

⎛
⎜⎜⎜⎜⎝
−0.816

1−𝜛2
4

⎞
⎟⎟⎟⎟⎠

0.408 0.577
1−𝜛2 +

0.408
4

⎛
⎜⎜⎜⎜⎝
−0.816

1−𝜛2
4

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The above shows that when the nondimensional frequency Ω is not close to a one of
the nondimensional natural frequencies, then the 𝑌 values have comparable magnitudes.
For nondimensional frequency Ω larger than 3 all amplitude are zero, which means the
whole system does not oscillate any more in steady state.
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5.2.4 Key solution
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6.1 cheat sheet

  c
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 e

n2
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u  2u  2u  0
roots

  1   jn 1  2 ,  in 1  2

  1 ,
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complex plan is pure 
imaginary. When force is 
max, then f in complex 
plan is all real
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Where eB/A is unit vector oriented to B from A

Physically, the constant represents the time it 
takes the system's step response to reach 
63.2 % of its final (asymptotic) value   1
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 i  e
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½ power point, 
means the max 
amplitude at that 
frequency is 0.707 
of the maximum 
possible amplitude 
(which happens at 
resonance)
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6.2 study notes

6.2.1 trig identities

sin𝜔𝑡 = Re�
1
𝑖
𝑒𝑖𝜔𝑡� = Re�𝑒𝑖�𝜔𝑡−

𝜋
2 ��

cos𝜔𝑡 = Re�𝑒𝑖𝜔𝑡�

cos𝜔𝑡 =
1
2
�𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡�

sin𝜔𝑡 =
1
2𝑖
�𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡�

When 2 harmonics have same amplitude, we can write then as envolope of one in another

𝐴 cos�𝜔1𝑡 − 𝜙1� + 𝐴 cos�𝜔2𝑡 − 𝜙2� = 2𝐴 cos�Δ𝜔𝑡 − Δ𝜙� cos�𝜔𝑎𝑣𝑡 − 𝜙𝑎𝑣�

1 2av

 

av
1 2

 

Here is an example of the above. We first draw the two signals on their own, then plot
the additions of them

f1 = a Cos[w1 t - p1];
f2 = a Cos[w2 t - p2];
parms = {a -> 1, w1 -> 1, p1 -> Pi/3, w2 -> 10, p2 -> Pi/4};
Plot[Evaluate[{f1, f2} /. parms], {t, 0, 10},
PlotStyle -> {Red, Blue}]
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Now we add them to see the envelope effect

Plot[Evaluate[{f1, f1 + f2} /. parms], {t, 0, 10},
PlotStyle -> {Red, Blue}]

Now we plot the same signal addition, but using the form after converting to use the
mean and delta notation as shown above just to confirm it is the same signal

avW = Mean[{w1, w2}];
avP = Mean[{p1, p2}];
delW = w2 - avW;
delp = p2 - avP;
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g = 2 a Cos[delW t - delp] Cos[avW t - avP];
Plot[g /. parms, {t, 0, 10}]

The beat period is 𝜋
Δ𝜔(this is the time between each beat to the next beat). The whole

signal will be periodic only when 𝜔1
𝜔2

is rational.

Beat shows up when we have 2 harmonics added, that has same amplitude. The beat
signal itself will be period when the ratio between the frequencies of the two harmonics
is rational. In the context of response of a system,we can think of the steady state response
as one signal and the transient response as another singnal. The response will then show
a beating signal when the amplitude of the steady state and transient singnals is the same.
Here is an example of that from one of my demos
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