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Chapter 1

introduction

Local contents

1.1 Syllubus . .. ... ..
1.2 courserelated links . . . . . . . . ..

I took this course in Spring 2013 part of masters degree in engineering mechanics. Uni-
versity of Wisconsin, Madison.

Instructor is professor Matt Alle

External class web pagehttp://courses.engr.wisc.edu/ema/ema545. html]|

Text book: Mechanical and Structural Vibrations: Theory and Applications, Jerry H. Gins-


http://silver.neep.wisc.edu/~msallen/
http://courses.engr.wisc.edu/ema/ema545.html
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berg, 1st Edition, Wiley, 2001.

1.1 Syllubus

EP/EMA 545 — Spring 2013
Mechanical Vibrations

Course Home Page: Engineering Moodle Courses: https://courses.moodle.wisc.edu
Lecture notes, homework and solutions will be posted on course web site.

Instructor:
Prof. Matt Allen
Department of Engineering Physics
535 Engineering Research Building
Email: msallen@engr.wisc.edu, Office Phone: 608-890-1619
Office Hours: T 9:15-10AM, 2-3PM, W 2-3PM, or by appointment

Grader: (available by appointment if needed)

Samuel Fedenia, sfedenia@wisc.edu

Prerequisites:
EMA 202 or 221, EMA 304 or 306, Math 223

Required Textbook: Mechanical and Structural Vibrations: Theory and Applications, Jerry H.
Ginsberg, 1* Edition, Wiley, 2001.

Evaluation:

o Weekly Homework sets — Problems assigned weekly and typically due on Thursday. Late
homework will not be accepted unless prior arrangements have been made with the instructor.
Consulting with your peers is allowed so long as it is done responsibly.

o Ifyouareill or otherwise unable to turn in an assignment, contact Prof. Allen
immediately by phone or email to make arrangements to turn the assignment. Late
homework will not be accepted unless prior arrangements have been made.

e Exams (2)

o Two in-class exams, each approximately one hour long.

o The instructor will also give occasional 5-min pop-quizzes focusing on very fundamental
concepts, which will be graded for homework credit.

e Design Project

o Work in groups of two and turn in a short but high-quality written report with
handwritten calculations in the appendix.

e Final Exam

e QGrades in the course will be based on the following weighting:

o Homework Sets 30%
o Exams 40%
o Design Project 10%
o Final Exam 20%

Academic Misconduct:

The instructor takes dishonesty very seriously. Cheating will not be tolerated, whether on exams, quizzes
or homework. If there is reasonable evidence that you have cheated on a homework assignment, the
instructor reserves the right to give you negative credit for the assignment up to three times the value of
the assignment. (Score =—3*value of assignment.) Serious infractions will be handled through the
designated university channels.

Online course description:

General theory of free, forced, and transient vibrations; vibration transmission, isolation, and
measurement; normal modes and generalized coordinates; method of matrix equation formulation and

Version 1/21/2013



1.1. Syllubus CHAPTER 1. INTRODUCTION

solution. The application of theory and methods to the analysis, measurement and design of dynamic
systems.

General Topic Areas Covered:

e Equations of Motion for Discrete Vibratory Systems
Transient Response of Single-Degree of Freedom (SDOF) Systems
Steady State Response to Harmonic Excitation
Modal Analysis of Multi-Degree-of-Freedom (MDOF) Systems
Harmonic Excitation of MDOF Systems
Vibration of Continuous Systems: The Ritz Method

Miscellaneous
Please inform me within the first two weeks of class of any specific days during the semester that may
conflict with your religious observances, so I can make alternate arrangements for you.

Matlab

Many of the homework assignments require a computer package such as Matlab to complete. Matlab is
available in all CAE computer labs. You can also purchase a student version for around $100 to install on
your personal computer. Alternatively, there are a few clones of Matlab which may provide enough
functionality to meet the needs of this course. These are compared in the following and in many blogs
and websites:

http://www.webcitation.org/6BbWgerg3

The most notable for laptop/desktop computers seem to be:

Octave — www.octave.org

Freemat — www.freemat.org
Python with SciPy - http://en.wikipedia.org/wiki/SciPy

For Android:
Addi — https://play.google.com/store/apps/details?id=com.addi
Octave - https://play.google.com/store/apps/details?id=com.octave&hl=en

Version 1/21/2013
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CHAPTER 1. INTRODUCTION

TENTATIVE Semester Schedule:

* NOTE: All of the dates below are approximate. The instructor reserves the right to adjust the schedule!

ot
Date* g Topic (Book sections) Due Dates
1/22 1 | Introduction, Review of Newton-Euler EOM (/.1-1.4)
1/24 Numerical solution methods, Harmonic Functions (2.7)
1/29 2 | Intro — Solutions to EOM, Beating
1/31 Free Response: Underdamped/Overdamped (2.2) HW #1 due
2/5 3 | Forced Response (2.3)
2/7 Finish Forced Response (2.3) HW #2 due
2/12 4 | MSA OUT (IMAC) Video Lecture
RF Switch Example, Aircraft Engine Example
2/14 MSA OUT (IMAC) — Lab Demo (John Dreger) HW #3 due
2/19 5 | Frequency Response (3.7, 3.2.1, 3.3)
2/21 Exam #1 (Ch. 2, SDOF Time Response)
2/26 6 | Base Excitation, examples (Assign Design Project)
2/28 Damping (3.2) Resonance (3.3) Stress in Springs (notes) HW #4 due
3/5 7 | Rotating Imbalance (3.4) Force Transmissibility (3.6)
3/7 Intro to Fourier Series (3.7) HW#5 due
3/12 8 | FFT for Periodic Excitation (3.7.5)
Fourier Transform, DFT/FFT, Aliasing
3/14 FFT for Transient Excitation (3.8.2), Accelerometer HW#6 due
(3.7.6), Examples
3/19 9 | MDOF EOM, Large Deformation & Linearization, DP analysis due
Gravity Stiffness & Stiff Spring Approx
3/21 Additional examples HW #7 due
3/26-28
4/2 10 | MDOF Solution, Shuttle Example
4/4 Exam #2 (SDOF System Response) HW #8 due
4/9 11 | MDOF Systems — Intro to Eigenproblem (4.1-4.2) DP due (Monday 5PM)
4/11 MDOF Systems — Orthogonality, Normalization (4.2.2) HW#9 due
4/16 12 | Examples: Free Response, Transient Response, Damping
4/18 Modal Transformation — (4.3), 3DOF Example and HW #10 due
Matlab, (done by video) (do after close fn’s next time)
4/23 13 | Close Nat. Fregs. (4.2.5-6), Rigid Body Modes
Frequency Response using Modal Coordinates
4/25 Freq. Domain TF (5.1), Vibration Absorber (5.3)
4/30 14 | Introduction to Power Balance & Lagrange Methods (1.5)
5/2 Ritz Method (6.1), Sound from a rod excited axially HW #11 due
5/7 15 | Examples Continued
5/9 Aircraft Modes using Ritz, Aeroelasticity Example, HW #12 due
Review for Final, Nonlinear Vibration
5/16 Final Exam: Thurs. May 16, 10:05AM - 12:05PM

Version 1/21/2013
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1.2 course related links

1. ltinal exam schedule]
2. Byllabus

3. [public course web page]

4. linternal course web page|

5. [Lectures download|



final_exam_EMA_545.png
http://courses-dev.engr.wisc.edu/EMA/ema545.html
https://courses.moodle.wisc.edu/prod/course/view.php?id=932
https://video.engr.wisc.edu/cgi-bin/cae-auth/Download2.php?file=cae-auth/ema/545/EMA545.html
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HW's

Local contents

21 HWlookupTable . . . . ... ... ... .
22 HWIL . e e e e 9
23 HW2 e 37
24 HW3 e 65|
25 HWA4 e l66l
2.6 HWbS e e, 110
27 HW6 . . e [134]
2.8 HWY7 . e
29 HWSE . e
2.10 HWO e 244
211 HWI0 . . . e e e,
212 HWAT . . e e 336
213 HWI11 . . . e 358

2.1 HW lookup Table

HW | grade | about

1 95% | series/parallel stiffness, How to use x = Re{Xei“’t] to analyze systems earliest time
to reach maximum value/speed, complex exponential

2 95.70% eq. of motion cube in water, more use of complex exponential analyzing in complex
plane. Logarithmic decrement from graph. Impulse problem
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3 100% | small lab

4 98.75% force applied for small period, find response. Impulse force on system. analyse in
complex plane. resonance problem, students on bridge.

5 88% | 2 DOF system, shock observer on spring.Force transmission to base. off center mo-
tion, find EQM. 2 counter-rotating masses

6 97.50% Find complex Fourier series.Verify using fft. Simple model of car moving on ground,
find EQM. Fourier series. rectangle force, Fourier series.

7 95% | Using FFT to find response. Transfer functions Compare to analytical. Using La-
grange to find EQM, 2 DOF.

8 99% | non-linear EQM, spring stiff approximation. Lagrangian. Model of wing. cart on
spring with sliding mass on it with spring. Lagrangian. Finding w,, for 2DOF

Al | 100% | more spring stiff approximation. manipulation of complex form of solution. half-
power point, finding phase lag, solving step response using appendix B method

9 95% | Full solution in modal coordinates. Mass normalized. Initial conditions in modal
coordinates. All problems done in power balance method. Double physical pendu-
lum

10 | 92.5% | Full solution in modal coordinates. 3 DOF problem

11 | 93.3% | modal analysis, with damping using specific modal damping. Structual damping
Compare transfer functions for each damping method used. Ritz method, shape
functions. plot mode shapes.

Table 2.1: Homeworks summary table
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2.2 HW1

Local contents

22.1 problemdescription . ... ... ... ... ... L o 10l
222 Problem1 (1.1book) . . . .. . . .. 1l
223 Problem?2 . . . .. e 12|
224 Problem3 . . ... 13
225 Problem4 (25book) . . . . .. 18
22.6 Problem5 (2.8book) . . . . . ... 23]
22.7 Problem6 (2.10book) . . . ... 27
228 Keysolutionfor HW 1 . .. .. ... ... ... . . . o 29
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2.2.1 problem description

Homework #1
EMA 545, Spring 2013

Problem 1: 1.1 from Ginsberg:

1.1 Determine the spring stiffness that is equiva-
lent to the action of the four springs in the sketch.

Problem 2: Find the equation of motion of the system pictured below. The mass of the
block is m and the mass of the beams and springs is negligible. Assume that all of the
displacements are very small. (Recall that the displacement of the tip of a cantilever
beam, Ay, is related to the force at the tip by: Ftip:(3EI/L3)Atip)

L

=
v L

F

USE COMPLEX EXPONENTIALS to derive the solution to problems 3-6 (i.e. do
not simply look up a trig identity).

Problem 3: 2.3 from Ginsberg

Problem 4: 2.5 from Ginsberg. Note that “this quantity” in the last sentence is referring
to “the complex amplitude of dv/dt.”

Problem 5: 2.8 from Ginsberg.
Problem 6: 2.10 from Ginsberg.

Extra: (this problem will not be graded) If you are not already familiar with Matlab,
review the Matlab® tutorial on the EMA 545 course website (created by Prof. Negrut).

10



2.2. HW1 CHAPTER 2.

HW’S

2.2.2 Problem 1 (1.1 book)

1.1 Determine the spring stiffness that is equiva-
lent to the action of the four springs in the sketch.

ky

ks and k; are in parallel, hence the effective stiffness is
k23 = k2 + k3
ky3 and k; are now in series, hence the effective stiffness is

1 1 1 _k23+k1_k2+k3+k1_k2+k3+k1

- = + — = = =
kips ki kps kqkas kq(ky + k3) kqky + kiks

Therefore

K _ klkZ + k1k3
123 = k2+k3+k1
k123 and k4 are now in parallel, hence the effective stiffness is

k1234 = kg + kqp3
klkZ + k1k3

=k
4+k2+k3+k1

Hence the final effective stiffness is

_ k4(k2 + k3 + kl) + k1k2 + k1k3

k
“ ky + ks + kq

11



2.2. HW1 CHAPTER 2. HW’S

2.2.3 Problem 2

Problem 2: Find the equation of motion of the system pictured below. The mass of the
block is i and the mass of the beams and springs is negligible. Assume that all of the
displacements are very small. (Recall that the displacement of the tip of a cantilever
beanl, Asgp. is related to the force at the tip by: Fug=(3ELL )Axp)

We start by drawing a free body diagram and taking displacement of mass from the

static equilibrium position. Let the displacement of the mass be x and positive pointing
upwards.

Let A be the downward deflection at right end of the bottom beam. Let A, be the down-
ward deflection at right end of top beam. The free body diagram is

12
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Applying equilibrium of vertical forces ), F,, = 0 for mass m and noting that inertial forces
opposes motion, results in the equation of motion

mx" +k(x—2ny)=F (2.1)

To find an expression for A in terms of x, we apply equilibrium of vertical forces at the
right end of the lower beamﬂ

k(x - Al) = kbAl + k(Al - Az) (22)

Similarly, applying equilibrium of vertical forces at the right end of the top beam

k(ay = 82) = kytp (2.3)
Solving for Ay, A, from Eqs[2.111 (2 equations, 2 unknowns) gives
k(k + kb)

AN = —F—7F"7=X
YRR+ 3Kk, + K2
Substituting the above value into Eq[2.110|results in the equation of motion

k(k + ky) ) _

mx"” + kx|l - ———
( k2 + 3kky, + k2

2.2.4 Problem 3

Use the properties in this trace to determine

X
‘A 1 ms 3 ms \ (a) The initial values of x and x .

i (b) The value of ¢ at which the minimum value of x
\ / first occurs.
*> 1 (c) The maximum positive value of x and the ear-
20 mm\ / liest value of ¢ at which this maximum occurs.
(d) The maximum positive value of ¥ and the ear-
liest value of ¢ at which this maximum occurs.

.

EXERCISE 2.3

Assuming periodic motion, the period is T = 6 ms, or 6 x 107> sec. Hence w = g rad/ms
Representing this as a cosine signal with phase gives

x(t) = Acos(wt + 0)
Then

x(t) = Re[A + cos(wt + 0)]
= Re[Ae%ei®t]
= Re[Ae“!] (2.4)

Where now A = Ae'® Using phasor diagram

3EI

1k, is beam stiffness against vertical displacement at the end and is given as k, = -

13
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u O)tj-e

X(t) = Re(Aei®t)
— Re(Aei(wHH))
= Acos(wt + 0)

Hence from the diagram we see that for x(t;) to be zero when t; = 1 ms, we need to have

wt0+9:g
Butw = grad/ms, hence
T M T
6:———:—
2 3 6

To find A we see that the maximum absolute value of x(t) is 20 mm hence A = 20 mm or
20 x 1073 meter. The equation of x(t) when substituting all numerical values becomes

x(t) = 20 cos(gt ; %) (2.5)

Where units used are radians, milliseconds and mm. This is a plot of the above function

parms = £ -> 1/(6 107-3);
Plot[0.02 Cos[2 Pi f t + (Pi/6)] /. parms, {t,0,0.005},
AxesLabel -> {t,x[t]}, ImageSize -> 300]

14
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0015 F, rd
pol0f % £
0.005 /
._‘. -r.l'
Mpiopin gy gy gine Friopey iy
0.00 0.002 0.003 0004 00!
—0.005 i 4
v
~0.010 /
\, /
-0.015 % s
~0.020 e TR

2.24.1 part(a)

Att =0, from[2.117]x(0) = Re[A] = A cos(6) = 20 cos(%) hence

x(0) = 17.321 mm

From [2.117|x’(t) = Re[wAei®!] hence x’(0) = Re[wA] = wA cos(6) = 20% cos(%) giving

x’(0) = 18.138 m/sec

2.24.2 part(b)

This can be solved using calculuﬂ
xX'(t) = -2nfA sin(2nft + 9)

0= —27IfAsin(27'(ft + %)
27 27 T
=— 20 x1073) si t+ —
(6x10—3)( )Sm(6><10—3 6)

0 =si 2 t+ I
= n —
M ex103 " 6

We solve for t and find t=2.5 ms. But this can be solved more easily by looking at the
phasor diagram

2Taking derivative of x(t) and setting the result to zero and solving for ¢

15
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I

u
|

| Maximum negative
value of x(t)

The minimum x(t) (in negative sense and not in absolute value sense) occurs when wt,,;;,, +
n—-0
0 = 7, hence t,,;, = — therefore
tmin = 25

2.24.3 part(c)

This is solved in a similar way by treating the speed as the rotating vector in complex

plan. Since x(t) = Re(Aa)el<wt+6+g)) then in complex plan as follows

Phase of speed vector at t=0

T
0+ %

X'(t) = Re[Aa;e‘("*%)]

The difference is that the velocity vector has phase of 6 + % instead of O as was the case
with the position vector, and the amplitude is Aw instead of A. Hence the first time the

16
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speed vector will have the maximum value is when

6+n+t2
— +wt =271
2

Hence
TT
271—5—
=
@
Tt s
-2 _I
_ T=77%
- TT
3

Hence t = 4 ms and the amplitude is given by Aw = 20% hence Aw = 20.944 meter/sec

2244 vpart(d)

Now treating the acceleration as the rotating vector in complex plan

x(t) = Re( Ael0+wD)
x'(t) = Re(iAa)ei(th))
xu(t) — Re(_Aa)Zei(9+a)t))

But -1 = ¢™ This adds a 7 to the phase resulting in
X”(t) — Re(AwZei(6+a)t+n))

Representing x”'(t) in complex plan gives

0+rn

T
T
N
P -~
X - /
of - /
-~
. eci o Y/
(o & ¥
e® /
Q\(\’é //
ot\/
/
v
accvector

17
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The first time the x”(t) vector will have the maximum value is when
0+ mn+wt=2m

Hence

Hence t = 2.5 ms and the amplitude is

- 2
Aw? =20 mm(g rad/msec)

= 21.933 x 103 meter/sec?

2.2.5 Problem 4 (2.5 book)

2.5 An oscilloscope trace indicates that the volt-
age output v from a sensor varies harmonically,
with zeroes occurring every 8 ms. The first zero of
v occurs at f = 5.5 ms, the amplitude of the signal
isl.2V,andv > Qatt = 0.

(a) Express this signal as a complex exponential:
Write the complex amplitude in polar and rectan-
gular forms.

(b) Express the time rate of change of the voltage
as a complex exponential. Write this quantity 11
polar and rectangular forms.

2.2.5.1 part(a)

The function of the signal is converted to complex exponential. A sin or cos can be used to
represent the signal as long as we are consistent. Assuming the signal is x(t) = A cos(wt +
0), plotting the general representation of the position vector in complex plan gives

18
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x(t) = Re(Ae'et)
= Re(Aei@t0)
= Acos(ot + 0)

The complex representation of the position vector is

x(t) = Re [Aei(“’”g)]

. 2 2 . . .
We are given that w = ?n = 1—7;, and since x(ty) has first zero at {; = 5.5 ms this means

from looking at the above diagram that
e
0+wty=—=
+ Wiy >

7t 55

Hence 6 = g — (wty) = g - (51—0) which gives

-3
0= 1—67_(radians

Hence the signal is
x(t) = Re[Aei(“’”@)]

~ Re '1'261'(@—2—’;)]
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. _p3n
Where A = 1.2¢"'T is the complex amplitude in polar coordinates. In rectangular coordi-

nates it becomes

.3n

A=120"%

a2 -2

=1.2(0.831 - i0.5556)
=| 0.9977 —i0.6667

Hence
) T . e
x(t) = Rel(0.998 — 10.668)(cos gt +isin gt)]
e e
= Re[(0.998 CcoSs gt + 0.668 sin gt)+

. T L
1(0.998 sin gt — 0.668 cos gt)]

Here is a plot of the signal for 20 ms

w = Pi/8;
f =1.2 Coslw t - 3 Pi/16];
Plot[f, {t, 0, 20}, AxesLabel -> {t, x[tl},
ImageSize -> 300,
GridLines -> Automatic,
GridLinesStyle->{{Dashed,Gray},{Dashed,Grayl}},
PlotStyle -> Red]

20
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u a)t'A+ 0
A
T
’ i A
ot A
0 |

X(t) = Re(Aei®t)
_ Re(Aei(wHH))
= Acos(wt +0)

2.2.5.2 part(b)

From above it was found that ’
x(t) = Re[Ael(“J”Q)]

Hence
x'(t) = Re[ia)Aei(“’”@)]
= Re[eiga)AeiQei“’t]
= Re[a)Aei(ngQ)ei“t]

= Re[Aei“’t]

21
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A (X A (Z-3 j
Where A = wA¢'2* Replacing numerical values gives A = %(1.2)61(2 167 = (.471¢10.983

and

x'(t)

Re[0.4716i0'983€iwt]

Re[0.47lei0'983eig ’*]
e

[(),471 £10.983 ei0.3923t]

In rectangular coordinates, the above becomes

x'(t) Re[0.471(cos 0.983 + isin 0.983)

(cos 0.3923t + isin 0.3923t)]
= Re[(0.261 + 0.392i)(cos 0.392t + i sin 0.392¢)]
= Re[(0.261 c0s 0.392t — 0.392 sin 0.392¢)

+1(0.261 sin 0.392¢ + 0.392 cos 0.3921‘)]

2.2.,5.3 part(c)

To find the maximum rate of the signal

x'(t) = Re[Aei”t]

Then the maximum x’(t) is |A| which is

|A| = 10.261 + 0.392i|

= v0.2612 + 0.3922
= 0471

Hence maximum x’(t) is 0.471 v/ms or 471 volt/sec.

Maximum velocity in simple harmonic motion occurs when x(t) = 0. This occurs att = 5.5
ms and at 8 ms henceforth. Hence maximum speed occurs at

t =5.5+n(8)
forn=0,1,2,--- this results in
t=55,13,5,21.5,---ms

Here is a plot of x’(¢) in units of volt/ms

22
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f = 0.261 Cos[0.392 t] - 0.392 Sin[0.392 t];

Plot[f, {t, 0, 30},

AxesLabel -> {Row[{t, "(ms)"}], x'[t]},

ImageSize -> 300, GridLines -> Automatic,
GridLinesStyle -> {{Dashed, Gray}, {Dashed, Gray}},
PlotStyle -> Red]

e b e LT g T LT

2.2.6 Problem 5 (2.8 book)

2.8 Suppose g = 0.01sin(501) — 0.02cos (50t —
0.3m).

(a) Write g in complex exponential form. What is
the complex amplitude?

(b) What is the time interval separating instants at

which g = 0?
(c) What is the earliest positive ¢ at which
qg =0?

(d) What is the largest value of ¢ that will occur,
and what is the earliest positive ¢ at which this
maximum occurs?

2.2.6.1 part(a)
This is a plot of the signal

23
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f = 0.01 Sin[50 t] - 0.02 Cos[50 t - 0.3 Pi];

Plot[f, {t, 0, 0.2},
AxesLabel -> {Row[{t , " (sec)"}], xI[tl},
ImageSize -> 300,
GridLines -> Automatic,
GridLinesStyle->{{Dashed,Grayl},{Dashed,Grayl}},
PlotStyle -> Red]

x(z)
T VA N A
[ if \ l,-' i
- ! ".II | i ! |
0005f — —— -~ - —— - - b e S
: \ e
P I;]u'l —_— , SN — I|I". NPT [_5'3‘:]'
C S 005 0.10, 015 | 020
L / I I \ | f I
0 Y (N B 1. VST i S L
[ | oy . |
[ J ! [N | . i
! 1 [ h ! i
SO < s R TS SNSRI
e ! | P z: |

g = 0.01 sin(50t) — 0.02 cos(50t — 0.37)

= Re —%eiSOt _ 0.0Zei(SOt—OBT()]
1

= Re —O.O]_e_igeZBOt — 0.02€i50t€_i0'3n:|

= Re

_(o.o1e‘i§ - 0.026‘i0'3”)ei50t]
= Re[ AeiSOt]
Hence the complex amplitude is

A =001z - 0.02671037

2.2.6.2 part(b)

From above, we see that
w = 50rad/sec
50 . _ 2 _ . . .
Hence f = ~Hz, or the period T = = = 0.126 sec, therefore the time period separating

the zeros is % = 0.063 sec or 63 ms

24
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2.2.6.3 part(c)

A iz _i3n
The complex phase A can be found by adding the vector 0.01¢"'2 and —0.02¢ ' 10 by com-
pleting the parallelogram as shown in this diagram. A = —0.02 cos 0.77+i(-0.01 + 0.02 sin 0.77),
hence the angle « that A makes with the horizontal is

—0.01 + 0.02sin0.77

tan_l( ) = arctan(0.526)

—0.02 cos0.71t
= (0.484 radian
= 27.73 degree
0.02ei0.77)
|
|
|
|
|
|
|
N
A
\\ i a
. 0.3r
0.01le7'z
0.02e-10:37

and the amplitude is

\/(—0.01 +0.025in 0.771)* + (0.02 cos 0.71)* = 0.0133V

To find the earliest time g will be zero, we need to find the time the complex position
vector will take to rotate and reach the imaginary axis.
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A tor at t<o /7'[' —

22|

ot
\et

. 00«\9
R
e .gi\‘“e
‘)\K\ Q\’a(\z

Hence we need to solve

n—a+a)t0:§n

gn — 70 + 0.48402

fo 50
= 0.0411 s

Therefore
t=41.1ms

2.2.6.4 part(d)

The largest value of g is the absolute value of its complex amplitude. We found this above
as
|A| = 0.0133 Volt

To find when this occur first time, the time the position vector will align with the real axis
in the positive direction is found. Hence solving for t; from

T—a+wty=2n
2t — 1+ 0.484
tOI
50

Gives t = 72.5 ms. Another way would be to take derivative of qt) and set that to zero and
solve for first t which satisfy the equation.
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2.2.7 Problem 6 (2.10 book)

2.10 Two parts of the harmonic motion of a
system are x, = 8sin (10t — 57/6), x, = 12
cos(10t + ¢). Find the phase angle ¢ for which
X =x, + x, is a pure sine function. What is the
amplitude of x in that case?

X = 851n(10t - gn)
x, =12 cos(10¢ + ¢)
Let w =10, hence
X=X+ X
8 i(wt-2n

= Re ?e( 6)

+ Re[12ei(“’f+¢)]
[ . 5
=Re §,el(wt_gn) + 12ei<wt+¢)]
i
S ,
= Re Se_lfez(a}t 6 ) + 1261(“’”‘?)]

[ St} . .
= Re|8e'zeiwte ™6™ + 12e1‘”te’¢]

[ _i(én) o) i
=Re||8e 3/ +126% |eiw

= Re[Aefwf] (2.6)
Where
A = ge ) 4 1000
= (—4 + 6.928i) +12(cos ¢ + isin ¢)
= (-4 +12cos ¢) +i(6.928 + sin ¢)
Hence Eq [2.6)becomes

x = Re[{(~4 + 12 cos §) +i(6.928 + sin ) e
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To convert to sin we multiply and divide by i hence
eza)t
= Re((—4 +12 +1(6.928 + si | —
x e[[( cos qb) z( sin (p)}z - ]
iwt

= Re[{—(6.928 +sin¢) +i(—4 +12cos qb)}T (2.7)

The complex number —(6.928 + sin cp) + i(—4 +12cos qi)) can be written in polar form as

. ] 2 2 _1[ -4+12cos¢
i =y _ _ tan1[AH12c000
ke where K (6.928 + sin ¢)) + ( 4 +12cos qb) and 8 = tan (_ (6.928+sm¢)), hence Eq
2.7lbecomes
[ iwt
x = Re|kef eT]
: i(wt+p)
= Relk- , }
i
= ksin(a)t + ,B)

or in full form

x = \/ (6928 + sin¢) + (-4 +12cos )’

sin| wt + tan~! 4 +12cos¢
—~(6.928 + sin ¢))

—4+12cos ¢

1
m =0orl12cos¢ =4 orcosp = g,hence

For pure sine function we need

¢ =1.23096 radian
= 70.529°

The amplitude can also be found from the complex amplitude above when ¢ = 1.23096
as follows

(4
8e‘l(5”) +1261230%| = |-6.592 X 107 + 18.242]

2
= \/ (-6.592 x1076)" + (18.242)*
=18.242
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2.2.8 Key solution for HW 1

Homework #1
EMA 545, Spring 2013

Problem 1: 1.1 from Ginsberg:

1.1 Determine the spring stiffness that is equiva-
lent to the action of the four springs in the sketch.

Problem 2: Find the equation of motion of the system pictured below. The mass of the
block is m and the mass of the beams and springs is negligible. Assume that all of the
displacements are very small. (Recall that the displacement of the tip of a cantilever
beam, Ay, is related to the force at the tip by: Ftip:(3EI/L3)Atip)

L

=
e L

F

USE COMPLEX EXPONENTIALS to derive the solution to problems 3-6 (i.e. do
not simply look up a trig identity).

Problem 3: 2.3 from Ginsberg

Problem 4: 2.5 from Ginsberg. Note that “this quantity” in the last sentence is referring
to “the complex amplitude of dv/dt.”

Problem 5: 2.8 from Ginsberg.
Problem 6: 2.10 from Ginsberg.

Extra: (this problem will not be graded) If you are not already familiar with Matlab,
review the Matlab® tutorial on the EMA 545 course website (created by Prof. Negrut).
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2.3.1 problem description

Homework #2
EMA 545, Spring 2013

Problem 1:

A cube with density p and side length a is floating ’7 a 4‘

freely in a pool of water.

a.) Find the equation of motion of the cube when it is
displaced in the vertical direction. (Recall that the
buoyant force on a floating object is equal to the
weight of the water displaced.) If necessary, re-
define your vertical coordinate to eliminate any X
static forces. |

b.) Derive an expression for the natural frequency of
the cube.

c.) If the block is pine (p=400 kg/m®) with a side length of 10cm, what is the natural frequency
in Hz?

(Note that, while an analysis like this would be important when designing a boat or ocean vessel,

in reality the rotational motions of the vessel would usually be more important and those require

a more complicated analysis.)

Problem 2: 2.17 from Ginsberg

Problem 3: 2.19 from Ginsberg

Problem 4: Show that x(t)=Be” is a solution to X+ 2¢w,%+,’x =0 and find A for the

following cases: 1.) Underdamped system, 2.) Overdamped system. Write the solution x(t) for
both cases for an arbitrary set of initial conditions and draw a sketch to illustrate how each

response x(t) would look. Show that x(t) can be written as x(t) = Re(Ae‘g”‘"‘e“""‘) in case (1).

Comment: | would encourage you to see if you can solve the following problems using only
math and the fact that the general solution to an underdamped SDOF system

X+ 2w X+ w,°x=0

X(t) = Re( Ae “fe)

where @, = w,/1-¢? and A is a complex constant. If you’re hunting through the book for

equations to solve these problems then you might be making them more difficult than they need
to be and perhaps failing to connect the concepts.

Problem 5: 2.29 from Ginsberg

Problem 6: 2.32 from Ginsberg. (part a=5pts, b=5pts, c=10pts)
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2.3.2 problem1

Problem 1:

A cube with density p and side length a 1s floating ’7 a 4‘

freely in a pool of water.

a.) Find the equation of motion of the cube when it is
displaced in the vertical direction. (Recall that the
buoyant force on a floating object is equal to the ’ ! . -
weight of the water displaced.) If necessary. re- s g
define your vertical coordinate to climinate any X
static forces. |

b.) Derive an expression for the natural frequency of
the cube.

¢.) If the block is pine (p=400 kg/m®) with a side length of 10em. what is the natural frequency
m Hz?

(Note that. while an analysis like this would be important when designing a boat or ocean vessel,

in reality the rotational motions of the vessel would usually be more important and those require

a more complicated analysis.)

2.3.2.1 Part(a)

We assume the cube is displaced downwards from its static equilibrium position and it
is currently at distance x below the static position.

The buoyant force F, will push the cube upwards. This force will equal the weight of
water displaced which is xa%p,,¢ where p,, is density of water and g is the gravitational
constant. The free body diagram is

Static equilibrium

X=0---4--—-———1 1__

Ocg |X

Showing cube
when slightly
pushed
downward

Buoyant
b force

Applying F = mx”" we obtain equation of motion

Mx" = -F, (2.8)
Mx” +E, =0 (2.9)
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M = a®p where p is density of pine. The above can be simplified to

apx” + xa’p,g = 0 (2.10)
v+ P8y g (2.11)
ap
X"+ w2x =0 (2.12)
2.3.2.2 Part(b)
Hence from the above equation
R [
ap

2.3.2.3 Part(c)

Given p = 400 kg/m?® and p,, = 1000 kg/m> and a = 0.1m then

W = [Pu8 _ /1000 x 9.81 1546 rad
""Nap ¥V 01x400 T sec?

Hence frequency in Hz is

w1566

= = =2.492
f 27 27 92 hz

2.3.3 Problem 2

2.17 An undamped one-degree-of-freedom sys-
tem has a mass coefficient of 50 kg and a natural
frequency of 80 Hz. At ¢ = 0 it is released from
g = 20 mm with ¢ = —50 m/s.

(a) Determine the maximum positive value of q
that occurs in the ensuing vibration, and the earli-

est instant at which 1t occurs.
(b) Determine the maximum positive value of g

that occurs in the ensuing vibration, and the earli-
est instant at which it occurs.
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2.3.3.1 Part(a)

g(0) = 20mm
q'(0) = -50m/sec
q
Static
M ___T___ q= 0 eqauilibrium

applying F = mq”’, we obtain equation of motion

Mg" = kg (2.13)

Mg +kg=0 (2.14)

q’ + £q =0 (2.15)
M

q" +w3g=0 (2.16)

Let solution be ¢(t) = Re(Aei“’nt) where A is the complex amplitude, which is a complex

number that can be written as A = a + ib. We use initial conditions to determine A. At
t=0,letg(0) = g9

go = Re(Aei“’"t) (2.17)
= Re(A) (2.18)
=4 (2.19)

Hence a = gy And since gq'(t) = Re(iwnAei“nt), then t = 0 we have

94 = Re(iw, A) (2.20)
= Re(iw,(a + ib)) (2.21)
= Re(iw,a — w,,b) (2.22)
= —w,b (2.23)
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Hence b = —Z—é therefore the general solution is
q(t) = Re(Ae“nt) (2.24)
= Re((a + ib)eint) (2.25)
A
—
= Re| [gq — i1 |eient 2.26
= Ref|go— i~ le (2.26)

[ 12 9
Hence |A| = /g5 + (Z—O) and arg(A) =0 = tan]{%]. We have 2 complex quantities

above being multiplied. The first is A and the second is ¢!, therefore the result is ob-
tained by adding the angles and by multiplied the magnitudes. The magnitude of ¢/ is
one. Hence on the complex plan, the above expression for g(t) is represented as vector of
length |A| and phase ¢ = 0 + w,t

Imaginary axes

eia)nt

N
>
Y

q(,] \ \ Ae |CUnt

From the above diagram we see that the maximum value of

qmax(t) = |A|
which occurs when
¢=0+w,t=0
solving for t gives
-0
t=—
a)I’l

Notice that 0 is negative, hence we will get positive value for t. Substituting the numerical
values given we find thatAnd the earliest time this occurs is
1.3724

t= =2.7303%x107% =2.73
271(80) ms
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We confirm this by noticing that the initial position vector was at about cycle away from

the positive x-axis (we found the phase of A above to be about —80 degrees), and the
rotational speed is given as 80 cycles per second. Hence it takes 12.5 ms to make one cycle

and i of this is about 3ms.

2.3.3.2 Part(b)

/

Since we found g(t) = Re((qo - i@) i ) then

Wy

q'(t) = Re(za)n( go —i— ) “"”t) (2.27)
Re((a)nqo —é Zq )e 2 ¢ln ) (2.28)

= Re((a)nqoe 2 —elg), ) l“’nt) (2.29)

= Re (a)nqoeiE + q{)) elnt (2.30)

. A 2 2
Where now B is the complex amplitude of 4'(t). Hence |B | = \/ (wnqo) + (qé) and its
phase is arg(f%) = tan™' 22 The complex plane representation of g'(t) is

90
Imaginary axes éei‘“"t This
L~ angleis
| // \\__—bwnt'f‘e
@nQo eiwnt R : g A
N 4B X B
-7 A
ont -~ R e :
- / i -
Belwnt ~ |
[~ /03 qo // 9} |
> D

‘

q'(t)

From the above diagram we see that maximum magnitude of 4’(¢) is |I§| given by

8] = fwnto)” + (1) 231)
- \/ (27(80)(20 x 10—3))2 + (=50) (2.32)
= 51.001m/s (2.33)
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The earliest time it occurs is found by solving for t in

C()nt + 9 = 27-( (234)
=2 (2.35)
a)l’l

-3

an—tan”t =R o _gan”! 2n(80)(20x10°%)
) - = (2.36)

271(80) 271(80)
~tan-l(_
_ 27t — tan” " (—0.20106) 12895 x 102 27
271(80)

= 0.129 ms (238)

2.3.4 Problem 3

 2.19 A block of mass m is mounted on a spring
having stiffness k. The block moves in the vertical
direction. When the system is at rest, a 2 kg block
is placed gently on the original block. It is
observed that the static length of the spring after
insertion of the additional block is 50 mm less
than it was prior to the addition. It also is
observed that the natural frequency with the addi-
tional mass is 5 Hz less than it was originally.
Determine k and m.

i

EXERCISE 2.19
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Adding 2 kg caused deflection of 50 mm, hence from F = kA we can find k as follows

F 2¢  209.81)
k = — = = = 392 N 239
A 005 005 /m (2.39)

where g is the gravitational constant. We also told that f, = f; —5 where f, is the natural

1 1
frequency after adding the second mass and where f; = @1 and f, = —w,, hence

i 271
fa=f1-5 (2.40)
1 1
sz = %wl - 5 (241)
Wy = W1 — 107t (24:2)

k k
But w; = ‘/Z and w, = m,hence

\/ k —\/5—10
m+2 N\Nm &

From Eq the above becomes

/ 392 /392
=4/— -107
m+2 m

Solving numerically gives m = 0.1955kg

2.3.5 Problem 4

Problem 4: Show that x()=B&” is a solution to ¥+ 2w x+ aJ,,lx= 0 and find A for the

following cases: 1.) Underdamped system. 2.) Overdamped system. Write the solution x(7) for
both cases for an arbitrary set of initial conditions and draw a sketch to illustrate how each

response x(f) would look. Show that x(7) can be written as x(f) = Re(4e™*™¢'™) in case (1).

To show that x(t) = Be' is solution to the differential equation, we substitute this solution
into the LHS of the differential equation and see if we obtain zero.

x'(f) = ABeM = Ax(t) (2.43)
x"(t) = A2BeM = A%x(t) (2.44)
Then
X" + 20w, x" + w?x =0 (2.45)
A2x(t) + 2Cw, Ax(t) + w2x(t) = 0 (2.46)
(A2 + 20w, A + w?)x(t) = 0 (2.47)

Hence x(t) = Be is a non-trivial solution to the differential equation provided A% +2Cw, A+
w? = 0 since then we obtain 0 = 0.

Now we find A for the different cases.
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2.3.5.1 casel

The roots of A2 + 2Lw,A + w2 = 0 are

Al,Z = _Ca)n + Wy VCZ -1

For underdamped C < 1, hence V(%2 -1 < 0 and we write the above as

Al,Z = —Ca)n + ia)n Vl - CZ (248)
= —Cw, * iwy (2.49)

where
wy = w, V1 -2

Let A = —Cw,, + iw; and its complex conjugate A* = —Cw,, — iw,, hence the solution is
x(t) = ByeM + Bye't

To obtain a real solution we must have B; be complex say B and B, = B*. Hence the above
can be written as

x(t) = BeM + Bret't (2.50)
= 2Re(Be) (2.51)
= Re(2Be~Cantivnlt) (2.52)
Therefore
x(t) = Re(Ae‘C“’"tei‘”dt) (2.53)

Where A = 2B = 4 + ib. Hence
x(t) = Re((a + ib)e~nteivit)

To find a, b we need to use initial conditions. Assuming x(0) = xy and x’(0) = x( then from

Eq we obtain

Xo = Re(a+1ib) =a

Hence
a=x
and taking derivative of
x(t) = Re((a + ib)e‘c“’nteia’dt) (2.54)
x'(t) = Re(—Ca)n(a + ib)e~@ntei®dt 4 jo (a + ib)e‘c“’"teiwdt) (2.55)
x'(0) = Re(—Cw,,(a + ib) + iwy(a + ib)) (2.56)
= —Cw,a — wyb (2.57)

46



2.3. HW2 CHAPTER 2. HW’S

Hence ,
- xp + Cwya
Wy
But a = xj, hence
b= x4 + Cwuxo
Wgq
Hence becomes
x(t) = Re((a + ib)e‘c“’"tei‘”dt) (2.58)
- Re((xo + im)e—%feiwdf) (2.59)
Wy

And this is the general solution. In complex plan it is

Imaginary

Imaginary _joqt
elvd axis

axis

/A ~ .
/, . Ae—gw"tel(udt
/ o\ Lo
e \
/X@at @ A |
/ wqt — 0 |
\\\\ %o 0 - tan-? X+ @nXo |
\\\ = fan “Xowa X(t) W
“a
A(t)

'
Xo+ @nXo
[ox

A] = Jug + (2o )’

A = [A]ees

Hence the rotating vector will have its length become smaller with time since |A| is mul-
tiplied by e*“»f. The real part, which is the solution will eventually damp down to zero.
Hence it is a damped sinusoid oscillation as follows
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skatch of solution to vndardamped
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2.3.5.2 case?2

From

Al,Z = —Ca)n *w, \/Cz -1

For overdamped C > 1, hence V(2 =1 > 0 and we write the above as

Ao = —Cw, + w, V1 -2

Hence the solution is
x(f) = ByeMt + Byelat

where A, = ~lw,, + w,V1 - % and A, = —Cw,, - w,V1 — (?>. We see that both roots are
negative always, hence we have 2 exponentially damped solution being added with no

oscillation. A sketch of the solution is

shetch of solution to oversrdempad Both solution: addad
.\. T T T !_\
Lip 20
\-\
. b}
N, L5 b
1.0 iy L
*»
el 10} ,
\‘\.
0.5 S
3 T 0.5fF .
.:|:) L 1 1 _I T - __'_1 = = ar n =
o 0 40 &0 50 100 L] i ) 40 &0 80 100
¢ r
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2.3.6 Problem 5

2.29 The measured free vibration response of a
one-degree-of-freedom system is as shown in the
graph.

— b
o= o
-

Displacement (mm)
o

-10FEF “EFE
B e e A 0 e e o e
_20 'T"I_T_'I“]'_T"I"'T"J"1"r“T'1"T'TLI__r_'I A 52
0 0.2 0.4 0.6 0.8
Time (s)

EXERCISE 2.29

(a) Deduce from this measurement the log decre-
ment, the natural frequency, and the critical damp-
ing ratio of the system.

(b) Estimate the value of ¢ beyond which the
displacement magnitude Ig| will not exceed
0.01 mm.

(c) If the damping constant C is held fixed. while
the system is modified by doubling the stiffness K
and halving the generalized mass M, how would
that alter the answer to part (b)?

(d) The initial displacement, at ¢ = 0,is g, = —10
mm. What is the initial velocity?

2.3.6.1 Part(a)

From looking at the plot above, here are the values estimated for displacement positive
peaks and time they occur
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t y(t)
0.07 | 16
017 | 12
027 | 9
037 | 6

From the above we estimate the natural period T = 0.1 sec hence f = 10 hz hence w,, =
2nf = 60.3 rad/sec The log decrement is

5=n-L
Yi+N
Selecti =1and N = 3 gives
16
6=1In 3 (2.60)
=0.981 (2.61)
To find C we use the log decrement method
6 =2nNC
Hence
0 0.98083
= = 2.62
¢ 21N 27(3) ( )
C=0.052 (2.63)
Hence
C B 5.20/0

2.3.6.2 Part(b)

ln( 4 ) =2nNC
Y1+N
Where now we write y; = 16 and yy;; = 0.01, and hence we need to find N the only

unknown in the equation above

16
In[ — | = 27N(0.052
n(om) nN(0.052)

Hence
16
ln(

m)
=——/ —2758]
271(0.052)

We take N = 23. What this says is that after 23 periods beyond the first peak, we will
satisfy the requirement. But T = 0.1 sec, and the first peak was at t = 0.05 sec, therefore
t =0.07 +23(0.1) (2.64)
= 2.37sec (2.65)
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2.3.6.3 Partc

Since 6y = 2nNC and C = Ci = ﬁ, then if we double k and half the mass m, then C

would remain the same since c is held constant. Therefore the answer in part b would not
change.

2.3.6.4 Partd

Since this is an underdamped system, the solution is
q(t) = Re(Aet-entrivalt)
Where A is the complex amplitude, say (a + ib), hence
4(t) = Re((a + ib)et-nciedt)

At t = 0 we find that
a =q(0) = g

Hence
a=-0.01

and the general solution is
q(t) = Re((qo + ib)e(‘a’nC”wd)f)
Now taking derivatives of the above gives
q'(t) = Re((-w, L + iawg)(qo + ib)e@nt+iwat)

At t = 0 then, assuming g is the initial velocity

96 = Re((~w, L + iawg)(qo + ib)) (2.66)
= —w,(qo — wgb (2.67)
Hence ,
p 90+ @nCdo
Wy

Therefore the general solution is

a(b) = Re((qo _ Z-M)e<_wng+wd)t)

Wy

and

q'(t) = Re((—wnC + iwd)(% - iw)e(—wnaiwdﬁ)

w4
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Now at t;, = 0.07 sec the velocity is zero, since this is where the displacement is maximum
(first peak). Hence now we have one equation with one unknown gythat we can solve for
from the above

0= Re((—a)nC + ia)d)(% _ iw)e(—wnﬁiwdﬁo) (2.68)
Wq
’ + 4 + .
= i Re (—wano O g + mcud)ewfo) (2:69)
Wy Wy
’ + i
— oonlto Re (i(%wnc + qow d) + %)ezwdto) (2.70)
— ¢~wnlto Re i(%ﬂ”c%mnc + qoa)d)ei“’dto + %eiwdfo) (2.71)
ot —1(q0 + w,Cq0 i(w,t / siwgt
= ¢~@nClo Re - w0, L+ Gowg |e@ato) 4 gpeiato (2.72)
Wq
~1/(a, + . .
— e—wncto [RQ(T(%—O)”CqunC + qowd)el(wdto)) + Re(q(’)elwdtO)] (273)
Wq
o+
= ¢~ @nlto [—(%wrg + qoa)d) sin(wytg) + q; cos(a)dto)] (2.74)

Butgy = -0.01 m/sec, { = 0.052, w,, = 60.3rad/secand w; = w, V1 - (* = 60.3V1 - 0.052? =
60.218, therefore w,ty = 60.218%0.07 = 4.2153 and gpw; = (60.218)(-0.01) = —0.60218 hence
the above equation becomes

g0 + (60.3)(0.052)(-0.01)
60.218

0= e-<60~3><0-052><0-07>(—( 60.3 x 0.052 — 0.6()2) sin(4.215) + g} cos(4.215))

(2.75)

gy — 3136 X 1072
60.218

= 0.80293(—( (3.1356) — 0.602 |(~0.879) + qa(—o.477)) (2.76)

Solving for q; gives
90 = —1.231 m/sec

Now that we gq;,

Now that we g, we can find the numerical value for b and write the general solution
again.

b= _M (2.77)
Wy
-1.231 + 60.3(0.052)(-0.01
_ (0.052)(-0.01) 278)
60.218
=2.0963 x 1072 (2.79)
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Hence from

q(t) = Re((go + ib)ewntrivat) (2.80)
= Re((=0.01 + i0.0209)e-wnt+iwat) (2.81)

giving|A| = v0.012 + 0.02092 = 0.023

2.3.7 Problem 6

(a) Determine the downward displacemg
based on z = 0 being the center of masg
at the instant when the package first copg
ground. Hint: Gravity cannot be ignored p,
z = 0 is not the static equilibrium posi;
(b) Use the solution in part (a) to derive ap g
sion for the force exerted by the cushionine
package mass m. How can this expression b
to determine the instant ¢’ at which the pa
will rebound from the ground?

(c) Consider the case where m = 1 kg, ‘
Hz, and v = 4 m/s. Use mathematical softy
J» evaluate the maximum cushioning force in pa

2.32 The cushioning for a package of mass m may
be represented as a spring k and dashpot c. After
falling some distance, the package hits the ground
with a known initial velocity v. The system is
underdamped.

2z for all ¢ at a fixed critical damping ratio.
0 < ¢ < 1 for this evaluation. Which case
¢ to the most protection for the package?

2.3.7.1 Parta
Assume the system is underdamped.

When the package hits the ground, its speed becomes zero. Therefore the impulse gen-
erated on it is the change of linear momentum. Since it speed was v just before impact,
then impulse= mov.
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m T T
l
A v
z
kz I:impulse
cz'
\/
mg
Hence the EQM is
mz"” = —cz' —kz = Fiyppuise + Mg (2.82)
mz"” +cz’ +kz = mg = Fiypuse (2.83)

With the initial conditions now being z = 0 and z’ = 0.

The response due to the force mg can be found from the response to a unit step of ampli-
tude mg Hence the response due to the force mg is

u(t) = %(1 - e‘cwntlcos wyt + Ca)i; sin a)dt])

The response due to the impulse is the response of a free system with zero initial position
impulse
m

but with initial velocity in the upward (negative) direction. Hence the response

due to the impulse only is

mo
t) = ——e @t sin wyt 2.84
8() = o et sina (2:84)
0
= —e @t gin wyt (2.85)
Wy

Hence the downward displacement is given by

—Cawnt
z(t) = P81 - eCent| cos wgyt + E@ sinwgt || - = sin wt (2.86)
k Wy g

2.3.7.2 Partb

Now that the impulse have taken place and we have accounted for it in the z(t) solution,
then we can use this expression to find the spring force since Fg,;,, = kz(t) and the
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damping force on the mass Fyper = ¢2z'(t). When resultant net force F is negative then
the mass will rebound from the ground.

m B
l
A \/
Z
kz v
mg
cz'

F =mg — kz(t) — cZ'(t)

But
mg ot lw, . ve~t@nt
z(t) = =21 — e %@nt|cos wyt + —= sinwyt || - sin w,t (2.87)
k Wy g4
Hence
—Cwpt
Z'(t) = @(Ca)ne‘cwnt[cos w4t + % sin a)dtl — et~ sin wyt + Cw,, cos a)dt]) - COJL sin w,t — v
k g g
(2.88)
or
e—Cwnt
Z/(t) = fo ((kva)nC + gm(a)g + a),%CZ)) sin wyt — koaw, cos(a)dt)) (2.89)
Hence
F =mg —kz(t) — cz'(t) (2.90)

—Cwpt —Cawy,t
=1mg — k[%(l - e‘cwnt[cos w4t + Ca)—a;” sin a)dt]) - erd sin wdt] - Ceka)d ((kva)nC + gm(a)fl + a),%Cz)) S
(2.91)

To find when this force will turn negative first time, we can take the derivative with
respect to time and set it to zero and solve for first ¢t = #’ that will make it zero. Since the
force was positive first, then it has to become zero before turning negative.
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2.3.7.3 Part(c)

Letm =1kg w, =5 rad/se v = 4 m/s. Hence w; = 5V1 - (2. Since w? = %, hence
k =25 N/m. Also ¢ = Cc., = (2mw,, = 10C

Using these values, the force in part(b) is plotted for different values of C. For example,
setting C = 5% gives this plot of F(t) for t = 0 to 20 seconds.

S
C—— Y N A |
total Force onmass for £=3. %

max force =21.6508 N at t=0.19513§ sec
first time zero at 0.824292 sec

—

I A c
noA L
I . A N AN NN

I | | | I|| | ] I|I ||'I II'-\.-'III VY

p'tr

The maximum force is seen as little over 20 N.Therefore, to find which C gives the smallest
value of maximum force, we can try different values of  and see how the maximum force
changes as a function of C. Using software the following values of maximum for for
different C are generated along with t = t,,, when this maximum occurs and with the
time t = t’ when the mass rebounds first time from z = 0

3typo in book. hz is assumed to mean rad/sec
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2.3. HW2
maximum force (N) | C% | tphax(sec) | t'(sec)
221 1 0.21 0.84
21.85 3 0.206 0.834
21.45 7 0.184 0.81
21.27 10 | 0.16 0.779
21.4 20 | 0.11 0.75
25.8 40 | 0.01 0.68
30 50 | 0.001 0.64

Most protection when damping ratio is below 10%
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2.3.8 Key solution for HW 2

Hw# 2 — Floating (uze ,

g eybe, st =a ¢
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}VﬂQ +(wqu})/<\:lo‘) ‘ J
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Exercise 2,19

Given skabre x=0,05 meber Aue (o
Inse~twn of 2 k3 block
z:. 1 What webh 2ty ;s 10T rades
* less Hoa wiop withouf zLj,
Fod kd o,

Solution: St dtsplacemql- = F/e = M.’): 0.08

1kb

<
U™
Bebore 2 by (wnp)=(k)
lr.
Able- 2 ky , e f : (:t_1 te mat), 10T
or (HNT=(Z) -on
m+ 1(,'907)
From static Acspbcemont [ = o5 =323 Nty &=
Solve _::i: v (?iyi-’-’)"z- 10T =5 M=0,1956 ky
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Exrercise 2,29

Gives 9 vs t
? pu"— values w> 7 cy cles

Si L(H)~h (45T )00y <
'5‘(47,,”;)-/,_, = 0,04723 <

16 2¢r03 w> IS half perivds = Is[i) (0.715-0.0+%)
S? wy = ;5—7: s 207 = wihy (1-4° )~ Q\gh.«a‘cs
Waap = ©2.90 rad A <

Wa atf max  or Mn I,/< 0.01

16
5= F () o912 L ta(oa)
N=24 -] r-o:::d «upP v HCQN’I 0.5 => N-=os5
Thus 25 dam/o(/ pe»;a/i 6¢y041 & sé /’(6£

t> 0007+ 15(2.) =2507 sec
./-‘v numb/f oc cyc/rs N 6" SfeC{G'/ 7‘, é‘ 7(~+"
Lpulson s = 20% , ¢ =

’_;g\)‘/l—

z(ku)"' /
£ Cl=C K'ei ¢mM'=zLtM = @'~ ¢

1(:1'4))‘/\,‘.'
Thas N = N,
Y~ "
However u/,“/ ( ) .._2( )’e L Wab
/.
Because %'=% = w' > 2wy, so
¢ >0.007+25(25) < 1.257 sec <

Coe, halE e Fooe from o £ st ,ouL
To F1ad 4, use eg.(2.2.24). Set g =o@t=0.775:

9, cos[ Wy (0,795)] + %o "(3 “act o ..[w,(o 795)] =0
2

o= =Sy 9 = %2, ot[ws(0.795)]= 1304 mss <

C.S
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Exercise 2,32

") Th. = Mgkt -c2 =mz2
-, é'+2tgwm‘5+w,“:]2-';
t T 2=0 ¢ 2=V @€=0
kv c2 2= 2.t 32
2 = expl-$uay V) [Cieos(w ) tCosialwgt e 2y
Saﬁasfy 1nibial eondi tions \/*;—:“_2
Cc*’ip:“) #“Swv\d'ca*’w‘c‘:v .
v _ 3 =2

wiy (,-..st)v,, #
2> exp(- Waat ) {- 22 eos (wyt)

]
o Geen Flombab)+ g <=
Frey = k2 103 = iy 2 vaswai ) e

whert 2= €rp(-8 W, t) [ (wy ey -~ W €, cos (Wif)
—(wy e, + §What € ) sialuwyh)]
RLLO“’\J IF F;“‘P <0 %

[ = | k)) hat =0T radf = k-mwm:'] 2 (00 W N /m
For v=4m/ss, ¢ =-19937(10"

C‘L‘S) = Ci- ‘-S\)M.[ ot ‘S(Q,Q;?)(lo")]

Pl a £ Hhs reaze O<g<!, eveluste ,‘;usp(é"s)
‘gor O< t< T:M; (rmarimem %»u_ will occurs ta
{‘4»54 cycle) w he e }({f) s 14/7—3’()- [dente by

Mmat Fgup fo- each € value ' o range of ¢
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vied o opg=10m med 0-9807  ©4(Q) = 1-C 0y

= colg) s ——- =8

2 - 2
@ nat © ¢(6) 1- gz @ nat

Z(t,C_,) = exp<—§-m nat.t>.<c 1'COS<(D d((;)t> + C Z(C) -Sin<(1) d(C-’) t>> +

Cl:=

g

@ nat

7(,8) = exp(-g-m nat-t)-

<<(o 4(©) € o(8) - G0 pgrc 1)) -cos<m 4(©) -t>
+(-0 g(€)c 1 - G0 papc 2(@)>-sin<m 4(9) ~t>

F Susp(t,g) = m-<o) natz'z(t’C) +2:Co natZ-Z'(t,C)
j-1 .
e ne1.100 ot .- 12T

j=1.25 (;j =
100 o
nat
Fn,j = I:susp<tn’§j>

8000 T T T T T T T T T

-2000

F mag, ; |Fn J| F max; = max<F mag<l>>
1.10% ,
F max; 5000 . F max, = 135.839
0 |
0 05 1

64



2.4. HW3 CHAPTER 2. HW’S

24 HW3

Resonance at 9 Hz

Node location e

Resonance at 39 Hz

Lab observation 2/14/13
EME 545 Spring 2013

Nasser M. Abbasi
Resonance at 180 Hz

3 nodes counted in each ring
when it was in resonance
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2.5.1 problem description

Homework #4
EMA 545, Spring 2013

Problem 1: Exercise 2.54 from Ginsberg.

Problem 2: (30 pts, each part below is worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 cm, m = 3 grams and x = 20 N/rad.
The damping ratio for the system is = 0.02. The equation of motion for this system is:
(later we will discuss how to find the EOM for a system like this)

%mL29+09+K6 =I(t)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude F, and
duration T as shown below, where Fj is the static torque required to displace the bar 30
degrees.

F®

F

0

(a) Find the response of the system numerically over the time interval 0 <1 < 10*T, with
T =2.5*%T4, where Ty is the damped period of the system. Use a numerical procedure,
preferably Matlab's “ode45” function together with a suitably modified version of
eom_2_12.m, which is available on the class website.

(b) Assuming an underdamped response, write down a closed-form solution for the
response in terms of Heaviside-step functions, and unit step responses, q(t).

Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T =3*Ty and T =
2.5%T4. What do you observe? Why is the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg,
k=11 kN/m and ¢=660 N-s/m. The car is released from rest at t=0
T f(t) with z(0)=—-0.10m. It is possible to bring the car exactly to rest by
7 1_ exerting an impulsive force f(t)=F(3(t-T) at some instant t=T. (e.g.
hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant, T, at which it should be
applied such the bouncing of the car stops completely after at least
K 2.0 seconds have elapsed but before 5.0 seconds have elapsed.
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis, let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m”"3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its
center. The damping ratio of the system is observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force f(t)=(1000 N)cos(wt) where  can be between 0 and 87 rad/s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 cm? What frequency should they jump at to minimize the
number of students required? (Don’t worry, the actual bridge is stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

Problem 5: 3.2 from Ginsberg. Note that you are approximating the radar display as a
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.

Problem 6: 3.5 from Ginsberg. Also, please sketch the force and the response of the

system (by hand) over one or two cycles, taking care to properly represent the amplitude
and phase difference. Do this for both cases, 0.95 kHz and 1.05 kHz.
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2.5.2 problem1

Assuming zero initial conditions. The input to the system is made up of two inputs. We
find the response to the first input, then add this response to the response due to the
second input. The first input is

uy(t) = Foh(t) — Foh(t — T)
= Fo(h(t) - h(t - T))

Which is a rectangular pulse of width T starting at ¢ = 0. For example for T = 10 sec. and
FO =1

first input
12p T .
1.0
0aF
0.6 |
04 F
02
0.0 F

-2k : :
0 0 20 30 40 S50

Assuming the response to unit step is g,(t) then the response to u4(t) is

g1(t) = Fo[gs(H)h(t) - g<(t — THh(t - :r))

69



2.5. HW4

CHAPTER 2. HW’S

From appending B, g,(t) = #(l — cos(w,t)), hence the above becomes

! (1 — cos(w,t))h(t) - !

81(t) = Fo (1 - cos(w,(t - T))h(t - T)

maw?3 mw?

Looking at the second input given by u,(t) = Foe P¢Dh(t — T)

sacoqed inpst

1.2
1.0F
0.8 F h
n&lL "
0.6 "
: 4 -

: -
02t e

= -\--\_\__-_
0.0 —

—0.2
1] 1 20 30 40 5l
tims=

From appendix B, the response to an exponential Foe P'h(t) is

Fo (e-ﬁf - (cos(a)nt) _E Sin(a)nf)))h(t)
) w

m(w% + ﬁz n

Therefore the response to u;(f) is

o) = L)(e-ﬁ“-ﬂ - (cos<wn(t -T) - wﬁ sin(w,(t - T))))h(t - )

m(w% + ﬁz n

Adding Eqs[2.102|and [2.93|results in the final response

g(t) = g1(t) +&1(%)

= FO( L 5 (1 = cos(w,t)h(t) - (1 = cos(w,,(t = T)))h(t - T))+
maw?

p

m(rﬁ(t‘n — (COS(a)n(t -T) - o, sin(w,(t - T))))h(t -7

mw?3

(2.92)

(2.93)

For illustration, the following plot shows the response using some values. Using m =1

kg, w, =1rad/sec,T =10sec,f =1,F, =1 Volt.
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fEEpONER
-lﬂl—l T ] T x T T]
15| .
1of ]
05f .
oof .
—osf .
—].{:I -_I 1 1 1 17

[] 20 40 60 8D

tims
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2.5.3 Problem 2

Problem 2: (30 pts. each part below 1s worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 em. m = 3 grams and « = 20 N/rad.
The damping ratio for the system is £ = 0.02. The equation of motion for this system is:
(later we will discuss how to find the EOM for a system like this)

1 5 - -
EmL'lS‘ +ef+x6=T(1)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude Fo and
duration T as shown below. where Fy is the static torque required to displace the bar 30
degrees.

E(1)

Ir

4}

(a) Find the response of the system numerically over the time interval 0 < 1 < 10*T, with
T = 2.5%T4. where Ty is the damped period of the system. Use a numerical procedure,
preferably Matlab's “ode45" function together with a suitably modified version of
eom 2 12.m. which is available on the class website.

(b) Assuming an underdamped response. write down a closed-form solution for the
response in terms of Heaviside-step functions. and unit step responses. qs(t).

Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T=3%Tg and T=
2.5%T4. What do you observe? Why is the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

2.5.3.1 part(a)

The differential equation is

%MLZG”(t) +cO'(t) + kO(t) = Fo(h(t) = h(t - T)) (2.94)

The initial conditions are not given, and assumed to be zero, therefore 6(0) = 0° and
0’(0) = 0 rad/sec. The system is underdamped, hence

wy = w, V1 =2
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Let T;, be the damped period of oscillation given by
27 27

Wi 1=

To obtain an expression for w,,, Eq[2.110]is changed to a standard form 0" (t) + 2Cw,, 0’ (t) +

T;=

w26(t) = M
5ML2
2Cwy, ﬁ)ji
3¢ 3k Fo(h(t) - h(t - T))
0"+ —=0'(t) + —=0O(t 2.9
O+ 30O + 300 = 2 (2.95)
3
Therefore
, 3k
Y= M2
Using k = 20 N/rad, L = 0.02 meter, M = 0.003 kg
3(20
(0.003)(0.02)
or
= V5.0 x107 =| 7071 rad/sec
and
T, = 21 | 0.8888 ms
d= = .
7071.1V1 - 0.022
Therefore

T =25T; =25x%0.88857 =| 2.221 ms
To find F it is assumed the head was initially at rest. Therefore

FO = k@o

= 20(%) = | 10.472 N-meter

Eq becomes
Fo(h(t) = h(t —2.5T))

SML2
3x20(% )(h(t) h(t - 2.5T,))

(0.003)(0.02)
0" (t) + 2830’ (t) + 5 x 1070(t) = 2.618 x 107 (h(t) — h(t — 0.0022219))

0" (t) + 2Cw, 0’ (t) + w20(t) =

0" () + 2(0.02)(7071)6" () + (5 x 107)0(t) =

This is solved numerically for 0 < ¢ < 10T with the initial conditions 6(0) = 0° and
0’(0) = 0 rad/sec. Here is a plot of the solution and the input on a second plot.
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numeanical solution &) Ty = 0888754 me 3 &
input torgus Fit) (N meter). T =2.22180 m=

1.0-'|'| " T 3w : ; ! |
||” ﬂf 1 | : ! : 3.0%107 F | : i
|'|| 3l |1 ||||||||F||| T e O T

" | ' | ||I||II|E|IM |I |||'L,|“I,'-'I-Jﬁ'u'ﬂu A 1= f E E
H‘“l | | 1ox=107 f : : : i
i AL SR I L
' ! 1 I

0.000 2003 ot ooLs om0 0 0.0 b 0.013 0.020
time in sac tima in g2

A computational software was used to numerically solve the above differential equation
for the solution 6(t).

params = {m + 0.003, L ->0.02, £->0.02, k + 20};

3k b 2m
wy, = — cwg=w,Y1-F ;E0=k—;Td=—;T=2.5Td;
m L 6 g
f0
input = (1 ] (UnitStep[t] - UnitStep[t -2.5Td]):
Imi?
3

eq=6'"[t] +2Lu. 8" [t] + (u,)" B[t] = input;
s0l = 8[t] /. First@NDSolve[{eq /. params, €'[0] == 0, 8[0] == 0}, &[t], {t, O, 10«T /. params}]:

= Grid[{
{Plot[=ol, {t, 0, 10«T /. params}, Frame + True, GridlLines » Automatic,
GridlinesStyle » [Dashed, LightGray},
FramelLabel -+
{{Hone, Honel,
{"time in sec", Bow[{"numerical solution &(t) Ts = ", (Td /. params) «1000, " ms"}]1}},
ImageSize -+ 300] ,
Plot[input /. params, {t, 0, 10«T /. params}, Frame + True, Gridlines -+ Antomatic,
GridlinesStyle » [Dashed, LightGray}, PlotRange -+ {All, 3.3»10~7},
FramelLabel -
{{None, Nonel, {Row[{"time in sec"}],
Bow[{"input torgque F(t) (H meter), T = ", (T /. params) «1000, " ms"1]1}}, ImageSize + 300]
1
}, Spacings + {1, 1}, Frame —+ All, FrameStyle -+ LightGray]

2.5.3.2 Part(b)

From appendix B the response to underdamped second order system to a unit step u(t) is

h(t)

1
— _ p—Capt
gs(t) = o2 1 — e “¥nt| cos(w,t) o
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Hence the response U(t) due to (h(t) = h(t - T)) is given by

Fy
B
L) = (i)(qsa)h(t) (=T 1)
3

F
Notice the factor 1—02 This was used since appendix B solution on based on equation

3
of motion 6”(t) + 2Cw,0'(t) + w Q(t) = = whlle in thls case, the equation of motion is
0" (t) + 2Cw,0'(t) + w20(t) = T hence a factor of T, I8 needed to scale the solution.

3
Therefore the analytical solution is

Ut) = 3;’({) L; (1 —e f( ))h(t)
_ SRy (1 — e~twn(t=2T) (cos(a)d(t - n T))))h(t -T)

Maw?

To compare this solution with the numerical solution found in part(a), the two solutions
are plotted side-by-side for the case T = 2.5T

numarical solution &) analytical solution
1.0 _.rl- I I 5 i ) R ) 17 ) | 2 T S . T .
| oy, ! ! | ||
'\|||||||H‘ |1|'||III : ; — I L1 | ||
H hige | ; | ‘

AT . AL |
M,'l | 1 H i ||I I II|| ||I Inl |"i ||q'| il in AA ';'u"'u" e l | | || f' ||I I| i I'II "' AnA nuv. W
ST AR A ||| |||'|| 'ln'u"u v
F il u P | 1 | ' |

_osf H | ‘I|:IJ A : S | (N || L| ! !
r I 1 ] 1
| S ' | i: 1 1 P L Pl L P 1 i P I 1 L 1 1 P i PR 1 I i 1 P 1 P
0.000 0.005 0.010 0.015 0.020 -:).-:-:}.. .-x-:' 0.010 0.015 0.020
tima in saC tima in g2

We see that solutions are in good approximate. Here is a plot of the difference. The error
is in the order of 1077
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Plot[sol - analyticalSolution /. params, {C, 0, 10«T /. params}, Frame + True, Gridlines +» Automatic,
GridlLinesStyle -+ {Dashed, LightGray},
FrameLabel -+ {{None, None}, {"time in sec", "difference between exact and numerical solution &(t)"}},

ImageSize - 500, PlotStyle - Red]

diferenra betwesn anact and numericsl solution &t)

LT T T T
3 n=1L 1 1 1
I ox 10 : : : " |||
.
2x1077 1 ! || ‘
ll || ‘ H ‘
| | | |I| \ H
| |
I||

H |||\ |} “ || ||U| || ||| M

_ |l| '.
.....Hu mm i

r,||"|||||||| HH“

~1oxlo F ‘ | ‘ |
—2x1077 b ”
. : I' \| H
. 1 I
—3.x107 T F : : ;
1 1 1 1
0.000 0.005 0.010 0.015 00

2.5.3.3 Part(c)
The analytical solutions for T = 2.5T; and T = 3.0T; are

analytical solution, T=2.5 Ty analytical solution, T =3 Ty
1of I i ' i 1 1-9"1 : : !
| | | | || ||
: : A ‘ -
vsf ‘ | " ' ___ H ” i ‘
H | i o5k | | | !
1 1 1
0.0 ||‘ H ||| |}|||I|||“|“I |||l'|ll".I ur-.,l Uulkl-' -3.4-‘ |H| : :
’ | | v | 1
|| ||||||||||'EIuJ' - |
: i | I " !
e i
i ; ; ool |||“||I| Ir'lI ﬁu-l'ﬂ””uﬁf‘“ !-.
] | '..il Jyvuv "-'
. i :
0.000 o0 0,010 0.015 0.020 0.000 S0 i YT vom
time in s tims in zac

We see when the step load duration is T = 2.5}, the disk head will vibrate with larger
amplitudes than when the step duration was T = 3T}.

To understand the reason for this, analysis was done on the undamped version of the
solution for part b

From appendix B the response to undamped second order system to a unit step u(t) is

qs(t) = — cos(wyt))h(t)

M 2
2
Therefore the solution for 0 < t < T is 335; (1 — cos(w,t)). This means at t = T which is
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3Fy/L2
Mw,%

2
(1 - cos(w, T)) and O'(T) = —3% (w,, sin(w, T)).

when the step load is removed, O(T) =

For t > T, the load is not present any more and we have free vibration response but with
the above initial conditions obtained at the end of the T. The solution to free vibration of
an undamped system for f = t = T > 0 is given by

~ 0T - -
Q(t) = af ) sinw,t + 6(T) cos w,,t
n
3Fq/L? .
- Mowz (w,, sin(w,,T)) _ 3FyL2 N
= L sinw,,t + 5 (1 = cos(w,,T)) cos w,t
C‘)n C‘)n
3Fy/L? _ (3Fg/L? 3Fy/L? -
= - MOc{),% sin(w,, T) sin w,,t + ( Moc{)% - Moc{)% cos(a)nT)) cos w,t
3Fy/L? . 3Fy/L? -~ 3Fy/L? -
= _Mo—c{),% sin(w,,T) sin w,t — Mo—c{),% cos(w,, T) cos w,t + Mo—c{),% Cos w,t
3Fy/L? - o 3Fy/L? -
= - ]\/Ioc/u,% (sin(wnT) sin w,t + cos(w,, T) cos a)nt) + Moc{),% cos w,,t (2.96)

We have obtained a solution for the time after the step load was removed. We now inves-
tigate the result observed. We see that when T is close to an integer multiple of the period
of the system, where we call the period of the system T to differentiate it from T, then

. = . [21 - .
sm(a)nnT) = sm(FnT) = sin(n2m) =0

Also
~ 21 ~
cos(a)nnT) = cos(?nT) = cos(n2m) =1

Hence the response given by equation becomes

o 3F/L? -~ 3Fy/L? -
Q(t) = - o 5 COS Wyt + o 5~ COS Wyt
a)I’l a)n
=0 (2.97)

But if T occurs at multiple of halves of the period of the system (for example, T =
0.5T,1.5T,2.5T, etc...) then now

, T (2n( T ,
sm(a)n(ni)) — sm(?(ni)) — sin(nm) — 0

However

T 2n T
cos a)nnz — COS ?nz — cos(nm) — -1
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We notice that the sign is now negative. This means equation becomes

~ 3F,/L? _ 3Fy/L? -
G(t) = _—a),% cos w,t — Maw? cos w,t
6F/L? ~
= - M2 cos wy,t (2.98)

Comparing Eqs[2.97|and [2.98|we see that| when T is an integer multiple of the period of the system |,

then the response after T is minimal (zero for the case on undamped)

Whilel when T occurs at multiple of halves of the period of the system |the response is

large beyond the time T.

The above analysis was done for undamped system, but the same idea carries to the
underdamped case. This explains why the response dies out quickly when T' = 3T ; while
it was large when T = 2.5T}
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2.5.4 Problem 3

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg,
=11 kN/m and ¢=660 N-s/m. The car is released from rest at =0

T ) with z(0)=—0.10m. Itis possible to bring the car exactly to rest by
exerting an impulsive force f{f}=F5(1-T) at some instant 1=T. (e.g.
m hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant. T. at which it should be
applied such the bouncing of the car stops completely after at least
2 k' 2.0 seconds have elapsed but before 5.0 seconds have elapsed.

4

First lets look at the free vibration response (zero input response, called u,;). The damping

c c 660 k 10000
ratio( = — = = =99499 x 102 ~ 0.1 |and w, = A= = /== hence
¢ & 2vkm 24/11000x1000 n m 1000

w, = 3.162 rad/sec, and w; = w,V1 - (¢ = 3.1623V1 -0.12. Hence | w; = 3.146 rad/sec |

. . _2m _ 2n
The damped period of the system is T; = o = 3146 = 1.997 |seconds and the natural
periodis T, = i—n = 321% = 1.987 |seconds.

Hence the system is underdamped and the solution is

11, = Re( Aeliwitwnt)

Where A = a + ib is the complex amplitude. At t = 0 we have

a = u,(0) =-0.1
and uZ;(0) = uj = Re((iwy — Cwy,)(a + ib)) = —bw, — alw,, therefore b = %chn Since car
was dropped from rest, then we take 1 = 0 which leads to b = —% = 0.1
Hence, since a = u((0) = ug and
p= M0 _ g
wgq
then
u(t) = Re((a - ib)e(i‘”d‘c“’")t)
= Re(e‘cw"t(uo — i(—u6 hl acw"))eiwdf)
Wy
= e‘Cwﬂt(uo(O) cos wyt + (%tu—icwn) sin a)dt) (2.99)
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For the numerical values gives, we now can plot this solution

() = e 01616240 1 cos 3.146¢ + 0.1 sin 3.146¢)

Frez vibration mezponss

-I |I._\\l T
0.10 |
- I| |
|I II'
0.05 —— O
=) [
f | §
— - | I| Ill II| I,I'I f\ll"' " o E
= T gool : / : . 1! ;"r ™, e
T E Y % e =
| | |I I|I III'.-.__
~0.05 |
: I II |
_| I'IL _."l
ool 4
0 2 4 5 ) 10

. . _1(b _1( 0.1 .
The phase is given by tan 1(;) = tan 1(5) = 2.356 rad = 135°, In complex plane, u(t) is
. Zero input (free vibration) Al [a2 2
e,gwr\‘P\ solution vector at time t |A| =qvas+ b
1N
\
(4% \ wgyt
. 0 = tan! (%) — 1350 A
N | \
Q)N \\ . |:> | \
\ iogt I S \
X \\ e : /y \\\A’ 0
o, g | SN\
\ | 26\
| \
wdt \| \\ | \

Ui = Re(Aeleatont)

Now we add the zero initial conditions response, also called zero state response u, for
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an input which is an impulse using appendix B.

F
uzs(t) = e—Cwnt( .
mwg;

sin a)dt)h(t)

Hence u,, for an impulse that occurs at time T is

A F
() = e—éwn“—ﬂ(—o sin wy(t — T))h(t ~T) (2.100)
mawg

Hence the solution is found by combining Eq.[2.117|and Eq[2.113

u(t) = Uzt Uy

ugy + alwy,

F
= e‘C("”t(uo(O) cos wyt + ( ) sin a)dt)h(t) + e_cw”(t_T)( 2 sin wg(t - T))h(t -T)

Wy mwg;

We need now to solve for T and F; in order to meet the requirements that u(t) should
become zero between for 2 < t < 5. To do this in the complex plane, we draw the zero
state response as a vector

F
Uy = e‘c“’n(f‘ﬂ(—o sin w,;(t — T))h(t -7
mawg
—Cawy(t-T)
= Re Foe—leiwd(t—T) h(t-T)
mawg; i

—Cwy(t=T) . e
_ Re[FC T lwat=03) e -
mwy

Foe—cﬁ)n (t-T)

and phase | wyt — wyT — = |Now to solve the

Hence u,, vector has| magnitude 5

mawy

problem of finding T and Fj: To make the response become zero we need the magnitude
of u,, to be equal but opposite in sign to the magnitude of u,; so that the projection on
the x-axis cancel out (the projection on the x-axis of the vector is the real part which is
the solution). Therefore, for the projection of u,; to be the same as the projection of u,;
but of different sign, the following diagram shows all the possible T values that allows
this. We will pick the first T value which is larger than 2 seconds to use.
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This vector represents the response
to the impulse for zero initial

Zero input (free vibration) cond.itions shown here at one
solution vector at time 0 possible value for T
I
Magnitude of /P Magnitude of
this vector is : this vector is
|A|esent | Foe <on®D

: Mag

I

I

I

I

Thi
o S ang/e is
) R aT 4 =
2
We want these 2 values to
be the same for the total
response to be zero
2n-2-= §7'(
From the above diagram, we need w;T + T =2n-Z% hence T = # =4 =15

seconds. Hence this value of T is not acceptable We now look for the next posmble T.

82



2.5. HW4 CHAPTER 2. HW’S

This vector represents the response
to the impulse for zero initial

Zero input (free vibration) cond.itions shown here at one
solution vector at time 0 possible value for T
wdtﬂ\
|
Magnitude of /k Magnitude of
this vector is : \ this vector is
|A | glont : w4t FoetentD)

: Mg

I 450

I 450

|

I 450
|
[
|
| w, 1. gk s
| al + z

~— |
|

We want these 2 values to
be the same for the total
response to be zero
27_[ Tt T
From the above diagram we see it will be w;T + E =21+ “hence T = —%+-2 =175

seconds. Hence this is still too early to apply the impulse. We look at the next poss1ble
case. We see that now we must rotate the vector all the way it was in the first diagram
above to get the projection on the x-axis canceling the projection of the free vibration
vector. Hence now the relation to solve for is

Tt Tt
a)dT+E:47T—Z

Where in the above we added full 27 to the first case we considered above. This gives

47t —

PPI:I
NI:I

T = = 3.25 sec

e
.We have found T which brings the system to halt after at least 2 seconds has elapsed.
Now we find Fj This is done by equating the amplitudes of the vectors as follows

F —Cwy,(t-T) R
o€ — e—CaJ”t|A|
mawg,
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Now fort = T = 3.25 second, plug-in numerical values

Fo — e—(O.l)(3.162)(3.25)\/0‘12 +0.12

1000(3.146)
fo 50607102
3146.0
Fo = 159.21

To verify, here is a plot of the response when the impulse hit with

Fo =159.21 N at t = 3.25 seconds

Response showing effect of impulse
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2.5.5 Problem 4

Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis. let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m”3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force 1s applied at 1ts
center. The damping ratio of the system 1s observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force fit)=(1000 N)cos(wt) where @ can be between 0 and 8xn rad’s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 em? What frequency should they jump at to minimize the
number of students required? (Don’t worry. the actual bridge 1s stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

2.5.5.1 First part

Let A be the area of the cross section and p the mass density and L the length, then actual
mass is

Mactual = LAP
= 50(18 x 0.0254)(4 x 0.3048)(7800)
= 217393 kg

Hence we will use

217393
m = = 72464 kg

. . . . . 48EI
The actual stiffness for a simply supported mean with loading at the center is —- where
I is the area moment of inertia. Hence

wh® (4 x 0.3048)(18 x 0.0254)°

12 12
85
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Therefore the stiffness of the beam is

48E]

T
48(210 x 10°)(0.00971)

= 05 = 783014 N/m
The natural frequency is
/ /783014 — 3.087rad)
T rad/sec

=0. 523 Hz

Therefore, assuming the loading is given by F, cos(@t) where @ is the forcing frequency.
The dynamic response at any time is given by

Fo/k

J-r) + oy

Where r = wﬂ We start by drawing |X | vs. @ for the load of 1000 N by changing @ from 0
to 87, Hence for a single student the displacement vs. forcing frequency is

A

parms = {£f + 1000, k—» 783014, wn—» 3.287, z—»0.01};
f/k

\/(1_ (%}2)2 B (22%}2 ;

Plot[y[w] /. parms, {w, 0, 8Pi}, PlotRange » {{0, 8}, All},

GridLines » Automatic, Frame —+ True,

ylw_] :=

FrameLabel -+ {{"|X|", None}, {"w (rad/sec)", "displacement wvs. frecuency"}}]

displacement vs. frequency

0.06 |

w (rad/sec)
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Hence we see that for one student, the maximum displacement is around 6 cm when the
student is jumping at resonance frequency.

To answer the question of how many students are needed to cause |X] to be 50 cm then
that will depend on what forcing frequency is used. Now we will find the minimum
number of students needed.

The minimum number will be when they all jump at the resonance frequency which is
found from solving for @,esonance iN

CDT’ESOTZ(Z?’ICE — /1 _ 2C2
a)}’l

Wresonance = Wy V1 - 2C2

= 3.2874/1 — 2(0.01)?

= 3.28667 rad/sec

Therefore, at this forcing frequency, we now solve for F, to determine the number of
students

Fo/k

_ 2\2 ) 2
J(l _ (a’rcsonuncc) ) + (2C wresonunce)
Wy Wy
_ 2\2 _ 2
_FO — k|X|J 1 _ (wresommce ) ] + (2C wresonance)
a)n a)n

2\2 ,
- (783014)(0'5)J (1 - (3'28667) ) + (z(o.on%)

X

3.287 3.287
=7829.75 N

Therefore we need at least| 8 students |all jumping at 3.287 rad/sec to cause a displace-
ment of at least 50 cm.

2.5.6 Extra part

. . @
To make the structure avoid resonance, we need to make sure the ratio — stays away
n

from one. This is the ratio of the forcing frequency to the natural frequency. One way is to
make w, much larger than any expected @ that can occur is typical use of this structure.

But to make w,, = \/g large, means either making m small or making k large. It is hard

to reduce the mass of the structure. Therefore, making the structure more stiff will be a
better solution.
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The bridge can be made more stiff in many ways, such as by adding additional truss
structure to it (assuming this will add minimal weight). For this example, suppose we

double the stiffness. Hence w,, = 1/;—1( = 1/2(775224) = 4.649rad /sec.

Therefore NOW @,psonance = W V1 — 202 = 4.649+/1 — 2(0.01)* = 4.65 rad/sec. Now the
same number of students (8) as before, jumping at same frequency of 3.28667 will cause
displacement of

A 8F,/k
X| = >
)\2 )\2
V() )
B 8000/783014
1 _ (328667 2\? 20 01)3.28667 2
| 2649 + 4649
= 0.02 meter

Therefore by making the bridge twice as stiff, now the same 8 students at @ = 3.287 will
cause only 2 cm displacement instead of 50 cm.

2.5.7 Problem 5

A radar display is to be tested by mounting it on spring-dashpot suspension and subject-
ing it to harmonic force Q = F cos(@t). The mounted mass is 8 kg and C = 0.25. A free
vibration shows that damped natural frequency f; = Shz.It is observed that when the
force is applied at very low frequency the displacement amplitude is 2 mm. The test is to
be performed at 5.2 Hz. What will be the steady state response?

We are given are the following
m = 8 kg
=025

wyg = w,V1 — % =27(5) rad/sec
Fo/k = 0.002 meter
@ = 2m(5.2) rad/sec

wg _ 2n(5)
V1-2  V1-0252

Hence w,, = = 32.446 rad/sec. The steady state response is given by

Ugy = Re(f(ei@ t)
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where X = |X|ei9. Hence

and

Fo/k

(&) e

0.002

X

2\2 2
27(5.2) 27(5.2)
\/(1 B (32.446) ) * (2(0'25) 32.446)

= 0.00397

Since 0 < O < « then the phase is

Hence

u= Re(f(e"“_’t)
- Re(0.00397eigei@t)

— 0.00397 cos(a’)t + g)
— —0.00397 sin(@?)
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= Plot[-0.00397 8in[2+Pix5.2%t], {t, 0, 1}, Frame » True, GridLines » Automatic,

FrameLabel - {{"u,;(t)", None}, {t, "setady state responsem}}]

setady state response
D.D-Dn-l-j' * SR AL T .'r"‘.l

0.002 - (-

tigy (1)

e 1 T T .

—0.002

—0004k,

2.5.8 Problem 6

A one degree of freedom system whose mass is 10 kg and whose natural frequency is 1
khz is subjected to a harmonic excitation 1.2 sin @t kN. The steady state amplitude when
@ =1khz is observed to be 2.4 mm. Determine the steady state response at @ = 0.95 khz

and @ = 1.05 khz.

We are given

m =10 kg
w,, = 2m1(1000) rad/sec
Fo=1200 N

IX| = 2.4 x 1073 meter when @ = w,,

Since w? = k, hence k = w2m = (2n(1000))2(10), therefore
m

n

k =3.949 x 108 N/m

Now when @ = w,, we have

% Fo/k
@ 2 2 @ 2
(1 (%) ) #(2c)
1200/(3.949 x 10°)
24x107 =
(20)°
~3.039%x10°

2C
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Hence
3.039 x 1076
. (2 X 2.4 X 10—3)
= 0.000633

2.5.8.1 Part (1)

when | @ =271(950) | now r = wi < 1 hence dynamic magnification factor is positive.

Therefore loading and displacement will be in phase with each others. (i.e. displacement
is in same direction as force). Since the force is sin then the response will be sin with
same frequency but different phase and amplitude. Hence let

ug, = Xsin(@t — 6)

Where
Fo/k

Y- () 2y

1200/(3.949 X 108)

- 2\2 2
27(950) 27(950)
\/(1 - (271(1000)) ) + (2(0'000633) 2n(1000))

=3.116 x 10~ meter

and

0 = tan™!

2Cr
1-1r2

27(950
2(0.000633) 2:((1 o 0))

3 ( 271(950) )2
272(1000)

= tan"1(1.234 x 1072)

= 0.01235 radians

=0.71°

= tan"~

Hence steady state response is
U = 3.116 X 107° sin(@t — 0.71°)

Hence we see that the displacement is lagging the load by 0.71°. On complex plane it
looks as follows
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Im When r<1 the displacement
load moves with load, but lags
behind it by g
Disp./‘(‘
—  Re
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O
2.5.8.2 Part (2)
When | @ = 27(1050) | now r = wﬁ > 1 hence dynamic magnification factor is negative.

Therefore loading and displacement will be out of phase with loading. (i.e .displacement
is in opposite direction to force). Doing the same calculations are done as above

ug, = Xsin(wt — 6)
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where X
Fo/k
X = o/
@ 2 2 @ 2
-] )
Wy, Wy
1200/(3.949 x 10°)
1— 271(1050) 2\ " 2(0 000633)2n(1050) 2
271(1000) ) 271(1000)
=2.964 X 10~ meter
and

2Cr
0 = tan™!
an (1 )
27(1050)

2(0.000633) 27(1000)
3 (271(1050))2

= tan™!

27(1000)
0.0013293
-0.1025 )
= 3.12862 radians
=179.257°

—_

=tan™

Hence steady state response is

U = 2.964 X 107° sin(@t — 179.257°)

On complex plane it looks as follows
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d% We see that when r>1 then as load
6\ increases in one direction, the displacement
/\ is increasing but in opposite direction
displacement \{A
P o)
©
EAN

Im
_ I::> Load increasing
load )‘;

Q Re

When r>1 the displacement
Displacement increasing ot moves with load, but lags

<:| i(—diSp v behind it by

o
p)
)

A
6(,

__ér__

load

Here is a plot by hand for the above 2 cases. First, the period that the loading is using
=T = L =1.0526 x 10 3sec
@ 950
T =1.053 ms
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2.5.9 Key solution for HW 4

Homework #4
EMA 545, Spring 2013

Problem 1: Exercise 2.54 from Ginsberg.

Problem 2: (30 pts, each part below is worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 cm, m = 3 grams and x = 20 N/rad.
The damping ratio for the system is = 0.02. The equation of motion for this system is:
(later we will discuss how to find the EOM for a system like this)

%mL29+09+K6 =I(t)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude F, and
duration T as shown below, where Fj is the static torque required to displace the bar 30
degrees.

F®

F

0

(a) Find the response of the system numerically over the time interval 0 <1 < 10*T, with
T =2.5*%T4, where Ty is the damped period of the system. Use a numerical procedure,
preferably Matlab's “ode45” function together with a suitably modified version of
eom_2_12.m, which is available on the class website.

(b) Assuming an underdamped response, write down a closed-form solution for the
response in terms of Heaviside-step functions, and unit step responses, q(t).

Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T =3*Ty and T =
2.5%T4. What do you observe? Why is the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg,
k=11 kN/m and ¢=660 N-s/m. The car is released from rest at t=0
T f(t) with z(0)=—-0.10m. It is possible to bring the car exactly to rest by
7 1_ exerting an impulsive force f(t)=F(3(t-T) at some instant t=T. (e.g.
hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant, T, at which it should be
applied such the bouncing of the car stops completely after at least
K 2.0 seconds have elapsed but before 5.0 seconds have elapsed.
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis, let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m”"3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its
center. The damping ratio of the system is observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force f(t)=(1000 N)cos(wt) where  can be between 0 and 87 rad/s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 cm? What frequency should they jump at to minimize the
number of students required? (Don’t worry, the actual bridge is stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

Problem 5: 3.2 from Ginsberg. Note that you are approximating the radar display as a
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.

Problem 6: 3.5 from Ginsberg. Also, please sketch the force and the response of the

system (by hand) over one or two cycles, taking care to properly represent the amplitude
and phase difference. Do this for both cases, 0.95 kHz and 1.05 kHz.
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HWH#6, Problem 2e-01, Hard Disk Drive
SOLUTION
MSA — Mar. 2009

Response with T = 3*Td

Forcing F(t)
15

10 d

15 20 25 30

0

time (ms)

The transient response due to the step up is in phase with that of the transient response
due to the step down, so the two almost cancel. They do not quite cancel because the
response has damped somewhat, so the second step is larger than what would be needed
to cancel the residual vibration from the first step.

Response with T = 2.5*Td
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Forcing F(t)

15 20 25

100

Analytica

time (ms)

Matlab code:
% Solution to HW 2e-01 Hard Disk Drive Head

clear all; close all

Parameter values

0.02; % m

20; % N/rad (torsional)

0.003; %

(1/3)*m*L"2; K = K; % SDOF parameters
n = sqrt(K/M)

zt = 0.02

SESIXACE
I mn

FO = 30*pi/180*k;

q_0 = 0; g_dot_0 = 0;
Td = 2*pi/wn;

Tc = 1/(zt*wn); % time constant of the system
T

= 3*Td
% T =

2.5*Td;

global S
vns = whos; % put into a global variable
for k = 1:length(vns);
eval(["S.",vns(k).name, " = ",vns(k).name,";"]);
end
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% Time Vector
ts = [0:Td/10:10*T]; % 4*Tctime vector, sample 10x per period and over
4 time constants.

% Forcing - sum of step and ramp
% note h(t) written as (t>0) in Matlab
F = FO*(ts>0) - FO.*(ts-T>0);

% Analytical Solution

% Unit step and ramp responses from Ginsberg - includes particular and
% complimentary solutions
gqs = inline([" (/(M*wn"2))*(1-exp(-zt*wn*t)*(cos(wn*sqrt(1-
ZtN2)*e)+", . ..

"(zt/sqre(1-ztn2))*sin(wn*sqrt(1-
zt"2)*t)))*(t>0)"],"t","M","wn","zt");

% Response is a sum of step and ramp responses
q = zeros(size(ts));
for k = 1:length(ts)
q(k) = FO*gs(ts(k),M,wn,zt) - FO*qs(ts(k)-T,M,wn,zt);
end

figure(l)

subplot(2,1,1)

plot(ts*1e3,F); grid on;

title("Forcing F(t)");

subplot(2,1,2);

plot(ts*1e3,g*180/pi); grid on;
title("Response q(t)");

xlabel ("time (ms)"); ylabel("\theta (™0)");

% Solution using ODE45

% Define equations of motion in eom 2 12.m

% Note - ode45 requires only the time span, not the whole time vector
tic

[tout,yout] = oded45("eom 2e 1°,[ts(1l),ts(end)],[q_0; g_dot _0]);

t_ode = toc

g_ode = yout(:,1); % the First of the y variables is q(t), the second
is g _dot(t)

% Add red dots to plot above
hold on; plot(tout*1e3,q_ode*180/pi,"r."); hold off;
legend("Analytical ™, "ODE45%);

%%% Equations of Motion:
function [xdot] = eom_2e_ 1(t,x)

global S % bring in parameters

% Forcing - sum of step and ramp
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F = S.FO*(t>0) - S.FO.*(t-S.T>0);

% Equations of Motion
xdot(1,1) = x(2);
xdot(2,1) = -S.wn™"2*x(1)-2*S.zt*S.wn*x(2) + F/S.M;
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% Solution to HW e2-03, Car impulse

m=1000;
wn=sqrt(11000/1000)
zt=660/1000/2/wn
wd=wn*sqrt(1-zt"2);
lam=-zt*wn+1li*wd;

A=-0.1+1i*0.1*zt*wn/(wn*sqrt(1-zt"2))
gam=pi-angle(A)
T=(3*pi/2+gam+1*2*pi)/wd

FO=m*wd*abs(A)*exp(-zt*wn*T)

% Notice, the value of FO seems rather small. Remember that it is an
% impulse, so to get realistic units we need to integrate over the
impulse.

% For example, if the impulse were a constant force, Fc, that is
0.001sec long,

% then the integral of Fc*0.001 would equal FO, or in other words,

Fc=F0/0.001 % N
% Maybe that still seems a little small but it seems to be correct.

B=(-1i*F0/(m*wd))

% Check to see if this works:
dt=2*pi/wd)/20; % 20 samples per period
ts=[0:dt:7];

z_IC=real (A*exp(lam*ts));

z_F=real (B*exp(lam*(ts-T))).*(ts>T);

figure(1);

plot(ts,z_IC, ts,z F, ts, z IC+z_F,"--"); grid on;
legend("z_{IC}","z_F","z_{total}");

set(get(gca, "Children®), "LineWidth",2);
xlabel("time (s)"); ylabel("Displacement (m)");

Command Window Output:

wn =
3.3166
zt =
0.099499
A =
-0.1 + 0.0099995i
gam =
0.099664
T =
3.362
FO =
109.36
Fc =
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E xercrse 3,2

Mi‘!‘ cé-{-#; =F ecos(wt)
m= @8 k; 3?.0.25) w‘(;/orrfa/d) F/ k= ©.002 ~aefer

Wany = it . = 32,446 ruds
(- ‘)’
r= 5___2("”) = 1,006276
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s e £ 1p¢-, g)[cOs[u)# &)
[p(v, ‘g)l =/985%

[(1 rHveqqte)'a

Q = (ﬁq-l i—g_:
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7hus g >0.00397/ cos (10,9 f{-r.598¢c ) el
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2.6.1 problem description

Homework #5, EMA 545, Spring 2013
Due Thursday 2/28

Comment: As | mentioned in class, | strongly encourage you to avoid hunting for formulas on
forced response. All of these problems can be solved simply by knowing the differential
equation and that the force and steady state response have the form:

f(t)=Re(Fe") -  x(t)=Re(Xe")

Problem 1: 3.9 from Ginsberg (Hint: assume that the motion of every component of the system
is harmonic. Derive the equation(s) of motion and show the full derivation used to obtain the
complex amplitude(s) from the equation(s) of motion.)

Problem 2: (3e1) (20 points)
A 450 kg generator, modeled as a rigid mass, must be installed on the
same floor as some sensitive laboratory equipment. The operation of the T f(t)
generator results in a vertical force, f(t), being applied to the generator
(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm.  Z 1_
Use a damping ratio of ¢ = 0.03 for both (a) and (b) below.
a.) Find the stiffness of the support, k, such that the force transmitted
to the ground is no more than 2kN. C k
b.) Take your result from part (a) and compute the amplitude of the
generator as the machine starts up. (As the machine starts up,
assume that the force amplitude is constant at 20kN, but the
frequency increases very slowly from zero to 1800 rpm. Do a worst-case analysis — just
assure that the steady-state amplitude of the machine is less than 10mm for any forcing
frequency between 0 and 1800 rpm.)
¢.) Using your results from (a) and (b), suppose that the startup amplitude must not exceed
10mm. The startup amplitude can be decreased by adding mass to the generator while
also increasing the stiffness of the support to keep the natural frequency of the system
constant. How much mass must be added to keep the amplitude below 10mm?

Problem 3: 3.19 from Ginsberg

Problem 4: 3.23 from Ginsberg
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2.6.2 problem1

y
< |
F
EXERCISE 3.9

3.9 The shock absorber consists of an outer tube
of mass m, that is restrained by spring k and an

« inner piston of mass m,. Orifices in the piston
permit passage of a viscous fluid that fills the
tube; the coefficient of damping between the pis-
ton and the tube is w. An unknown force F@) is
applied to the piston, with the result that the abso-
lute displacement of the piston is y = Asin(wr).
The parameters of the system are: my =0.5 kg,
m; =1.0 kg, k =3.2 kN/m, u =40 N-s/m, and
A =20 mm. Determine the amplitude and phase
of the force F(z) relative to the displacement y(7)
when w =75 rad/s and @ = 85 rad/s.

Assuming the 2 masses move together (else we will have 2 systems and 2 equations of
motions. Hence I assumed that they move together as one body).

(my +mp)y” +y'u+ky = f(t)

Since y(t) = Asin(wt) hence )
_ 27wt
y(t) = Re( - e )
Let ; »
f(t) =Re 761 @

Where F is the complex amplitude of the force. Now we substitute all these in the differ-
ential equation above.

Y = Re(wAe!)

Y’ = Re(iszei“’t)
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(my +my)y” +y'u+ky=Re —¢l@?)

j ' A . F .
Re(ia)erzwt)(ml + 1,) + Re(a)Ae’“’t)y + kRe(Te“”t) - Re _'ez(wt)

1 . F .
Re[(iwz(ml +1My) + Wy + ;k)Ae“"t] = Re| —¢/@?
1 E
(ia)z(ml + 1) + wy + ?k)A ==

Hence

A

F= (—a)z(ml + 1) + iy + k)A
k=32x10° Nm, p =40 Ns/m,A = 0.02 meter. When w = 75rad/sec the above becomes

F = (-75%(1.5) + i75 x 40 + 3.2 X 10%)0.02
= —104.75 + 60.0i

60.0

Hence Re(F) = —=104.75N and the phase is tan™!{———
p 10475

) = 2.62 rad/sec.

When v = 85

N

40
F= 1.5(—852 + 1'85ﬁ + 2133.3)0.02

= -152.75 + 68.0i

Re(ﬁ) = -152.75 N and the phase is tan_l(—%) = 2.722 rad/sec.
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2.6.3 problem 2

Problem 2: (3¢1) (20 points)

A 450 kg generator. modeled as a rigid mass. must be installed on the

same floor as some sensitive laboratory equipment. The operation of the I ft)
m

generator results in a vertical force. flt). being applied to the generator
(rigid mass) whose amplitude is 20kN and whose frequency 1s 1800 rpm. = L
Use a damping ratio of £ = 0.03 for both (a) and (b) below.

a.) Find the stiffness of the support. k. such that the force transmitted
to the ground is no more than 2kN. c i

b.) Take your result from part (a) and compute the amplitude of the
generator as the machine starts up. (As the machine starts up.
assume that the force amplitude is constant at 20kN. but the
frequency increases very slowly from zero to 1800 rpm. Do a worst-case analysis — just
assure that the steady-state amplitude of the machine 15 less than 10mm for any forcing
frequency between 0 and 1800 rpm.)

c.) Using your results from (a) and (b). suppose that the startup amplitude must not exceed
10mm. The startup amplitude can be decreased by adding mass to the generator while
also mnereasing the stiffness of the support to keep the natural frequency of the system
constant. How much mass must be added to keep the amplitude below 10mm?

2.6.3.1 Part(a)

Force transmitted to floor is given by

Fi,=cz +kz

Let f(t) = Fcos(wt) = Re(Fei“’t) = Re(Fei“’t) where we are given that F = 20 x 10°> N.

w = 24%) = 607 = 188.50 rad/sec or 30 Hz.
Letz, = Re(§|D|ei(“’t‘¢)) where ¢ = tan_l(%) and |D| = 1 andr= wi Hence

(1—r2)2+(2Cr)2

z = Re(iw%lDlei(wt_‘P)) = Re(w%lDlei(wt_¢+g)). Therefore
F (wi—bt T F (i
F,, = cRe(a)ElDlel(wt ¢+2)) + kRe(EIDlel(wt ¢))

Where ¢ = 2Cw,m and When F,, = 2 X 10°N . We now solve for k from

F o i(wt—p+Z F o ilwi
2 x10° > 20w, m Re(a)ElDlel(wt ¢+2)) + kRe(EIDlel(wt ¢’))
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Taking the maximum case for RHS where exponential are unity magnitude, hence
F
2x10% = ZCwnma)%lDl + F|D|
F
= (ZCa)nma)(E) + F)IDI
m
_ F(1+2Cw, )
2
\/(1 — r-’-) + (20r)?

@ @
Where r = — = —. Hence the above becomes

Wy [k
m

F(1+2lw, 7 )

[

In the above everything is known except for k which we solve for. Plugging the numerical

2x10° =

values given. w = 271(%),7}1 =450,F =20 x 103, = 0.03 hence
20 x 103(1 +2(0.03)4/ = %"(6071))
3 _
2x10° = =~ >
(1 - sy’ (2(0.03) o ]
150

Hence k = 1.2135 x 10° N/m. Hence @, = 1/~ = /2222 _ 51 929 rad/sec or 8.265 Hz.
m 450

2.6.3.2 part(b)
The total displacement is given by
2(£) = Zransient (£) + Zss(F)

F (wi—
= e~CWnt(A cos wyt + Bsin wyt) + Re(%lDlel(m ¢))

Where
Ztmnsient(t) = e—Cwnl‘(A cos wyt + Bsin C‘)dt)

Assuming at t = 0 the system is relaxed hence z(0) = 0 and z’(0) = 0 we can determine
A, B from Eq ??.
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Att =0,
z(0)=0
F .
=A+ Re(EIDIe"‘f’)
Hence E
A= —Re(—|D|e—i¢)
k
and

Z/(t) = —Cw, e (A cos wyt + Bsin wyt) + e~nt(—wy A sin wyt + wyB cos w,t)

F(gn
+ Re(a)EIDlel( ¢+2))

Henceatt =0
Z(0)=0

F (—pt T
= Cw, A+ wB+ Re(cuEIDlel( ¢+2))

Hence

1 F (—ot ™
=Wy —Re(a)%IDIel( <z>+,_))

Wy Wy
F , 1 F T
_ Re[ —|DJe™?| — — Re a)—IDlel( ¥+3)
Wy k @y k

Therefore the displacement is

F . F . 1 F (—tr T
z(t) = e"@nt| —Re| —|Dle™® | cos w,t + _Lan Re|=|DJe™®| — — Re a)—IDIeZ( 9+3) sin w,t
k Wy k wy k

F (-
+Re(E|Dlel(wt 2 ¢>)
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Hence expressed in sin and cos

F Cw, (F 1( F
t)=—|-|D ~Cent t+e @t -1 —|D — —|w=|D|si i t
z(t) (kl |cos¢)e coswyt +e { o kl | cos ¢ o wkl |sing | sinwy
F
+ ElDl Cos(a)t - qb)
F FID F
= _(E|D| cos <P)e‘€wnt cos wyt + e—Cwnt#(—Ca)n Cos ¢ — w sin qb) sin wyt + E|D| cos(a)t - (p)

F 1 F
= —|D|€_C(unt[— cos ¢ cos wyt + —(—Ca)n Cos ¢ — wsin qf)) sinwyt | + ElDl cos(a)t - qb)
W4

k

Since = 0.03 then w; = w,V1 - (% = w,V1 —0.03%2 = 0.99955(w,,). Therefore in the above
we can just replace w,; by w,, with very good approximation, hence we now obtain

z(t) = EIDIe‘C“’"t —Cos  cos w,t + L(—Ca) cos ¢ — w sin gb) sinw, t|+ E|D| cos(a)t - qb)
k " w " " k

n

F @ ) F
= E|Dle—lwnt[_ COS ¢ oS wy,t — (C cos ¢ + — sin cp) sinw,t|+ ElDl cos(a)t - qb)
@

n

w
1 wp

This is the amplitude. In the above |D| = ,and ¢ = tan™! 5. The

V) () ()

transient solution usually goes away after 5 or 6 cycles. Hence let us assume that the start

up time takes 6 X n = (0.72597 seconds. Or 1 second at worst.

27 27

=X — =6 X ———

Wy \/E 1.2135x106
m 450

Therefore we can now plot the amplitude for t = 0 to t = 1 second in increments of 0.1
second, and each time advance, we can increment w from 0 to 607 in linear fashion, hence
each 0.1 second we update @ by an amount 67. After 1 second has passed, the system
is assumed to be in steady state, and then we keep w fixed at 607t rad /sec. This is a plot
showing z(t) for t = 0 to 2 seconds given the above method of changing w

To avoid going over 10mm, this means we have to avoid the case of r = 1 or w = wy,.
When I first just incremented w, such that r = 1 was not avoided, resonance caused the
amplitude to go over 10mm as given in this plot. The transient solution itself stayed just
below 10mm but the steady state solution went over 10mm due to resonance
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2.6.3.3 Part(c)

To insure that the amplitude does not go over 10mm, we need to add mass to the generator.
. . o F1 _ 20x10®° 1

Maximum amplitude is given by X20 = 12135x10520.08) 0.27469 meter or 274mm

20x10° 1

So to insure maximum does not exceed 10mm, solve for new k from 0.01 = 2003

7
hencek, = 3.3333x107. Since w,, = 51.929 = :1—" then new massism,, = % =

= 12361 kg

using these values, the above plot now are redone. This is the result
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We see that now the maximum displacement remained below 10 mm.
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2.6.4 Problem 3

- v ona s SECTTIROR ARG

3.19 The total mass of a motor is 8 kg. It is
observed that gently placing the motor on a beam
produces a static downward displacement of 40

beam is 10 mm. It also is observed that a¢ al
tion rate of 145 rev/min, the radial line to the
ter of mass of each rotor is 75° above horiga
when the beam is at its static reference .._ »
(where g = 0).

mm. When the motor rotates at an angular speed
of 145 rev/min, the steady-state amplitude of the

| ——

A

EXERCISE 3.19

(a) Determine the damping ratio ¢ for the system,
(b) Determine the imbalance &m.

(¢) Determine the smallest possible amplitude ¢
vibration of the beam if the motor turns at a rale
that is much larger than the natural frequency :
the system.

Let ¢ = 50mm = 0.05m be the distance of the unbalance mass m. Let M = 80kg be the mass
of the motor. The equation of motion is given by

(M +m)y” +cy’ +ky = meQ? sin(Qt)

77 ’ m 2 1 iQf
Yy +2CC()”]/ +w%y=m60 Re(iel )

k _ Y o .
Where w,, = ,/m and C = m Lety = Re(Te’ ) This leads to

m eQ?
h m+Ma),%—QZ+2ijnQ

Since static deflection is 40mm, then

M — 0.04
. (M +m)g
T 0.04

kK M+mg _ 8
m+M ~ 0.04(M+m) ~ 0.04”

hence w, = 4/ % = 15.66 rad /sec or 2.492 Hz.
120
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2.6.4.1 part(a)

Since at steady state the displacement is 10 mm, then Q) = 27'(% =15.184 or| 2.4167 Hz

y = Re(l—,/eigt) = Re[ - - )ei(gt'g)]

i m+M(1-72 + 2iCr

hence

2 , e
= emr 1 Re e_i(/J)el(Qt_E))
m+ M 2 2
((1 - ,,2) + (2Cr) )
Where ¢ = tan‘l(%). = wg = % = 0.9696 | hence the above becomes, at steady
state
0.0 = (0.05)m 0.9696° Re(ei(15'184 t_g_¢))
T 2
m + 80 \/ (1-0.96962)" + (200.9696)*
(0.05)m 0.96962

= sin(15.184 - ¢)) (2.101)
m + 80 \/ (1-0.96962)" + (2£0.9696)*

We are now told that at Q = 15.184 and when Qt = 75° then the displacement is zero,

hence
_ (0.05)m 0.96962

sin(75° - ¢)

m + 80 \/ (1-0.96962)" + (200.9696)°
or
silr1(75O — qb) =0
750 — ¢ = 0
¢ = 75°

Since ¢ = tan_l(%) then

75( n) orio1260.9696
180 1-0.96962

Hence
1 200.9696
an | ——
1 - 0.96962
2£0.9696

1-0.96962
2C0.9696

1-0.96962
121
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Hence| ¢ = 0.11523

2.6.4.2 Part(b)

From Eq @

2
001 = ©.05)m 0.9696

sin(15.184 £ - )

2
m + 80 \/ (1-0.96962)" + (220.9696)"

The maximum amplitude is when

i 96962
001 = (0.05)m 0.9696

m + 80 \/ (1- 0.96962)2 + (200.9696)

But ¢ = 0.11523, hence we now solve for m

_ (0.05)m 0.96962

0.01

2
.+ 80 \/ (1-0.96962)" + (2(0.11523)0.9696)°

Hence

m=41kg

Hence em = (0.05)(4.1) = 0.20 kg meter

2.6.4.3 Part(c)

since

Yy

2 . n
emr 1 Re el(Qt_E_d)))

T m+M \/((1 j rz)z N (ZCr)z)

2
As Q) becomes much larger than w,, then (1 - rz) — r* . Now dividing numerator and
denominator by 72 gives
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2
as r becomes large then % — 0 hence
em
v e (0 =9)
The smallest possible amplitude is

0.20

W= 175 80
= 2.3781 x 1073 meter

or
|y| =2.38 mm
2.6.5 problem 4
3.23 A counter-rotating eccentric mass exciter is and the angular position of the eccentric masses
attached to a block, which is supported by a light- when the block passes its equilibrium position.

weight beam. Stroboscopic measurement at an
angular speed @ =900 rev/min indicates that the
block passes its static equilibrium position with an

Q
upward velocity at the instant when the eccentric ( IG) é\l =
masses are at their highest position. The amplitude

of vertical displacement at this speed is 8.5 mm. The )
total mass of the system is m = 200 kg and the rotat- M
ing imbalance of each rotor is 0.5 kg-m. Determine

(a) The natural frequency of the system.
(b) The damping constant c. c
(¢) For the case where () = 1000 rev/min, the
amplitude of the vertical displacement of the mass

EXERCISES 3.23, 3.24

2.6.5.1 Part(a)

(note: total mass of system includes the small unbalanced masses) Since static deflection
is 8.5mm, then

M
Tg = 0.0085
M
Lo Mg
0.0085
k M 9.81
But w;; = i 0.00SiM = 0.0%85, hence w,, = 00 33.972 rad/sec or 5.4068 Hz
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2.6.5.2 Part(b)

The equation of motion is (angle Q is now measured from horizontal, anti-clock wise
positive)

1 .
My” + ¢y’ = 2meQ?sin(Qt) = Re(?ngQ%l(Ot))

Let y(t) = Re(%YeiQt) hence y'(t) = Re(YQeiQt),y"(t) = Re(iYQzeiQt), hence the above

becomes

Re(iYQzeiQt) Re(YQeIQf) Re(EZmeQ th)

Re((lQ2 )Yezﬂt) (1 2m€Q2 th)

y = 12meQ2
Y

QZ+—
STM

Hence

Now we are told when Qt = E (upright position) then y = 0(since it passes static equi-
900

librium). At this moment Q = 27'( = 94.248 rad/sec |, At this moment the centripetal

forces equal the damping force downwards (since the mass was moving upwards). Hence

meQ? = cy'(t)

But from above we found that

b = 2meQ?

Y =2 - MQ2
(0.5)94.2482 i

= Re| - 594.248¢'2

ic(94.248) — 200(94.248)

8.3718 x 10° zg)

94.248ic — 1.7765 x 106
124
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Hence

meQ? = cly’ (1)

) 8.3718 x 10°
(0.5)94.2482 = ¢

2
\/ (94.2480)” + (1.7765 x 109)
C

V/8882.7¢2 + 31560 x 1012

4441.3 = 8.3718 x 10°

Solving numerically for ¢ gives

¢ =1.0882 x 10* N second per meter

2.6.5.3 Part(c)

When Q) = (27{%) =104.72 rad/sec or 16.667 Hz. From

1 2meQ? .

= Rel = —/—— i(Qt)

Y=\ T - maz’ )

_ 2(0.5)(104.72)° (104726 )

= Re e 2
i(1.0882 X 104)104.72 —200(104.72)

_ Re 10966. ei(104.72t—§)
i1.1396 X 106 — 2.1933 x 106

|y| =44 mm
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2.6.6 Key solution for HW 5

Homework #5, EMA 545, Spring 2013
Due Thursday 2/28

Comment: As | mentioned in class, | strongly encourage you to avoid hunting for formulas on
forced response. All of these problems can be solved simply by knowing the differential
equation and that the force and steady state response have the form:

f(t)=Re(Fe") -  x(t)=Re(Xe")

Problem 1: 3.9 from Ginsberg (Hint: assume that the motion of every component of the system
is harmonic. Derive the equation(s) of motion and show the full derivation used to obtain the
complex amplitude(s) from the equation(s) of motion.)

Problem 2: (3el) (20 points)

A 450 kg generator, modeled as a rigid mass, must be installed on the

same floor as some sensitive laboratory equipment. The operation of the T f(t)
generator results in a vertical force, f(t), being applied to the generator

(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm.  Z 1_
Use a damping ratio of ¢ = 0.03 for both (a) and (b) below.

a.) Find the stiffness of the support, k, such that the force transmitted
to the ground is no more than 2kN. C k

b.) Take your result from part (a) and compute the amplitude of the
generator as the machine starts up. (As the machine starts up,
assume that the force amplitude is constant at 20kN, but the
frequency increases very slowly from zero to 1800 rpm. Do a worst-case analysis — just
assure that the steady-state amplitude of the machine is less than 10mm for any forcing
frequency between 0 and 1800 rpm.)

c.) Using your results from (a) and (b), suppose that the startup amplitude must not exceed
10mm. The startup amplitude can be decreased by adding mass to the generator while
also increasing the stiffness of the support to keep the natural frequency of the system
constant. How much mass must be added to keep the amplitude below 10mm?

Problem 3: 3.19 from Ginsberg

Problem 4: 3.23 from Ginsberg
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2.7.1 problem description

Homework #6
EMA 545, Spring 2013

1.) Problem 3.41 in Ginsberg. Check your answer for A=1.0 using FFT techniques with
the fft_easy.m Matlab function from the course website.

2.) Problem 3.50 in Ginsberg. DO PART (a) ONLY.

3.) (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46
from Ginsberg using FFT techniques. Perform your analysis with t = 7/(3,) as stated in
the problem and also repeat the analysis for © = 3n/@,. Which harmonic is dominant in
the response in each case? Why? Create a plot of the steady-state displacement for each
case.
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2.7.2 problem1

3.41 in text: A periodic disturbance consists of a sequence of exponentially pulse repeated
—At

atintervals T, such that Q(t) = Fe T for0 <t < T,and Q(t + T) = Q(t). The parameter A is
nondimensional. Determine the complex Fourier series representing the force. Evaluate
the first 5 coefficients when A = 0.1,1,10. What does this reveal regarding the influence
of A on the frequency spectrum?

Let Q(t) be the Fourier series approximation to Q(t) given by

~ 1 & 2
Q) =5 3 Ee" T (2.102)
n=—oo
Where
5 T
Fy=2 f Qe " Tdt
0
T
T —t inzn—i)
At .27 2F i, 2 A ZFe( T T
== FeTemTtdt:T et(m T)dt:? —
0 0 T T 0
. 2n A
- 22F A(E—T(znzT—T) _1)
in2m —
= - 22F /\(e—in2ne—/1 1)
in2m —
But ¢72™ =1, hence oF
F,=—(e* -1
0= g 1)
Hence Eq[2.102|becomes
~ 1 & 2F 2T
£ == - _/\_1 znTt
Q®) 2;1;00 n2m—-A (e )e
-1
&0 (8 —1) . 2m
—F mTt
n;minzn —1°
S l-et 2
—F mTt
nzz_oo/\ +in2n’
Forn =-2,-1,0,1,2 we obtain
~ 2 1-e in2Zt
H=F R T
Q) EZA + in2m
l-e? ry 1-e? 2ny 1-e? 1-¢? j2ry 1-¢h 4r
= T 4 — T+ + T 4 ——¢'T
A—idn A—1i21 A A+127 A+idm
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For A =0.1

QW) :P(—e (L Tt

1- e—O.l —i4—nt 1- 6_0'1 27 1-— e—O.l N 1- 6_0'1 eizTnt N 1-— e—O.l . An
0.1-idn 0.1-i27 0.1 0.1+ 27 0.1+ idm

4

= F{(6.026 x 1075 + 7.572 x 10‘3i)e_iTt
27

n (2.41 %1074 +1.514 x 10—2i)e‘in
+0.952

2T
+ (2.4099 x 1074 - 1.5142 x 10‘2i)e’7t

4T
+ (6.026 x 1075 - 7.572 x 10‘3i)eth}

~ 1-e! 4, 1-eb 2, 1-¢1 1-¢! 2ry 1-¢! 4
e T ———— TIPS .
1-14n 1-12n 1 1+i2n 1+i4dn

4T .21 .21t .
= F{(0.00398 + 0.051)¢ ' T' + (0.016 + 0.098i)e ' T' + 0.632 + (0.016 + 0.0981)¢' T' + (0.00398 + 0.05i)¢"

For A =10

Q(t) = P(

1-¢ 0 _an, 1-¢10 2n, 16710 16710 2n, 1710 an
+ + + +
10 - idn 10 - 27 10 " 10+i2n° 10+ idn )
Amn
= F{(3.877 x 1072 + 4.872 x 107%i)e”' T
.21
+(7.169 x 1072 + 4.505 x 10 2i)e ' 7'
+0.1
.2_7'[t
+(7.169 x 1072 - 4505 x 107%i)¢' T
Am
+(3.877 x 1072 - 4.872 X 1072i)¢' T}
We notice that as A became larger, the DC term became smaller. Since the DC term rep-
resents average value of the whole signal, then we can say that as A gets larger, then
the average becomes smaller. This means the energy of the signal becomes smaller as A
becomes larger.
2.7.2.1 Verification using Matlab ffteasy.m

From above, we found for A =1

2F
" nom - /\(E_A - 1)
2F
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and the first 5 found to be

n | F,

-2 | 0.00398 + 0.05i
-1 | 0.016 + 0.098i
0 |0.632

1 | 0.016 —0.098i
2 | 0.00398 - 0.05i

To verify the result with ffteasy.m using A =1, Using F =1, and using T = 1. This below
shows the result for F\, F;, F, and we see that the DC term F agrees, and that complex
component of Fy, F, also agrees. The real parts are little larger than what I obtained using
the above. This might be a scaling issue, and I was not able to determine the reason for it
at this time.

EDU>> T=1; del=0.01; t=0:del:T; lambda=1; xt=exp(-lambdaxt/T);
EDU>> (1/length(t))*fft_easy(xt,t)

ans =
0.6326 + 0.0000i

0.0190 - 0.09861
0.0072 - 0.05021
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2.7.3 problem 2

3.50 The sketch depicts a one-degree-of-freedom
model of an automobile traveling to the right at
constant speed v when the road is not smooth. The
mass is 1200 kg, the natural frequency of the sys-
tem 1s 5 Hz, and the critical damping ratio is 0.4.
The elevation of a certain road is a sequence of
periodic 50 mm high bumps spaced at a distance
of 4 m, specifically, z = (x — 5x2) if 0 < x < 0.2
mz=0if02 <x <4m,z(x + 4) =z(x).

(a) What speeds v would cause the vertical dis-

placement y to be resonant if the dashpot were not
present?

(b) Determine the steady-state displacement y
when v = 5 m/s.
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We are given that m = 1200 kg, f =5 Hz, { = 0.4 and

x-5x2 0<x<02
z(x) =
0 02<x<4

A plot of z(x) for first 20 meters is

z[x_] := Piecewise[{{x - 5 x72, 0 <= x < 0.2}, {0, 0.2 <= x <= 4}}]
zlx 1 /; x> 4 := z[Mod[x, 4]];
Table[{x, z[x]}, {x, 0, 21, .1}];
ListLinePlot[%, PlotRange -> {All, {0, .07}}, Frame -> True,
FrameLabel -> {{"z(x) hight or road (mm)", None}, {"meter",
"bumps on road"}}]

bumps on road
I}D-'I | 1 X J i 1 I ¥ T T L I X J i 1 1 ¥ L T L I

0.06 .
005 .
004F :

0.03 .

ziz) hight or road {mm)

0.02 | .

0.01 | ' ]

(78| NN | S | E—

meter

.21
We need to be able to express z(t) as Re{Zeth} where T is the period of the function z(t).

Hence we need to represent z(x) as Fourier series approximation then replace x = vt and

use the result.

The period T = 4 meter. Let Z(x) be the Fourier series approximation to z(x), hence

~ 1 J inz—nx
Z(x) = EPO + Re ZPne T

n=1
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Where
5 T , , 2/10 1 2/10 5 2/10
_ —in=x _ 2 —inZx _ —inx 2 —inZx
Fn—?ofz(x)e de—Eof(x—Sx)e de—ibfxe 2dx—§ofxe 27dx

Using integration by parts f udv = uv — f vdu, letting u = x and dv = ¢"2" then v =

. T
—in=x e
f e 2°dx = ——hence

2/10 —inZx|10 210, _jpZy
_inzxd _le 2 e 2
xe xX=x T - o X
0 2 0 2
_int 2 2/10
2 "2 2 inZy
=0T aJ 27dx
n— nrt

4 je”"10 4 ( _m2
= ——— + ("0 -1

10 nn n2m
4 _, = i 4
_ Mo 4 e Mg
10nm n2m n2?

anf 4 2 4
=e 10 + —
n?m®  5nm)  n?m?
2/10
Now we do the second integral f x%e "2 dx.
0

. T .—in%x
Integration by parts, [udo = uv — [vdu, letting u = x? and dv = ¢ "2" then v = “—
n_
2

hence

2
2/10 . —inZx]0 210 | Ty
e 2 2

o —insx ol 1e
xe " 27dx =[x - — | 2x———dx
0 3 o 0 "3
. —inZ . 2/10
8 ie "0 4 —inlx
= — - — | xe "27dx
100 nm nm J
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But f xe 2" dx was solved before and its results is Eq 2.1, hence
0

2/10 . 4 . —lnl—ré) 4. - 4 2. 4
fxze_infxdx I P T
) 100 ns nm n?m?  Sum)  n?m?

_ 8i e_in%—e_ml% 161 _ 8 161
n31d  5n2m?

n373
o 8 16i 8 16i
- + +
100nt  n3m3  5n?mn2)  ndnd

Putting all the above together, we obtain F, as

) 2/10 . 2/10
F,=— f xe 2%y - f x2e 2% dx
i 0 2 0

A wn( 4, 2 4 ) 5[ wn( 8 16 8 \ 16
2 22 Sum) nln2| 2 100nt n373  5m2m2 ) wn37d

a2 i 2 _.x( 20i  40i 20 40i
=e¢ 10 + — —e 1 — + _
n2n?2  Sun) n2mn? 100nt  n3m3  5n2n?) n3nd
i 2 i 200 d0i 4 2 40i
| n?m®  5nm 100nm  n3md n?m?
o 400 2 2 40
22 Bl

n?n2  n3ms

n3d  n2n?

Now
) T , 2/10 ,
_ 2\ 7y —
Fo = —fz(x)dx— Ef(x—Sx )dx— 300
0 0
Hence

2() = SFo + R il—" i
zZ(X) = < e
2 0 en—1 n

1 N[ _inz( 40i 2 2 407 \ iy
= — +Re[ Y[ ™D - S ¢
600 E( (n37z3 nznz) n2m n3n3)

n=1
1 N (12 y-tmy (400 2 el 2 40i
=—+ R 2710 _ |- — + —
600 ¢ nz::le S s e N n?n? - ndnd
1 o 40 1 (Tt 2 T 40 1T
=—+R ——e¢\27 10/ — 27 10/ — - -
600 | © En3n3 i 22’ 22’ n373 i
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But x = vt, hence

_ 1 N 401 (o, nn 2 (e, nm 2 . 40 1m_vt
Z(t):@—FRe(;;ln?’n?’?e(Z 10)_ 5 26(2 10)__6 2 2

. . o o v
Therefore the forcing frequency is no; = n—- or from 2mtf, = 7 hence f; = ZHZ.The
above can be written as

40 1 jrme, mm)) 2 nmo, nm

Z(t) = @ + Z Re(n3n3 10) — ZR@( e( 2 10)
17’1

—Z}lRe(n2 5e

1 N—40

N
nm 2 nm
= 00 " B Sn(n1t = 3g) = By cos(mont - 55
N 40
_Zlnz cos(ncht)+2 e 3sm(malt‘)
n=

n= 1

7 N
600 n3 Z sm(ncht - rlz_g) - ;2 cos(ncht - n_n)

—n 10
2 91 4081
712,12:1 5 cos(noqt) + = Z:lﬁ sin(naqt)

Where @ = >

To verify the above, here is a plot for different number of fourier series terms showing that
approximation improves as N increases. This was done for v = 5m/s and for 5 seconds
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z(t) for N=1 z(t) for N=2 z(t) for N=3
o e
g'gg; 0.006 0.008
0.002 0.004 0,008
o0 ot AT FYATVATYA VAR g
0.000 i ooaxtinallanl taallanl tnal Lan
oo V V Voo VTV IV VTV oo FRVTT T T TV
0 1 2 3 4 3 0 1 2 3 4 5 0 1 2 3 4 3
time {sec) time (sec) time (sec)
z(t) for N=4 z(t) for N=3 7(t) for N=6
0013 .

0.010

0.003

0.000

0.015
0.010
0.003
0.000

time (sec) time (sec) time (sec)
z(t) for N=8 z(t) for N=0

0.030
0.020 00 0.023
: 000 0.020

oL 0.015 o1 Hl
0010 : oo
i 0.010 0.010
0.003 0.005 0.005
0.000 0.000 0.000
—0.0035 —0.003 —0.003

time (sec)

z(t) for N=10

0 1 2 3 4 3

time (sec)

z(t) for N=11

0 1 2 3 4 3

time (sec)
z(t) for N=12

Gy 0.03 il
002 002 -
001 001 001}
0.00 0.00 000
KR T A R R I T R T R | I e e

time (sec)

2.7.3.1 Part(a)

The equation of motion is

my” + c(y’ - z’) + k(y - z) =0

my” +cy’ +ky =cz' +kz

144

time (sec)
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From earlier, we found that fourier series approximation to z(t) is

) = 6%0 ' Re °° 401 o) _ % o= % Jinat % 1em)

_ 6:#0 + Re o_o —40 —1— pinot n227-( . e—i%ein@t_ nzinz pinat n§i31 ezmat)
Let 40 mzy 2 pm 2 40 7
n T st 0 "2t 1 T2 Tt i

Then above can be simplified to

1 o
z(t) = o0t Re(Zem‘Dth)

0
Where @ = 7 hence

Z(t) = Re(Zinwei”‘Dth)

n=1

Hence, let

Yss(H) = Re DY,
n=1

Hence Eq 2.1 becomes

k .
Z mn?@?Y, et + chn(DY ot 4 EkY ginot = Ezcn@e’”@tz +—+ Zkem@tzn

h " = 600 © &
g(_ng(DZ +icna + k)ynein@t = g(im@ + k) Z, ot 4 s
g(—mn%z +ien + k)Y,e" = =+ Z(zcn@ + k) Z, !

Hence
Y, = (icn@ + k) s 205

—m(ncD)2 +icno +k
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Let

icno + k

D(r,, C
r ©) —m(ncD)2 +icno + k

20Mw N + w?,m

—mM(N®)? + 20w @ + W2y
i20n—

+1

Wnat
5 \2
—(n )+i2Cn
Wyt
1+ i2Cr,
(1-73) +i2cr,

@

+1

Whnat

Where in the above r,, = o

2
where @ is Tn which means it is the fundamental frequency

Wnat

of the forcing function and w,,;; is the natural frequency.

Then Eq[2.111|becomes
Y, =D(r,, 0)Z,

And the steady state solution y(t) becomes

Yss(f) = Kk + Re(iD(rn,C)Znei”@t)
n=1

600
Now we can answer the question. When ¢ = 0 then D(r,, () reduces to ﬁ =
-m(nw) +
% = ﬁ, hence
1_( “’nat) k o
_ inot
yss(t) = @ + Re(ngll ~ 1/% Znelnm )
So the displacement y(t) will be resonant when r,, =1 or "0 —1orp= 2l
Wnat nm
Hence
2(27t5) 20
0= = —
nm

Hence v = 20,10,5,2.5,1.25, --- meter/sec will each cause resonance. To verify, here is a
plot of y(t) with no damper for speed near resonance v = 19.99 and comparing this for
speeds away from resonance speed. This plot shows that when speed v is close to any
of the above speeds, then the displacement y,(f) becomes very large. Once the speed is
away from those values, then y(f) quickly comes down to steady state F/k value.
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k=107 %1200;
Grid][
Partition|
Plot[y[t, k, 10, #], {t, 0, B}, PlotRange » {{0, 5}, {0, 100}},

AxesOrigin— {0, 0}, Frame + True, GridLines -+ Automatic,
GridLinesStyle » LightGray,

FrameLabel + {{"v(t)", None},

{"time", Row[{"speed=", &, " m/s"}]}}] & /@
{19.999, 19,98, 9.999, 9,98, 15, 7.5}, 2]1]

speed=12.000 m/s speed=1228 m/s
100 | 100
| "HMM Sﬂ
s N IH Iu HL g
H tHil l kil l -
20
0 0
1 p 3 4 ] 1 2 3 4 5
time time
speed=0000m/s speed=008 m/s
100 100
30 80
i i
_ & |||| ||‘|J‘||U'||| M |\|||JJ nllllMMIthll . 60 s,
= iy =
> 40 ™ 40
20 20
0 o
0 1 2 5! 4 5 0 1 2 3 4 5
time time
speed=13m/s speed=7.5m/s
100 100
80 S0t
= 60 = 60
> 40 40
20 20
0 : 0
0 1 i 3 4 3 0 1 X 3 4 5
time time
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2.74 problem 3

3.) (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46
from Ginsberg using FFT techniques. Perform your analysis with T = m/(30,) as stated in
the problem and also repeat the analysis for T = 37/, Which harmonic is dominant in
the response in each case? Why? Create a plot of the steady-state displacement for each
case.

345 A one
having mass m, I

_degree-of-freedom, underdamped Sys-
atural frequency w,,, and
‘ i = ' bjected to

. amping ratio ¢ 0.04 is subj
wn;i:a;] dn-iaII)]gulaI pulse excitation, as shown
&co; What is the largest harmonic in the

response when 7 = 3w, ?

— |

-
T T

EXERCISES 3.45, 3.46

3.46 Use FFT techniques to determine and graph
the steady-state displacement and acceleration of
the system in Exercise 3.45 for the parameters
stated there.

The function is periodic with period T = 27

Et‘ O<t<rt
fiy=r

0 T<t<27T
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Where

and f(t + T) = f(t). Let f(t) be the Fourier series approximation to f(t), hence
(2.104)

~ 1 N . oon
f(t) = =Fy + Re(EFneme)

n=1

T
2 o
F,== | ft)e " Tdt
T
2 P _7
S f —te "7 g
2’1’0 T

T
P —inZt
=—|te tdt
Tzf
0

Using integration by parts [udv = uo — [vdu, letting u = t and do = ¢’ ' then v =

—inZt z'e_ingt
fe v dt = ——hence
ns
T T
—inZt . T
Pl i+ i _inZt
Pn = —2 t - —nfe T dt
T n— n—
o 0
e LT T
—-n—-T . —in—t
e T ile =
=S| T =w T | . =®
T n— n—| —in—
T T T 0
. g 2
B ,le mm T _in®H\©
=22||" ) G
nrt n<Tt 0
ie—inn 7,'2 _
=l e (e -n)
T nm nem
e~ = cos(nm) = (-1)", hence
P i(-1)" 72
_ 2 n
F,= || 2 2((_1) _1)
T nm nem
Hence for even n
P 1
F, = - ?—
T nm
i
o onm
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and for odd n

n=1
. 271
= —Fp+ Re( >, Ee" T+ Y Fe” Tt)
even n odd n
2n P {2 i 27
E (ZP m t+z__(_+i)emTt)
4 o ot mm\nm
P 1 2n 27
:E+Re(—2—m t——z (—+z)e t)
4 T e 11 Oddnn nm
P P Z_Ht
S TR
4 nev;nn ogn

To verify, here is a plot of the above, using P =1and 7 = 0.5 secfort = 0 --- 2 seconds. This
shows as more terms are added, the approximation becomes very close to the function.
At N = 40 the approximation appears very good.

150



2.7. HWé6 CHAPTER 2. HW’S

f(t) using 1 terms £(t) using 3 terms f(t) using J terms
; r 10 T
/
/ 0.8
0.6
0.4
02
v %4 0 %
oo 0.5 1.0 15 20 00 03 10 135 20 00 05 20
T 3 3
f(t) using 10 terms f(t) using 13 terms ft) using 20 terms
e 10F ' ' ; 7 0]
08 08 08
0.6 0.6 0.6
04 04 04
02 02 02
0.0 0.0 u"\r unu 0.0
0.0 0.0 03 1.0 13 20 0.0 0.3 1.0 1.5 20
t t t
£t} using 23 terms f(t) using 30 terms f(t) using 40 terms
10f 1 ' ' 7 10f ' ' 1 of
0.8 08 0.8
0.6 06 0.6
04 04 04
02 02 02
0.0 J'I II 0.0 1 00
0.0 03 10 L3 20 00 0.3 10 15 20 0.0 03 10 15 20
¢ t t

Now we need to write f(t) as sum of exponential to answer the question.
110) lp iR %F in’x
== e e

_2n
T 271

where @ is the fundamental frequency of the force given by 2?71 = %

o0
Hence, letys; = Y, Y,e"®, then

n=—0oo

Re|lm Z —_ (Tch)zYnem(Dt +c 2 inwynem@t +k 2 Ynemmt) — _PO +Re(21:nezn Tx)

Nn=—00 Nn=—00 n=—oo 2 n=1
- 2 i 1 l inz—n
2 (—m(nco) + icno + k)Yne’”‘Dt = EFO + Re(EFne T x)
n=—00 n=1
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Hence
F 1
Y, =t -
(1—(n ® ) )+i2Cn ©
Wyt Wyat
B F, 1
k (1 -~ (nr)z) +i2Cnr
Hence

1 &
yss = 5Fo + Re(EYnem‘Dt)
n=1

T

Finding Y/, for 7 =

Wnat

@ b 2m 21

where r = o When ¢ = 0.04 and 7 = o hence now r = o = (2”—)wm = 3,
therefore "
e
"k (1-6n)) +i6(0.04)n
F, 1
Tk

(1 - 9n2) +1i0.24n

The largest Y,, will occur when the denominator of the above is smallest. Plotting the

2
modulus of the denominator \/ (1 - 9n2) + (0.2471)2 for different n values shows that
n =1 is the values which makes it minimum.

This happens since for any 7 > 1 the denominator will become larger due to n? and hence
Y,, will become smaller. So n = 1 will be used.
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1

Showing how chatiges with n

¥n
200 / '-
_150[ i
E - 4
S 100 ]
so i
D -' 1 1 1 i i 17

1] 1 2 3 4 3
n
For n =1, we obtain
K 1

Yy

"k (1-9) +i6(0.04)
But F; = —g(% + i), hence

:4) )
le TT\ T _ T

kK (1-9)+i6(0.04) 7k -8 +i0.24
p 2+i p (% + i)(8 +10.24)
= S | S — = —
nk8—i0.24 7k (8 — i0.24)(8 + i0.24)

P
= &(0.075759 + 0.127271)

Therefore p
Y1 = (0024115 + 0.04050)

Here is a list of Y, for n = 1 ---10 with the phase and magnitude of each (this was done
for2 =1)
k
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r=3y; £=0.04
n |¥, h £ Arg[Yp]
1 |0.0241149 +0.0405122 3 0.0471462 59.2387
2 |0.000062351 -0.00454643 1 0.0045468¢6 -89.2143
3 |0.000269489 +0.00132872 1 0.00135577 78.5348
4 |3.73568x%10°%_-0.0005564611 |0.000556473 |-89.6154
5 |0.0000346626 +0.0002843%91 1 |0.000286496 (83.0509
6 |7.3223x1077 -0.000164243 1 0.0001e4245 |-B85.7446
7 |9.00427x10°% +0.000103382i |0.000103773 |85.0223
8 |2.31058x107' - 0.000069197 1 |0.0000691974 |-89.E8087
9 |3.29231x10°%+0.00004859191 (0.0000487033 |86.1239
10 |9.45233% 1072 - 0.0000354069 1 [0.000035407 |-89.847

From the above we see that most of the energy in the response will be contained in Y; and
adding more terms will not have large effect on the response shape. This is confirmed by

the plot that follows.
Plot for the steady state

Since

1 &
yss = 5Fo + Re(ZYnemwf)
n=1

Where now r = —. When ¢ = 0.04 and 7 = ——, hence now r = - o
Wnat 3wyt 21wyt (2 n )a)nat
Swpat
therefore| r =3
Yss = Z + Re Z Yneimat + Z Yneimat)
n=1,3,5-- n=2,4,6---
p > F”odd 1 . + a neven 1 . ;
==+Re el e
4 n=1§5,.. k (1 - (nr)z) + 12Cnr n=2§6”_ k (1 _ (nr)z) +i2Cnr
_i(i + l) P i
= P + Re nm\nn 21 ‘ pinot Z nm 21 ' pinot
1(2 .
PP S E(E i 1) - — -
= mn in
= Z + E Re Z — e + E e

n=1,35-- (1 - (nr)z) + 12Cnr
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Now let r = 3, C = 0.04. Normalizing the equation for @ = 1 which implies 7 = 7w and
k =1and p =1, then the above becomes

1(2 ;
1 oo o ;;'+Z ‘ oo —_ ‘
— +Re Z _ . oint 4 5 nm pint
netzs. (1-(Gm)?)+i20043n 376 (1 (3n)) +i2(0.04)3n

Here is a plot of the above for t = 0 --- 20 seconds for different values of n

Vss (t) in red, as more terms are added. Black color is force

1 08

0.6

1 os
1 06
DAL
02—
0.0

1.0
08¢
41 06F
1 04f
02—
0.0

We see from the above plot, that y.,(f) does not change too much as more terms are added,
since when r = 3, then Y, for n = 1 contains most of the energy, hence adding more terms
did not have an effect.

Repeating the calculations for 7 = o

Wnat
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r= -2 When C=004and 7 = o , hence now r = A on = 1, therefore
Wnat Wnat 2T)wpat (2 3n )wngt 3
Wnat
_F, 1
Tk (1 - (nr)z) + 12Cnr
_F, 1
Tk 1\2) 2
(1 - (571) ) + 15(004)7’1
_F, 1
ok

n? .
1- 5 +10.0267n

The largest Y,, will occur when the denominator of the above is smallest. Similar to above,
we can either find n which minimizes the denominator (by taking derivative and setting it
to zero and solve for 1) or we can make a plot and see how the function behaves. Making
a plot shows this

1

Showing how changes with n
¥n
il
—— 3 B
g
S af -
| ‘\‘\ // | _
D : PR R .\/ - .
0 1 2 3 4 5 6 7

From the above we see that the smallest value of the denominator happens when n = 3.
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so using n = 3 we find

y. F, 1
Tk (1-G0%) + 203
_E 1
== .
(1 - (31) )+z‘2(0.04)3l
3 3
_F 1
~ k i0.08
ButF, = —i(i + i), hence
nmt\nm
F P2 +
3 3\ 37 :
Therefore
_ﬂ i + Z
Y 371(371 ) 1
3= k i0.08
Hence

Y, = %(—1.3263 +0.281451)

Hereisalistof Y, forn=1---

for%zl)
r=1/3; £=0.04
n |¥y p £ Arg[¥y]
1 |-0.238501-0.3509441 0.424316 -124.2
2 |0.0272508 +0.28B3863 1 0.285168 B4.5164
3 |-1.32629 +0.281448 1 1.35582 168.019
4 |0.0137726 —0.1004251 0.101365 -82.191
5 |0.00186323 -+ 0.035949¢61 0.0359979 |87.0331
& |0.000940485-0.0176337 1 0.0176588 |-86.9471
7 10.000459%99 +0.0102524 1 0.0102¢e46 |87.2085
g8 |0.000227012 - 0.0065025%61 |0.006506592 |-8B8.0007
9 |0.000179929 + 0.004426371 |0.00443002 |87.6722
10 |0.0000829696 - 0.00314593 1 (0.00314703 |-88.4893
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We see from the above that |Y3| is the largest harmonic.

Plot for the steady state

Since ) -
Yss = 5Fo + Re(ZYneimf)

n=1
n) 3n 27 27 1
Where now r = .When( =004 and 7 = , hence now r = = =,
Wnat Wyt RT)wpat (23_n)“)nat
therefore from above
had 1(2 1 ‘ o i 1 ‘
o =E+lRe| 3 - —(— + i) et 4 — et
4k \,.{35. nm\nn (1 — (nr) ) + 12Cnr n=246... 17 (1 - (nr) ) + 12Cnr

Now let r = %, C = 0.04, and assuming 7 = 0.5 then @ = i—: = %, and assuming k =1,
then the above becomes '

1 1 — 1(2 1 iy
=-+-R -—|—+ 05
A —§5 ””(”” Z) 1) ‘
n=Lo 1- (ng) +12(0.04)-n
1 — 1 I
+ ER@ E em t

1
- 2
n=2,4,6---nn (1 - (n%) ) + 12(004)%7’1

Here is a plot of the above for t = 0 -+ 20 seconds for different values of n
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Vas (t) as more terms are added
number of terms : 1 number of terms : 2 number of terms : 3
06y f r\I"u .[ Y ,( A\'n 08 rﬁ | |'|l | |ﬂ| i no Iln\ I |r~I II.I| /
|' \ | ' I |
oaf [ ﬁf I R N R I' [ ] I 1 \ I| | ||| I \[| [I II
,'I I | Ill 'II ll' I|I 04 I|| | || || | 0.5 |||||||||||| |||||||
02t \ b l,'l \ | : I ! | f I| 0o ) | | | TN
] | ‘\ T 02t | | RN A O |||| g
0.0 L I fAnd A \nf |
. \j"l Ill\ 7 T j 00 7 L ,}‘ ,ll 1 i -10 I I_|| || || l'.ll
—032 YU ! —02k % Y \ = 'u v U
R 3 10 13 20 1] 3 10 13 20 0 3 10 13 20
¢ t ¢
number of terms : 4 number of terms : 3 number of terms : §
15 q| 15 15 { 3 | |
L0 I|| NN |I| L0 |||| \ |, |II 10 || Iﬂl I | || | ||
- | | - | I
03 |“|"|||||I|| 0.5 |||I"|||| ||||| 05 |'||||||'II|||I
0.0 IIJ I DD'.U.|||",||H.II|'||| 0.0 | q l i .||
2 | \ | 3 [ 1) s '
-05 | LR Vi |||| H' || ||| -0} ||| || \ || |1 -0 } ||| ||| ||| ll.l ] |
-10 Jl || '.' IR I| Vi-to |V |V |||| /1 -10} |V | ||| \
-15 I -1 | I \ ~15 |
0 3' 10 15 20 0 5 10 15 20 1] 3 10 13 20
t t ¢
number of terms = 7 number of terms : 8 number of terms : &
20
] i l g 5
15 N nol oA 1 15 15 fl
10 |ﬂ| ||| |"'| |"I I\ i l"l |'| Fl [ 10 |Iql II\ I II I| I"l ( 10 |ﬂ| || || ||I I|| |“| | | I|
1)_5|'|'||||'|||||||||'|||| 05 I|| | |||'|| | 0-5||'||| |I |IIII||
ATRRINRTANANATANER N |I' | | ATRNA ||
sl ||I || |||\ =03 ||I| || ||” —ﬂ'-jll ||I| |||| ‘|
-10f/ [ | ||I [| 1|10} II ||‘| l'J || 1 -10 || IL'I |
~15 |f | -15 | | -15 I \
0 3 11) 13 20 0 3 lﬂl 135 20 0 3 10 15 20
¢ t ¢

We see now that after n = 3 that the response did not change much by adding more terms,
this is because more of the energy are contained in the first 3 harmonics with Y, being

the the largest.
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2.7.5 Key solution for HW 6

Homework #6
EMA 545, Spring 2013

1.) Problem 3.41 in Ginsberg. Check your answer for A=1.0 using FFT techniques with
the fft_easy.m Matlab function from the course website.

2.) Problem 3.50 in Ginsberg. DO PART (a) ONLY.

3.) (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46
from Ginsberg using FFT techniques. Perform your analysis with t = 7/(3,) as stated in
the problem and also repeat the analysis for t = 3n/@,. Which harmonic is dominant in
the response in each case? Why? Create a plot of the steady-state displacement for each
case.
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Exercise 3.41
Fcrp( )?) QUEET) =Q(¢)
“ —— .
\ Q=% Ev‘o Foexp(2mint/t)
=% Q erp(-Lamin t/704
0
F - :FO/ exp(-(» +2Mn ) 144!
- 2F 1 —exp(-(a¢2men)] buk exp(=tarn) =1
A+2mn
S0 F = £ 2(1-exp(-2))
A+
n=20.5 F,(A,n) = ;{1 - exp(-1))

(A +2inm)

Re<F a(0.1 ,n)>

RelFy(1.m)

0
( a(10, n)>
£y n "
2 3 4 5
n
5
Im<F a(0.1 ,n)> ______ P o
[=au=n=] e
m(F p(1m) - S |
'ﬂh?%n( 10,m)
2 '2 ; '4 5

n

As X increases, the higher harmonic amplitudes increase.
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Matlab solution to HW#8, Problem 3.41

%% Solution to 3.41 using Matlab
% EMA 545, Spring 2011
clear all; close all

= 275; % 2713; % number of samples for FFT
au = pi/3; % 3*pi; % pi/3;
1

—A =

wl = 2*pi/T;
F=1; % Force will be non-dimensional
lam = 1;

dt = T/N;
ts_fft = [0:dt:(T-dt)]-";

% Define Input Force in Time Domain--f(t)
ft = Frexp(-lam*ts_fft);
ft = ft(:); % make sure these are column vectors

% Use FFT easy to perform analysis
[D_fft,ws_Ffft] = fft_easy(ft,ts_fft);

F_fft = (2/N)*D_fft; % this only has those for positive frequencies.

ns = [0:5].";
F_fs = 2*(1-exp(-lam)) ./(lam+1i*2*pi*ns);

disp("n, Frequency, Fourier Coeff, FFT estimate (abs)");

[ns, ws_fft(1:6), abs(F_fs(1:6)), abs(F_fft(1:6))]
disp("Frequency, Fourier Coeff, FFT estimate (angle in deg)");
[ns, ws_fft(1:6), angle([F_fs(1:6), F_fft(1:6)]1)*180/pi]

Results with n=27"5=32

n, Frequency, Fourier Coeff, FFT estimate (abs)
ans =

0 0 1.2642 1.2841

1 6.2832 0.19871 0.20215

2 12.566 0.10029 0.10252

3 18.85 0.066976 0.069021

4 25.133 0.050263 0.052388

5 31.416 0.040222 0.042541

n, Frequency, Fourier Coeff, FFT estimate (angle in deg)
ans =

0 0 0 0

1 6.2832 -80.957 -75.361

2 12.566 -85.45 -74.259

3 18.85 -86.963 -70.177

4 25.133 -87.721 -65.34

5 31.416 -88.177 -60.201

With only 32 samples, this is already a pretty good approximation of the Fourier
Coefficients. With n=2"13, the FFT is accurate to about three decimal places.
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Exercise 3,50

y Wn"f, =10.ﬂ’r*¢//3 ).3 =O,4‘)M afSML)
~ J my+Cy-t-ky=c‘z.+lf-%=Q
L 2(x) e (%x-5x*)[h(x)-h(x-0.2)]
kly-2)rcly-2) S Attt

2<+4)c 2(x)

Sub’hluk XKe Vbt = Period - %=>w'=a.t1‘ = Y

(Fv) R
Resonarce £ @y harmonc matcbes natural Freguency

vy = = Z W
'7(%) T gy =2 V= ;'-;_'-‘3"-_-. 20,10,6.67, ,, m/s &

Response @ w5 mss = T=o0 g sec

U$¢ N=128 = fﬂ =<VI-I);{7-:‘
Fualcale

20¢,) = (v€, -5 ) [h(t )~ n(t,- 2]
Take FFT = Z(w,) where w2 nwy, w = 2L

L
The FFT of te Plechkivedorce will be
Fro= eliw, Z(w)] +k2(w)

The DFT o€ fhe rospdase (s
Y, &= A
k 1—(r)t+2i8nr
whore

= b = . W,
A—M“/'\Q/)C'zmwnaf‘s, é‘ r ==

- amn
Thea Fiad y({,.) Lrom «a IFFT.

(o)
What et T
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2
m := 1500 O® ot = 107 C:=04 k= mew c:=2mo L
4 2-
vi=35 T:== (’ofund::TTc

elev(x) = (x = 5x2)(x>0)-(x<0.2)

N = 128 ji=1.N oL . ) .
t=@G-1 = 7, e1ev<v 6 Z = FFT(z)
N . .
n::= 13"‘ 1 (Dl'l = (n_ 1)0‘) fund Fn = <1 ‘(Dn‘C+k>‘Zn rfund = 2 n
O pat'T
F 1
Y =

n
! k 1- <11'I' fl.ll’ld>2 + ZIC,HI' fund

y := IFFT(Y) y i= stack(y,y) LN

0.02

1 1.5
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Solution: Problem 4 (3.45-46) Spring 2011
Matlab code given below, which is modified only slightly from
FFT_Square_Ex_545 v2.m

%% Solution to P4, HW#8 (based on 3.45 and 3.46 in Ginsberg)
clear all; close all

N 256; % number of samples for FFT
tau = pi/3; % 3*pi; % pi/3;
T

= 2*tau;
wl = 2*pi/T;
m=1;
wn=1; % since time is non-dimensional
zt = 0.04;

P =1; % Force will be non-dimensional

dt = T/N;
ts_fft = [0:dt:(T-db)];

% Define Input Force in Time Domain--f(t) = mean at discontinuity
for k = 1:1:length(ts_fft)
if ts_fft(k) < tau;
ft(k,1) = P*ts_fft(k)/tau;
else
ft(k,1) = 0;
end
end

% Use FFT easy to perform analysis
[F_fft,ws_fft] = fft_easy(ft,ts_fft);

% Each coefficient in F_fft is the complex amplitude of a harmonic
whose

% frequency is given in ws_fft. We could scale these to obtain
estimates

% of the Fourier coefficients, but we do not need to since we are just
% going to take the IFFT later.

% Make everything a column vector:
F fft = F_fft(:); ws_fft = ws_fft(:);

% Now form a vector of transfer function values at each frequency:
H = (/m)./((i*ws_Fft) .2 + i*ws_FFt*(2*zt*wn) + wn™2); % dot or term
by term multiply

% Same as doing a for loop over each frequency.

% Now the response is just the force times the transfer function.
X = H.*F_FFt(:);

% Plot everything in the frequency domain to understand what"s
happening.

figure(d)
semilogy(ws_fft,abs(F_fft),"o" ,ws_fft,abs(X), " *",ws_fft,abs(H),"-");
grid on;
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xlabel ("\bfFrequency (rad/s))"); ylabel("\bf|X]| or |F|");
legend("fFt(F) ", "Fre(X) ", "H(\omega) ") ;

% take IFFT of the coefficients X to find the time signal x(t)
xt = ifft_easy(X,ws_fft);
% note ifft_easy(F_fft,ws_fft) = ft, exactly with no approximation

figure(4)
% [ax,hl,h2] = plotyy(ts ft, gt ts_fft,xt);
plot(ts_fft, ft, ,ts_FFL,xt,".-");

xlabel("time (s)* ) ylabel( f(t) or x(t)");

legend("F(L) ", "x()");
title("\bfForce and Response Found with FFT");

Results:
Casel: t=n/(Bwn) (r=3)

Force and Response Found with FFT
1 T T

e (1)

0.9+ e x(1)

0.7 R

0.5F i

f(t) or x(t)

0.4} .

0.2r 4

0 1 1 L
0 0.5 1 15 2 2.5

time (s)

To understand this, let’s look at the FFT coefficients of X, F and the transfer function H,
shown in the following figure. Since the first coefficient is beyond the natural frequency,
the transfer function gets smaller as omega increases. The force is also dominated by the
lower frequency terms, so the low frequency terms dominate. The DC term is the largest,
followed by the first harmonic (DC is Electrical Engineering terminology for Direct
Current or the zero frequency). So, it shouldn’t surprise us to see that the response is an
offset sinusoid with low amplitude.

167



CHAPTER 2. HW’S

20

18

2.7. HW6

T T T
b o e
Lot % = X C\
' 4
! L QQO&QQbo
E
” .5‘.\’
I 000
; 3
I
| m
| L
I
| <
[Te] =
1 [ E
I
I —_ o)
| Q <
3 =
I 1
g (o]
3 R & >
I
P 7]
+ 2 c
| [ ml
! >
a
4 n O
| - o 14
| L o
! c
I
i ©
| ()
i o o
[ - m
| ) is
, ~
{ —
! 1
n —
A,ﬂ N—r
| =
, 8
I ~
| B
| o
* © 1
- o e
2 %
2
ETRIENY @ (@)x do ()
©
O

12 14 16

10
time (s)

168



CHAPTER 2. HW’S

2.7. HW6
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[4] 10 [X|

Frequency (rad/s))

Hence, the third harmonic is equal to the natural frequency so that harmonic is amplified
in the response. So, the response looks like a 3-cycle sinusoid (per period of the force)

In this case the fundamental frequency of the sawtooth is 1/3 the natural frequency.
even though the force spectrum is dominated by the lower frequency harmonics.
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2.8.1 problem description

Homework #7
EMA 545, Spring 2013

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this, you will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass, stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring, what would
its dimensions be?).

Problem 2: (20 pts) Do Problem 3.60 as given in the text. Comment on how you
selected adequate values for N (number of samples in the time history) and the length of
the time window (in seconds).

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b), set m,=0 and
see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static example, series or parallel according to the
cqulljbnum position, there is no axial force in each equivalent spring stiffness.

spring.

(a) Derive equations of motion for the horizontal
displacements x, and x, measured from the equi-
librium position. i
(b) Prove that if m, =0, the equation of motion
for x, is the same as that obtained by replacing the
four sprmgs by a single cquxva]ent spring. Identify H§ 35
the way in which the springs are connected—for EXEHCISE 1.1
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2.8.2 problem1

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this, you will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass. stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring. what would
its dimensions be?).

2.8.2.1 Part(a)

Vibration isolation was based on reducing absolute acceleration of passenger under tur-
bulent external forces. This was done by isolating the passenger from the base motion
subjected to external absolute acceleration. Hence the model is based on the following
diagram

g)

o

L
>~
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Hence EQM of motion is

my"’ + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky=cz' +kz (2.105)

We are given the time history of the turbulent acceleration. Hence in frequency domain
we can write
o = Re[zﬁccei(wln)t}

Where Z%“ is the complex amplitude of the n'" harmonic component in the acceleration
data. Let wn = @, then using the above, In frequency domain Eq 3.1/ becomes

2, iyt Zacc Zi’ pint
Re{(—m@n + 1@,c + k)Yne n } = Re Z(D +k— o2 n

c k

Y, =| o ok |
-maz + id,c + k

The above gives the transfer function between the displacement of the passenger and the
external acceleration. In otherwords

£ _k
: 2
f) = Re 0y oy Z0ccpi i(win)t
yh) -md?2 + i, c + k

Let
c k

Y, = | ok |y
-mo5 + id,c + k

then the transfer function is
—ic k

H(@,) = S = — 2t
On Z“CC -mo?2 + io,c + k

1 (k + ic,,)

@3 (k - m@%) + i@,C

Hence phase is

arg(H(®@,)) = tan‘l(cm_”) _ tan_l( k& )

and magnitude is
Y,

|H(@n)| Zacc =
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: . 1 (k+ico,
These can be written in terms of C and w,,;; as follows. From H(®,,) = ——2%,
k] (k—m@n)+lcbnc

dividing numerator and denominator by k = mw?,, and using ¢ = 2{mw,,; then

120Mwyqp @y 2wy,
1 (” ., ) 1 (“wmt)
H(@,) = —— T — =T 2 :
75 (1 Iy ) + 1@ 20Mwp ¢ [ (1 _ @n ) + 1®,2C
mw%at mw%ﬂt w%ﬂt Wnat
Letr, = :}D” then the above becomes
nat
1 (1+i2Cr,)
H(@,) = ) > ,n
o (1 - rn) +i2r,C
Hence
1 1+@)
|H(Can)| = CD_ >
" \/(1 - r%) + (2r,0)°
-1 -1 2rnC
arg(H(w,)) = tan™"(2Cr,) — tan 12
—'n

The following is a plot showing the passenger absolute acceleration y”’(t) over the period
of 80 seconds against the turbulent acceleration z”’(t). We now see that passenger absolute
acceleration is close to the nominal acceleration. This was done using the following values
for the vibration isolation

M | 100000 kg

C 1072

k | 38924 N/m
¢ | 57746 Ns/m

The plot on the right side is the absolute acceleration of the passenger during flight in
the turbulent case.

PERRR W vt sl T Dy NN i eele i e passenger sbeolute scceleration time history

E A e o om
B =
O -
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2.8.2.2 Part(b)

The length of first class cabinet was estimated to be L = 15 meters from looking at Boeing
web page.

Using Steel, Structural ASTM-A36 [ beam as a cantilever beam for the implementation,

. 3EI ,
then using k = —= results in

3(200 x 10°)1
15°
I=21895x10"* m*

38924 =

(2.1895><10—4)12

——— =0.32843

. . bh® .
Using rectangle cross section I = —. Letting /1 = 20 cm, then b =
meter or 32 cm.
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2.8.3 Problem 2

360 A one-degree-of-freedom system is subjected
to a pulse excitation in the form of a parabola,

0= 2000 =Lty bt~ 1) N

The system mass is 0.5 kg, and the natural fre-
quency is 100 Hz. The pulse duration T equals the
undamped period of free vibration period. The
system is at rest in the equilibrium position at
t=0.

(a) Use FFT techniques to evaluate the response
when { = 0.20.

(b) Use FFT techniques to evaluate the response
when { = 0.002.

(¢) Use superposition and Appendix B to derive
the analytical solution for this pulse. Compare the
analytical and FFT results for ¢{=0.2 and
{ =0.002.

2.8.3.1 part(a)

(T-1)

Q = 20006——[h(t) ~ h(t = T)]

m = 0.5 kg

w, =2nf,
fn =100 Hz

Hence pulse duration is % = 0.01 sec.

my” +cy’ +ky = Q(f)
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In the frequency domain assuming that the force Q(t) can be represented in its Fourier
series as

Q) = Re(z Qnei“””t)

where w; is the fundamental frequency for Q(t) which depends on the period we choose
to select to sample over. In this example, I selected 3T as the overall period to sample over
so that it covers the pulse duration and an additional time to show the free vibration part
as well and to compare to the analytical solution. Hence the EQM becomes

Qu

Y, = T
—m(nwq)” + ic(hwq) + k

k = w?m hence dividing the numerator and denominator by k we obtain

Qu
Y, = 5
" ( m(nw1)2) ic(nawy)
1- 2 +—
wpm wf{m

1 1
k(1-172) +i2er,

nwq

where r, = — Hence response is

Whp

y(t) = Re(z Yneiwlnt)
1

_ iwint
_Re(zn: (1—r%)+i2CrnQne 1 ]

1t
nk (1—r%)+i2§rn

1=

y(t) is found by taking the IFFT of }; Q,-

Q,, values are found by taking the FFT of Q(t). We start by sampling Q(t). To obtain the
solution for say t = 0 --- 3T, then we have to assume that the period of the signal is actually
3T and sample over this whole time from 0 --- 3T — delt. Then we use FFT on the result.
Then find the response by doing IFFT. Using N = 128 over t = 0---0.03 seconds, the
following solution was obtained
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B0

400

200 - 4

force Q) and its reponse. 16 samples, delT=0.000236

--u:“-u:u uu.:u-u:‘ 2 IRt Jiinu.:“-u:u-u.:
time sec
reponse at zeta=0.200000

i
0.005

] i ]
0.01 0.015 0.0z 0.025 0.03
time sec
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%by Nasser M. Abbasi, HW 7, EMA 545

close all;

T = 0.01; %sec

duration = 3%T; Yduration to find solution over
N = 128;

delT = duration/(N-1);

wl = 2%pi/duration; %fundamental freq rad/sec
t = linspace(0, (duration-delT),N);
Qt = @(t) (2000%t.*(T-t))/T"2.*(t<=T)+0*(t>T)

subplot(2,1,1)

plot(t,Qt(t),'r-0');

hold on;
plot(0:delT:duration,Qt(0:delT:duration),'r');

title(sprintf('force Q(t) and its reponse. 16 samples, delT=)f',delT))

xlabel('time sec');

grid;

m = 0.5; Ymass kg

wn = 2xpi*100; %natural freq

k = wn"2*m; Y%stiffness N/meter

[Q,ws] = fft_easy(Qt(t),delT);

zeta = 0.002;

I = sqrt(-1);

y = ifft_easy( (Q/k)./( (1-(ws/wn)."2) + 2*I*xzeta*ws/wn),ws);

subplot(2,1,2);

plot(t,y,'r');

title(sprintf ('reponse at zeta=)f',zeta));
xlabel('time sec');

grid;

2.8.3.2 Part(b)

b

For C = 0.002 the above Matlab script was modified and the following solution resulted.
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force Qit) and its reponse. 16 samples, delT=0.000236
BDD T T T T

Aok 3 : "',: ...... .............. .............. rrserisienens 4

11| O PO .......... oo o .............. ............. i

[k L '::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
i} 0.005 0.01 0.015 0.0 0.025 003
time sec
reponse at zeta=0.002000
DDA T T |
0.0z
0
-0.02
004 i ] | i ]
0 0.005 0.01 0.015 0.0z 0.025 0.03
time sec

Now we compare the above with the analytical solution.

2.8.3.3 Part(c)
The pulse can be written as

F=Q@®I[h(t) - h(t-T)]

= Q(Bh(t) - Q(Hh(t - T)
Lett =t—T,hencet =t + T, therefore the above becomes
F=Qh(t) — Q" + T)h(t')

But Q(f) = 225, Let
write the above F as

2000
T2

= f since it is a constant. Hence Q(t) = t(T —t). Now we

F = BHT - Hh(t) - B + T)(T — (¢’ + T)Hh(F')
= (BTt = B )h(t) = B(t' + T)(~t)h(t')
= (BTt - p2)h(t) + B((t')* + T# )(t')
= BTth(t) — Bt2h(t) + BT(¥')* + BTHh(t') (2.106)

So we see that the response to F will be the response to a unit impulse h(t) with forcing
basis functions that are 1, , 2. Now we can use the solution from back of the book ap-
pendix B to sum the responses in order to find the final response and compare to the FFT
method.
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From appendix B, the response to unit ramp th(t)is

r(th(t)) = miﬁ (a)nt 20+ e—Cwnf[zc cos wat — (1 - 2c2)Z—Z sin wdt])h(t)

and the response to quadratic #2h(t) is

s(tzh(t)) = 104 ((a)nif)2 —4Cw,t - 2(1 - 4C2) + e‘cw”tl2(1 - 4C2) cos wyt + (6C - 8C3)% sin a)dtl)h(t)

n d

Now that we have the basis solutions, we can apply them to EQ[2.110

F = BT(r(t) + r(t')) — BT(s(t) — s(t'))
= B(r(t) + r(f —T)) - BT(s(t) - s(t - T))

ﬁT s|wt—2C+e ~Cont 27 cos wyt — (1 - 2C2 — sinwyt | |h(t)
Wy

+ ) (a)nt' — 20 + e~C@nt’ [2C cos wyt’ — (1 - 2@2)—” sin w,t’
w4

)h(t’)

(b
- (B)
+(p)—

In the above, w; = w, V1 — C?. To plot this solution, the following small script was used
and was run for both { = 0.2 and ¢ = 0.002

((a)nt) —4Cw,t - 2(1 - 4C2) + e_Cw"t[2<1 - 4C2) cos wyt + <6C - 8C3)% sin wdt])h(t)
d

((a)nt’) —4Cw,t' — (1 - 4C2) + e~Cont’ lZ(l - 4C2) cos wyt’ + (6C - 8C3)% sin wyt’ ])h(t’)
d

For C =0.2
solution veing Svparposition Impulzs rezponzs B J=02
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i \
! \
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|ll II|
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2 | \
E oo )
g 0001 | i k
B II."I 1 -
f ] .-' bl
.-'f: "
A . B bl
0.000 — - " s —
L ] " > ¥ -
1 ¥
—0.001 |- : .
L3 ’
*
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For C = 0.002

solution veing Suparposition Impulss esponza e J=0.002

0.004 .«"/ ._\'\

0.003

T
e
-l
-
-
=

0.001 / '\I : : : (-

TeEpOMEG

0.000 - RL '. .|. "
R — ] ]
-0.001 [ " h e

—0.002 | ] ) ' 2

1 1 1 1 1 1
0.000 0.003 0010 0.015 0.020 0.025 0.030

2.8.3.4 Conclusions

The analytical solution, using superposition agreed with the FFT solution for = 0.2.
However, for some reason which I am not able to determine why yet, the FFT solution
when C = 0.002 did not agree with the analytical solution. The analytical solution was
verified to be correct using another numerical ODE solver. So the FFT method for some
reason is not giving accurate result for C = 0.002. The same Matlab script was used for
both cases. I tried increasing the sampling rate but that did not change the result. Please
see Appendix for verification and the code used to plot the analytical solutions.

2.8.4 Problem 3

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b). set m,=0 and
see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static example, geries or para]lei—accordmg to the
e.qullibnum position, there is no axial force in each equivalent spring stiffness.

spring.
(a) Derive equations of motion for the horizontal
displacements x, and x; measured from the equi- ey
librium position. -
(b) Prove that if m, = 0, the equation of motion &
for x, is the same as that obtained by replacing the §
four spmsgs by a single cquwa]cnt spring. Identify § £
the way in which the springs are connected—for EXERCISE 1.1
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2.8.4.1 Part(a)

Let T be the kinetic energy and V be the potential energy. Then equation of motion for a
generalized coordinate g; is given by

d(JdL JL
i v e Qi

dt\dg;) Jg;

Where L is the Lagrangian L = T — V and Q; is the generalized force in the g; direction.

Assuming x, > x; and masses are moving to the right. For x; we obtain

1 1
T = §m1x% + Emlx%
1 1 1 1
V= EkpC% + Ekz(xz - x1)2 + §k4x% + §k3x%
Q1 =F
Q=0
Hence
L=T-V
1 L (1 1 2, 1 L
= Emlx% + Emlxg - (Eklx% + EkZ(xZ - xl) + Ek4x% + Ek‘?)x%)
JL )
— =X
Jx; 1
d{JL ..
—|— | =mx
dt\ 9i b
JL
8_361 = —kyx1 = kp(xp — x1)(=1) — kgxy
and
JL .
o"_jcz = mpx;
d{(JdL ..
— | — | =mX
dt\ 9%, e
JL
g = —kz(XZ - xl)(l) - k3x2
2
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Hence the 2 EOM are for x;

d(JL JL _r

dt\dix,| dx;

myXy — (=kyxq + kp(xp —x1) —kax1) = F
mljél + k1x1 — kz(XZ — xl) + k4x1 =F

Therefore EOM 1
mljél + (kl + kz + k4)X1 - kzXz =F
and for x,
d{(JL JL _0
dt 8x2 sz B
my¥y — (=ka(xy — x1) —kzxp) = 0
myX, + kz(.X'z - xl) + k3X2 =0
Hence EOM 2

ml.’)&z + (kz + k3)X2 - kle =0
Hence in Matrix form EOM are

MX” +KX =Q
my 0 )% (ky +hky+ky)  ~kp |1 r
+ =
0 My xé’ —kz (k2 + k3) Xo 0

If m; do not exist, then this means the springs k, and k3 do not have a mass between them
and so these need to be replaced by single spring, say ks found by finding equivalent
spring in series

2.8.4.2 Part(b)
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In parallel
ks
RN F
my ) my
kl k2 k3
In series ki ks
F Ke
_— ml 1
kl\
In series
k3+k2+k2k3k4+k1k2k3
F ka2ks
@ — M AN
Equivalent stiffness
1_1.1
ks ky ks
ks +k
k5 — 3 2
kaks
From above, EQM for 1, becomes
ks
—_—
ks +k
m1§€1+ k1+ 3 2 +k4X1:F
koks

So now k4 and k, are in parallel, hence we replace ks + k4 by k¢ found from

k6:k5+k4
kst
() o
k3+k2+k2k3k4
k6:
kaks

185



2.8. HW7 CHAPTER 2.

HW’S

Hence EQM for m; now becomes
ke
k3 + kz + k2k3k4
X1 =
kaks

m15€1 + kl +

and finally
k3 + kz + k2k3k4 + k1k2k3

kaoks

mljtl + X1 = F
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2.8.5 Key solution for HW 7

Homework #7
EMA 545, Spring 2013

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this, you will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass, stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring, what would
its dimensions be?).

Problem 2: (20 pts) Do Problem 3.60 as given in the text. Comment on how you
selected adequate values for N (number of samples in the time history) and the length of
the time window (in seconds).

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b), set m,=0 and
see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static example, series or parallel according to the
cqulljbnum position, there is no axial force in each equivalent spring stiffness.

spring.

(a) Derive equations of motion for the horizontal
displacements x, and x, measured from the equi-
librium position. i
(b) Prove that if m, =0, the equation of motion
for x, is the same as that obtained by replacing the
four sprmgs by a single cquxva]ent spring. Identify H§ 35
the way in which the springs are connected—for EXEHCISE 1.1
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Problem 3.60.
A SDOF system is subjected to a pulse excitation of the form:

):3|[2000t(T-t)/T2 OLtET
i 0 t>T

Q(t

We aretold that m= 0.5 kg and that the natura frequency is 100Hz; i.e., the undamped period of
vibrationis 1/100 = 0.01 sec. Since the pulse-duration is said to be equal to an undamped period, T
=0.01 sec. We are to find the response of the system for the case of (a) z = 0.2 and (b) z = 0.002.

(& Forz=0.2, thetime-congtant of the system is 1/zw,= 1/(0.2* 2* p* 100) = 0.007958 sec. Four
time constants would be about 0.032, so choosing a maximum time of Tmax = 0.05 sec will ensure
that we alow enough time for the transient response to die down to an acceptably small value. The
next parameter that we need to chooseis N. Let's choose N = 256 and then check that our Nyquist
critical frequency is high enough relative to the natura frequency of the system and the bandwidth
of theinput spectrum. Figure 1 showsthe FFT of the input spectrum, the FFT of the output
spectrum, and the system transfer function as a function of frequency ratio for Tmax = 0.05 sec and
N = 256. Each curve is scaled so that its maximum vaue is unity. Although difficult to see whether
there are enough points in the vicinity of the resonant peak, it is clearly the case that our Nyquist
frequency is high enough. Figure 2 shows the displacement response of the system for Tmax = 0.05
sec and using 2 different values of N. Below N = 64, the errors in the response become much more
noticeable. Note that the responseis very smdl at t = 0.05 sec, indicating that "wraparound errors'

are negligable.
z=0.2

T I
-~ Input
,,,,,,,, Transfer Function
—— Output

5

Q.

5

o]

w

'_

g

Q.

=

0 5 10 15 20 25 30
Frequency Ratio

Figure 1.
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x10° z=0.2, Tmax = 0.05 sec

1 ' | | | i N = 256
3 [ A N=32

N
3]
i

15

Displacement (m)

0.5

-0.5

-1.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time (sec)

Figure 2.

Figure 3 shows the effect of varying Tmax, keeping N = 256. It is seen that as Tmax is
reduced, the solution beginsto degrade. In particular, examining the curve for Tmax = 0.02 sec, it is
seen that the response no longer appears to begin with zero initial conditions. Thus, using a Tmax
which istwice the duration of the pulse is inadequate in this case to avoid warparound errors.
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4 T T T L T !

Tmax = 0.05sec

35| -~ Tmax = 0.04sec
—— Tmax = 0.03sec

—— Tmax = 0.02sec

Displacement (m)

-15

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time (sec)

Figure 3.

(b) For z = 0.002, the time-constant of the systemis L/zw,= 1/(0.2* 2*p* 100) = 0.7958 sec. Four
time constants would be about 3.2, so choosing a maximum time of Tmax = 5 sec should ensure
that we allow enough time for the transient response to die down to an acceptably smdll value. As
before, we will choose avalue for N (4096) and then check that our Nyquist critical frequency is
high enough relative to the natural frequency of the system and the bandwidth of the input spectrum.
Figure 4 showsthe FFT of the input spectrum, the FFT of the output spectrum, and the system
transfer function as a function of frequency ratio for Tmax =5 sec and N = 4096. As before, each
curveis scaled so that its maximum value is unity. We observe that there appear to be enough points
in the vicinity of the resonant peak and that the Nyquist frequency appears to be high enough.
Figure 5 shows the displacement response of the system for Tmax =5 sec and N = 4096. The result
was checked using ode45 and found to be very close to the values produced using the FFT analysis.
Figure 6 shows the first 0.01 seconds of response from Figure 5 on alarger scale. The fact that the
response begins with nearly zero displacement and velocity shows that wraparound error has been
avoided.
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0.002
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I <
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Figure 5. Tmax
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x10°

z=0.002

Displacement (m)
N

-1
0 0.001 0.002

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (sec)

Figure 6. Tmax = 5 sec, N = 4096. Same result as shown in Figure 5, but over a smaller time range.

The Matlab code used to generate these results is shown below:

% ME6442, Spring 2002
%Dr. Ferri
% Probl em 3. 60

% Qis a short-pul se parabolic input.
% a danped SDOF systemw th m = 0.5kg,

%the pulse is Tn,

m=0.5; %g
zeta = 0.2; %or zeta
wn = 100*2*pi; % rad/s

The systemis
and fn = 100 Hz. The duration of

an undanped period of notion.

= 0.002 for part (b)

tineconstant = 1/ (zeta*wn)

T = 2*pi/wn;
Tmax =
N = input('Enter N ..
wl = 2*pi/ Tnax;

delt = Tmax/ N,

t = 0:delt:(N1)*delt;

% Defi ne i nput pul se

Q= zeros(1,N);
for k = 1: N
if t(k) > T, break;

input (' Enter Tnax.

% duration of pul se

")

Y

end
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Qk) = 2000%t (k). *(T-t(k))/Tr2;

end

plot(t,Q;

x| abel (' Tine (sec)')

ylabel (' Q)

title(['N=",nunstr(N)," , \zeta ="', nunBstr(zeta)])
grid

pause

Qtrans = fft(Q;

r (0: (N 2))*wl/ wn;

D=1./(1- r."2 + i*2*zeta*r);

Xhal f = Qtrans(1: (N 2+1)).*D (nfwn"2);
rev_index = (N2):-1:2;

X = [Xhal f conj (Xhal f(rev_index))];

% Plot input fft, output fft, and TF on same plot.

Qlot = Qtrans(1l:(N2+1))/max(abs(Q trans(1: (N 2+1))));
Dpl ot = D) max(abs(D));
Xpl ot = Xhal f/ max(abs(Xhal f));

plot(r,abs(@lot), o--',r,abs(Dplot), " k-',r,abs(Xplot),"'*--")
x| abel (' Frequency Ratio')
ylabel (' I nput, TF, Qutput')

title(['\zeta = ', nunkstr(zeta)]);

grid

I egend(' I nput',' Transfer Function','Qutput')
pause

Xifft = ifft(X);

% Check that the ifft is "nostly real-valued." The quantity
% imag_check is the ratio of the norms of the imaginary and
%reak parts. This termshould be very snmall (<le-5).

i mag_check = norn(imag(xifft))/norn(real (xifft))

% Assum ng that imag_check is snall, discard the imaginary part
%of xifft:

xifft=real (xifft);

plot(t,xifft);

x|l abel (' Tine');

ylabel (" x");

title(['N=",numstr(N),' , \zeta ="', nunBstr(zeta)])
grid

zoom on
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Exercise 3.60

5‘*‘/""‘/’0”/104 solutbcos 1 ¢ I t-1
@(t)* “00(‘&"{ )a(t) - .?oao[‘*r (u»r)] L(.t')

2000 Eh(t) - 7-000LL({') +—2000 et 20 ')A(”

Let rt) aud S(f) Aenole o yuid rmw,a aud ?uc/no‘m
reSp0ases. The v

2= 299°[r(t) ¢ r(4-7)]- 222 [s(6)-5(4-7)]

21

()

M:= 0.5 O pat = 2001 T =

Note: Change pulse duration to t
nat

Superposition solution

ramp(t,&) = (t>0)-

y )
O patt-2C+ exp<—§-m nat't>' 2-C-COS\ l - sz nat't/

2
nat 1-2- \
+ 5 -sin( 1- sz nat't/

M-o

2

-G

[ 2 ( 2)
- <m nat-t> S 4G et - 201 - 487

M- ot ( 2> 2
+exp<—§-m nat't>' 2-1-4-L )-cos A/l -G 0 papt)

c-8c> ] )
+6C 8¢ -sin| 41 - 2'mnat‘t/
l1-&?

2
2 (quad(t,£) - quad(t - ©,6))

quad(t,&) = (t>0)-

0'(ramp(t,§) + ramp(t - 1,8)) -

200
q Super(t 5 C) =
T
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First case £ :=0.20
4 . , . 4
=0.032 This is greater than t=0.01, so let T' = 4/C*w,,,, T' =
EO nat =" nat
Because damped period is larger than the undamped period, select A= T
A>ST20, 80 nat
N' = ﬂ N'=101.859 N := 128 T:=2T A = I
A N
. (i . t.-(Tt -t
J=1.N tj =(-1)A Q. - 20002 < J>'/t<r>
i \i
T
F = FFT(Q) 21
I fund = K-Mo. .~
() nat'T nat
n = 1..E +1 F, 1
Xm0 x = IFFT(X)

1-[(n- 1).rﬁmd]2 # 20¢ (0= 1) fyng]

- [
X super, = 4 super\tn’€>

X 0.002 [~ =
n

T =0.01

| |
~0.002 0 0.01 0.02 0.03
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Second case (= 0.0020
4 . , . 4
=3.183 This is greater than t=0.01, so let T' = 4/C*w,,; T' =
EO nat =" nat
Because damped is larger than the undamped period, select A'>n/2m,,; A' = T
80 nat
N 2T NS 1019101 N 1024416 T 2T AsL
A N
. . t-(t-t
j=1.N t.=(-1)A _ 'J< J>,/
i Q = 20001~ (4<1)
T
F = FFT(Q) . . 2m ,
fund ® ot T K= Mo
n=1.—+1 F 1
2 X, = = IFFT(X)
2 .. X =
K l—[(n—l)-rfund] +21-Q~[(n—1)-rfund]
0.005 T |
Xl’l 0 —
| |
~0.005 2.5 3 3.5

0.005

| |
~0.005 5 0.01 0.02 0.03
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2.8.6 appendix

Appendix, HW7, EMA 545, spring 2013

= Analytical (superposition) solution for HW7 EMA 545

T=0.01;
wn = 2.0 %Pi »100;
m=0.5;

o= wd[€_ ] s=wna/1-82 ;

2000
pa
tp=t-T;
flre_, e ] :=
wn
BT wnt-2¢+Exp[-Ewnt] [2§C03[wd[§] t] - (1-2¢g?) Sin[wd[g] t]]];
mwn wd[g]

1
f2[t_, 8 ]:=8—— [(wnt)2—4§wnt—2 (1-48%) +
mwn?

wn
Exp[-Zwn t] (2 (1-42%) Cos[wd[g] t] + (65 -8¢&°)
wd[&]

Sin[wd[Z] t]]];

f3[t_, 8 1:=28T

1
[wntp-zg*Exp[-gwntp]
mwn®

n
[2§Cos wd[g] tp] - (1-2¢g?) (;N[Cl
Wi

Sin[wd[g] tP]]];

fa[t_, 8. 1:=8

" [(wntp)2—4:wntp—2 (1-42%) +
mwn’

wn

EXp[-Zwn tp] [2 (1-4¢%) Cos[wd[g] tp] + (65 -8&%) Sin[wd[Z] tp]]];

wd[g]

ewn
sin[wd[&] tpl]];
]

1
f5[t_, & ] :=2BT> —— [1-Exp[-§wn tp] [Cos[wd[g] tp] +
mwn?

f6[t_, & ] :=

wn
BT

1
3 [wn tp-22+Exp[-Zwntp] [2§C05[wd[§] tp] - (1-287) Sin[wd[£] tp]]];
mwn 1

vO + Zwn q0

freeResponse[t_, qO_, vO_, £ ] := Exp[-gwnt] [qO Cos[wd[Zg] t] + .
wd[g]

sin[wd (2] t]];

n1s;= impulseResponse[t_, £ ] := F1[t, £] UnitStep[t] - F2[t, £] UnitStep[t] - F3[t, £] UnitStep[tp] +
f4[t, £] UnitStep[tp] + F5[t, &] UnitStep[tp] - F6[t, &] UnitStep[tp];

case ¢=0.2
ni21)= €= 0.2;
pl = Plot[impulseResponse[t, £] (UnitStep[t] - UnitStep[tp]), {t, 0, T}];

= Evaluate IC at end of impulse to use for free vibration response
nizsi= q0 = (F1[t, 8] - F2[t, &1 - F3[t, &) + F4[t, ] + F5[t, £] -F6[L, L)) /- t->T
ouizz= 0. 00120186

Printed by Wolfram Mathematica Student Edition
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2| problem_2.nb

nizar= vO = D[FL[t, €] - F2[t, &] - F3[t, g1 + F4[t, &] + F5[t, g1 -F6[t, €], t] /.t T
ou1z4)= -1, 21014
nzsi= p2 = Plot[freeResponse[tp, g0, vO, £] UnitStep[tp],

{t, T, 3T}, Exclusions - None, PlotStyle » {Dashed, Thick}];

= Plot the complete solution by combining the above 2 plots

np1z6}= Show[pl, p2, PlotRange » All, Frame » True, FrameLabel -» {{"'response', None},
{"time (sec)", Row[{'"solution using Superposition Impulse response for ¢&=", £}1}},
GridLines -» Automatic, GridLinesStyle » LightGray, Axes -» False, ImageSize -» 500]
solution using Superposition Impulse response for £=0.2
0.003} g
0.002} ]
8 I
f=4
A L \ i
Out[126] § 0.0017 \
L ‘\ "‘x\
L \ /s \
\ I, AN
r \ Pt
L [} 4 N, -, i
0000 \ ! \\ o
I Y /! N
L \ /
\ /
L \ y
_0.0(]1j ‘\ 'I —
[l | | “'l | | |
0.000 0.005 0.010 0.015 0.020 0.025

Printed by Wolfram Mathematica Student Edition

199



2.8. HW7 CHAPTER 2. HW’S

problem_2.nb |3

= case ¢=0.002
n1371= € = 0.002;

pl = Plot[impulseResponse[t, £] (UnitStep[t] - UnitStep[tp]), {t, O, T}];

q0 = (F1[t, g1 -f2[t, g] - f3[t, g] + FA[t, g1 + F5[t, g1 -F6[t, £]) /. t>T;

vO =D[fl[t, &] - F2[t, g] - F3[t, &] + FA4[t, g] + F5[t, £] -F6[t, &1, t] /-t T;

p2 = Plot[freeResponse[tp, qO0, vO, £] UnitStep[tp],
{t, T, 3xT}, Exclusions - None, PlotStyle -» {Dashed, Thick}];

Show[pl, p2, PlotRange -» All, Frame -» True, FrameLabel -» {{''response", None},
{""time (sec)", Row[{"'solution using Superposition Impulse response for ¢=", £}1}},

GridLines -» Automatic, GridLinesStyle - LightGray, Axes - False, ImageSize -» 500]

solution using Superposition Impulse response for {=0.002
e T R

0.004

0.003

0.002

0.001

out[142]=

response

0.000

—-0.001

-0.002

-0.003

0.000 0.005 0.010 0.015 0.020 0.025 0.030

time (sec)
= Verify the solutions using Numerical DE solver

in143= € = 0.002;
eq=y""[t]+28wny"[t] +wn"2y[t] = F[t] /m

oufias= 394784, y[t]+2.51327y [t] +y”’[t] =4. x107 (0.01 -t)t (-UnitStep[-0.01+t] +UnitStep[t])
n1asi= sol = FirsteNDSolve[{eq, y"[0] == 0, y[0] == O}, y[t], {t, O, 3T}];

n1471= Plot[y[t] /. sol, {t, O, 3T}, GridLines » Automatic, GridLinesStyle » LightGray]

0.004
0.003F
0.002 -

0.001
Out[147]= L

L L L L L L L L L L L
0.005 0.010
-0.001F

-0.002 F

-0.003F

Printed by Wolfram Mathematica Student Edition
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4| problem_2.nb

The above shows that the analytical solution using superposition is correct.

Printed by Wolfram Mathematica Student Edition
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2.9 HWS
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2.9.1 problem description

Homework #8
EMA 545, Spring 2013

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bo.

Linearize your equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 6, = 45 degrees
for x ranging from -1 mto +1 m.

c.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m, k=1000 N/m and 6, = 45 degrees. Compare your result with your linearized
result from part (b).

Using m=1, find the response of the nonlinear system (in part a) using ode45 and
plot the displacement of the mass over a few cycles when it is released from rest
at x(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural
frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

b.

—

d.

—

o, L [

-]

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring ky and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P, which is called the center of pressure. The
lift force may be treated as known. When the wing is in its static equilibrium position,
points G, E and P form a horizontal line. Point G is the center of mass, and the radius of
gyration of the wing about that point is rs. Denote the mass of the wing m. Derive the
equations of motion for the wing, assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each
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term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

. d .
AR~
G l‘-—‘ P
14 E
EXERCISE 1.27

Problem 3: Use the power balance method and the stiff spring approximation to find the
equation of motion of the system pictured in Problem 1.16.

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric- {55
tion is negligible. EXERCISE 1.33

Problem 5: Exercise 1.30 from Ginsberg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force, F).

SL14 Ll
.I. 1 f |
=
= =
o
1.30 Both bars in the linkage are horizontal, as L .I —
shown, when the system is in static equilibrium.
Determine the linearized equations of motion for F Lf2 L4
this systern. EXERCISE 1.30

Problem 6: Exercise 4.1 in Ginsberg. Solve the eigenvalue problem by hand to get the
natural frequencies and mode shapes. You may check your answers with Matlab.
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2.9.2 problem1

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bo.

b.) Linearize vour equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
k(x) versus the linear approximation for L=1 m. ~=1000 N/m and 8y = 45 degrees
for x ranging from -1 m to +1 m.

¢.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m. k=1000 N/m and 8y = 45 degrees. Compare your result with vour linearized
result from part (b).

d.) Using m=1, find the response of the nonlinear system (in part a) using ode43 and
plot the displacement of the mass over a few cycles when it is released from rest
at x{(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural

frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

2.9.2.1 part(a)

Let initial length of the spring (un stretched length) be Ly and when the mass m has
moved to the right by an amount x then let the current length be L,,,.

Therefore the stretch in the spring is

A=Ly, - LO

Let the height of the bar by H, where tan 0, = % or H=Ltan 6,
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Hence from the above diagram we see that Ly = VH2 + L2 and L., = \JH>+ (L + x)%,

therefore
A=+H2+(L+x)? - VH2 + L2
2
A2 = (\/HZ +(L+x)7° - VH2 + L2)

Now we can derive the equation of motion using energy methods.

Let T be the current kinetic energy in the system, and let V be the current potential energy.
This system is one degree of freedom, since we only need one generalized coordinate to
determine the position of the mass m. This coordinate is x.

1

T = —mi?
zmx
1

V= kN
2

2
= %k(\/Hz +(L+x)* - VH? + LZ)

Hence the Lagrangian @ is
O=T-V=T-V

2
1 1
= mi - Ek(\/HZ +(L+x)* - VH2 + L2)

Now the equation of motion for coordinate x is (using the standard Lagrangian form)
d(dP\ JP
dt\ dx ) Jx
206
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But Q,, then generalized force, is zero since there is no external force and no damping.
Now we just need to evaluate each part of the above expression to obtain the EOM.

D )
E =mx
d(od\
a\ox )™
and
o0 91 1 2
= = | Zmi2 - 2k|\H2 + (L + x)* - VH2 + 2
dx  dx|2 2
1 -t
= —k(\/HZ +(L+x)° - VH2 + 12 )E(H2 + (L +x)°) 2 2(L +2x)
JVH2 + (L+x)* —VH2 + 12
=—k (L + x)
VH? + (L + x)?
Hence EOM becomes
d(9D) 9 _
dt\ dx dx
VH2 + (L +%)* — VH2 + 2
mx + k (L+x)=0

2.9.2.2 part(b)

H2+(L+x)? -VH2+12
VH2+(L+x)?

fx) = f(0) +xf'(0) + w + HOT.

VH2 + (L +0)* - VH? + 12
(L+0)
JH2? + (L +0)

112 V2112
:k\/ + VH2? + JL

For small x we need to expand f(x) = k[ ](L + x) around x = 0 in Taylor

series and let higher powers of x go to zero.

VH? + [2
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and now for f’(0)

d
£10) = = f(mg

(L +x)
—k(L+x)i m_m N \/m—\/lm d

ax H2 + (L + x)° H2 + (L + x)*

JH2 + (L +x)? - VH2 + 12
= k[ (L + x)| VH? + L2 Lrx + ( )

3
(H? + 12 + 2Lx + 22)? VHZ + (L +x)°

Now we evaluateitatx =0

L JH? + (L +0)* - VH2 + 12
F/0) = K (L +0)| VHZ + L2 0 4

(H? + 12 + 20 +0) H? + (L +0)°

L H? +1? - VH? +1?
= k|L| VH? + L2 5 +[\/ v J
2

(HZ N LZ) H2 412

d
= k—
dx

dx

N W

2 (H? + LZ)%

(H2+12)

N

—(L + x)

Therefore, EOM of motion becomes (notice we ignored higher order terms, which con-

tains x? in them)

mi + (f(0) + xf(0)) = 0

Hence the linearized EOM is

.. 1? _
mx + kmx =0
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Or in terms of 6 the EOM can be written as

L2
2 =
((Ltan 6)* + 12)
1
— X
1+ tan? 6,

mx + k

mx + k

This is the linearized EOM around x = 0. Using numerical values given in the problem
L=1,m =1,k =1000N/m, 6, = 7, it becomes

1
¥+1000———=x =0

1+ (tan %)2

X+500x =0

Therefore the linearized stiffness is 500x | while the nonlinearized stiffness is

. JVH2 + (L+x)* —VH2 + 12 :

H2 + (L + x)°

L+ x)

L=1,0=450

\/(tan 2)2 +(1+ x)2 - \/(tan %)2 +1
\/(tan g)z +(1+ x)2

\/(x +1.0° +1.0 - 1.4142

=1000 (1+x)

= 1000

1+x)

\/(x+1.0)2 +1.0

Here is a plot of linearized vs. non-linearized stiffness for x = -1 ---1
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Afh* 2+ (L+x)? —Vh?+ L2
A h? & (L+x)?
linear[x ] := x 500;

valones = {L+1, 6 + 45Degree, h » Tan[45 Degree] , k » 1000} ;

In[13}= nonlinear[x ] :=k (L + x)

Plot[{nonlinear([x] /. valuoes, linear[x] /. values}, {x, -1, 1},
PlotStyle »+ { {Dashed, Thick}, Black}, Frame + True, PlotLegend=s + {"non-linear", "linear"},
Framelabel » {{k[x], Hone}, {x, "linearized vs. non-linearized"}}, ImageSize » 500,

GridLines » Antomatic, GridLinesStyle + LightGray]

linzarizad vs. non—linzarizad

T
,
i
800 - o g
P
-
400 - e g
o
200 - at 4
= - = =« non-linear
Out]igl= =
— linear
D —

—200 o
—400 4

R L 1 gty

-1.0 -0.5 0.0 0.5 1.0

2.9.2.3 part(c)

The spring extension A is first found by assuming there is a point A at x = 0 and point B
where the spring is attached to the ceiling. Hence
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A = (14 —ttg)e s
= (i - 0f) - (cos Oyt - sin Opf)

= X cos 6

Therefore
A = xcos 0

Now we repeat the same calculations but using A = x cos 0, for the spring extension.

T = -mi*
M
1

V = —kA?
2
1 2

= —k(x cos 6y)
2
Hence the Lagrangian @ is
O=T-V
1

= mez - Ek(x CcOSs 90)2

Now the equation of motion for coordinate x is (using the standard Lagrangian form)
d(dP\ JD
dt\ dx ) Jx

It is equal to zero above, since there is no generalized force associated with coordinate x.
Now we just need to evaluate each part of the above expression to obtain the EOM.

v
raal
d(dP\
ar\ax ) =™
and
0 J (1 1
e e v 2
P &x(zmx 2k(x cos ) )
= —k(x cos 6y) cos 6,
= —kx cos? 0,
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Hence EOM becomes
d(JD L0) 0
dt\ dx dx
m¥ + kx cos? 0y = 0
But cos 6y = ﬁ hence
.. 12
mx + kxm =0

This is the same as the EOM for the linearized case found in part(c)
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2.9.24 part(d)

Now we need to solve numerically the nonlinear EOM found in part(a) which is

JHZ + (L +%)* — VH2 + 2
mx +k
VH? + (L + x)?

using m =1,k =1000,L =1, 0y = 459, For IC we use x(0) = 0.1, x’(0) = O for first case, and
for second case using x(0) = 0.5, x’(0) = 0. This is a plot showing both responses on same
diagram

(L+x)=0

Yh*2 .+ (L+x[t])? RV
=0
Afh? + (L+x[t])?

ic= {{x[0] =0.1, x"'[0] =0}, {x[0] =0.5, x'[0] =0}};

values = {L+1, h+Tan[45Degree], m +1, k +» 1000} ;

sol = First@NDSolve[ {Evalunate[eq /. values], #}, x[t], {t, 0, 1}] &/@ic;

Plot [Evaluate[x[t] /. sol], {t, O, 1}, PlotStyle + { {Dashed, Thick}, Black}, Frame -+ True,
Plotlegends -+ {"x[0]=0.1", "x[0]=0.5"},

FrameLlabel »+ {{x[t], None}, {"t sec", "numerical found nonlinear solution for 2 initial conditions"}},

eqg=mx""[t] +k (L+x[t])

ImageSize » 600, Gridlines + Antomatic, GridLinesStyle -+ LightGray]

numsrical ound nonlinear solution for 1 initial conditions

- %{0]=0.1
— x[0]=03

The period for the response for case of IC given by x(0) = 0.5 is seen to be about 0.375
seconds and for the case x(0) = 0.1 it is 0.275 sec.

The linearized EOM is X + 500x = 0 and hence w; = 500 or w,, = VY500 = 22.361 rad/sec,

hence T = mo_ 0.281 sec |.

w, 22361

We notice this agrees well with the period of the response of the nonlinear equation for
only the case x = 0.1.This is because x = 0.1 is very close to x = 0 the point at which the
linearization happened. Therefore, the linearized EOM gave an answer of 0.281 sec that is
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very close the more exact value of 0.275 seconds. But when the initial conditions changed
to x(0) = 0.5, then T found from linearized EOM does not agree with the exact value of
0.375 seconds.

This is because x = 0.5 is far away from the point x = 0 where the linearized was done.
Hence the linearized EOM can be used for only initial conditions that are close to the
point where the linearization was done.

Additionally, the nonlinearity manifests itself in the response of the system by noticing
that the frequency of the free vibration response has actually changed depending on
initial conditions. In a linear system, only the phase and amplitude of the free vibration
response will change as initial conditions is changed, while the natural frequency of
vibrations does not change.

2.9.3 problem 2

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring k, and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P. which is called the center of pressure. The
lift force may be treated as known. When the wing is in its stafic equilibriiun position,
points G. E and P form a horizontal line. Point G is the center of mass, and the radius of
gyration of the wing about that point is 7g. Denote the mass of the wing m. Derive the
equations of motion for the wing. assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each

term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

IR,

EXERCISE 1.27

Use y and 0 as generalized coordinates as shown in this diagram in the positive direction
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Using Lagrangian method, we start by finding the kinetic energy of the system, then the
potential energy.

T = %myz + %(mrzc)éz

For the potential energy, there will be potential energy due to k, spring extension and
due to kr spring angle of rotation in system. From the diagram above, we see that, for
small angle O

1 1
_ 2 2
V= EkyA + EkT@

To find A we use the stiff spring approximation. Let the point the spring is attached at
the top be B, then

Hence
A=y-10

Therefore, the potential energy now can be found to be

V= %ky(y ~10) + %kTQZ
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Therefore, the Lagrangian @ is

O=T-V
- %myz + %(mrz )92 - %ky(y - 19)2 - %kT82

We now find the equations for each coordinate. For y

Ib
dy "
dod
atay Y
dP
Er ~k,(y - 1)
Hence EOM is
dJdd JD 0
atdy dy Y
mij + ky(y - 19) =Qy

We just need to find Q, the generalized force in the y direction. Using virtual work, we
make small virtual displacement 6y in positive y direction while fixing all other gener-
alized coordinates from moving (in this case 6) and then find out the work done by
external forces. In this case, there is only one external force which is L. Hence

OW = Loy

Therefore Q, = L since that is the force that is multiplied by 6y. Hence EOM for y is now

found

my+ky(y—19):L

verification: As L increases, then we see that " gets larger. This makes sense since y is

upwards acceleration, so wing accelerates in the same direction.

Now we find EOM for 6

0_)—9 zmréQ
o0 _ .,
EO_)—Q mrgq
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Therefore the EOM is

dJdd Jo
e = o = Qp

it oo~ 90
mrz0 - k,l(y - 10) + k6 = Qg
mrg0 —kyly + k,20 + k70 = Qq

mr20 —k,ly + (kT + kylz)G = Qy

We just need to find Qy the generalized force in the 0 direction. Using virtual work, we
make small virtual displacement 60 in positive 0 direction (i.e. anticlock wise) while
fixing all other generalized coordinates from moving (in this case y) and then find out
the work done by external forces. In this case, there is only one external force which is L.
When we make 60 rotation in the positive 0 direction, the displacement where the force L
acts is (I + 5)00 for small angle. But this displacement is in the downward direction, hence
it is negative, since we are using y as positive upwards. Hence

SW = —L(I +5)50

Therefore Qg = —L(I + s) since that is the force that is multiplied by 660. Hence EOM for 0
is now found
mrs0 - k,ly + (kg +k,12)0 = -L(l +5)

Verification: As L gets larger, then 0 gets negative (since L has negative sign). This makes
sense, since as L gets larger, the rotation as shown in the positive direction will change
sign and the wing will now swing the opposite direction (i.e. anticlockwise).

Now we can make the matrix of EOM

MX" +kX =Q
m 0 |y . ky =k (y [ L
0 mg)\6) |-k, kr+kP)6) (-LU+5)

Notice that for [k] the matrix is symmetric as expected, and also positive on the diagonal
as expected. The mass matrix [m] is symmetric and positive definite as well.
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294 problem3

1.16 The bar executes small rotations in the verti- §
cal plane relative to the static equilibrium position
depicted in the sketch. Let the rotation of the bar be
the generalized coordinate. Determine the damping
coefficient C;.

\vﬂ,p

- L
EXERCISE 1.16

Y

Problem 3: Use the power balance method and the stiff spring approximation to find the
equation of motion of the system picturad in Problem 1.16.

Let O be the small angle of rotation that the rod rotates by in the anti clockwise direction.
Let the point the spring is fixed be B and the moving point where the spring is attached
to the rod be A.To find spring extension A we use the stiff spring approximation. Let the
angle a = 53.13%, hence
A= (ity —11p) - enyp
L.\. L
= ((56)] - 0) . (cos af + sin a])

= —8 i
3 s a
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Hence

A= =0si
zosina

Using Lagrangian method, we start by finding the kinetic energy of the system, then the

potential energy. 0 is the only generalized coordinate. Assume bar has mass m and hence
mL?

I:T

1 .
T = =162
2

For the potential energy, there will be potential energy due to k spring extension. From
the diagram above, we see that

V—lkLQ' 2
= k| 30sina

Therefore, the Lagrangian @ is

O=T-V
1. 1. 12
= 5162 - Ekgez sinza

Now we find EOM for 6

20

dod
dt 00
D kL2 sin® a

90 9

16

Therefore the EOM is
dod IO

St o 0

it 90 00
. kL2sin?
19+—S’9m Y0=0,

We now need to find the generalized force due to virtual 60 rotation using the virtual
work method. There are 2 external forces, the damping force which will have negative
sign since it takes energy away from the system, and the external force F which will add
energy hence will have positive sign.

We start by making 60 and then find the work done by these 2 forces.
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Work done by F is FL60 since the displacement is LoO for small angle. Now the work
done by damping is(c%@)%é@ hence total work is

OW = FL6O LQ Lé@
= —|C— —
3 )3
L2 .
= (FL - c;@)é@

Notice that work due to damping was added with negative sign since damping removes
energy from the system.

2,
Hence Qg = (FL - c%@) therefore the EOM is

kL2 .2 2.
16 + 591n Yo =FL-c—6
. [?2. kl?sin’a
16+C?6+T6=PL

12
Hence the damping coefficient is c-.
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2.9.5 problem 4

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric- s
tion is neghgible. EXERCISE 1.33

Let x; and x; be the generalized coordinates as shown in this diagram

N

2

— » X

Let mass of cart be m; and mass of small sliding block be m, (at the end, they will be
replaced by values given). Let k for spring attached to wall be k; and k for spring for small
block be k,.We start by finding the kinetic energy of the system

1 5.1 2
T = Emlxl + Emzv

where v is the velocity of the block. To find this v it is easier to resolve components on the
x and y direction. Therefore we find that

U = X sin 0] + (%, cos O + X1)i
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» X, C0SO + X1

Hence

2
|?5| = (i, sin 0)° + (i, cos O + ;)
= (x sin? 6) + (x% cos? 0 + x% + 2XyX1 cos 9)

2
2
=X (sin2 0 + cos? 6) + x% + 2%, cos O

= X5+ x% + 2%y%1 cos O

Therefore
T = 1m i2
= 5m

1
) ) ..
1+t Emz(xz +Xx1+ 2X2X1 CcOS 9)

Now we find the potential energy.

1 1
V= Eklx% + Ekzx% — myg(x, sin 6)

There are no external forces, hence generalized forces Q,,, Q,, are zero. The Lagrangian
D is
O=T-V
1 1

1 1
= Emlx% + Emz(x% + X% + 2.5(25(1 CcoSs 6) - Eklx% - Ekzx% + ng(XZ sin 6)

Now we find EOM for x is

A . : :

—— = M1X1 + MyXq + MyXy COS e

8x1
dow
—— = M1X1 + MyXq + MrX> COS
dt&xl 141 241 242

= (m1 + 7’7’12)5&1 + myi, cos O

oD

- = ~kn

8x1
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Therefore the EOM for x; is

dt Bxl &xl B
(ml + mz)jél + myX, COS 0+ k1x1 =0

Now we replace the actual values for m; = 2m, m, = m, k; = 3k hence

3mxy + mx, cos 0 + 3kx; =0

Now we find EOM for x; is

A ) )
-— = mz(xz + X1 COS 6)
&XZ

d JD T

aa—xl = mz(XZ + X1 COS 6)

= 1y cOS OX1 + myX,

7A0)
&—xz = —k2X2 + myg sin @

Therefore the EOM for x, is

dt c?xz 0-).7(,'2 B
Ny COS Qxl + mzxz + szCZ —myg sinf =0

Now we replace the actual values for my = 2m,m, = m, k, = k hence

m cos 0¥, + mX, + kx, = mygsin 0

Now we can make the matrix of EOM
MX" +kX=Q

3m mcos 0 || X1 N 3k 0} x _ 0
mcos 0 m Xy 0 k)x myg sin 0
3 cosO|[x 3 0|x 0
m +k =
cos@ 1 J|X; 0 1)ixy myg sin 0

Notice that there zeros now off diagonal in the [K] matrix, which means the springs are
not coupled. (which is expected, as motion of one is not affected by the other). But mass

matrix [m] has non-zeros off the diagonal. So the masses are coupled. i.e. EOM is coupled.
This means we can’t solve on EOM on its own and both have to be solved simultaneously.
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2.9.6 problem5

Problem 5: Exercise 1.30 from Ginsberg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force, F).

) LM o
l Gk l j
3 § % & my
1.30 Both bars in the linkage are horizontal, as L l-l J
shown, when the systemn is in static equilibrium. ] I
Determine the linearized equations of motion for F 1 Lf2 Li
this systea. EXERCISE 1.30

There are 2 degrees of freedom, 0, and 0, as shown in this diagram, using anticlock wise
rotation as positive

k, ky
|
F
The Lagrangian ® = T — V where
1 . 1. .
T= E119-3- + E1295
Where I; = "2 and I, = 22 & (%)’ (usi llel axis th Hence I, = "2
erel; = ——and I, = —/— +my( ; (using parallel axis theorem). Hence I, = -
2 7
mzﬁ = 4—8L2m2

Now we find the potential energy, assuming springs remain straight (stiff spring assump-
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tion) and assuming small angles

A 2 Ay 2
1 (3t s | 1| r L L
V= Ekl 161 + I@z + Ekz L61 + 562 + m1g§61 - ngzgz
Hence
O=T-V
2 2
1. . 1 . 1. (3L 3L 1 L L L
= (5116% + 51265) - (Ekl(zel + 162) + Ekz(Lel + 562) + m1g§91 - ngzez
Now we find EOM for 6,
0 16
06, !
100 _,
dto6, !
0D 3L 3L 3L L L
a—el = —kl(zez + 161)(1) - kz(EQZ + L@l)(L) - mlgE

3L (3L 3L
=7k

L L
I@z + 161) - kZL(EGZ + L@l) - mlgE

Therefore the EOM for 6, is

d od JO
499 9% _q,
it 96, 96
.. 3L (3L 3L L L
1181 + Ikl(zgz + 161) + kzL(EQZ + L@l) + mlgz =0

The generalized force is zero, since there is no direct external force acting on top rod.

Hence EOM for 6, is from above
mL2 3L\ AN L
; 61 + Hl(kl(Z) + kszJ + 02(k1(Z) + k2? = —mlgE

Now we find EOM for 0,
P :

- = 16

20, 2

d dD

dt b,

D 3L 3L 3L L L L
0_)—62 = —kl(zez + 161)(1) - kz(z@z + LGl)(E) + ngZ

225
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Therefore the EOM for 6, is

400 09
dtdo, 90, %

.. 3L 3L 3L L L L
1262 + kl(zez + 281)(1) + kz(z@z + Lel)(z) - ngZ = le

Now Qg,is found by virtual work. Making a virtual displacement 66, while fixing 6; and
finding the work done by all external forces.

L
6W = F- 66,

Hence Qg, = F % with positive sign since it add energy to the system. Hence EOM for 0,

1S
2 2 2
7 . 3L L? 3L L L L
@Lzmzez + Ql(kl(Z) + kz;) + Qz[kl(z) + kz(z) ] = n/lzgZ + FE

Now we can make the matrix of EOM

MX” +kX =Q
a2 912 2 3L\ 12 L
mE 0 {élJ kT +kal kl(z) they [91 —mig5
+ =
7 al 2 ’ 2 2|lo L L
0 —L2m, |\02 kl(%) e kl(%) N kz(e) 2) |magy+F;
4 2 4 2
The matrix [k] is coupled but the mass matrix [m] is not.
2.9.7 problem 6
4 0 200 200
The inertia and stiffness matrices for a system are [M] = kg, [K] = N
0 2 200 800

determine the corresponding natural frequencies and modes of free vibration.

[[K] - w?[M] (@} = {0}
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Solving for eigenvalues

200 200 4 0
det - w? =0
200 800 0 2
200 — 402 200 |
det
200 800 - 2w?

(200 - 4w2)(800 - 2a)2) ~2002=0
8w* - 3600w? + 120000 = 0

=0

Hence, taking the positive square root only we find

w1 = 20.341 rad/sec
w, = 6.0211 rad/sec

200 —4w? 200 Dy 0
200 800 - 2w? || P2 0

Let @q; be the arbitrary value 1 hence

200 -4wi 200(] 1 | ]o
X x || P21 X

200 — 4w? +200dD,; =0

o - ~200 + 4w} 200 +4(20.341)* S
2700 T 200 -

When | w = @,

Hence the first mode associated with w = 20.341 rad/sec is

1
7.2751

200 -4ws 200 O 0
200 800 - 2w3 || P2 0
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Let @1, be the arbitrary value 1 hence

200 -4ws 200{| 1 | |0
X x || P22 X

200 — 4w3 + 200dD,, = 0

~200 +4w?  —200 + 4(6.0211)*
Dy = = = —0.27493
2 200 200

Hence the first mode associated with v = 6.0211 rad/sec is

1
—-0.27493

Summary
w, (rad/sec) | mode shape
1

6.0211

-0.27493

1

20.341

7.2751

Verification using Matlab:

EDU>> M=[4 0;0 2]; K=[200 200;200 800];
EDU>> [phi,omega]=eig(K,M);
EDU>> sqrt(omega)

6.0211 0
0  20.3407
EDU>> phi(:,1)/abs(phi(1,1))

-1.0000
0.2749

EDU>> phi(:,2)/abs(phi(1,2))

1.0000
7.2749

Which matches the result derived. One mode shape has both displacement in phase, and
the other mode shape shows the displacements to be out of phase.
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2.9.8 Key solution for HW 8

Homework #8
EMA 545, Spring 2013

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bo.

Linearize your equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 6, = 45 degrees
for x ranging from -1 mto +1 m.

c.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m, k=1000 N/m and 6, = 45 degrees. Compare your result with your linearized
result from part (b).

Using m=1, find the response of the nonlinear system (in part a) using ode45 and
plot the displacement of the mass over a few cycles when it is released from rest
at x(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural
frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

b.

—

d.

—

o, L [

-]

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring ky and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P, which is called the center of pressure. The
lift force may be treated as known. When the wing is in its static equilibrium position,
points G, E and P form a horizontal line. Point G is the center of mass, and the radius of
gyration of the wing about that point is rs. Denote the mass of the wing m. Derive the
equations of motion for the wing, assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each
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term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

. d .
AR~
G l‘-—‘ P
14 E
EXERCISE 1.27

Problem 3: Use the power balance method and the stiff spring approximation to find the
equation of motion of the system pictured in Problem 1.16.

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric- {55
tion is negligible. EXERCISE 1.33

Problem 5: Exercise 1.30 from Ginsberg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force, F).

SL14 Ll
.I. 1 f |
=
= =
o
1.30 Both bars in the linkage are horizontal, as L .I —
shown, when the system is in static equilibrium.
Determine the linearized equations of motion for F Lf2 L4
this systern. EXERCISE 1.30

Problem 6: Exercise 4.1 in Ginsberg. Solve the eigenvalue problem by hand to get the
natural frequencies and mode shapes. You may check your answers with Matlab.
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% Part (b)
% Plot nonlinear k(x) for large deformations of spring-mass system.
% M.S. Allen, Spring 2011, EMA 545

k=1000; %N/m

L = 1; %m

theta = 45*pi/180; % rad
xs = [-1:0.01:1]; % m

h = L*tan(theta);

kx = k*((h"2+(L+xs) .-"2) . ~N(1/2)-
sqrt(h"2+L"2)) . *((L+xs) ./ (h"2+(L+xs) ."2) . ~(1/2));

klin = k*(Lr2/(h2+L72));

figure(l)

plot(xs,kx,xs,klin*xs,"-."); set(get(gca, “Children®), "LineWidth",2);
grid on;

xlabel ("Disp x (m)"); ylabel("Spring Force (N)");

title("Spring Force-Displacement Curve®);
legend("Nonlinear”,"Linear™);

Spring Force-Displacement Curve
800 ‘ ‘ ‘ ‘

Nonlinear
600 e Linear

400

200

Spring Force (N)

-200

-400 - BT

-600
Disp x (m)

% Part (d)

% Find response to a small disturbance.
m=1;

wn_lin = sgrt(klin/m)
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eom = @(t,x) [X(2)+0*t; -(L/m)*(k*((h"2+(L+x(1))-*2) .~ (1/2)-
sqre(h"2+L1°2)) . > ((L+x (1)) -/ (h"2+(L+x(1)) . "2) .~ (1/2)))]

[tsl,yl]=o0de45(eom,[0,1],[0-1; OD);
[ts2,y2]=0de45(eom,[0,1],[0.-5; O0D);

figure(2)

plot(tsl,yl(:,1),ts2,y2(:,1)); hold on; grid on;
xlabel("Time (s)"); ylabel("Response (m)");
title("Response of Nonlinear System®);

Response of Nonlinear System

Response (m)

Tlmé (s)

The period of the nonlinear response in each case is given below (found using
ginput on the plot). The linearized natural frequency is 22.36 rad/s and the corresponding
period is 0.281 seconds.

Initial
Displacement Period (s)
Xo=0.1 0.2823
X0=0.5 0.3698
X0=0.53 0.5311

The behavior of the system is quite peculiar. The period becomes longer
(frequency lower) as the system approaches the region where the stiffness vanishes. As
shown, with a slightly larger initial displacement of 0.53, the mass almost comes to rest
as the mass approaches x=-1, which is the other equilibrium position. Incidentally, the
body panels of a hypersonic aircraft, which I am studying as part of an Air Force grant,
can behave very similarly. They buckle due to thermal expansion and then as they
vibrate they may jump between two equilibria.
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2.10.1 problem description

Homework #9
EMA 545, Spring 2013

For the following problems, you may have the equations of motion for some of
these systems in your past homework assignments or in the solutions to those that were
posted online, so you may use those if you wish.

For all of these problems you may use Matlab or some other package to find the
natural frequencies and mode vectors and to mass normalize the mode vectors (if
needed).

1.) Problem 4.3 in Ginsberg. Sketch the deformation of the system when it moves in
each of the modes. (Notice that you can pull out factors such as k and m so that only
numbers remain in the mass and stiffness matrices. Then it is possible to check your
answers using Matlab.)

2.) Problem 4.7 as given in the text. You may use the following equations of motion:
% na),, 2% P e _fo
P +mgL 0 =
Al B

3.) Problem 4.11 as given in the text. Hint: normal modes = mass normalized modes

mL?

4.) Problem 4.29 as given in the text. Also, plot the motion of the automobile as a
function of time. Is the response a pure-sinusoid? Why or why not? Note: The answer
provided by the book is incorrect. The correct answer is:

yi(t) = 0.16co0s(1.5t") + 0.84cos(2.0t”)

ya(t) = 0.45c0s(1.5t") — 0.45c0s(2.0t")
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2.10.2 problem1

After solving problem 4.3 in text, Sketch the deformation of the system when it moves in

each of the modes.

4.3 Determine the natural frequencies and modes
of free vibration for this system of bars and
springs for the case where m,=m, m,=2m,
k, = k, and k, = k/2, where m and k are basic units
of mass and stiffness.

|-<

f ¥

L/4
1

ky

|
]
}< L2

F

There are 2 degrees of freedom, 0, and 6, as shown in this diagram, using anticlock wise

rotation as positive

~
~

kl% 2 rjfg//gz
L s |
//,/ -.!_‘ J
F L2 L/4

We solved this problem in HW8, using classical Lagrangian method. This problem will

now be solved using power

balance method. The static equilibrium position must be cho-

sen so that all generalized coordinates have value zero. Hence, using the above diagram
as the static equilibrium, we take 0 = 0, = 0 in this position.
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Now, as in Lagrangian method, we always start by finding kinetic energy T

1,1
T = 51191 + 51262

2
Where | [ = — and I, = % + mz(z) (using parallel axis theorem). Hence I, =

mpL2 12 7

12 M T

Now we compare the above expression to the quadratic form

T = 1 (Myy 03 + M3 + 2My,0,0,)
2 11Y1 22Y2 12Y1Y2

Hence we see that M, = [1, My, = I,,M, = My = 0, therefore the mass matrix is

L 0
[M] =
0 I
We now find the potential energy due to springs. For this, we need to write down the
relative displacement between end points of each spring. Let A, be the relative displace-

ment in the first spring k; and let A, be the relative displacement in the second spring k.

Hence (and assuming springs remain straight, since we are assuming very stiff springs
and small angles) then

3L 3L
M= Ot
L
Az = LGl + 562

Then
1 1
Vspring = EklAzl + EklAZZ
2 2

1. (3L 3L 1 L

= Ekl(zel + IQZ) + Ekz(Lal + 592)
1 9 9 9 1 1

= Ekl(ELZQ% + ngelez + EIF@%) + Ekz(Lze% +120,0, + ZLZQ%)
9 1 9 1 9 1

= 3—2L26%k1 + ELZG%kz + 3—2L29%k1 + gLZQ%kZ + BL26162k1 + EL26162k2

9 1 9 1 9 1
= (3—2L2k1 + ELZkZ)@% + (3—2L2k1 + ngkz)G% + (Eszl + §L2k2)9162
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Now we compare the above to quadratic form

1
pring = E(KH 0% + K6} + 2K1260,6,)

Vs
We see that

9
Kll = Eszl + L2k2

9 1
Ky, = —L2%k; + =L%k
2= bk + il
9 12
Ky, = —L2%k; + —k
12 = et 5k

Now we need to find V- Taking the static equilibrium position as the datum, then
upward displacement of center of gravity will be positive and downward displacement
is negative. This means the left bar will add positive potential energy due to gravity and
the right bar will add negative potential energy, hence

L L
Ve = mlgE sin 01 — ngZ sin 6,

Now we need to find the components of the gravity potential energy stiffness matrix.
Notice that each term is evaluated at static equilibrium

Vv &)V‘% Ly 6 0

= —= = |-m,9—sin =

81 962 Jo,=0 1g2 1 o—0
0,=0 =

. A% L 0 0

= — = |-m,¢—=sin =

82\ 962 Jo,=0 185 2 oo

6,=0 2=
A%
V,. = =0
312 &61&62 61=O

0,=0

Hence, no contribution from gravity is added to the stiffness matrix. All contribution
comes from the springs potential energy. Therefore, the stiffness matrix is

2
%szl + L2k2 %szl + L?kz
[K] =
O 2k + 2k, 212k, + L2k
16~ 1T %2 e P1T 4= 2

Now since there is no damping, then P, = 0. To find P;, we need to find

Py, = Q161 + Q20,
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The only external force is F which generates a torque F %92/ hence by comparing to the

above
P —FLQ
n — 2 2
Q —FL
2779

Now we can make the matrix of EOM

MX” +kX = Q

9 9 ?
[Il 0][81] Eszl + L2k2 1_6L2k1 + ?kz
+

9 12 9 1
Eszl + ?kz ELZkl + ZLZkz

mq .. 9 9 1
Y 0 [61] N Ekl + kz Ekl + Ekz

9 1
_kl + —k2 Rkl + Zkz

Now we can solve the problem given.

When my = m,my = 2m,ky =k, ky = g we obtain

Lol 17 13
e 01 TP ECIRE [91] |
o 26, 1B 1o, F3

16 16

To find modes of free vibration, let the RHS {0} then we write

1K1 - w22 1M1 (@) = (0}

LetA = wz%, hence

[[K] = A[M]]{®} = {0}
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Solving for eigenvalues

17 13

Z 2 (Lo
16 16 3
det -A =0
13 11 7
2 = 0 ~
16 16 24
17 1 13
16 3 16
det =0
13 11 7
16 16 24"

9.7222 x 107212 - 0.53906 A + 7.0313 x 1072 = 0

Hence, taking the positive square root only we find

Ay = 0.13366
Ay = 5.4110

When A; = 0.13366
[[k] - A1 [M]]{®}, = {0}

17 1 13
ST {®u}__{o}
13 17 -
13 - Dy 0

16 16

Let @y, be the arbitrary value 1 hence

17 1 13
6 3w (1] o
B ou_ 7, o, |x

16 16 24”1
17 1 13
B_§A1+E®leo
16(1 17 16(1 17
(D21 = E(g/\l - B) = ﬁ(5(0137) - E) = —1253

Hence the first mode associated with A; = 0.13366 is

s

[[k] = A1 [M]]{@}, = {0}
250
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Let @1, be the arbitrary value 1 hence

17 1 13
6 32 % |[1] o
13 175 [ P2 X

16 16 24”2
v 1/\2 + 13(1)22 0
16 3 16
®,, = E(ZAZ _ E) - §(1(5,411) - E) = 0912
1313 16 13\3 16

Hence the second mode associated with A, = 5.411 is
1
0.912

w (rad/sec) mode shape

1
A= wz% =S o= \/E 10137 = 0.366\/E
m m | |_-1.253

1
A=aw?l == \/Z \5.411 = 2.326\/Z
k m m 110912

Summary

2.10.2.1 verification using Matlab

EDU>> M=[1/3 0;0 7/24]; K=[17/16 13/16;13/16 11/16];
EDU>> [phi,omegal=eig(XK,M);
EDU>> sqrt(omega)

0.3656 0
0 2.3262

EDU>> phi(:,1)/abs(phi(1,1))
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1.0000
-1.2529

EDU>> phi(:,2)/abs(phi(1,2))

-1.0000
-0.9122

2.10.2.2 Sketch of each mode

1
{O 912} means that 6, and 6, are in phase, and for each 1 unit rotation of 6, there will be

1
0.912 units of rotation of 6,, while 1953 means that 0; and 0, are out of phase, and

for each 1 unit rotation of 0, there will be 1.253 units of rotation of 0, but in the opposite
direction. This is a sketch of both modes

01

1
0.91229

B & ()]
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2.10.3 problem 2

:.7. The linkage shown consists of two rigid bars
wa;]vmg ler.lgth L gnd mass m. The torsional springs
ose stiffness is BmgL(B is a nondjmensional,
galaramF etctalrl), are undeformed when the bars are vertj
- TOr the case where 8 = 4, determ; .
: } rmine th

It;rl;cguetrlllmes and modes of free vibration Th:nn(zil;ltl:l
¢ the natural frequencies when B = ~

> th = 2. Explai

the significance of the result of the second c::isexplalln

2.) Problem 4.7 as given in the text. You may use the following equations of motion

<l Sl e

Using power balance method, we start by finding the kinetic energy.
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_ 1 2
I, = 1ZI’T'IL

_1mr2
|1—3m|_

Since the top bar does not have a point that is fixed in inertial space as the lower bar does,
then we take its moment of inertia around its center of mass, and add a translational
kinetic energy due to the motion of its center of mass in space. For the lower bar, since it
has a point that is fixed in space, then we take the moment of inertia around that point,
and we do not need to account for translational kinetic energy for the lower bar. To find
the speed of the center of mass of the top bar, we can either use its coordinates system x, y
differentiate these w.r.t time, or we can use the angular motion of the base of the second
bar and add it to the speed of the center of mass of the second bar relative to the base.
This is what will be done next:
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L0 sinf,

Therefore, the speed components of the center of mass of the top bar is

L. .
Uy = 562 cos O, + LO; cos 04

L. .
0, = —562 sin 92 - L61 sin 61

Y

So the velocity of the center of mass is

Veg. = V% + 0}

Now that we have the translation velocity of the top bar, and we know its moment of
inertia around its c.g. then we have all the terms needed to obtain the kinetic energy.

1 ., 1., 1
T = 5119% + E 26% + Emvgog'

Again, the important thing is to note that I; is taken around the base of lower rod while

255



2.10. HW9 CHAPTER 2. HW’S

I, is taken around the center of mass of the top rod. Hence

1mL? ., 1mL?. 1
_ 2 2 2 2
T = 5701 + 5692 + Em(vx + Uy)

1mL? , 1mL? . 1
= —m—G% + —m—9§ + Em((

L 2 (L 2
212 —0, cos 0, + LO; cos 61) + (—592 sin 6, — LO; sin 61) )

2

_Lml g  1ml g 1
212 2T

I . . I . .
— 62 cos? 0, + L2672 cos? 0 + L26,0; cos 0, cos Oy | + [ — 6% sin® 8, + L26? sin 6, + L26,0; sin O, sin O
5 72 1 g 2 1

Simplifying the last term, and using cos? 6; + sin” sin? 6; = 1 we obtain

1ml?2 ., 1ml?., 1 (L2
= _m—9%+—m—6%+—m —
2 3 4

T
2 12 2

03 + 1207 + 20,0, (cos 0, cos 0; + sin 0, sin 61))

To compare with the quadratic form, we collect all terms as follows
S(1mL? 1 S(1mL? 1 .1 _ ,
T = Q%(ET + ELzm) + Q%(Ef + g?’ﬂLz) + Qzﬁl(szz(cos 0, cos 07 + sin O, sin 61))
Using cos 0, cos 0, + sin 0, sin 0; = cos(6, — 0;) the above becomes

(4 (1 - (1
T = 6%(61’11L2) + 6%(87’}1L2) + Qzel(EmLz COS(QZ - 61))

We now compare the above to

11 -
T = EMHQI + §M2292 + M128261
Therefore
M 2 L2
=—m
M 1 L2
=—m
22 3

1 2
M12 = M21 = EWZL COS(QZ - 81)

I am not sure how to get the same answer given for the mass matrix. Even if I assume
. 1 .
that 0, — 0, is very small, hence My, = EmL2 then the mass matrix is

[M] = mL2

NI~ QI
Wl N
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Now we find the V,,;,, the potential energy due to springs.
pring th€ P 23 pring
1 , 1 2
Vspring = Eﬁmgl’gl + EﬁmgL(Qz - 01)

1 1

= 5pmgLOf + E5mgL(<9§ + 6% - 20,0;)

1
= 9%(,BmgL) + Qg(iﬁmgL) + 8261(—,8mgL)

Comparing to quadratic form

1 2 1 2
Vspring = EKllgl + EKllel + K126016>
Then
K11 = ZﬁmgL
Ky = pmgL

Kip = Ky = —-pmgL

Hence the stiffness matrix due to springs only is

We know need to find the gravity contribution to stiffness. We start by finding the Vi, ;0.
We take the datum as the horizontal line at the bottom the lower bar.

L L
V ravity = ng cos 01 + mg(L cos 01 + 3 cos 82)

Hence
22 Vg

Y= G,

L
= —mg cos 01 — mg(L cos 0;)
evaluate at 0, = 0 gives
L
Vll = —ng - mgL
3
= —EmgL

and
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evaluate at 0, = 0 gives

L
Vo = —mg 5

and )
) Vg

V = =
27 96,00, 0

Hence the stiffness matrix due to gravity is

[K] = mgL

Combine the above with the stiffness matrix due to springs we obtain

: _
[K] = mgL + mglL
o T [—ﬁ ﬁ]
2
6-5 P
= mgL .
$  Bb-3

There is no Py, and no P;, hence the equations of motion are

4 1), 3
3 2|6 -3 B 6] (o
mL21 s | mst . =
2 3\ -+ p-;)\% O
For| p=4
401 13
s 2|6 > %6, (o
mr2|> 2 +mgL 2 -
1 1 62 -4 Z 92 0
2 3 2

To find modes of free vibration, we write

[[K] - w2[M] (@} = {0}
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Solving for eigenvalues

NI~ Wk
W~ NI|—
\ )

NI~ Wik
Wl N~
L )

L
Let a)zg = 1, hence

NI~ Wik

Hence n = 55.084, 7 = 0.63023

When

1 = 55.084

13
2

4 1]
=31 —4-35n

17 1
—4-31 3730

[—66.945 _31.542]

_31.542 —14.861
[—66.945 _31.542

1
-31.542 -14.861 {@21} {

—66.945 — 31.5420,, =0
66.945

-———— =-21224
31.542

Let @;; be the arbitrary value 1 hence

0
X

Dy =
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Hence the first mode associated with 1 = 55.084 is

When | = 0.63023

Let @, be the arbitrary value 1 hence

[ 56597 —4.3151

1 0
—43151 32899 ||®pn[  |x

5.6597 — 4.3151®,, = 0
~5.6597

2= Tp315]

Hence the second mode associated with = 0.630 is

1
1.3116

2L _ _ g
Summary, w 2 =1 hence w =/ \/:

w, (rad/sec) | mode shape

1
7.422\/g
L ~2.1224

1
0.794\/g
L 1.3116

260
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For

p=2

mL?

NI—m QI
Wik NI

To find modes of free vibration, we write

Solving for eigenvalues

L
Let w2§ = 1, hence

[[K] - w?[M] (@} = {0}

5 4
2 2 3
det|mgL — w?ml? )
-2 2 >
5 4
A z
L|3
det ? 5 _w2§1
2 3 2
5 4 1)]
2 2| |5 2

det -1
PR B EO
2 3)]

5 4

531 —2-51
det| ° 31 . 12
—2-31 3730
7 , 29 1
36" 6 1

Hence n = 24.909,n = —5.162 X 1072

Wik NI
L J

Wl NI
L J

i 2L _ _ -2 _ g 1. .
Since w s =1 hence when 1 = =5.162 X107 then w = /i \/: which means there will

a complex number for w which is not possible as the frequency must be positive. This

means such a

system is not stable

w is complex.

261
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2.10.4 Problem 3

4 1
problem 4.11 in text: the mass and stiffness matrices of a system are [M] = [1 3}kg,

300

1
modes. (hint, normal modes means mass normalized modes).

[K] = kN/m, determine the system natural frequencies and normal vibration

Answer:

To find modes of free vibration, we write
[1K] - w?[M] Jfv} = (0}
Solving for eigenvalues

300 x10° 1000
1000 200 x10°

det

4 1]
- w? =0
1 3],

300 x 10° — 4w? 1000 — w?
1000 - w? 200 x 10° - 3w?|
11w* = 1698000w? + 59999000000 = 0

det =0

Hence the positive roots are w = 234.02, v = 315.59
When w; = 234.02 rad/sec then

[1K] - w?[M] (o}, = {0}

(e}

300%10° —4w?  1000-w@? |(oy) [0
U21

1000 - w? 200 x 103 - 3w?

300 x 103 — 4(234.02)> 1000 — (234.02)°  |[oyy

o O

1000 — (234.02)> 200 x 10° — 3(234.02)?| |21

—_———
Il
—_—N—
o O
—_————

[ 80939. —53765.) {vu

~53765.  35704. || vy
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Let v11 be the arbitrary value 1 hence

80939. -53765.(| 1 B 0
-53765. 35704. ||vy X

80939. — 537650, = 0

80939
= 7% 15054
V21 = ~5a7es = 1905

| 1
’(] =
1 11,5054

[1K] - w3[M] (o}, = {0}

Hence

When w, = 315.59 rad/sec then

300 x10° — 402 1000 - @w? | {vu 0

1000 —w? 200 x 10® - 3w3

300 x 103 — 4(315.59)> 1000 — (315.59)°  |[v12] [0
1000 — (315.59)> 200 x 10° — 3(315.59)°

-98388. -98597.|[012| [0
-98597. -98791.||vy| |0

Let vy, be the arbitrary value 1 hence

—98388. —98597.{| 1| |0

~98597. —98791.||vy| | x

~98388 — 985970, = 0
98388

= 2229 _ 998
Y22 = T9g597

Hence
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To obtain the mass normalized shape functions:

i

1
[5 5054 55162]
1.5054
=13.809
And
= v
1
~0.999 ~0.998
1
3002 1. 994]
~0.998
= 4992
Hence
1
oy, = P _ [1505] _ fo269
U Vi 13.809  |0.405
and
1
R P e B S
2 2 4992 —0.447
Summary

w,, (rad/sec)

original mode shape

normal mode shapes

234.02

1
1.5054

0.269
0.405

315.59

oo

0.44759
—0.44665

264
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Hence
102691 0448
0.40511 -0.447
To verity
- T
T 0.269 0448 [ (4 1((0.269 0.446
[@] [M][P] =
0.405 -0.447| (1 3]|[0.405 -0.447
[0269 0.405 |[4 1][0.269 0.448
0.448 -0.447||1 3(|0.405 -0.447
| 10 sss0x10°
8.840 X107 1.0
1.0 0
Which is approximately Lo as expected. calculations were not done with high

enough accuracy, so that is why the off-diagonal numerical values were not an exact
Zeros.

To verity with the [K] matrix

300 x10% 1000

[@] [K][®]
1000 200 x10°

i T
0.269 0.448
0.405 -0.447

0.405 -0.447

0269 0.448 ]

_ |54765.  6.594
6594 99600.0

Note w? = 234.022 = 54765. and w3 = 315.592 = 99597 and these are the values on the
diagonal as expected. The values off the diagonal should be an exact zero, since the [K]
matrix should be decoupled. Due to low precision in the above calculations, the values
did not come out to be zero.

Verify using Matlab. Note that Matlab eig() returns the shape function that are mass
normalized

EDU>> M=[4 1;1 3];
EDU>> K=[300%1073 1000;1000 200%1073];
EDU>> [eig,lam]=eig(K,M)

eig =

265



2.10. HW9

CHAPTER 2. HW’S

-0.2691 -0.4476
-0.4051 0.4467

lam =
1.0e+04 *

5.4764 0
0 9.9600

EDU>> eig'x*M*eig

1.0000 0
0 1.0000

EDU>> eig'*K*eig

1.0e+04 *
5.4764 0
0 9.9600

2.10.5 Problem4
problem 4.29 in text.

266



2.10. HW9
CHAPTER 2. HW’S

429 The diagram models an automobile and its
suspension as a rigid block on springs. The mass
of the bar is m, and the radius of gyration relative
to the center of mass G 18 K = 0.4L. Generalized
coordinates are the vertical displacements ¥, and
y, of the ends relative to the static equilibrium

L2 L2
2 \-‘f ——\4— —»\ Y2
L . ]

Mass m
1.5k k

EXERCISE 4.29

“asition. Consider a situation where the vehicle is
released from rest with y; = mglk, y, = 0. Deter-
mine the ensuing free vibration as a function of the
nondimensional time ¢ = ( kim)"t.

a 9
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A =

Yg(A+B) =y A+y,B
6(A+B) =Y~

L
In our care, A =B = > hence the above becomes

L L
Nyt ity

BETT 2
_Y¥—hn
)
Hence taking derivative
_htip
s _ Y-
0=

Using the power balance method, we start by finding the kinetic energy T

_1 9 1 s
T = Emyg + Elcgg

1 . .2 C 2
= (BB S ) (2 )
2 2 2 L
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where ¢ is the radius of gyration 0.4L, hence

2
N | (/R B
T = om(if + 35 + 20n5) + 5[m(EL) )p(y% + 74 - 2011)

1 5 . o 8 5 . .
= gm(7% + 73 + 20ntn) + 5o (7% + 77 - 20nd2)
=2 ) 22 ) 5 g P — o
~ Vg™ T 100™) TV T 100" T Y2\ 8™ T 100
4 , 4, 9

= ﬁﬂ% + %myz + mm%yz

Comparing the above to quadratic form T = %Mllﬁ +%M22y§ + Mi,1/17, then

M = 4 =041
11 = 1001’7’1 =VU.41lm
My, = 4l =041
TV
M12 = 0.09m
Hence the mass matrix is
0.41 0.09
[M] =m
0.09 0.41

1 1
Vspring = Eklefty% + Ekrighty%
1(3 1
= E(Ek)y% + Eky%
Comparing to quadratic form %Klly% +%K22y% + K1o11Y, then
15 0
0 1

1TY2
ngvity =mgYq, = mg%

[kspring] =k

Since this will be evaluated at y; = y, = 0 then we see right away that there is no contri-
bution to potential energy to the stiffness matrix. Hence the EOM are

() 1.5 o|lxi®f |o
+k =
i (t) 0 1|y(b) 0

269
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dydv _ dy [k
To convert to t’ space, given by t' = \/7 t as required, then we see that & " d—ty,d—i = d—z\/% ,

d2y  dy k
and 25 2 a?m
Hence the ODE becomes

Joar 009 in)| +k'1.5 ol ol
Mo0.09 0.41|i,)|m 0 1|n®)| o]

o4 009 in(t) +k—1.5 ol ol
009 0415 |0 1]|n)| o]

Since k # 0 we can divide by it, hence

0.41 009 in() 15 0 )| o
0.09 0. 41 in(t) 0 1 yo(t) 0
To find modes of free vibration, we write

[[K] - w?[M]]fo} =

Solving for eigenvalues

det

1.5 o| o 0.09]]
0 1 0.09 0.41|]

15— 04102 -20.09 ]
det =0
| —0?0.09  1-w?0.41]

0.16w* -=1.0250w%2 +1.5=0

Hence the positive roots are w; = 2.0357, w, = 1.5041

When w; = 2.0357 then
[1K] - w?[M]]to}, = (0}

1.5 - 0.41(2.0357)>  —(2.0357)%0.09 {011

———
Il
—_——N—
o O
—_—————

~(2.0357)°0.09 1 -(2.0357)%0.41|| 021

~0199 -0.373|(vn
~0.373 —0.699

———
Il
—_—N—
o O
—_—————

U21
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Let v11 be the arbitrary value 1 hence

-0199 -0373|| 1| [0
~0.373 -0.699||va1| |x
~0.199 — 0.3730,;, = 0

i 0.199
21770373

1
toh = ~0.534

[1K] - w3[M]]to}, = (0}
15— 041015042  —(1.504)%0.09 | (o1 o
~(1.504)°0.09 1- (1.504)20.41_{022} ) {0}
0572 -0.204](v12] [0
[—0.204 0.072 _{vzz} ) {o}
Let v, be the arbitrary value 1 hence

0572 0204 1| [o
~0204 0072 [lo|  |x
0.572 — 0.2040, = 0

L _0572 -
270204 ©

1
ol = 2.812

To obtain the mass normalized shape functions:

w1 = (o} Mo},

T
o 041 0.09|[ 1
~ |-0534] 0.09 0.41|]-0534

= 0.43073

= -0.534

Hence

When w, = 1.5041 then

Hence
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And
U = {0} Mo},
T
] 1 0.41 0.09(] 1
~ |2812] |0.09 0.41]|2.812
= 4.1569
Hence
1
(@) o, —0.53374 ] 1.5237
' 0.43073 0.43073 —-0.81326
and
1
(@], = {ol, 2.812 049
2 \H2 41569  |1.379
Summary
w (rad/sec) | original mode shape | normal mode shapes
1 1.524
2.0357
-0.534 -0.813
1 0.491
1.5041
2.812 1.379
Hence
1.524 0.491
[@] =
-0.813 1.379
To verify
- T
T 1.524 0.491( |0.41 0.09] 1.524 0.491
[©] [M][®] =
-0.813 1.379

272
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1.0 0
Which is approximately [ 0 10 as expected. calculations were not done with high

enough accuracy, so that is why the off-diagonal numerical values were not an exact
Zeros.

To verity with the [K] matrix

- T
. 1.5237 049047 |1.5 0| 1.5237  0.49047
[@]" [K][®] =
-0.81326 1.3790 | | 0 1[[-0.81326 1.3790
| 41439 —s9183x10
-4.9183 x 10~ 2.2625
Verity using Matlab

EDU>> K=[1.5 0;0 1]; M=[0.41 0.09;0.09 0.41];
EDU>> [eig,lam]=eig(K,M)

eig =
-0.4905 -1.5238
-1.3789 0.8130

lam =
2.2624 0
0 4.1439

Now we can solve the problem. Using {x} = [@]{n}, where
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Hence, initial conditions in the {17} space is

(n}, = [@]' M),

0
_ [CD]T[M] yl( )
¥2(0)

T mg
1.524 0491| [041 0.09])
-0.813 1.379| [0.09 0.41(]| o

0.552§m

0.325§m

and

[}, = @' M),

(0
_ [(D]T[M] yl( )
¥5(0)

0
=@ﬁM%}
0

So, we need to solve

N

with the initial conditions

41439 0 ||m| o
0 22625||n,| |0

g
m.(0) ) 0.5522m
0.325m

12(0)
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The solution is given by

M (t) = Acos V4.144t + Bsin V4.144

When t = 0, 1;(0) = 0.55152%171 = A. Taking derivative gives nj(t) = —Asin v4.144t +
Bcos V4.144 t, hence when t = 0 we have 0 = B, therefore

m) = 0.552%41 cos VA144 ¢

Now we solve for 1,(t),The solution is given by

() = Acos V2.263t + Bsin V2.263 t

When t =0, ,(0) = 0.3252‘%171 = A. and 0 = B, therefore

m(t) = 0.325%11 cos V2263 ¢

Now we obtain the solution in the y space

v} = [@ln}
n@®)) [1524 0.491]]0-5525m cos V41439
{yz(t')} ]

-0.813 1.379

0.325%111 cos V2.2625

0.840§m c0s(2.036t') + 0.1595§m cos(1.504¢")

0.4487m cos(1.504t') — 0.449%m cos(2.036t)

We are supposed to obtain the answer

y1() ~ 0.16 cos(1.5¢') + 0.84 cos(2t')
yo(t)|  10.45 cos(1.5¢') — 0.45 cos(2t')

8

piL for some reason is not shown in the key solution.

The answers agree. The scalar
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2.10.6 Key solution for HW 9

Homework #9
EMA 545, Spring 2013

For the following problems, you may have the equations of motion for some of
these systems in your past homework assignments or in the solutions to those that were
posted online, so you may use those if you wish.

For all of these problems you may use Matlab or some other package to find the
natural frequencies and mode vectors and to mass normalize the mode vectors (if
needed).

1.) Problem 4.3 in Ginsberg. Sketch the deformation of the system when it moves in
each of the modes. (Notice that you can pull out factors such as k and m so that only
numbers remain in the mass and stiffness matrices. Then it is possible to check your
answers using Matlab.)

2.) Problem 4.7 as given in the text. You may use the following equations of motion:
% Ra),, 2% P e _fo
P +mgL 0 =
Al 5 B

3.) Problem 4.11 as given in the text. Hint: normal modes = mass normalized modes

mL?

4.) Problem 4.29 as given in the text. Also, plot the motion of the automobile as a
function of time. Is the response a pure-sinusoid? Why or why not? Note: The answer
provided by the book is incorrect. The correct answer is:

yi(t) = 0.16c0s(1.5t") + 0.84cos(2.0t”)

ya(t) = 0.45c0s(1.5t") — 0.45c0s(2.0t")
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Solution: Ch. 4, Problem 4.29

See handwritten notes for derivation.
Matlab Code:
% Define Mass and Stiffness matrices:
M = [0.5+0.4"2, 0.5-0.4"2;
0.5-0.472, 0.5+0.472];

K = [1.5, 0; 0, 1];:
% q_0 = [1; 1];

% q_0 = [1; 0O];
q_0 = [1; 0]:

% Solve the eigenvalue problem:

[Phi,Lam] = eig(K,M);

% Matlab solves an eigenvalue problem [A]{x} = lam*[B]{x}, where lam is
a

% scalar 1If we input eig(A,B). the matrix Lam output by Matlab is a

% diagonal matrix of eigenvalues lam, so by comparing with our
eigenvalue

% problem, we see that each nat. freq wn = sqrt(lam), or the vector of
% natural frequencies is wns = diag(Lam).~(1/2)

Phi
wns = diag(Lam).~(1/2)
% Check that the eigenvectors are mass normalized. |If this is not an

% identity, then we need to normalize

Phi . "*M*Phi

% Note that Matlab sometimes gives the first eigenvector as the
negative of

% what we found. Either is a valid mode for the system.

% Now the initial conditions give:
eta_0 = Phi."*M*q_0O
eta_dot_O = Phi."*M*g_dot_O

% and the constants in the solutions eta(t) = al*cos(wns(l)*t)+etc...
al = eta_ 0(1); a2 = eta_dot_0(1)/wns(1);
bl = eta_0(2); b2 = eta_dot_0(2)/wns(2);

% Define a time vector with 5 cycles of the lowest frequency:

ts = [0:1:200]/200*5*(2*pi/wns(1));

eta_t = [al*cos(wns(l)*ts)+a2*sin(wns(l)*ts);
bl*cos(wns(2)*ts)+b2*sin(wns(2)*ts)];

% each column of the matrix above gives {eta(t)} at some instant t.

Since

% the eta values are in columns, we obtain {gq} by multiplying by [Phi]

q_t = Phi*eta_t;

figure(1);

subplot(2,1,1)

plot(ts,eta_t(1,:),"-0",ts,eta_t(2,:),":."); legend("\eta_1","\eta_2");
xlabel ("time (s)");

subplot(2,1,2)

plot(ts,q_t(1,:),"-0",ts,q_t(2,:),":.7); legend("y_17,%y 2%);
xlabel("time (s)"); ylabel("y*k/(m*g)");
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Results:
>> M
M =
0.41 0.09
0.09 0.41
>> K
K =
1.5 0
0 1
Phi =
-0.4905 -1.5238
-1.3789 0.81302
wns =
1.5041
2.0357
ans =
1 5.5511e-017
-5.5511e-017 1
eta 0 =
-0.32521
-0.55158
eta dot 0 =
0
0
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-0.8
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Response plotted over 5 cycles. Notice that the initial
conditions are satisfied. Both modes are excited and
oscillate at different frequencies. The superposition of
both modes causes the response in yl, y2 coordinates to

look quite complicated.
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2.11.1 problem description

Homework #10
EMA 545, Spring 2013

For all of these problems you may use Matlab or some other package to find the natural
frequencies and mode vectors and to mass normalize the mode vectors (if needed).

1.) Exercise 4.8 from Ginsberg. (Note: the spring constants are defined such that the
frequencies given are the natural frequencies that each spring-mass system would have if
it were attached to a rigid base. Notice that there is not a simple relationship between
those frequencies and the natural frequencies of the system as a whole.)

2.) Exercise 4.30 as given in the text. Repeat the analysis for k=2mg/L and graph that
response as well. (Questions to consider: What do you notice about the natural
frequencies of this system in each case? How does that affect the way the response
looks? Why?)

3.) Exercise 4.43 from Ginsberg. How does the time required to reach steady state
compare with t.=1/(,wy) for each mode, r=1,2,3?

4.) Exercise 4.47 from Ginsberg.
5.) (Covering material from Chapter 5)

A uniform rod of length L. and mass my is attached to a cart having mass m, by means of a
spring k. A viscous damper c¢ resists the motion of the cart.

\\ /;e
X
L2
k C
W
—_—000)
L2
/
m, RO

a.) Let F(t)=Re[Fexp(imt)], x(t) = Re[Xexp(iwt)] and B(t)=Re[Yexp(iot)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system is forced at
its natural frequencies w=wm; and w=w,. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: m;=m,=1 kg, k=3 N/m, L=1 m,
0=9.81 m/s"2, and c=0.1 N-s/m.
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¢.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determine at what frequency m; acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: mcart = (k/m2)1’2 ?

6.) Consider Exercise 3.45 and 3.46 in the text (you solved

this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for t
= 3n/w, to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending) f(t)
modeled after one of the pillars supporting the ERB, which —
have length L=40m, rectangular cross section with height h,
equal to the width b=h=0.6m, and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength =40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass m
be such that the natural frequency of the mass-spring system
is wn=0.2Hz. What is the amplitude of the force, P, such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).
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2.11.2 problem1

4.8 The system shown in the sketch represents a
scale model used to study the vibration of a three-
story building. The masses for the model are
m; =100, m, =200, and m; =300 kg. The
springs are selected such that ki = a)j2 m;, where
w; = 40, 50, and 60 rad/s. Determine the character-
istic equation, natural frequencies, and mode
shapes of this system.

. . - . 1 2 1 21 2
Generalized coordinates are y3, 5, 1. Kineticenergy is T = >3 (yg) +11, (yé) +51m (yi) .

2 2
Potential energy due to springs is Vi, = %kg,y% + %kz (y2 - y3) + %kl (y1 - yz) . Therefore

1 1 1
Vipring = 5KV + Ska(y3 + 45 = 202y3) + Ska (v + 93— 20111)

1 1 1 1 1
= y%(zks + Ekz) + y%(ikz + Ekl) + ]/%(Ekl) + y1y2(=k1) + y1y3(0) + yoy3(—ky)

The EOM is
m 0 0||¥/| [k —hk 0 (v |0
0 niy 0 y’zl + —k1 k2 + k1 —kz Y2(=10
0 0 ms yél 0 —k2 k3 + kz Y3 0
Following values are for mass (units in kg) m; = 100,m, = 200,m5; = 300. Following

values are for spring constants (units in N/m) k; = 402(100), k, = 50%(200), k5 = 602(300).
EOM becomes

100 0 o0 || 160000 -160000 0 hn 0
0 200 O [ly3|+]-160000 660000 ~-500000(/y2|= 0
0 0 300)|yy 0 —500000 1580000 ||y3 0
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Characteristic equation is

det([K] - @2[M]) = 0

160000 -160000 0 100 0 O
det||-160000 660000 -500000|—w?f 0 200 O [[=0
0 -500000 1580000 0 0 300
160000 — 100> -160000 0 —
det -160000 660000 — 200w? -500000 =0
0 -500000 1580000 - 300a)2_

—6 % 100w® + 6.1 X 10%w* —1.54 X 10™w? + 8.64 X 106 = 0
Positive roots of the above polynomial are the natural frequencies (units in rad/sec).
w1 = 28.1
Wy = 52.6
W3 = 81.3

To obtain mode shapes, the eigenvector associated with each eigenvalue is found. Starting
with w; = 28.1

160000 -160000 0 100 o o)1 Jo
~160000 660000 -500000{-2812| 0 200 O |||®=|=]0
0  -500000 1580000 0 0 300|){es| [0
Hence
81x10* —160000 0 1] o]
~160000 5.02x10° —500000 ||®21|= [0
0 500000 1.34 x10°||¢a1| (O]
8.1 x10* — 1.6 x 1050y, | 1o
5.02 X 10°¢p,; — 5.0 X 10°¢p3; — 1.6 X 10° | = |0
1.34 X 10°¢3; — 5 x 10°¢y, 0]

Solving gives @1 = 0.506 and ¢3; = 0.188. First eigenvector is

1
@1 =10.506

0.188
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For w, = 52.6,
160000 -160000 0 100 0 o0 |)f1 0
-160000 660000 -500000|-52.62| 0 200 0 [[|[®22]=]0
0 ~500000 1580000 0 0 300()|es2| |0
Hence
117 x10° —1.6 X 10° 0 1| (o]
-1.6x10° 1.07x10° -5.0x10°||P22| =0
0 -5.0x10° 7.50 x 10° || P32 |
1.6 X105y 117 x 10° | 1o
1.07 X 10°@p — 5.0 X 10°p3, — 1.6 X 10°| = [0
7.5 X 10°¢p3; — 5.0 X 100,

Solving gives ¢, = —0.731 and ¢3, = —0.476 .Second eigenvector is

1
@, = |-0.731
-0.476
For w3 = 81.3
160000 -160000 0 100 0 0 1 0
—-160000 660000 -5000001-81.32l 0 200 0 [|l®23|=1|0
0 —500000 1580000 0 0 300()|¢ss 0
Hence
5.0l X105 —1.6 x10° 0 1] o
-1.6x10° -6.62x10° =5.0%x10° |[P23[=]0

0 -5.0x10° -4.03 x10°|| s3]

~1.6 X 10°¢p3 — 5.01 X 10°
—6.62 X 10°¢y3 — 5.0 X 10%p33 - 1.6 x 10° | = |0

—5.0 X 10°¢p3 — 4.03 X 10° @33
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Solving gives @p3 = —3.13 and @3, = @33 = 3.82. Third eigenvector is

1
@3 =1-3.13
3.82

Eigenvectors are mass normalized. Mass normalization factors y; are found for each
eigenvector

H1 = €01T[M]€01
T
1 100 O 0 1

=10.506| | 0 200 O [[0.506|=162.
0188 [ O 0 300(/0.188

and
H2 = 93 [Mlp,
1 TlOO 0 0 1
=1-0.731| | 0 200 O [[-0.731]|=275.
-0.476( | 0 0 300(/-0.476
and

us = @3[Mlp;
T
1 Jloo o ol 1

=|-313| | 0 200 O [|-313|=6.44x%x10
38210 0 300]||3.82
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Normalized eigenvectors are

1 7.86 x 1072
0.506| = [3.98 x 1072
0.188 1.48 x 1072

)

VEL 4162

1 6.03 x 1072
P2 1
D, = = —0.731| = | -4.41 x 1072
V2 275,
-0476| |[-2.87x1072
1 1.25 %1072
D, = B3 313|=| -0.039

1
VB Veddx10° _3

82 4.76 x 1072

Verification of the above result follows

EDU>> k=[160000 -160000 0;-160000 660000 -500000;0 -500000 1580000] ;
EDU>> M=[100 O 0;0 200 0;0 O 300];
EDU>> [eigV,lam]=eig(k,M)

eigV =
0.0786 0.0606 0.0124
0.0398 -0.0437 -0.0389
0.0148 -0.0289 0.0477

lam =
1.0e+03 *
0.7897 0 0
0 2.7528 0
0 0 6.6242

EDU>> sqrt(diag(lam))
ans =
28.1013

52.4674
81.3889
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2.11.3 Problem 2

| 'Iondianswum vy

- dentical bars having mass m are sus-
e 1't;z‘:nldt;?c“cciling and interconnected by a
¢ Po of identical springs. Thc.unsxrctchcd lcngtlb\ of
» ring equals the spacing be.twecn. the bars
38 s‘:hc: . are vertical. The spnng suffness 15
Wt:305m)g/L. At 1= 0, all bars are vcrpc?l. The
3 'd right bars are not moving at this nstant,
wm;,n the middle bar is rgtating at 2 rad/s. Deter-
mine and graph the vibration of each bar.

Initial conditions are 0;(0) = 0 fori =1,2,3 and 07(0) = 65(0) = 0 but 05(0) = 2 rad/sec.

The generalized coordinates are shown above. kinetic energy is

1 1 1
T= E1(@;)2 + E1(9;)2 + EI(eg)z
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1 .
where [ = gmLZ. Mas matrix becomes

: 1 0 0|0
[M]:EmLzo 1 0|64
00 1|6y

Spring potential energy is

1 1
k(LO, — LO,)* + Ek(L@3 — LO,)?

Vspring = 5

- %kLz(Q% + 0% - 20,0,) + %kLZ(Qg + 03 - 20,0

1 1 1 1
- ag(EkLz) + eg(EkLz + EkL2) + eg(EkLz) + 010(=KL2) + 6,0(0) + 0,05(-kL?)

Hence stiffness matrix due to spring is

1 -1 0

— 172
(K], i = L7121
0 -1 1

Assume the zero PE for gravity is taken as the top of the bar. Stiffness due to gravity is

L
V, = —ng(cos 61 + cos 6, + cos 63)

8
9%V, L . . . Lo .
Vi = e = ng(cos 01). Evaluate this at static position 6, = 0,hence V;; = ms. Similarly,

L
Vo = V33 = ms. All other terms are zero.

Hence stiffness matrix due to gravity is

. 1 00
[K]g = ng 010
001
Therefore, complete stiffness matrix is
1 -1 0 [ 1 00
kL?2|l-1 2 -1 +mg510 10
0 -1 1 001
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There are no generalized forces. Hence EOM is

: 1 0 o]l67 1 -1 0 L10091 0
5mLzo109'2'+kL2—1 2 -1+mgz10 1 0 0,1 =10
00 1|6y 0 -1 1 00 1|)les| |o

211.3.1 Part (a) k = 0.05=¢

For case k = 0.05%, Hence for ¢ = 0.05 then k = a%. EOM becomes

) 1 0 o]0 1 -1 0 L10091 0]
gmLZO 1 0|{65|+]|omgL|-1 2 -1 +mg=10 10 0= (0
00 1|6y 0 -1 1 0 0 1])|6s| o]

_1+6 -0 0 |r,1

: 1 0 0|67 2 01
gmL2 0 1 0f|0Y|+mgL| —o %+2a -0 |[62]=10
0 0 11ley 0

’ -+0 —0 0

1 0 0|6 \ 2 01

0 1 0]|67 +fg -0 %+20’ -0 ||62[=10
1 144
00 03 0 - i, 05

Let L =1, ¢ =10. The above becomes

1 0 ol|67| [15+300 —300 0 01| o
01 0|[65|+| -300 15+600 -300 ||6,|=1]0
00 1|y 0 ~30c  15+300|[65| |0

Natural frequencies of the system are found by solving the eigenvalue problem.

15+300 -300 0 100
det|]| -300 15+600c -300 |-@?0 1 0||=0
0 300 15+ 300 001
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Substituting o = 0.05 gives

165 -15 0 100
det||-1.5 180 -15[-w?0 1 0f[=0
0 -15 165 001
165-w? -15 0
detf -15 18-w? -15 |=0

0 -15  165-w?)

~w® + 5lw* - 861.75w2 + 4826.3 = 0
Positive roots of this polynomial are w = 3.87, w = 4.062, v = 4.416.

Associated eigenvectors are found by solving for ¢; in ([K] - a)Z[M])(pl- = ( for each eigen-
value w;.

For w; = 3.87
165-w? -15 o 11 [ol
-15 18-w? -15 ||¢a1]|=]0
0 -15 165-w?||®3| [0
165-3872 -15 o 1]
-1.5 18 — 3.872 -1.5 ®21| =10
0 -15  165-3.87%||¢a1| |0

1523 -15 o0 |[ 1]
15 3.023 -15|lexn|=10
0 -15 1523||pn| |0]

1523 =15¢, | o]
3.023 P21 — 1.5(P31 -1.5|= 0
1.523 P31 — 1.5§021

Solving gives ¢,1 = 1.0153 and ¢3; = 1.046 2. First eigenvector is

1 1
@1 = |P21|=(1.0153
P31 1.0462
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Similarly, second and the third eigenvectors are found.

Eigenvectors are mass normalized. First the mass normalization factors y; are found for
each eigenvector

H1 = (P1T[M]§01
T
1 1 00 1

1.0153| [0 1 0][1.0153| =3.1254
1.0462]| |0 0 1(|1.0462

Normalized eigenvector is

1 0.51353
1.0153 | ={0.52139
1.046 2 0.53726

V31254  4/3.792

D,

Verification of the above result (Matlab result is more accurate due to more accurate
method used)

EDU>> k=[0.55 -0.05 0;-0.05 0.6 -0.05;0 -0.05 0.55];
EDU>> M=eye(3);
EDU>> [eigV,lam]=eig(k,M)

eigV =
-0.5774 -0.7071 0.4082
-0.5774 -0.0000 -0.8165
-0.5774 0.7071 0.4082

EDU>> sqrt(diag(lam))

0.7071
. 7416
0.8062

o

Transformation matrix (based on Matlab more accurate result) is

~0.577 —0.7073 0.4082
O = [D;D,D5] = [-0577 0 -0.8165
~0.577 0.7069  0.4082
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Mapping from physical coordinates 0 to modal coordinates 7 is
= [D]
Bold face is used to indicate a column vector. EOM’s are written in modal coordinates
resulting in
10 o|lm]| |« 0 0fm| [o
01 0|[ng|+]|0 w3 0][m|=|0
00 1fn5| [0 0 wi|ms] 1O

1 0 olln7l lozo712 o o lml| ol
0 1 ofny|+ 0.74162 0 =10
0 0 1ny 0  0.8062%||n3| |0

Initial conditions are transformed to modal coordinates using (0) = [CD]T[M](O) and ’(0) =
[CID]T[M]'(O), since (0) = 0 then (0) = 0, however ’(0) is not all zero, hence

’ r T

mO)| |[-0577 -0.7073 0.4082 | |1 0 ollo
n5(0)| = |-0.577 0 -0.8165| |0 1 0][2
70| |-0577 07069 04082 | [0 0 1][0

1154
=l o
-1.633

In1t1al condltlons in modal coordinates are found. The solution can be found. The %olutlon
to 1”7 + w?n = 0 with initial conditions 17(0) and 7’(0) is 1(t) = n(0) cos wt + 1= ( ) sin wt.

Therefore modal solutions are

m(t) = ;172;‘11 sin(0.7071¢) = —1.632sin(0.707 t)
() =0

.633
n3(t) = 03062 ——— sin(0.8062t) = —2.026 sin(0.8062t)
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Solution in the normal coordinates is

=1-0.577 0 -0.8165 0

61(t)| [-0577 -0.7073 0.4082 || ~1.6325in(0.707 t)
0(t)
05()| |-0.577 07069 0.4082 ||-2.0265in(0.8062¢)

094166 sin(0.707 t) — 0.82701 sin(0.8062¢)
= | 0.94166 sin(0.707 ) + 1.6542 sin(0.8062¢)
0.94166 sin(0.707 t) — 0.82701 sin(0.8062¢)

2113.2 Part (b) k =22

Using part (a), but with 0 = 2 results in

15+300 -300 0 100
det|]| -300 15+600c -300 |-@?0 1 0||=0
0 -300 15+ 300 001
15+30(2) -30(2) 0 1 0 0
det{| -30(2) 15+60(2) -30(2) |[-«?0 1 0]|=0
0 -30(2) 15+30(2) 001
75.0 - w? =600 0
detf{ -60.0 135.0-w? -60.0 |=0
0 -60.0  75.0-w?

Similar steps as repeated as part (a) above. The final result are shown below using Matlab

EDU>> k=[75 -60 0;-60 135 -60;0 -60 75]
EDU>> M=eye(3);
[eigV,lam]=eig(k,M)

eigV =
-0.5774 -0.7071 0.4082
-0.5774 0.0000 -0.8165

-0.5774 0.7071 0.4082
EDU>> sqrt(diag(lam))
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3.8730
8.6603
13.9642

-0.577 -0.7071 0.4082
Transformation matrix is @ = [© D, D3] = |-0.577 0 -0.8165|. Mapping from 0

-0.577 0.7071  0.4082
to modal coordinates 7 is
= [©]

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates
resulting in
1 0 ol|n7| [@ O Ofm| [o]
01 0|[n7|+]|0 w3 0][m|=]|0
0 0 1ffny 0 0 w3 713 0]

1 0 ol|n?| [387302 o o l|lm| [o]
01 Of|ng |+ 0 8.66032 0 2| =10
0 0 Ifiny 0 0  13.9642%|[ns| [O]

Initial conditions are transformed to modal coordinates using (0) = [CD]T[M]X(O) and
"(0) = [@]T[M]G’(O), since 6(0) = 0 then (0) = 0, however 6’(0) is not all zero. Similar to
part (a), initial conditions are found

mO)| |-1154
0= 0
n5(0)| |-1.633

The solution to " + A% = 0 with initial conditions 7(0) and 7’(0) is given by n(t) =
n(0) cos At + @ sin At. The solutions are

4
sin(3.873t) = —-0.297 96 sin(3.873 t)

m() =

3.8730
n2(t) =0
-1.633 .
n3(t) = 139610 sin(13.9642) = —0.116 94 sin(13.9642)

301



2.11. HW10

CHAPTER 2. HW’S

Solution in the physical coordinates is

01(t)
0,(t)
03(t)

Summary table

(0577 -0.7071
~0577 0
-0.577 07071

0.4082 || —0.29796 sin(3.8730¢)

-0.8165

0

0.4082 ||—0.11694 sin(13.9642¢)

0,171 92 5in(3.873¢) — 4.773 5 x 102 sin(13.964¢)
9.5482 x 1072 sin(13.964¢) + 0.171 92 sin(3.873¢)

0.171 92 sin(3.873t) — 4.7735 x 1072 sin(13.964¢)

k frequencies | [D] solutions in 6
0.7071 05774 —0.7071 04082 | | [0.94166sin(0.707 t) — 0.82701 sin(0.8062¢)
0.05% 0.7416 —0.5774 0 —0.8165] | | 0.94166 sin(0.707 t) + 1.6542 sin(0.8062¢)
0.8062 -0.5774 0.7071  0.4082 | | |0.94166sin(0.707 t) — 0.82701 sin(0.8062¢)
3.8730 05774 —-07071 0.4082 | F0.17192 sin(3.873t) — 4.773 5 x 1072 sin(13.964t)
% 8.6603 ~0.5774 0 —0.8165] | {9.5482 x 1072 sin(13.964t) + 0.171 92 sin(3.873t)
13.9642 -0.5774  0.7071  0.4082 | | [0.17192 sin(3.873t) — 4.773 5 x 1072 sin(13.964¢)

Even though the normalized natural frequencies are different, the shape functions are

the same.

Plots of the solutions of 6;(t) for both cases are made. For the case of k = 0.05%
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In addition, a small program is written to animate both the full solution and the modal
solutions. The program to animate the full solution is atfhttp://12000.0rg/my_courses/|
[oniv_wisconson_madison/spring 2013/EMA_545_Mechanical Vibrations/HWs/HW10/HW10p2]|m.
while the program that animate the modal solution is number 112 at bottom of this
pagehttp://12000.0org/my_notes/my_matlab_functions/index.html

2.11.4 Problem 3

4.43- The following properties are known for
certain three-degree-of-freedom system: i

[600 400 200
[M] = 1400 1200 ¢ |kg,
200 0 800

300 0 —200
[KI=| 0 500 300 |kN/m,
=200 300 700

500 300 —400
[CI=] 300 900" 600 |N-s/m
—400 600 1300

3

200cos (16¢)
{0} = 0 N
0

T.‘he syste‘n} was initially at rest at its static equilib-
um position. Use the light damping approxima-
tion to determine the response. Graph each
generalized coordinate as a function of time. From

that result, estimate the time required to attain the
steady-state condition.

EOM is
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600 400 200||*1| | 500 300 -400][*1 300 0 -200|{x1| [200cos(16t)
400 1200 0 [{x5 1+ 300 900 600 [§x5¢+103] 0 500 300 [{x,¢ = 0
200 0 800||xy| [-400 600 1300 |x;, ~200 300 700 ||xs 0
x1(0)| (o x1(0) 0
Initial conditions are { x,(0) p =30 ¢ and {x5(0) ¢ =< 0.
O %) 10

Solve the eigenvalue problem to determine the natural frequencies of the system

det([K] - @?[M]) = 0

300 x 10° 0 -200 x 103 600 400 200
det 0 500 x10% 300 x10% |- @?[400 1200 O [|=0
—200x10% 300x10% 700 x10° 200 0 800

4.0 X 108w® +1.044 x 102w* - 4.72 x 10M4w? + 5.8 x 100 = 0

Positive roots are {w =15.052,w =17.562, w = 45.552}. For each natural frequency the
corresponding eigenvector is found. A program is now used to compute these values.

EDU>> k = [300 0 -200;0 500 300;-200 300 700]%10°3;
M = [600 400 200;400 1200 0;200 0 800];

C = [500 300 -400;300 900 600;-400 600 1300];
[PHI,lam] = eig(k,M);

PHI
lam = sqrt(diag(lam))
CcC = PHI'*C%*PHI,;
zetal = CC(1,1)/(2x1lam(1))
zeta2 = CC(2,2)/(2x1lam(2))
zeta3 = CC(3,3)/(2x1am(3))
PHI =
-0.0216 0.0232 -0.0373
0.0203 0.0168 0.0201
-0.0220 0.0023 0.0302
lam =
15.0519
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17.5624
45.5522

zetal =

zeta2 =

zeta3 =
0.0376

-0.0216 0.0232 -0.0373

[®] = 0.0203 0.0168 0.0201 [. In modal coordinates EOM is
—0.0220 0.0023 0.0302
1 0 ofny 500 300 —400] (7] @t O O (m 200 cos(16
01 Ofnyt+I®1"| 300 900 600 |[DNmse+|0 w} 0 Rmap=I0] 0
00 1f|ny ~400 600 1300 5 0 0 “’5. s 0
1 0 ol{n7] [s419x102 5331x102  —0416 |[m] |ef O O|[m 200 cos(16
0 1 0415 ¢ +(5.331 x1072 0.768 352x104[{mr+|0 @2 0 [{np=[®] 0
00 1)|n¥ -0.4156  -3.52x 107 3428 ||m5 0 0 ‘”»%d 13 0
17 ) ’ _0)2 0 OH
1 0 0||™M 26wy 0 0 ||Im 1 m 200 cos(16
01 ORmyt+| 0 26w, 0 Kmhp+|0 w2 0[Rnop=[0] 0
00 1||ny 0 0 20w || 0 0 «?||m 0
5.4193x1072
In the above 2C1w1 = 00542, 2C2C{)2 = 0.7676 and 2C3a)3 = 3.4247. Hence Cl = W =
0.76755 3.4247
0.0018 and C; = 5o = 0.0219 and G = 5= = 0.0376
Final EOM in modal coordinates is
1 0 ol[m]| [o0542 o 0 |[m]| [22656 0 0 ||m —4.32 cos(16.0t)
01 ORNYt+| 0 0768 0 [nsp+| 0 30844 0 [{mot =1 4.64cos(16.0t)
00 1||ny 0 0 3.425||n4 0 0 2075||n, —7.46 cos(16.0t)
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EOM’s to solve are

ny + 20 w1ny + w3y = —4.32 cos(16.0t)
ny + 20,wony + win, = 4.64 cos(16.0t)
N4 + 20zw3nh + wins = —7.46 cos(16.0t)

Initial conditions are zero. The solution in modal coordinates is given in appendix B for
underdamped case. Complete solution for the case of underdamped is given in appendix
B as

n(t) = %iﬁ{ﬁ cos(@t) + 2Cwd sin(@t) — e~ B cos(wyt) + C;))—f sin(wdt)l}h(t)
B= (wz—caz),a)d:a) 1-C2.

The solutions in modal coordinates are now found. Recall that w; =15.0519, w, = 17.5624, w5 =
45.5522 and ¢; = 0.0018,C, = 0.0219 and (3 = 0.0376

3
Next step is to transform the solution to the physical coordinates using q; = 2 CD(j, m)r](m),
or =l
q = [®]

In component form

g1(t) = O, 1)1y (t) + D1, 2)n,(t) + P(1, 3)n3(t)
g2(t) = O2, 1)1 (t) + D2, 2)my(2) + P(2, 3)13(t)
g3(t) = ®3, 1)1 (t) + P(3, 2)n,(t) + D(3, 3)n3(t)

Program was written to complete the computation and make plots. Here is the result
showing plots of each of the above g;(t) vs. time

function nma_ HW10_problem_3_EMA_545()
%solve for q(t) using modal analysis, by Nasser M. Abbasi

close all;

syms t;

N = 3;

k = [300 0 -200;0 500 300;-200 300 700]*1073;
M = [600 400 200;400 1200 0;200 O 800];

C = [500 300 -400;300 900 600;-400 600 1300];

wF = 16;
F = [200*cos(wF*t); 0; 0];

[PHI,lam] = eig(k,M);
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lam = sqrt(diag(lam));
CC = PHI'=*CxPHI
F = PHI.'xF;

eta = sym(zeros(N, 1));
time_constant = zeros(3,1);

for i=1:N
W = lam(i);
b = w 2-wF~2;
zeta = CC(i,1)/(2*w);
wd = wxsqrt(l-zeta™2);

eta(i) = F(i)/(b"2+4*xzeta ™ 2xw " 2+%wF~2) * ...
( bxcos(wF*t)+2*xzetaxwxwFxsin(wF*t)—- ...
exp(-zeta*xwxt)* ( bxcos(wd*t)+ zeta*wxb/wd * sin(wd*t) )
);
time constant(i) = 1/(zetaxw);
end

gq=PHI*eta;
time constant
time_constant = sum(time_constant);

% plot the generalized solutions
lims= [-0.004 0.003;

-0.002 0.007,;

-0.006 0.002

15

for i=1:N
subplot(3,1,1);
ezplot(q(i), [0,100]);
ylim(lims(i,:));
title(sprintf('q(%d) solution, time constant = %f',i,time_constant));
xlabel('time (sec)');
ylabel('q(t) Newton');
end

end
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w i’ q(1} solution, time constant = 40.633121
= 2 I f
=)
0 |
=
= -2F T
o
_4 1 1 1 1 1 1 1 1 |
0 10 20 30 40 50 B0 70 80 50 100
timme (sec)
w1’ g} salution, time constant = 40 633121
E L T T T T T T T T T B
S 4
5 |
= 2
0 Ny
_2 1 1 1 | | 1 1 1 |
0 10 20 30 40 50 B0 70 &0 50 100
time (=ec)
w1 {3} solution, time constant = 40.633121
2 T T T T T T T T T
s O d
S A 0
_E 1 1 1 | | 1 1 1 |

time (sec)

From above, the time to reach steady state is about 90 seconds based on looking at g;(t)

since that takes the longest time to each steady state out of the three coordinates.

The time constant for each 17;(t) solution was calculated giving 7, = CLw = 37.4471 and
1@1

T, = 2.602 and 73 = 0.58. The first time constant 7; = 37.4 seconds dominated the result

in the response in the physical coordinates.

This means the dominant time constant found in modal analysis is one to use to estimate
how long it will take for the response in physical coordinates to reach steady state. Each
modal solution contributes to each physical solution. The one with the longest time con-
stant affects more than any other mode how long the physical solution takes to reach
steady state.
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2.11.5 Problem 4

[M]=[

-3 4

-3
]kg,a)l =15.68 rad /sec,w, = 40.78 rad/sec. | = 1 ,o =
1.366

4.47 The mass matrix, natural frequencies, and
unnormalized vibration modes for a two-degree-
of-freedom system are

[M] = {5 _3} kg
-3 4

w, = 15.68 rad/s, w, = 40.78 rad/s

T 1 o1
{¢1}—{1.366}’ it {—0.366}

The modal damping ratios are estimated to be
£, = ¢, = 0.08. The system is subjected to a har-
monic excitation for which the generalized forces
are 9, = 50 sin (201), @, = 100 cos (207) N. Deter-
mine the steady-state response of the generalized
coordinates. Express the result in the form

= RelY, exp(i207) and give the values of Y,
and Y,.

T
1 5 3| 1
tH = =4.2678
1.366] |-3 4 ||1.366
T
1 5 -3 1
Ha2 = =77318
-0.366] |-3 4 [|-0.366
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Normalized eigenvectors are

11 1 | (048406
YTV Va2678 |-0366(  |-017717
0.359 63
013163

0.48406 0.35963
-0.17717 -0.13163

1 1 1
2T VR 77318 {—0.366}

Hence

[©] = [1.] = l

EOM in modal coordinates is

1 0ffm|  |2(0.08)15.68) 0 n| [1568 0 |[m y7] 050
+ + =
0 1f{n7 0 2(0.08)(40.78) | (113 0 40.78%||n2 100 cos(20¢)
1 ol[m] [2509 o |(m)] [24586 0 |[m]| [24.203sin(20.0t) ~17.717 cos
+ + =
0 1||ny 0 6.5248(|7, 0  1663||n,] |17.982sin(20.0t) —13.163 cos

The two EOMs to solve are

24.203 .
ny () + 2.5091] (t) + 245.861; (t) = 24.203 sin(20¢) — 17.717 cos(20t) = Re{ l ZZOf} + Re[—17.717e120f}

17.982 .
15 (£) + 6.52515(t) + 16631,(t) = 17.982 sin(20¢) — 13.163 cos(20¢) = Re{ ; 120'*} + Re{-13.163¢2}

Hence

N7y (t) + 2.509n7 () + 245.861; (t) = 24.203 sin(20t) — 17.717 cos(20t) = Re[(—24.203i - 17.717)ei20f}
5 () + 6.52515(t) + 1663n,(t) = 17.982 sin(20¢) — 13.163 cos(20t) = Re{(—17.982i -~ 13.163)ei20f}

In matrix form .
[1” + [CY + [K] =Re{Fe'|

Where @ = 20 rad/sec. F is the complex amplitude of the input
) {24.2031' - 17.717}

-17.982i —13.163
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Using method of transfer functions (since steady state response is needed), response is

= Re{X¢2"'}

Where
Fj

T 2+ 2iCjwi® + a)jz

Steady state solutions in modal coordinates is

- R 24203i-17.717 ..
= e
M “\ 202 + 2.5088i0 + 245.86

{ ~24.203i - 17.717 ei@f}

—400 + 50.176i + 245.86
= Re{(5 77 %1072 + 0.176i)e @f}

0 - 17.982i -13163 .
2 2 1 6.525i0 + 1663
17.982i~13163
e
400 + 13051 + 1663

e{(1178><102 1.302 x 10~ )@f}

Solutions are transformed back to normal coordinates

q=[?]
Hence
2
= 2 (j,n)ntn)
2
= Z QJ( )Re[X(n)el@t}
! 2
= Re )} &(j,n)X(n)e"™"
, 048406  0.359 63}
Since[®] = then
~017717 -0.13163

g1(t) = Re({0.48406(5.77 x 1072 + 0.176i) + 0.359 63(~1.178 x 1072 ~ 1.302 x 1072 }¢2)
g2(t) = Re({-017717(5.77 x 102 + 0176i) - 0.131 63(~1.178 x 1072 - 1.302 x 102} |e2")

313



2.11. HW10 CHAPTER 2. HW’S

or
g1(t) = Re({2.369 x 1072 + 8.051 x 1072i}¢2)
g2(t) = Re({-8.672 x 107 — 2.947 x 1072i}¢2")

Therefore

Y; = 2.369 x 1072 + 8.051 x 1072
Y, = -8.672 x 1073 — 2.947 x 1072i

sectionProblem 5

5.) (Covering material from Chapter 3)
A uniform rod of length L and mass my is attached to a cart having mass m; by means of a
spring k. A viscous damper ¢ resists the motion of the cart.

a.) Let F(t)=Re[Fexp(1mt)]. x(t) = Re[Xexp(1mt)] and 6(t)=Re[Yexp(imt)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system 1s forced at
its natural frequencies ©=m; and ©=m>. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: mj=m>=1 kg. k=3 N/'m. =1 m,
=9 81 m/s*2_ and c=0.1 N-s/m.

c.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determune at what frequency m; acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: ©.n = (k-"mg]lﬂ' 2

2.11.5.1 Part(a)
First step is to determine EOM. The kinetic energy T is
Lo 1 9
T = EI(Q ) + Emz(x )
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I= %mle.Assuming small angle, stiff spring approximation and zero gravity datum at
the level where pendulum is hinged, spring potential energy V is

2
1 L
V= Ek(x - EQ)

1 12
= Ek(xz + ZQZ - XLQ)

12 1 kL
—_ 2| = 2| — _
—Q(Sk)+x(2k)+x6( 2)

Stiffness matrix due to spring is

12 kL
—k -=
4 2
Kspring = i
-5k
. o _ L _ aZVg _ L _
Potential energy due to gravity is Vo = —mg cos 0. Hence Vo, = == = (mgz cos 9) =

0=0
L . . L
mg. All other terms are zero. The stiffness matrix due to gravity is

L
mg= 0
Kspring = 2
0 0
Combined stiffness matrix is
L_Zk + ng _k_L
4 2 2
K =
kL
- k

EOM is
L? L kL
Loofjer] |FF+msz 7 |[o| _ [Qe
0 L) x" _k_L k X Qx

Generalized forces are now found. Qg = FL since F is only external forces acting on the
first d.o.f. 0 and the work done by this force is FL60 for small virtual angle. For Q, work
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is done only by damper and acts to remove energy, hence negative in sign. Q, = —cx’. The

above becomes
sz L kL
0| |Z<tmE; —o||o FL
+ =
x” _kL e [\x —cx’

2

12 L kL
I olle’] o oller] |Thk+msg; —7|[6 FL
+ + =
0 my||x” 0 c||x _kL e [\x 0

2

I 0

Omz

Rearranging

Each EOM is

L2 L kL
2

IQ"+(Zk+m1g§ 0 - —x=FL

kL
myx"" + cx’ — 79 +kx=0

: : 12 :
Units checking: First EOM. each term must have units of torque. --k6 have units of torque

OK. mg%@ have units of torque OK. kLx have units of torque OK.

second EOM Each term must have units of force. cx’ have units of force OK. kL6 have
units of force, OK. kx have units of force, OK.

Transfer function is now found Let x = Re{Xei‘Dt }, 0= Re{Yei‘Dt }, F= Re{ﬁei@t}.Substitute
in the above EOM

Re{[(—IcDZY) - (Lzzk - ngg)y - %Lx]eiwt} = Re{FLe™®!}

kL .
Re{[—mzsz +icoX - ?Y + kx]e@f} =0

Simplify
—I®2+L—2k+m EY—k—LX—FL (2.107)
1 285 25T '
kL
(—mZ(DZ + iC(D + k)X = ?Y (2108)

The above two equations are solved to obtain the required transfer functions X/F and Y/F .
To obtain Y/F, the second equation solved for X in terms of Y

kL

X = 2
—My@? + icd + k
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X in first equation is replaced by the giving

KL
I@2+L2k+ L Y KL 2 Y =FL
—_ —_— m —_ —_—— =
4 287 2 —myd? +icod +k
k?L2
L2 L e

FL

~1@? + —k + myg— —
4 sy —my@? + icd + k

Hence
1 A

F
mag k2L/4
2 —My@%+ico+k

Y = N -
2 24 =
( 3m1L(D +4k+

To obtain the transfer function X/F, the second equation is solved for Y in terms of X

(—mzwz +ico + k)
- kL2

This is substituted in the first equation giving

12 L (—mzcaz +ico + k) kL .

~1@® + —k + myg— - —X=FL
4 2 kL/2 2

(—%mchaz + %k + %)(—mzmz +icd + k) KL A

- Zx=EL
k/2 2
Hence
kL “
X = F

1 L .
(—gmchDZ + 7k + %)(—mzwz +ico + k) — k2L

This complete part(a). These are the analytical expressions for the transfer functions.

2.11.5.2 Part(b)
Letm; =my, =1kg, k=3N/m,L=1m, ¢ =9.81 m/s?, ¢ = 0.1 N-s/m.

A program was written to plot the magnitude and phase spectrums of x(t) and 0(t) using
the above numerical values. This was done for a range of forcing frequencies to cover both
natural frequencies and beyond. Natural frequencies are found by solving the eigenvalue

problem det([K] - wZ[M]) =0

wy =1.1308 rad/sec
Wy = 4.3228 rad/sec
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The magnitude and phase of each transfer function are evaluated when @ = w; and when
@ = w,.F =1 was assumed since its numerical value was not given. Result is shown below.
From these plots, magnitude and phase values are determined at the natural frequencies.

x(t) = Re{Xei‘Dt}
O(t) = Re{Ye'®!

Table of results

response | magnitude at w; | phase at w; | magnitude at w, | phase at w;
x(t) 4.25 -830 2.62 131.7°

o(t) 2.55 -80° 11.5 -500

ratio 4.25/2.55 =1.6667 11.5/2.62 =4.389 3

Plots used to obtain these results

magnitude spectrum of X, wy = 1.130817, w, = 4.322780

farcing frequency (rad/sec)
phaze gpectrum of X, wy = 1.13081%, w, = 4.322780

forcing frequency (rad/sec)
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magnitude apectrum of ¥, wy = 1591324, w, =4 175247

15 ; ! ! j
(1] ............ ............ ............ .......... ST .......... ]
B é ' ' ' '
[ . ...... .| ..... .......................... | EECEREREEEEEEE R SRRRRRRRERE
A 4o -/
D___J~J{NM=| i ; il I i
1] 1 2 3 4 5 ] 7
forcing frequency (rad/sec)
phaze epectrum of X, wy = 16591324 w, =4 175247
5 — ; i ! ;
| : ol
— ! ¢!
2) | o |
> i R
g i .
L | !
= i [ 5 i il i i

n 1 2 3 4 5 G 7
forcing frequency (rad/sec)

The function used to generate the plots

function nma_HW10_problem_5_EMA_ 545 spectrum()
%plots the spectrums of problem 5, HW10, by Nasser M. Abbasi
close all;

c =0.1;
g = 9.81;
L =1;

k = 3;

ml =1;

m2 = 1;

F =1;

I

M = [1/3*m1*L"2 0;0 m2];
K = [L"2/4xk+m2*gxL/2 -k*L/2;-k*L/2 k];
C = 1[00;0 c];

[PHI,w] eig(K,M);
lam = sqrt(diag(w))

—
|

= sqrt(-1);
= 0(wf) ((kxL)./((-1/3*ml*L*wf. 2+L/4*k+m2%g/2) .* (-m2*wf . 2+Ixc*wf+k)- (k~2*L)))*F;
Q(wf) (1./((-1/3*ml*xLxwf. 2+L/4xk+m2*g/2-( k~2*L./(-m2*wf. 2+I*xcxwf+k)))))*F;

=< >
Il
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N = 2;
for i=1:N
figure(i);

wf =0:0.1:6.5;

if i==
name_='X";
tf_ = X(wf);
else
name ='Y';
tf = Y(wf);
end

subplot(2,1,1);
plot (wf,abs(tf_));

hold on;
line([lam(1) lam(1)],[0 5], 'LineStyle','-.");
line([lam(2) lam(2)],[0 5],'LineStyle','-.");

title(sprintf('magnitude spectrum of %c, $\\omega_1=)f$, $\\omega_2=Yf$',name_,lam(1
xlabel('forcing frequency (rad/sec)');

ylabel (sprintf ('$|%c|$' ,name_),'interpreter','latex', 'FontSize',12);

grid;

subplot(2,1,2);
plot(wf,angle(tf_ ));
line([lam(1) lam(1)],[-5 5],'LineStyle','-.");
line([lam(2) lam(2)],[-5 5], 'LineStyle','-.");
title(sprintf ('phase spectrum of X, $\\omega 1=%f$, $\\omega 2=Yf$',lam(1),lam(2)),"
xlabel('forcing frequency (rad/sec)');
ylabel (sprintf ('$arg(’c)$' ,name_),'interpreter','latex', 'FontSize',12);
grid;
end

end

Eigenvectors @; and @, are now found, using modal analysis, which de-couples the EOM.
The ratio of one component of the same eigenvector to its other component is found and
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compared with the result found above. The eigenvectors found are
-0.5446
ch =
-0.9493
-1.6442
q)z =
0.3145

The ratios are 0.9493/0.5446 = 1.7431 and 1.6442/0.3145 = 5.228 0. Compare these to the
ratios found

response | magnitude at w; | phase at w; | magnitude at w, | phase at w,
x(t) 4.25 -83° 2.62 131.7°

o(t) 2.55 -80° 11.5 -50°

ratio 4.25/2.55 = 1.6667 11.5/2.62 =4.3893

These ratios are close to each others. Ratio @;;/®,; shows how much one dof (1) will
change relative to dof (2) in mode j

2.11.5.3 Part(c)

Transfer functions are plotted in part(a). From magnitude spectrum of Y it is seen that

Y| = 0 when @ between 1.5 and 2.0 rad/sec and also when @ > 6 rad/sec. @4+ = mi =
2

\/E = 1.7321 rad/sec. This agrees with range found in plots. When /i =1.73, top mass
1 my

acts as vibration absorber, and rod will not oscillate when F(t) is at this specific frequency.
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2.11.6 Problem 6

6.) Consider Exercise 3.45 and 3.46 in the text (you solved
this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for T
= 31/t to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending) f (1)
modeled after one of the pillars supporting the ERB. which — m
have length L=40m. rectangular cross section with height h.
equal to the width b=h=0.6m. and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength 6=40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass m
be such that the natural frequency of the mass-spring system
is 0,=0.2Hz. What is the amplitude of the force. P. such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).

¥

From HW6, problem 3

Et O<t<rt
fO=r

0 T<t<27T

Let y,(t) be the solution from problem 3 found using FFT technique. Let the full solution
for deflection of the above pillar be

x(v.t) = y®OY)

y(t) is the time dependent (dynamic) part of the solution. This solution is y(t) found

in problem 3. lp(y) is solution due to static loading. Also called the shape function. For
cantilever beam with static force P at its end, deflection curve due to static loading P at

end is
P

_ 2 _ .3
P(x) = 6E1(3Lx X )
2
Internal bending moment M(x,t) = EI d)d(T(;c’t) and direct stress 0 = m where c is the

section modulus. Assume ¢ = g For yield, let 0 = 40MPa, then

1

M(x, t) = o

c

Lx ) o
dx? C
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_ 1443
I = 12bh .
d?x(x, t) 4> P 3
7 = Vg 3 - )
PL
= yss(t)ﬁ
Solve for P at yield
PL Gyieldl
) — =
Yss(D 57 .
Oyi I
p= L Fr
]/ss(t)zL

Yss(t) from problem 3 has maximum value of 1.8 at t = 10 sec. Given numerical values in
the problem and using this maximum value of y(t) then P can be found from above.

I am not sure this is the correct approach to solve this.We did not have any practice or
examples on solving this type of vibration problem before. Need more time to study this

subject.
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2.11.7 Key solution for HW 10

Homework #10
EMA 545, Spring 2013

For all of these problems you may use Matlab or some other package to find the natural
frequencies and mode vectors and to mass normalize the mode vectors (if needed).

1.) Exercise 4.8 from Ginsberg. (Note: the spring constants are defined such that the
frequencies given are the natural frequencies that each spring-mass system would have if
it were attached to a rigid base. Notice that there is not a simple relationship between
those frequencies and the natural frequencies of the system as a whole.)

2.) Exercise 4.30 as given in the text. Repeat the analysis for k=2mg/L and graph that
response as well. (Questions to consider: What do you notice about the natural
frequencies of this system in each case? How does that affect the way the response
looks? Why?)

3.) Exercise 4.43 from Ginsberg. How does the time required to reach steady state
compare with t.=1/(¢,wy) for each mode, r=1,2,3?

4.) Exercise 4.47 from Ginsberg.
5.) (Covering material from Chapter 5)

A uniform rod of length L. and mass my is attached to a cart having mass m, by means of a
spring k. A viscous damper c¢ resists the motion of the cart.

\\ /;e
X
L2
k C
W
—_—000)
L2
/
m, RO

a.) Let F(t)=Re[Fexp(imt)], x(t) = Re[Xexp(iwt)] and B(t)=Re[Yexp(iot)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system is forced at
its natural frequencies ®=wm; and w=w,. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: m;=m,=1 kg, k=3 N/m, L=1 m,
09=9.81 m/s"2, and c=0.1 N-s/m.
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¢.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determine at what frequency m; acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: wcart = (k/mg)”2 ?

6.) Consider Exercise 3.45 and 3.46 in the text (you solved

this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for t
= 3n/w, to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending) f(t)
modeled after one of the pillars supporting the ERB, which —
have length L=40m, rectangular cross section with height h,
equal to the width b=h=0.6m, and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength =40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass m
be such that the natural frequency of the mass-spring system
is wp=0.2Hz. What is the amplitude of the force, P, such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).
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Exercise 4,8

v m, =100 4,1, =200, my=300 K
‘J ' k o - 90 W.=50 w.2b0reds
biar )= W 90, W
' -
Han ARy
= [M’l = [ 0o 200 O
(39, o (2] 300
YS k‘ ‘K. o
;.TM’ J [K] = {"lﬁ K.tk -ka
ks“ . o "’k‘l_ kt‘rk}
['96 -, 6 (1] 1 Io’
= “O 606 -5 X
b - o" -5 15.9
Divide all @puchioas by 100

[[£2- wniRe)~ ['1‘720’0“’1 o002t

4 - Soo0p

o 4,' 0
S Y151
15800-3w" 4>5 0
Char eq. (1600 -w"X(goO—:w"XISQOO- 3w)

~(c00) T (15800 -3w*) - (5000)*(fb00-cs*) =0

-

6 W-61(16>) i+ 153.84(10%)™ - €¢.€¢i0T) =0 =

w'=7817 2752,8, c.24.2

Set &, =t ¢ use first fwo es

TR E -y 00
(600 — W,
{ d + [cc,oa—zw“' -saoo]

—tl600
oL = te 00= "
Vra\

/600 £ @35 =

o

IR

~le00 +(6600-2e9°)b,,

Thus

|
w,=28.10redss, 14,3 = A

we= 952,17 ru(/S‘/ Ebt}=€—!§.7205 ‘}

wy =813 redos TT = {3058
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é«»c«se 4,30

72126 ,8.%6,2,=6,

be Ao L T8 8 6,
8, R & T, = £ art?
v =Usp U5,
ﬁ ﬁ Vip= 2k} ¢ b
N D, v L(8,-6,), 8,:L(8,-0)

Vsp=2 LLT[6.-8) ¢(8,-03")
= 4 LL‘[’G'-\«-zo,, +0"—26,8,-26,6;]
(ku)sp = KLY, (Kridgp = 2 kel™ a:,,>,,, Cbet
(Krv s’——/‘b ;(Kw‘s)SP (K,g)
s, =- Wl;." (4059 + Cos &, + Cosa.,)
(Ku) = (3\/»’ ) - m;i— ,S/—n,/a//y (K,,_),,_:(K.,s)’,_:m’g;

?6‘
LKl‘L)’r = (39,39-.) = 0 ?—(K‘L‘S)’/- = (kt 3)’,_

éev/ k£=0. 05»1;L
0.5s =—-©.o0F O ]

[K’] [KSr ] + [ k’l] "“')L[-O oS 9,60 -0,05
o -0.03 0.%7%

Evalutle wy 4 LF]  Scolmy Frcbor G vy 13(2)%
Setd 3% Ccﬂh? L FRDALY

Jaikial eonditions Eg'} io} ¢§j'§ i }N1/5 @L=0
Thas {13=0 ¢ T43=(OTLMITL] oF =0
Co«,abme-w‘wy s0ludior 7' /4 w;(ué)4 Sm[hél)
Sadis€y 1n 1teal apord i feor = 4 =0, B = )‘{J(o)/w/—
E(/a/uak 7 al ofiscrede {— Covem oﬁour&ﬂl‘mlvj
peciods © [nle [TlET $alto}r o)

m’l r;’l :’[071; 'Z] ) Rol—gﬁfoqj as &« L)“'o"dq
of (2)%4

327



2.11. HW10 CHAPTER 2. HW’S

HW 4.30 Solution
M.S. Allen
Spring 2013

Using the equations of motion and modal responses derived on the previous page, the
following Matlab code can then be used to find the transient response:

M = eye(3)/3; %*mL"2
K=[1-10; -12 -1; 0 -1 1]*0.05 + eye(3)*0.5; % Kspr + Kgrav

[phi,lam] = eig(K,M);
wns = sqrt(diag(lam));

% Sort & Normalize Eigenvectors to unity modal mass and Check
Orthogonality

[lam_sort, lam_indx] = sort(diag(lam));
wns = sqrt(lam_sort) % *sqrt(k/m)

phi_sort = (phi(:,lam_indx));

mu = phi_sort. "*M*phi_sort;

PHI = real(phi_sort*sgrt(inv(mu)))

check_orth = norm(PHI."*M*PHI-eye(size(phi)))

_0 = [0; O; 0];
d 0 = PHI*"*M*[0; 2; 0]-/wns % *m/k

= s |

t = [0:0.5:80];

q = PHI*[nd_O0(1)*sin(wns(1)*t);
nd_0(2)*sin(wns(2)*t);
nd_0(3)*sin(wns(3)*t)];

figure(l)

plot(t,q(l,:), t,q(2,:), t,9(3,:), "."); grid on;

xlabel ("time t*(k/m)”0"."5%); ylabel("Displacement (m)*k/m®);
legend("\theta_1", "\theta_ 2", "\theta_3");

title("Response to Initial Velocity in \theta 2%)

% To animate the solution

%{

figure(2)

for i1 = 1:1:length(t);
st = 50;

plot([-0.5 0.5].", [0 O0].","0:",[-0.7 0.7]-", [O 0]-","k");
line([-0.5 -0.5+10*sin(q(1,11)/st)].[0 -
10*cos(q(1,ii1)/st)],"LineWidth", 4); grid on;
line([O 0+10*sin(q(2,1i)/st)],[0 -10*cos(q(2,ii)/sf)], "LineWidth",
4); grid on;
line([0.5 0.5+10*sin(q(3,11)/sf)],[0 -
10*cos(q(3,i1)/sfF)], "LineWidth", 4); grid on;
xlabel ("X-position (*L)"); ylabel("Displacement (m)*k/m");
title(["Time (W/k)™0.5 = * num2str(t(ii))])
axis([-0.7 0.7 -12 2]);
movl(ii) = getframe(2);
end
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movie(movl,2,20)
%}

The natural frequencies and mode shapes are (only the first and third modes are excited):
wns =

1.2247
1.2845
1.3964
PHI =
-1 -1.2247 0.70711
-1 -7.4506e-09 -1.4142
-1 1.2247 0.70711

The response is given below for k=0.05 mg/L
Response to Initial Velocity in 0,

h

T
|
|
|
|
41 L
|
|
|
|
N
|
|
|
|
|

1.5

Displacement (m)*k/m
o

e [

time t*(k/m)°-

The response shows a beating phenomenon, since each bar is influenced by modes 1 and
3 and the modes’ frequencies are close (1.22 and 1.39 rad/s).

On the other hand, for k=2*mg/L, the natural frequencies differ by a factor of more than
three and the response does not look as simple:

wns =
1.2247
2.7386
4.4159
PHI =
-1 -1.2247 0.70711
-1 -1.2905e-08 -1.4142
-1 1.2247 0.70711
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Response to Initial Velocity in 0,

Displacement (m)*k/m

0 10 20 30 40 50 60 70 80
time t*(k/m)°->
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Exercise 4.43

600 400 200

M = 400 1200 O

200 0 800
Eigensolution

A = genvals(K,M)

¢

300 0 -200 500 300 -400
K := 1000 0 500 300 C:=| 300 900 600
-200 300 700 -400 600 1300

¢ = genvecs(K, M)

) { < T > \
submatrix \rsort\stack\A ,¢/,1),2,rows(A) + 1,1,rows(A)

A = sort(A) o = \/;

KT :[226.558845 308.438284 2.075003-103]

coT =(15.051872 17.562411 45.552199)
-0.586168 -0.806945 0.717
¢ =| 0.549759 -0.585395 -0.386503

ji=1.. A

-0.595123 -0.078432 -0.580109 ] rows(2)
. <j> <j>
©77 = iff ¢, 20, ¢ - ¢
. T . . T _
<j> <j> [ <> <j>
j‘<<¢ ! > ‘M-¢ ! >1,1 j <\¢ ! > ‘M-¢ ! >1,1
0.021637 0.023197 0.037332
® =[-0.020293 0.016828 -0.020124 q)T.M.q) - identity(rows(A)) =[0 0 0

0.021968 2.254691-10_3 -0.030205

Light damping approximation

C' = <1>T-C-<1>
0.053409  -0.052984  -0.413171
C' =|-0.052984  0.768463  2.49957-10°
-0.413171 2.49957-107°  3.428128
Cj -2 CT =[ 1.774153-107° 0.021878 0.037629 ]
Z-mj
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Unit cosine response from Appendix B

<(D Ilat2 _ (02) cos(w-t) +2-C-o ‘-sin(®-t) ...

nat

2 2 2
+—exp<—§-m nat't>' <m nat — @ > cos(m natdl - G t>>
C 2

1 -

+

2\ . 2
1O pat O Jsinfo a1 -0t

(]
Jx
)

Ctrans<t’°°’°)na‘t’c> = >
2) 4 2 2 2
®pat ~O ) TAL O @

Generalized force coefficents T
F:=(200 0 0)

Transient solution for modal coordinates when » = 16 rad/s:

4 1 2= [T max
Tmax = —F— At = Z‘m @ P:= Cell\ v
minl(C-w)) e
p=1.P tp =(p-1)-At P =4.344.10°
N p = q)l,j'Fl'ctrans<tp’16’(°j’cj> q=>m
0.005

Ghp 0
-0.005
t
p
0.01 T T T T T T T
q27p —
001 | | | | | | |
0 20 40 60 80 100 120 140 160
t
p
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| | | | | | |
.01 0 20 40 60 80 100 120 140 160

0.01 T T T T

300 302 304 306 308 310 312 314 316 318 320

T2n)

\ 16
Response seems to periodic at ®=16 rad/s after 300 forced cycles

300 21_2 — 117.809725
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Exercise 4.47

Ma|> 7 15.38
= O, = .
-3 4 1 ©, = 40.78
ool ! 1
11366 -0.366 5y = 0.08 g, = 0.08
j=1.2
. <j>
o> . ¢ 0.484057 0.359633
B ¢) —
ST 0.661222 -0.131626
<j> <>
j<¢ M¢ 1,1
50
Fe=| i
100 Q=20

-0.203556 + 6.975392i-10"°
-0.270729 + 0.0176391

Y:=®'X Y:
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2.12.1 problem description

Homework #A1
EMA 545, Spring 2013
Instructions:
e If you scored 23 or below on Problem #2 on Exam #1, do Problems 1, 2 and 3.
e If you scored 23 or below on Problem #4 on Exam #1, do Problems 4 and 5
e If neither of those criteria apply to you then you do not need to turn in this assignment.

When working out your solutions to the following problems, you must derive your answers
starting from the following. You may not use any equations from the book without first deriving
them from these basic principles:

The general solution to an underdamped SDOF system

X+ 20w %+ a,°x =0

x(t) = Re(Ae’@’"‘e"”ﬂ‘)

where @, = @,1-¢* and A is a complex constant.
You are free to use Appendix B as needed and the fact that the forced response of a system is
X(t) = X,c + Xe
Where xic and xg are found in Appendix B for a variety of forcing functions.
f(t)= Re(Fe“‘") S X)) = Re(Xe“"‘)

The half power points in a transfer function occur at frequencies ® = ®peaktCmn

Problem 1: 3.1 from Ginsberg. Begin by writing the equation of motion for T f(t)
the system (shown to the right after replacing z(t) with q(t)). L
z

Problem 2: 3.11 from Ginsberg. Begin by writing the equation of motion for
the system (shown to the right after replacing z(t) with x(t)).

Problem 3: (3e2)

The equations of motion for the 2DOF system studied in class are given

below. If the applied force is f(t)=Fcos(wt), then the response of both

coordinates x; and x, will also be harmonic. Use this fact to derive the transfer function between
the force F and the response X.

m 07](%) [2k —k][x 0
+ =
0 m|(%] [k k]||x f(t)
Problem 4: 2.52 from Ginsberg. Check your answer by comparing it to the solution from ode45
in Matlab.

Problem 5: 2.54 from Ginsberg. Choose values for the parameters and check your answer by
plotting the response and comparing it to the solution from ode45 in Matlab.
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2.12.2 problem1

A system has mass M = 20kg and w, = 100 rad/sec. It is observed that steady state
response is g = 20 cos(110t — 1.5) mm, where t is in seconds. Determine harmonic excitation
causing this response for ( = 0and { = 0.4

Let the harmonic excitation be .
F(t) = Re{Fe!)

where F is its complex amplitude. Also let
q= Re{Qeia)t}
be the steady state response. We are given that g = 20 x 1072 cos(110¢ — 1.5), therefore

q= Re[zo % 10—3ei(100t—1.5)}
= Re[20 x 103 15iil00t]

Therefore ‘
Q =20x107%e 1

But the transfer function for second order system is
0 = F 1
k(1-12)+2iCr

w .
where r = —, hence we can now solve for F from the above.

Wy

F= k(1 - ) + 2icr))

But k = Mw? hence

F = Q(Ma?((1-?) +2iCr))

When =0 we find

2
. . 110
EF=2 1—3—1.512 1 21_ e
0x107e [Ox 00( (100) D

=20 x 1073¢715/(—42000.0)
= —42000.0 x 20 x 1073715
= —840.0¢ 1
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Hence
F(t) = Re{Fei!
= Re{-840.0e7157i10}
= Re{-840.0¢/100-1:9)}
Therefore

F(t) = -840 cos(100¢ — 1.5)

When C =04 we find

F=Q(Ma?((1-r?) +2iCr))

2
, 110 110
— -3 ,-1.5i 2 _ 1
=20x107 (20 % 100 ((l (100) ] + 12(0.4)(100)]]

= 20 x 107%15(20 x 1002(-0.21 + 0.881))
= 4000e~1%(-0.21 + 0.88i)

a1 5
= 40006‘1'51'(\/ (0.21)% + (0.88)%¢ ™" (_0.21))

In[4] := ArcTan[-0.21, 0.88]

Out [4]= 1.80505

Hence
F = 4000e715/(0.90471¢11-50505)
— 3618.88_1'5i+1'80505i
= 3618.8¢9-30505
Therefore
F@t) = Re{ffei("t]
— Re{3618_830.30505iei110t}
= Re l3618.86i(100t+0'30505)}
Hence

F(t) = 3618.8 cos(100¢ + 0.30505)
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2.12.3 Problem 2
3.11 Measurement of the steady-state response gf
a one-degree-of-freedom system (o a harmonic
excitation Fcos(w?) indicates that at a frequengy
of 100 Hz, the response is x = 4sin(w?). It also is
observed that 105 Hz is a half-power point.

(a) Determine the phase lag of the response rela-
tive to the excitation at 105 Hz.

(b) Determine the amplitude and phase lag of the
response at 110 Hz.

Let
P(t) = Re{Fei!}

where F is the complex amplitude of the excitation. Hence by comparing this to P(t) =
F cos wt = Re{Fe®!} we see that F = F.

When w = 271100 then the response was g = Re[Qei“’t] = 4sin(271100¢) hence g
Q

= . n
Re{de 'zei®t} = g = Re{4ez(wt_5)} therefore

Q = 4e_if
But, from the transfer function of second order system we know that
F 1
k

Q= (1 —r2) + 2iCr
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Hence

= -2 (2.109)
271002 2 27100\
1~ (22 ) ()
By comparing sides we see that
u 2Cr
2 1-12
ZC271100
= 9 (2.110)

1- (27‘[100)2
wy,
When w = 105Hz we are told it is half power point, which means the amplitude there is
0.707 of the maximum amplitude which occurs when r = 1. Hence

1
0. 707— =

. \/ - @P) + L) \/(1—(@)2)2+(2C(2n105))2
o 1 (2.111)

) o)

We now have 2 equations 2.110{and 2.111|to solve numerically for  and w,, . Solving and
keeping the positive solutions results in

1

s

C =0.0309

w,, = 640.8 rad/sec

=101.987 Hz
Hence at w = 105 hz the phase is
5 2(0.0309) %
mﬁ% Cg):mﬂ- 6“5 — 133.305°
1-r _ (2n(105)
( 640.8 )

In[35]:= ArcTan[1 - ((2 Pi 105)/640.8)"2, 2 (0.0309) ((2 Pi 105)/640.8)]1%*180/Pi
Out [35]= 133.305
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2.12.3.1 Part(b)

When @ =100 Hz we found from Eq[2.109|that

F 1
4=

NN

But we found that w,, = 640.8 rad/sec and C = 0.0309, hence

N 2
E_ | (200 20,0309 2% 2
k 640.8 ' 640.8

= (0.28733
Atw =110Hz
=1 1
k 2\2 2
(1 (2n110) ) +(2C(2n110))
[ Wy
1
= (0.28733
1 (z1o 2 2+ 2(0.0309) 27110\
640.8 ) 640.8
=|1.6288
The phase is

27110
. ) | 2(0.0309)( 640’8)
= tan

2C
tan~!
(1—r2 1 _ (1o 2
640.8

In[37]:= ArcTan[1 - ((2 Pi 110)/640.8)"2, 2 (0.0309) ((2 Pi 110)/640.8)]*180/Pi
Out [37]= 157.798

= 157.798°

2.12.4 Problem 3

Problem 3: (3e2)
The equations of motion for the 2DOF system studied in class are given

below. If the applied force is f{f)=Fcos(ef). then the response of both
coordinates x; and x; will also be harmonic. Use this fact to derive the transfer function between
the force F and the response X;.

o ol S )
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The two equations are

mxy + 2kx; —kxy =0
mxy —kxy +kxy = f(t)

Since the responses are harmonic and the input is harmonic, then we can write

xl(t) = Re{f(lei‘”t}
x1(t) = RefX,elet}

Therefore the two equations can be written in terms of the complex amplitudes as

—maw?X; +2kX; - kX, =0 (2.112)
—mw?X, —kX; +kX, =F (2.113)
From Eq2.117
(—ma)z + Zk) .
T AiEX

Substitute the above into Eq[2.113|gives

, (—ma)z + Zk) A .
e %, ~ K% + &

)
( mw* + 2k) 5{1 _r
(—m2w4 - ma)ZZk)

2 +k—ma)2 Xle

N 1
X1 = kF
(—m2w4 — mw?2k + k% — kma)z)

Dividing the numerator and denominator of the RHS by k?, and using k* = w;im? and
. [
using r = —

Wn
< = F 1
1= E (—m2w4 3 maw?2 3 mwz)
w%mz (u,%m w%m
j F 1
' k(—r4—2r2+1—1'2)

Hence the transfer function is
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2.12.5 Problem 4

2.52
Sequei‘n lilrndamped. SYStem is subjected t
e © OI step excitations, Q1) = 100N it ¥
T w,., Q) = 200 Nif ¢t > 34/, : (')I‘h<
nat + 1101e

] kg and o = 5
nat O
the response. rad/s. Deter.

mine and graph

Summary of method of solution: There are 2 ways to solve these problem. We will solve
it using both methods. The first method is using known standard solution for step input,

the solution y(t) is found for the period of 0 < t < i—n using zero initial conditions. Next,
the solution y(t) and y’'(t) is evaluated again at t = Z—n These values are now used as the
initial conditions for the solution for t > (?;_n The solution for t > Z—n will have the same
form, but the step input now is 200N instead of 100N.

The second method as follows: Let F(t) = 100h(t) + 100h(t - i—::) or F(t) = 100h(t) + 100h(f)
where f = t- z—:, then assuming the transient solution to h(t) is s(f) then the solution to
F(t) is 100s(t) + 1005(?). The second method is simplet than the first method.

Solution using first method:

The system is

my” (t) + ky(t) = E(t)

When F(t) is a fixed input, such as a step input of magnitude F then the response is given

by

/

(t) = L t+ L0 t+E
y(t) = Yo — 7 | cos @y wnsmwn p

Where in the above, y, and yj are the initial position and initial velocity. For 0 < t < 1.5T,,
the solution is

t) = F t+F
y(t) = kcosa)n p

F
= %(1 — cos wy,t)
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Let F = Q; = 100N, and since k = mw? then the above becomes

3
y(t) = le(l —cosw,t) 0<t< on
mwp wy,
Now we need first to evaluate y(t = i—n) and y’(t = z—n) From the above

3
y'(t) = A Gnwpt 0<t<l
mawy Wy
Hence
3 3 2
1= 27 = g1 —coseny ) = gt —ees3m = e =
w, Maw? " mw3 Mmws mawy
and

Wy, mw, » mw,

y’(t = 3—n) = 2 sin(a)nS—n) = 2 sin(37) =0

Now let 7 = ¢ — Z“Hence the solution for 7 > 0 is

Wy

y(f) = (y(f = O) - &) cos w,f + M sinw,f + %

maw? w,,
(201 - Q
N30 cos wy,t + —
mw;  Moj k

Therefore, we have obtain the complete solution, which is

time solution
3w | Q1 _ 100 . _ B
0<t< o | (1 -cosw,t) = 5607 (1 — cos 50t) = 0.008(1 — cos 50t)
z_ ., 3m 200 @ -, Q2 _ (2000) 200 200
t=t o (mw% P )cos w,t+ = (5(50)2 5(50)2) w,t+ sl 0.016

This is a plot of the solution. Then a numerical ODE solver is used to verify the result
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-yl ] := Piecewise[{{{l.{){)ﬂ (1-Cos[50¢]), 0<t< %} [0.016, True}]»];

Plot[y[t], {t, 0, 0.8}, Exclusions &+ None,
PlotRange —+ {Automatic, {-0.001, 0.02}}, Axes0Origin —» {0, 0},

Frame &+ True, GridLines -+ Automatic, GridLinesStyle » LightGray,

FrameLabal &+ {{"y(t)", None}, {"time (sec)", "Analytical scluticn"}},

RotatelLabel + False]

Amnalytical solution

00— 7
0015F ) f 1
r II II |I
L |1 |
| |
3 | | |
[ '
i }-I’t} 0.010 || II || —
. l |I
Fo | |
oo | |
0.005 | b :
- |
- I| II |I
L || I. II
0.000 -/ Y 1
0.0 02 04 0.6 08
time (sec)

Now a numerical ODE solver was used to verify. Here is the result
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: force[t ?HNumericQ] :=

3.m
Piecewise[{{lﬂﬂ, 0K EQ } {200, True}, {0, t< {]}H;

foraae[t]
ode = ¥y [t]_ +50A2Y[t] = T’;

sol = NDSolve[{ode, y[0] =0, y'[0] =0}, y, {t, 0, 0.8}];

: Plot[Evaluate[y[t] /. =o0l], {t, 0, 0.8}, Exclusion= + None,
PlotRange & {Automatiec, {-0.001, 0.02}}, AxesOrigin -+ {0, 0},
Frames —+ True, GridLines + Automatic, GridLinesStyle + LightGray,

FrameLabel —»

{{"y(t)", None}, {"time (=sec)", "Numerical ODE solver solution"}},

RotateLabel &+ False]

Numernical ODE solver solution

I}Dz"} T T T T T T T T T T T
=T 8 f
0.015 i II.' II'| f -
(B |I
'S |
| | |
I| |I I|
i) 0010} 1 H
II |I II
B | |I
0005 || 1
I | |
| 1 |
I 1 |
| |
L/ \ /
0.000 -/ W -
0.0 02 04 0.6 0.8
time {sec)

We can see the solutions match very well.
Solution using second method:
Let F(t) = 100h(t) + 100h(t - i—n) then assuming the transient solution to h(t) is s(t) then

the solution to F(t) is 100s(t) + 100s(t - Z—n)h(t - z_n) From appendix B, the solution to h(t)

is given by
(1 - cosw,t)

s(t) =
®) e
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hence the solution to F(t) = 100k(t) + 100h(t - S)—n) is

y(t) = 100s(t) + 1005(t - i—n)h(t - 3_”)

n a)Tl

100 100 3n 3n
= 5(1 —coswyt) + — |1 - cosw,|t - —||h|t - —
mw3 mw3 w,, w,,

To verity, this is a plot of the above solution. We see it is the same as the first analytical
solution, and it is the same solution as the one using numerical ODE solver as well.

100 -
t 4= - Cos[wn t +
whE 1 e [wn £])
100 3 3o
(l—Ccs[wn(t——)])UnitStep[t— —]
mwn”®2 50 50

Plot[Evaluate[y[t] /. {m—+ 5, wn > 50}], {t, 0, 0.8},
PlotRange —+ {Automatic, {-0.001, 0.02}}, Exclusicons + None,

AxesOrigin —+ {0, 0}, Frame » True, GridLines - Automatic,

GridLinesStyle &+ LightGray,
FrameLabel &+ {{"y(t) ", None}, {"time (sec)", "Analytical solution"}},

RotateLabel &+ Fal=se]

Analytical solution

0.020 —— ——
o01sf / .
o |I I| |I
Jri f
| |
| | |
II I| I
¥it) 0,010 | || || II -
| | |I
| | |
Lo | |
0,005 | IJ ll II E
o ']
II I| I
| Wi
0.000 -/ Uil -
0.0 02 0.4 0.6 08
time {sec)
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2.12.6 Problem 5

(o roll off €Xponenti ' iy iy
l())g E<T,Q00)=F
€TIVE an expression fo

The input can be written as Foh(t) — Foh(t — T) + Foe #*=Dh(t — T) or, by letting 7 = ¢t — T, the
input becomes
Foh(t) - Foh(F) + Foe Ph(F)

If the response to h(t) is s(t) and the response to e Pliss, (T) then the response to the above
becomes

Fust®) ~ Fos(E)A(E) + Fosa (FJn(D)

From appendix B, we see that

s(t) =

1 - cosw,t
ooyl )

and

() = ;)(e_ﬁz . (cos(wn'f) + L in wn?))h(?)

m(a),% + [32 n
Therefore the the final response is

y(t) = Foh(t) = Foh(F) + Foe Ph(F)
1
mw?

1 . I
Pom(e pt (COS(a)nt) + w—n sin a)nt))h(t)

1
(1 — cos w,t)h(t) — Fy

=F
0 maw?

(1 - cos a)n?)h(?)+

1

) (1 = cos(w,,(t = T)))h(t — T)+

5(1 = cosw,t) = Fy
n

=F 1
B Oma)

S— 5,
Fow(e Bt-T) _ (COS(a)n(t -7T)+ o sinw,,(t - T)))h(t -7
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To plot this, we need to choose values for parameters. Let Fy = 100, w,, = 50rad/ sec, m =

5kg,p =1,T =1, then a plot of the above is below, followed by solution from numerical
ODE solver.

Plot of the analytical solution

f0
ylt ] := >
™m Whn
£0
m (wn® %)
UnitStep[t - T]
parms = {T»+1, A—+1, wn->50, m»5, £0 » 100} ;
Plot[Evaluate[y[t] /. parm=], {t, 0, 3}, Exclusion= + None,

(1 -Cos[wn £]) - 5 (l-Cos[wn (t-T)]) UnitStep[t - T] +

B
Exp[-8 (t-T)}] - (Cos[wn (t-T)] - — Sin[wn {E—T]I))

WL

PlotRange + All, AxesOrigin —» {0, 0}, Frame &+ True, GridLines + Automatic,
GridLinesStyle &+ LightGray,

FrameLabel & {{"y(t)"., None}, {"time (sec)", "analytical sclution"}}.,
RotatelLabel -+ False]

analytical solution

ﬁ.mailﬂ' b
||| ||||| |||f
a.m:HHHH \|\|\|_ﬂ|n|~r|p | _
'|||||'|||||||”|||||I' 1m
ow:|||‘|l||||h|"|l|'||||"|\'I||"|||“|'|'||'|'Hi"
Mm“ |u\ i l||l.u|“‘ ||‘ ||||| ‘||||‘|| ‘|||
—0.005 |- l”‘h ||J| |'| U ||i| ‘U || \H ‘H|||

time {sec)

To verify, this is the result from numerical ODE solver
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Clear[t, y¥]
T=1; B=1; wvn=50; m=5; £0 = 100;
forece[t 2?NumeriecQ] :=
Piecewise[{{f0, 0 £ £t < T}, {fO0Exp[-B8 (£-T)] UnitStep[t-T], True}}];
5 force[t]
ode = y''[t] +wn’y[t] = ———;
30l = NDSolve[{ode, y[0] =0, v"[0] =0}, v, {t, O, 3}];
Plot [Evaluate[y[t] /. sol], {t, 0, 3}, Exclusions - None,
PlotRange -+ All, AxesOrigin -+ {0, 0}, Frame + True, GridLines -+ Autcmatic,
GridLinesStyle » LightGray,
FrameLabel -
{{"v(t)", None}, {"time (sec)", "Numerical ODE sclwver sclution"}},

RotateLabel —+ False]

MNumerical ODE solver solution

il ;

0.010 \

]
T

. it} 0.00:

|
mJ\J DL
UL 1]

We can see that the solutions agree.
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2.12.7 Key solution for HW A1l

Homework #A1
EMA 545, Spring 2013
Instructions:
e If you scored 23 or below on Problem #2 on Exam #1, do Problems 1, 2 and 3.
e If you scored 23 or below on Problem #4 on Exam #1, do Problems 4 and 5
e If neither of those criteria apply to you then you do not need to turn in this assignment.

When working out your solutions to the following problems, you must derive your answers
starting from the following. You may not use any equations from the book without first deriving
them from these basic principles:

The general solution to an underdamped SDOF system

X+ 20w %+ a,°x =0

x(t) = Re(Ae’g”’"‘e"”ﬂ‘)

where @, = @,1-¢* and A is a complex constant.
You are free to use Appendix B as needed and the fact that the forced response of a system is
X(t) = X,c +Xe
Where xic and xg are found in Appendix B for a variety of forcing functions.
f(t)= Re(Fe“‘") S X)) = Re(Xe“”‘)

The half power points in a transfer function occur at frequencies ® = ®peaktCmn

Problem 1: 3.1 from Ginsberg. Begin by writing the equation of motion for T f(t)
the system (shown to the right after replacing z(t) with q(t)). L
z

Problem 2: 3.11 from Ginsberg. Begin by writing the equation of motion for
the system (shown to the right after replacing z(t) with x(t)).

Problem 3: (3e2)

The equations of motion for the 2DOF system studied in class are given

below. If the applied force is f(t)=Fcos(wt), then the response of both

coordinates x; and x, will also be harmonic. Use this fact to derive the transfer function between
the force F and the response X.

m 07](%) [2k —k][x 0
+ =
0 m|(%] [k k]||x f(t)
Problem 4: 2.52 from Ginsberg. Check your answer by comparing it to the solution from ode45
in Matlab.

Problem 5: 2.54 from Ginsberg. Choose values for the parameters and check your answer by
plotting the response and comparing it to the solution from ode45 in Matlab.

352



2.12. HWA1 CHAPTER 2. HW’S

Exercis= 3.1

M= R0 kg, way =100 vad 5 = fsMuay = 205 IN/m
2 = 0.0 cos(110b=15 ) meler
= Ko CO, 02 e‘;(“"*"'ﬂ‘)] W=)1p radss
QU§) = M3 +C g tkg
Re [(= Mw + Ciwtk )(0.02)e (W ))
Wt € CAM = LG Wagp, S0

M Re [(— Wt ad @ Wyap W -c-uJ,‘J)(lo,oz)
x 'e'((u)t'-hS)]

Q=20 R [-42a o (Cuot -/.3)]
— = -840 Cos(i1ob-1.5) rtw vy,
For ¥e0.4 $w=1/0 rad/s!
: < t-1.%
@ =0 (3 [("2(0,9 f99000)60.02)¢ (o ! )J
= R [®40+3520() 6;(1109-113)]
= Re [3 etaer loeoS/e'a(uot-w,c)
= = 236(9 aos (ot ip 305/)

(R
o

Buf
QR (t)

' £

WA-)
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L xercese 2,54

] Q = F;&(e)-w-ﬂ]
) \ + Fo expf-p(t-T) h(t-T7)

o - M?f&; :O Awame;(o)zé(a)so

Led u Le #\eomulsl(p regponu ?ad éc %«nz/
e xporeatial res3ponse , T4en
2 =f ult)- £, wul(€-T) + £ =(¢- 1)
whore o (#)= *—'11‘“’4.2' (- cosluw, , t) Th(¢)
!

Mo —2me ql ,_ﬁ-,){e"/’("“f)
- [wa(w...,(') —;;’ Sta et ”]} hie

[0 ¢

#(t) =

357



2.13. HW11 CHAPTER 2. HW’S

2.13 HW11

Local contents

2.13.1 problemdescription . ... .. ... ... ... ... o oL 329
2132 problem 1 . . . .. ... B62]
2.13.3 Problem?2 . . . . . .. e 364
2.13.4 Problem 3 . . . . . ... B77]
2135 Keysolutionfor HW 11 . ... ... ... .. ... ... .. .. ...... 387

358



2.13. HW11 CHAPTER 2. HW’S

2.13.1 problem description

Homework #11
EMA 545, Spring 2013

Problem 1.)

Consider the N-DOF system modeled by the system of equations

[vJigh+[cla}+ [k Jia) = {o}

with [C] matrix given by:

261t 0 0o - 0
0 26,5
[c]=[M]@] o 0 [@] [a].
: . 0
0 0 Zoywy

[f we transform to normal coordinates using {q} = [cb]{r] } show that the N-coupled
equations transform into N uncoupled differential equations of'the form

: 2 \T . .
M +28 ;0 +win; = {d)” o} j=LN
Problem 2.)

The 5-DOF system shown below can be thought of as a lumped-element approximation of a
fixed-free elastic bar. (This is similar to Example Problem 4.4, which treats a fixed-fixed
bar, and similar to example problem 7.2, where the exact solution is derived.)

K, k, ks K, ks

E(t)
~

In parallel with each of the springs k; which are drawn, there are viscous dampers ¢; which
are not shown. The equations of motion for this system are easily found to be:

[m]X+[c]x+[k]x =F
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where [m] is a diagonal matrix having entries m;, and [k] is the banded matrix:

(k1+k2) X2 0 0 0
k2 (k2+k3) k3 0 0
0 K3 (kK3+kd) k4 0

0 0 k4 (k4+k3) kS

0 0 0 &S k5

The damping matrix has the same form as [k|, but with viscous damping coefficients ¢; in
place of stitfhess coefficients k;. The forecing vector F is a 5 by | vector of zeros, except for
the last entry: F=[0 0 0 O F()]~

The numerical value for k, through ks 1s 1 N/m, the numerical value of k; =2 N/m, the
numerical value for m; through ms is 1 kg, and the numerical values for the viscous damping
coefficients ¢; = 0.1%k; , =1,5 (in units of N-s/m).

(a) Find the natural frequencies and mass-normalized modes of the system.

(b) Find the magnitude and phase of the steady-state response xs(t) assuming the forcing to
be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*ws. Plot the
magnitude and phase of the response, clearly indicating the location of the natural
frequencies.

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C]
matrix that gives 2% modal damping to each mode. Overlay the frequency response of
this system with that which you found in (b).

(d) Compare your answer for part (c) to that obtained using a structural damping model and
a loss factor of y=0.04.

(You will need the following to compare this problem with problem 3 below.) As discussed in
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters
EA and L are as follows: kj= N*EA/L, i=2,N where N is the number of masses. The spring
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness
twice as high, k; = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N:
m; = pAL/N, where p is the mass density of the bar.
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Problem 3.) (40 points)

Use a three-term Ritz series to predict the first 3 natural frequencies and natural modes of a
fixed-free bar of length L, elastic modulus E, and constant cross-sectional area A.

(5 pts) a.) Use the potential and kinetic energy expressions in the book (eg. 6.1.1 and 6.1.2) to
derive the expressions for the mass and stiffness matrices in eq. 6.1.11 and 6.1.13.

(5 pts) b.) Use the following Ritz basis functions to find the 3x3 mass and stiffness matrices:

yi(x)=x/L, yr(x)= (A'/’L)z ,and y3(x)= (.\‘/L)3

Hint: Use the pattern described in Example Problem 6.1. In that problem, a uniform bar that
1s fixed at x=0 1s studied; however, in that problem, there is an extra spring and dashpot at
the right end of the bar, x=L.. Note also that Example Problem 6.1 uses a different set of
basis functions.

(10 pts) c.) Repeat the analysis using the following basis functions. | suggest using a computer
package to estimate the numerical terms in the mass and stiffness matrices.

Wn:SinEanﬁj' an:(zn_lj”! n:1,2;3
L 2

What do you notice about the M and K matrices using this set of basis functions?

(10 pts) d.) Compare the natural frequencies obtained parts (b) and (c) of this problem with
those obtained in Problem 2.  (Use the relationships given in the problem statement above to
find EAJ/L and pAL values that agree with those used in problem 2.)

(10 pts) e.) Generate a plot of the mode shapes of the systems based on the models in (b) and
(c), and also overlay the mode shapes obtained in problem 2. How do the three sets of results
compare?
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2.13.2 problem1

Problem 1.)
Consider the N-DOF system modeled by the system of equations

[M]{"f}"' [(]{fj}"' [}*] g} =10}

with [C] matrix given by:

[ 2610 0 0 - 0
0 El_:‘_;wz
[c]=[m]®] o o P[] [
. : "
L 0 0 2-:‘1\;0)3’-' ]

If we transform to normal coordinates using g | = [@]{n} , show that the N-coupled
equations transform mto N uncoupled differential equations of the form

n +_5J,mj-;j+w_§nf @J]T‘ i=LN

The columns of matrix [®] are orthogonal w.r.t to the mass matrix. Hence the following
two relations will be assumed as given in the derivation that follows

100
[@]" MI[®] =0 - 0 (2.114)
001
w? 0 0
[@"[KlI®]=|0 - o0
0 0 wf

Starting with the coupled EOM given, which is

IMI{g”} + [Clfg’} + [K]{q} = {Q)

Since {q] = [(IJ][ } then{ ] [(D][ }and{ ] [CD]{ } Substituting these in the above
EOM gives

[MI[@]{n”} + [ClI@]{n'} + [KI[@]{n} = (Q}
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premultiplying by [@]" both the LHS and RHS results in
(@] MI[@]{n"} + [@]"[Cl[®{r'} + [@] [KI[@]{n} = [®]"(Q)

Using Eq 8.1 the above simplifies to

10 0 w? 0 0
0 ~ o|fy’}+ @I cnely}+o - o | =@l
00 1 0 0 wf

Replacing [C] by the expression given in the problem description, the above becomes

1 0 0 w? 0 0 —a)% 0 0
0 - olfp’}+@'| M@0 - o |[@'MI|[@y}+]o - o |[n}=1e]"Q)
001 0 0 wf 0 0 wf

10 0 I 2C1a)1 0 —w% 0 0
1)+ [o) [MI[@ @' MI@)r}+| 0 ~ o |[n)=[®]"(Q)
0 0 1 0 2chN 0 0 g

Since [CD]T[M] [®] is the identity matrix, then the above reduces to

1 00 2Giw; 00 w? 0 0
o~ offr’}+| o - o |fw}+]o - o|f)=le1"Q)

This is decoupled OEM since there is no coupling in the mass matrix, and no coupling in
the damping matrix and no coupling in the stiffness matrix.

QED
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2.13.3 Problem 2

Problem 2.)

The 5-DOF system shown below can be thought of as a lumped-clement approximation of a
fixed-free elastic bar. (This is similar to Example Problem 4.4, which treats a fixed-fixed
bar, and similar to example problem 7.2, where the exact solution 1s derived.)

X,

]

el e o P

I Y ey meba— mof | ms]—

A K ks k, k, k- F(t)
-

In parallel with each of the springs k; which are drawn, there are viscous dampers ¢; which
are not shown. The equations of motion for this system are easily found to be:

[m]g+[c]x +[k]x=F

where [m] is a diagonal matrix having entries mj, and [k] is the banded matrix:

kl+k2) k2 0 0 0
£ (k2+k3) &3 0 0
0 K3 (k3+kd) k4 0

0 0 k4 (k4+kS) k5

0 0 0 &5 k5

The dampmyg miatrix has the same fomm as [K], but with viscous damping coellicients ¢ in
place of stiffiess coefficients ki, The forcing vector F is a 5 by 1 vector of zeros, except for
the last entry: F=[0 0 0 0 F(n]-.

The numerical value for ks through ks is 1 N/m, the numerical value of k; =2 N/m, the
numerical value for my through ms is 1 kg, and the numerical values for the viscous damping
coeflicients ¢; = 0.1%k; , 1=1,5 (in units of N-s/m).

(a) Find the natural frequencies and mass-normalized modes of the system.

(b) Find the magnitude and phase of the steady-state response xs(t) assuming the foreing to
be harmonie, with amplitude 1 N and with a frequency from 0 to 1.2%®s. Plot the
magnitude and phase of the response, clearly indicating the location of the natural
frequencies.

(c) Repeat the analysis in (b). but use the strategy desecribed in Problem 1 to create a [C]
matrix that gives 2% modal damping to each mode. Overlay the frequency response of
this system with that which you found in (b).

(d) Compare your answer for part (c) to that obtained using a structural damping model and
a loss factor of y=0.04.

(You will need the following to compare this problem with problem 3 below.) As discussed in
Example Problem 4 4, the relationship between the lumped spring stiffnesses and the parameters
EA and L are as follows: kj= N*EA/L. =2.N where N 1s the number of masses. The spring
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness
twice as high, k; = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N:
m;= pAL/N, where p is the mass density of the bar.
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EOM is
mi 0 0 0 O||*X| |eg+c, -c 0 0 0 |]|x]
0 my 0 0 0]|x) -, G+ —C3 0 0 [[x5
0 0 mg 0 ORxyp+| O —C3 C3+C4 —C4 0 95+
0 0 0 my O]f|xf 0 0 —cy Cy+c5 —C5||x)
_O 0 0 0 ms||xy 0 0 0 —C5 Cs [|x5
K +k, ks 0 0 0 |[x 0
—ky  ky+ks —k3 0 0 ||x 0
0 -k  kz3+ky k4 0 Razp=4 0
0 0 —ky  ky+ks —ks||xg 0
0 0 0 —ks ks ||xs F(t)

substituting the numerical values gives ¢; = 0.2,¢; = 0.1,i = 2,5, hence EOM becomes

100 0 o]|™ (3 10 o o[ [3 4 0 o o]|n 0
010 0 o] -1 2 -1 0 ofl*2| [-1 2 -1 0 o0][x 0
00100x§’+11—00—12—10x§,+0—12—10x3:O
0001 0|l 0 0 -1 2 -1||y| [0 0 -1 2 “flx 0
0000 1y 0 0 0 -1 1flx| [0 0 0 1 1]x] [F®

2.13.3.1 part(a)

Natural frequency and mass normalized modes are found by solving the eigenvalue
problem to find the natural frequencies and the mass normalized modes.

K=[3-1000;-12-100;0-12-10;00-12-1;000 -1 1]
M=diag(ones(5,1));

[phi,omegal=eig(K,M);

omega = sqrt(diag(omega));

365



2.13. HW11

CHAPTER 2. HW’S

[©]

2.13.3.2 Part(b)

[_0.0989

w

—-0.2871

0.2871
0.6247

-0.4472 0.4472

-0.5635 -0.0989
-0.6247 -0.5635
{0.3129,0.9080,1.4142,1.7820,1.9754} rad /sec

—-0.4472
-0.4472  0.0989

0.4472
0.4472

—-0.5635

0.4472
—-0.6247

-0.4472 0.2871

= {0.0498, 0.1445, 0.225,0.284,0.314} hz

in modal coordinates, EOM is decoupled to become

1"} + (@' [Cl@] '} + [@] [Kl[@]{n} = [@]"

-0.0000
-0.0000
0.2000
-0.0000
0.0000

-0.0000
-0.0000
2.0000
-0.0000
0.0000

EDU>> C = 0.1x%K;
C = phi.'*C*phi
K = phi.'*Kxphi
syms f(t);
F = zeros(5,1); F(5)=1;
F = phi.'*F
C =
0.0098 0.0000
0.0000 0.0824
-0.0000 -0.0000
0.0000 0.0000
0.0000 -0.0000
K =
0.0979 0.0000
0.0000 0.8244
-0.0000 -0.0000
0.0000 0.0000
0.0000 0
F =
-0.6247
-0.5635
-0.4472

.0000
.0000
.0000
.3176
.0000

.0000
.0000
.0000
.1756
.0000
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.0000
.0000
.0000
.3902

.0000
.0000
.0000
.0000
.9021

~0.6247|
0.5635
~0.4472
0.2871
~0.0989]

o o O

F(t)
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0.2871
-0.0989

Hence EOM in modal coordinates is

M| Joooo8 o 0o 0 0o ||m
2 0 00824 0 0 0 ||
[sn5'¢+| O 0 02 0 0 [mhe+

ny 0 0 0 03176 0 ||n,
Y 0 0 0 0 03902y

00979 0 0 0 0 ||m| |-0-6247F(t)

0 08244 0 0 0 |[[m ~0.5635F(t)

0 0 2 0 0 Knap=1{-04472F()

0 0 03175% 0 ||n, 0.2871F(t)

0 0 0 0 3.9021 ns —0.0989F(#)

Where in the above F(t) = cos(@t) with @ being the forcing frequency in the range 0 to
1.2ws where ws = 1.9754 rad/sec.

Since the equations are now decoupled, the 5% equation can solved on its own

n¥ +0.3902n; + 3.902175 = Re{-0.0989¢" |

Assuming 15(t) = Re{Xeifo} and substituting in the above and simplifying gives

(—@2 +i©0.3902 + 3.9021)X = -0.0989
- ~0.0989
T -2 +i©0.3902 + 3.9021

Hence

—-0.0989 ,
R R

“o? + i00.3902 + 3.9021 "
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Similarly, all other 7;,i = 1,5 are found.

m
M2
N3¢ = Re
T4
M5

Hence

-0.6247

—@2+i©0.0098+0.0979
-0.5635

-@%+i®0.0824+0.8244

-0.4472
-2 +i0.2+2
0.2871
-@?+i00.3176+3.176

-0.0989

-2 +i®0.3902+3.9021

eia)t

and the solution in physical coordinates is now found from {x} = [CD]{n}. Hence

a1

x5 = 3,9(5,7)n()

@(5, i) Re{X (i)'}

Il
‘N ~.
Mm Il
—

Re( CD 5,] X(])el@t)

(~0.6247)(~0.6247)

(~0.5635)(~0.5635)

(~0.4472)(~0.4472)

—@2+i©0.0098+0.0979
=Re
(0.2871)0.2871

—@%+i0.0824+0.8244
(~0.0989)(~0.0989)

—@2%+i00.2+2

0.39025

-@%+i®0.3176+3.176

—@%+i®0.3902+3.9021

0.08243

0.31753

—®240.0098i0+0.098
= Re
0.00978

-@240.3178i0+3.176

0.19999

Therefore

-@2+0.3902i9+3.9021

-@2+0.2i0+2

X5 = Re(Y5€iCDt)

where

0.390 25

0.08243

—@2+0.0824i0+0.8244

Re[ 0.6247X(t) - 0.5635X,(t) — 0.4472X5(t) + 0.2871X,(#) - 0.0989X5(t))e®! |

eicat

iot

0.31753

Y: =
5= 252 +0.0098i0 + 0.098

—o? +03178i0 + 3176

0.00978

“o? + 0.0824i0 + 0.8244

0.19999

: +
—-@% + 0.3902i® + 3.9021

—-@% 4+ 0.2i0 + 2

Here is a plot of the magnitude spectrum of Y5 and the phase spectrum for the range of
@ of 0 to 1.2ws. This shows that x5(t) response will have the largest magnitude when the

368



2.13. HW11 CHAPTER 2. HW’S

forcing frequency coincides with the first natural frequency (the fundamental frequency).
In otherwords when @ = w;.

The amplitude of xs5(t) at resonance is smaller for the remaining 4 natural frequencies.
For higher order natural frequencies, resonances at those frequencies produces lower
amplitudes than lower order natural frequencies.

Maznitude spactrom x5 (L)
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15F || | 4
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[ I
1o r 4 4
Pl b
¥l IIII |I 1
il \
P |III
— | o
\ /A
\ ! 4
i TR e —
|| R e B LN — el P — ——
o o iy [ YR FT
1 1 1 1 1
0.0 0.5 1.0 1.5 2.0
foaring Fequency mad/sac
Phase spactim x5 (t)
] m s T —§ T T B | T .
L b o w3 Wy g
F |
L ~
- Il b1
i [ )
=50 f i 1
ER 7 B
=] |
& |
= | |
P I [
= —100| | | -
1 Pl
= - | [
i | ' R
| \ o 0
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-130 | |l|I I"-.\ r \H._ e ]
\ y _ M"‘h._____
1 o 1 1 AR A v
0.0 0.5 1.0 1.5 2.0
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2.13.3.3 part(c)
Using (; = C = 0.02 for i = 1,5 the EOM is

m w, 0 0 0 offm] |#f 0 0 0 0f(n) (-0.6247F(t)
ny 0 w, 0 0 Of|lny| |0 w3 0 0 0]fn ~0.5635F(t)
Iy +20/0 0 w3 0 ORmt+|0 0 w2 0 0 [nsy=1-04472F(t)
i 00 0 w Of[m| [0 0 0 w2 of|lm 0.2871F(f)
nY 000 0 0 wsflig) |0 0 o0 o0 w2lns)] |-0-0989E()

Hence the solution ’
T]] = Re{Xjel‘Dt}

where now

X. =
'@+ 2iCow; + wf
Hence, since w = {0.3129,0.9080,1.4142,1.7820,1.9754} the solutions in modal coordinates

1S

~0.6247
—22+2i0(0.02)(0.3129)+0.0979
n ~0.5635
Ny —22+2i(0.02)(0.9080) +0.8244
~0.4472 -
_ it
M =Re|\ Zooomaamz (€
T4 0.2871
—22+2i0(0.02)(1.7820)+3.176
75

-0.0989
-@2+2i(0.02)(1.9754)+3.9021
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and the solution in physical coordinates is now found from {x} = [(D][n}. Hence

X5 = Z@(S 7)nG)

‘\.
,_x

5
= 3 0(5,j) Re[X (e
j=1
= Re( CD 5 ,J X(])el@t
= Re[ 0.6247X (F) - 0.5635X,(t) — 0.4472X5(t) + 0.2871X4(F) - 0.0989X5(£))e’" |
(-0.6247)(~0.6247) (-0.5635)(~0.5635) (-0.4472)(-0.4472)
R —@2+2i®(0.02)(0.3129)+0.0979 = -@2+2i(0.02)(0.9080)+0.8244 = —@2+2i(0.02)(1.4142)+2 o
= Re e
(0.2871)0.2871 (~0.0989)(~0.0989)
-2 +2i@(0.02)(1.7820)+3.176 ~ —@2+2i(0.02)(1.9754)+3.9021
0.39025 + 0.31753 + 0.19999
—@241.2516x1072i0+0.0979 = -@%+0.03632i0+0.8244 = —@2+5.656 8x10~2i®+2.0 .
=Re et
8.242 6x1072 + 9.7812x1073
-@240.07128i0+3.176 = —@2+7.901 6x10~2i0+3.902 1
Therefore _
X5 = RG(Y5€ZCDt)
where
0.39025 0.31753 0.19999

Y5 = ; + ; + , +
—-@?%4+1.2516 X 102i® + 0.0979 -2 + 0.03632i® + 0.8244 -2 + 5.656 8 X 102i® + 2.0

8.2426 x 1072 s 9.7812 x 1073
-2+ 0.07128i® + 3176  —@2 + 7.9016 x 10~2i® + 3.9021

Here is a plot of the magnitude spectrum of Y5 and the phase spectrum for the range of
@ of 0 to 1.2ws for both part(b) and (c) on the same plot
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15 ' l -
|
|
|
1 J‘.f | ¢ =2%
/|
2 f I Original C
.’;_ /’ \ -7 pate
= / '\I ] — partb
— 't‘
\\

foacing Saquency rad/sec

When C = 2% was used, the resonance is seen to be higher (part ¢) compared to part (b).

Here is a full range plot of the above.

Magnitude spactrom x5 ()

8O

|¥5 | pauts 5]

[
I

1 __,// \ |

— e
@3

--- partc
g

0.0 0.5 10 15
Suing Sequency 1ed/se

Comparing the phase between part(b) and (c) gives
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] i / \
H ;E||I II‘I::
R —

I L L
(L] 0.5 10 15 10
forcing fequency rmd)sac

Which shows the effect on the phase spectrum.

2.13.3.4 Part (d)

In structural damping, the damping force is proportional to the elastic force. For example
given an EOM my” + cy’ + ky = f, and converting to frequency domain to obtain transfer
function

F
Y =
—@’m+ico® + k

Then structural damping implies replacing co with yk in the above, giving

F F
Y = - =
—@*m+iyk+k  —@2m+ (1+iy)k

The above method is now applied to the EOM given, and the resulting transfer function
for x5 is compared to the last results in order to see the effect of using structural damping
on the response. The eigenvalue problem was solved in part (a) where the result was

[®] =

[_0.0989

—-0.2871
—-0.4472

0.2871
0.6247
0.4472

—-0.4472
—-0.4472
0.4472

—-0.5635

—-0.0989 0.4472

—-0.5635
0.0989
0.4472

—-0.6247

-0.6247

-0.5635

-0.4472 0.2871

w ={0.3129,0.9080,1.4142,1.7820,1.9754}
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Hence the modal EOM is now

n 00979 0 0 0 o ||m| [-0.6247F(t)
m 0 08244 0 0 0 |[|™ ~0.5635F(t)
[Rny e+ (1+iy)| 0 0 2 0 0 Rnst=1{-04472F()
i 0 0 03175 0 |[n, 0.2871F(t)
nY 0 0 0 0 3.9021 | n —0.0989F(+)

Hence the steady state solution now in modal coordinates is Hence the solution
;= Re{X]-ei‘Dt}

where now
Fj
X]': -
-@% + (1 + 1y )w?
24 (1+iy)of

The solutions in modal coordinates are (where y = 0.04)

-0.6247
—@2+(1+iy)0.0979
M -0.5635
mn —@2+(1+iy)0.8244
-0.4472 o
Ms( = Re —@2+(1+iy)2 €
T4 0.2871
s —@2+(1+iy)3.176
-0.0989
—@2+(1+iy)3.9021
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and the solution in physical coordinates is now found from {x} = [(D][n}. Hence

j=1
5
= 3 0(5,j) Re[X (e
j=1
5 .
= Re( D(5, /) X (e
j=1
= Re[(<0.6247X; (t) - 0.5635X,(t) — 0.4472X5(F) + 0.2871X,(t) — 0.0989X5(t))e’! |
0.39025 0.31753 0.19999
—@2+(1+4i)0.0979  -@?+(1+iy)0.8244 -2+ (1+iy)2
=Re elot
8.2426x1072 9.7812x1073
—@2+(1+iy)3.176  —@?+(1+iy)3.9021
Therefore _
X5 = Re(Y5€ZCDt)
where
0.39025 0.31753 0.19999

. (1 +y)0.0979 Tt (1 +iy)0.8244 Jn (1+ iy)2+

8.2426 x 1072

9.7812 x 1073

~@? + (1 +iy)3176 s (1 +iy)3.9021

Here is a plot of the magnitude spectrum of Y5 and the phase spectrum for the range of
@ of 0 to 1.2ws using the above transfer function, and superimposed on top of part (c).

The magnitude spectrum is identical and

no difference can be seen

. Looking the phase

spectrum there is very small change. Here are the plots. In the following plot, part(d)
and (c) can not be distinguished. (the x-axis is drawn using dashed as well, not to be

confused with the actual response curve).
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____________ R, N R

To better see the difference, the plot was reproduced by taking the difference of the
absolute values from part(d) and part(c) and plotting the log to base 20 of this difference.

Now the difference can be better seen as very small.

1og20 of the difirenca in the magnituds spactrom x;({) batween cass d and ©

) [ s | . ) )
w wy @ ay ws
I
I
|
|
|
|
| <
1 n &
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| 1
R
| [\
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foveing Fequency rad/zec

The following the phase difference between case d and c.
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--- partd
|l — parte

The above plots show that using structural damping instead of using the same value of C
for each EOM made very little difference in the result.

2.13.4 Problem 3
2.13.4.1 part(a)

Given u(x, t) equations 6.1.1 and 6.1.2 in the text are
1 L
Tuur = 5 f i2p Adx (2.115)
0
% —1fLEA ou\’, (2.116)
bar = o 0 ox) ™ '

To obtain the mass matrix components T}, is evaluated and each set of quadratic term are

N
used to generate M;, as follows. Using Ritz method, Let u(x, t) = E‘I’j(x)qj(t). Substituting

this in Eq[2.115| gives

=1

2

1 L J N 1 L( N , 2
Thar = EL z;‘l’](x)q](t) PAdx = Ej(; (;W](X)q](t)) ,OAdX
1 N N
~2J, E‘I’j(x)q}(f)](Z‘I’n(x)q;(t))pAdx
j=1 n=1

1 L[ N N
= > fo 2 D)W, () () ()

j=1n=1

pAdx
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Replacing order or integration with summation (since both are linear operations) and
moving ¢;(£)q,(t) outside the integration since it does not depend on x results in

Thar = ZE( f i)W, (X)pAdX)q]()qn(t) (2.117)

]1n1

Let .
M, = fo W ()W, () pAdx

Then eq becomes Eq 6.1.11 in the textbook

Tpar = 22 nq](t)qn (2-118)

]1n1

Now, obtain the components of the stiffness matrix. Starting with eq[2.116/and replacing
u(x, t) in this equation gives

1 L J & ! Nd
Vi =3 | EA 52%)%(&] dr = f ( = ]<t>]

=1
L N d¥; d
= %L EA (x) (t)](Z \I;;(x) (t))

j=1 1

1 L NNd\I'(x)d\y(x)
SR P

](t)qn(t)}ix

Replacing order of integration with summation and moving ¢;()q,(t) outside the integra-
tion since it does not depend on x gives

L d‘I’ av,
Viar = 3 ZZ( f (X)% )q](t)qn()

]1n1

L d¥;
LetKj, = L EA—— ) () dx then the above becomes
dx dx

Viar = ZE ndiqn

]1n1

Which is eq 6.1.13 in the book. QED.
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2.13.4.2 Part(b)

3
2 3
The basic function to use are W; = %,\I’z = (%) ,Ws = (%) . Let u(x, t) = Z\Ifj(x)qj(t).
Now eq 6.1.11 and eq. 6.1.13 are used to obtain the mass matrix and the stiffness matrix

N N
components based on the power balance method. T, = %Z ZMjnq;(t)q;(t) where M, =

j=1n=1
L
[0, (x)pAdx hence
L
M, = fo Wi(x) W, (x) pAdx
L
SARGEE
0
L j+n
= (f) pAdx
0
= p—+n xj+”dx
= Jo
SATEICN RN
Uelj+n+1] (]'+n+1)U'+n
__pAL
Cjtn+1
Therefore, the mass matrix is
1 1 1 (1 1 1
My My, Mz 14141 1+2+1  143+1 3 4 5
_ _ 1 1 1| 11 1
M =Mz Mz Mas| = pALIso 5o s | = PALT 5 ¢
Ms Mz Mss 1 1 1 11 1
| 3+1+41  3+2+1  3+3+1 _E 6 7
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1R L 2 d9)(0) aw, (x)
and EE;E%KJ'"%% where Kj, = l; E AT de, hence
j=1n=

X\ a\" . ne
an:fLEAd(—z)de:fLEAj(ﬂ)n(x 1)dx
0

dx dx 0 U L"

L
_ EAn f 1 dx
oL J,

= EAl fL xf+"‘2dx
0

U+I’l
_ EAjn| w1 lL
T i+ | _
U lj+n-1 0
_ EAjn [xf el ]L
(j+n-1)U 0
_ EAjn [jn-1
(j+n—1)U+”
_EA jn
CLj+n-1
Hence the stiffness matrix is
1) 12 1) |
Ki1 Ky Kiz 1+41-1  142-1  1+3-1
_ _EAl 2 20 20
K=1Ka Ko Ky T L |2+1-1 2121 2431
Kz1 K3 Kss 31 32 30
[3+1-1  3+2-1 3+3-1
1 1 1]
4 3
133
3 9
»1 E gd

2.13.4.3 Part(c)

. . . 2r-1
The basic function to use are W, = sm(ar%) where a, = (77)71 forr=1,2,3.

3

Let u(x,t) = Z\Ifj(x)q]-(t). Now eq 6.1.11 and eq. 6.1.13 are used to obtain the mass ma-
j=1

trix and the stiffness matrix components based on the power balance method. Ty, =
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EE i (D(8) where M, = [ Wj(x)W, (x)p Adx hence
j=1n=1

L
M;, = fo W ()W, (x)pAdx

L x
= f sin( a; )sm(an )pAdx

0 L

Lo ((2j-1\ x\ . (({2n-1)\ «x
—j(; sm((—2 )nz)sm(( > )nz)pAdx

Using sin Asin B = %(COS(A — B) — cos(A + B)) the above can be solved.

M;, = OL ; cos((zj _ 1)7’(f - (an_ 1)71%) - cos((zjz_l)n% + (an_ 1)n%))pAdx
L1 2j-1)-@n-1)) «x (2/-1)+@n-1)
= . 2 ( > )nz —cos[ > ) ]p dx
L ' —
:fo % (2 ] z 05(—2(] +;) 2]71% pAdx
L1y
:j; ol cos(] n TT— —cos((] + n ]pAdx

For j =1,n =1 the above gives

A

L1 x pA (t x p
M-:f—[l— —] Ad =—f1— iy P
n=J 2 cos T |pAdx = = ; cosrdx = =

Forj=1,n=2
L1 x pA (t x x
M'=H( p) sz |pase= 7 [ feosw ) -cosfor)
=) 2 cos\ T | - cos 2 pAdx 2 J, cos{ 7y | - cos 27ZL dx

n( )) ) (sm(;nz)]L

The rest of the computation is now done using a small code below to generate the final
mass and stiffness matrix

381



2.13. HW11 CHAPTER 2.

HW’S

= problem 3 part c

2= Clear[L, x, a, M, p , A, &, k];

Tln ] := Sin[fx[.u] E],

2n-1
aln ] := 5

T
L
M[F , =z ] := J‘ T[7] T[mn] pAdx
0
L
k[7 ,n ] ::J-EAD[E[_'}], x] D[E[m], x] dx
0

7}= MatrixForm @ Table[M[i, 1, {i, 1, 3}, {i., 1, 3}]

MatrixForm=
i A.I.‘.: 0 0 |
‘&
o AE:
r
o 0 ALgp |

-
<

8= MatrixForm @ Table[k[i, 3], {i, 1, 3}, {3, 1, 3}1

MatrixForm=
¢ i \
Lem 0 0 |
=
o
D Shem 0
8L
o 0 Z5R et
2L /

Therefore, the mass matrix is

100
ALp
M= 010
2
0 01

1 MY L dWi(x) W, (x)
and 3 3, 2Ky where Ky, = [ EA== 3, hence
j=ln=

(W) aew,)
Kju = ](;EA dx  dx
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From the above code, the result is

1 0 O
K_AETL2 09 o
- 8L

0 0 25

Using this set of basis functions produces mass and stiffness matrices that are already
decoupled. This is good.

2.13.44 vpart (d)

The natural frequencies obtained in problem 2 were

1 00 0 0 (3 -1 0 0 0]
01000 1 2 -1 0 0
problem2=M=10 0 1 0 0, K=|0 -1 2 -1 O
00010 0 0 -1 2 -1
0ooo0o01 o 0 0 -1 1

w = (0.3129,0.9080,1.4142,1.7820,1.9754) rad/sec
= (0.0498, 0.1445, 0.225,0.284,0.314) hz

Now the eigenvalue problem det([k] - w? [M]) is solved again using the mass and stiffness
matrices in parts b,c above and the natural frequencies are compared with the above result
from problem 2. Recall, the M and K from part b were

[1 1 1] -
515 rii
11 1 EA|; 24 3
part(b)=>M:pALZ g g,K:T 3 2
3 9
11 1 1 2 2
5 ¢ 7 " 205
1 0 0 10 0
oM=Ll 1 ol k=200 o o
art(c = — =
P 2 ’ 8L
00 1] 00 25

First, a numerical values given at end of problem 2 are used, therefore pAL = m =1 and
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— = %, hence the K and M for part(b) and ¢ become

1 1 1] i
11 1 1[4 ¢ 3
part(b)=>M=Z g g,Kzil 3 2
3 9
1 1 1 1 22
5 6 7] | 2 5
1 00 1 0 O
o=M=to 1 ok="lo 9 o
part(c =5 K=1¢
0 01 0 0 25

The natural frequencies are found. Here is a summary table

w (rad/sec) fhz
problem 2 | 0.3129,0.9080,1.4142,1.7820,1.9754 | 0.0498,0.1445, 0.225,0.284,0.314
part(b) 1.1108, 3.4199, 7.3872 0.1768, 0.5443,1.1757
part(c) 1.1107,3.3322,5.5536 0.1768,0.5303, 0.8839

It can be seen that the first three natural frequencies using Ritz basic functions as given
for both part b and c are higher than the natural frequencies generated by part b.

The stiffness matrix K for both parts b and ¢ contains much smaller numerical values than

2:

k
the one used in problem 2. Since w* = — then one expects this result.

2.13.4.5 Part(e)

The first 3 mode shapes from problem 2 were

-0.0989 02871 —0.4472]
~0.2871 0.6247 —0.4472
[@] = [-0.4472 04472  0.4472
~0.5635 —0.0989 0.4472
-0.6247 —0.5635 —0.4472]

The mode shapes from part(b)

22642 -11.2099 13.0082
[@] = [-0.2314 25.3536 -47.2984

-0.6181 -12.7003 37.5941
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The mode shapes from part(c)

[©]

1.4142

0
1.4142
0

0
0

Here is a plot of the above mode shapes

0
0

1.4142

part b
& £J) L4]
oo A 40
.10 o 2 /N »
2 / AN T
10 N 10 ) Ok oo o]
D. '3 \ // \\ \\\
5 . ,
- R T w--4 -20 .
00F------- N S/ AN ‘
-05 e ] - N 40 N
1.0 15 20 23 30 10 15 20 23 3.0 10 1.5 20 25 30
PRartc_
& & @3
14 14F R 14F " J
12F 12 SN ) 12
10 L0 10
08 0.8 y \, 0.8
06 h 0.6 / ' 0.6
04 04t 0.4
02 \ 02t / 02
0.0 . 0.0 s 0.0 e .
10 15 20 25 30 10 15 20 25 30 10 15 20 25 3.0
problem 2
@ @, B3
—03F o " 06 A 04l 4 X
/ - P . - / \
-04 VAN 0sl ~a \
-05 - N AN 02 \
-06f [ Te— gEr AN Y A W
—0.7 ! Sl o ’ / V
08} / -02 . _02 /
—09t/ -04 . o
—104 d 06 T e '
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Here is a plot of the mode shapes overlay.
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® parth
= partc
+ problem 2
_lD -? V 1 1 1 1 1 1 1 1 :
1 2 3 4 3
)
A
LY
! l‘.
20 / \ -
/ \
."IIII \"'
/ \ ]
|IIn’ "\I
10 \ 1 o partb
f,"f \"\\ m partc
I '\\
/ Y 4+ problem 2
A - \ -
D-l-—-—r’p-‘— ——————————— \:-——i ——————— ~—$=====c--- - o
I."'l. \."\
."l.l I\\
/ ~.
\
-0/ \ ]
1 1 1 1 .I 1 1 1 1 1 1 ]
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%3
40—.-.-...-6........._
/
[
|'lll
/
[
20! / |
q\._\ F."‘l
N\ / e parth
e === *-——— -
= \.\\ /! 4 = partc
h I
\‘-\\ ;,-“ | # problem 2
~wt A / i
20 \_\\ /
A /
AN I
A )
AN /
-0} \ o/ -
I
1 1 I\“I|l 1 1 1 1 1 1 1 1
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2.13.5 Key solution for HW 11

Homework #11
EMA 545, Spring 2013

Problem 1.)

Consider the N-DOF system modeled by the system of equations

[vJigh+[cla}+ [k Jia) = {o}

with [C] matrix given by:

261t 0 0o - 0
0 26,5
[c]=[M]@] o 0 [@] [a].
: . 0
0 0 Zoywy

[f we transform to normal coordinates using {q} = [cb]{r] } show that the N-coupled
equations transform into N uncoupled differential equations of'the form

: 2 \T . .
M +28 ;0 +win; = {d)” o} j=LN
Problem 2.)

The 5-DOF system shown below can be thought of as a lumped-element approximation of a
fixed-free elastic bar. (This is similar to Example Problem 4.4, which treats a fixed-fixed
bar, and similar to example problem 7.2, where the exact solution is derived.)

K, k, ks K, ks

E(t)
~

In parallel with each of the springs k; which are drawn, there are viscous dampers ¢; which
are not shown. The equations of motion for this system are easily found to be:

[m]X+[c]x+[k]x =F
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where [m] is a diagonal matrix having entries m;, and [k] is the banded matrix:

(k1+k2) X2 0 0 0
k2 (k2+k3) k3 0 0
0 K3 (kK3+kd) k4 0

0 0 k4 (k4+k3) kS

0 0 0 &S k5

The damping matrix has the same form as [k|, but with viscous damping coefficients ¢; in
place of stitfhess coefficients k;. The forecing vector F is a 5 by | vector of zeros, except for
the last entry: F=[0 0 0 O F()]~

The numerical value for k, through ks 1s 1 N/m, the numerical value of k; =2 N/m, the
numerical value for m; through ms is 1 kg, and the numerical values for the viscous damping
coefficients ¢; = 0.1%k; , =1,5 (in units of N-s/m).

(a) Find the natural frequencies and mass-normalized modes of the system.

(b) Find the magnitude and phase of the steady-state response xs(t) assuming the forcing to
be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*ws. Plot the
magnitude and phase of the response, clearly indicating the location of the natural
frequencies.

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C]
matrix that gives 2% modal damping to each mode. Overlay the frequency response of
this system with that which you found in (b).

(d) Compare your answer for part (c) to that obtained using a structural damping model and
a loss factor of y=0.04.

(You will need the following to compare this problem with problem 3 below.) As discussed in
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters
EA and L are as follows: kj= N*EA/L, i=2,N where N is the number of masses. The spring
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness
twice as high, k; = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N:
m; = pAL/N, where p is the mass density of the bar.
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Problem 1) (Creating a damping matrix with any desired modal damping ratios.)

The goal is to show that one can use the modal transformation together with the given
damping matrix to obtain uncoupled equations of motion.

We need to show that [(D]T [(”][(D] is diagonal:

(26,00 0 0 - 0
0 26,0, :
e [cle]=[] [u]le] o o - @) M]e]
. . 0
| 0 0 25y |

Since [@]r [JM][(D} = [I ], we have the desired result:

(26,0, 0 0 - 0
0 26,1, E
[ [c]e]=| o 0 :
' 0
L 0 0 2¢yoy ]

Now, starting with the coupled equations of motion:
v Fsj+ [CRa+ [ fixf = {0}
Substituting {x}= [fb]{n} and pre-multiplying by [(D]T vields
@] [T}« @] [cTolin+ ] [KToln) = @] 0} = {0}

Using the fact that [(D ]T [M’ ][(D] = [I ] and [(D]T [K ][fb] 1s a diagonal matrix containing the

square of the natural frequencies, we now have N uncoupled equations of motion.
.. . 2 T . 2
T +2Cja)jn+cujnj={¢>j} o} j=LN

Note that we have also used the fact that each row of [(D]T{Q} is equal to the jth mode
vector transposed times {Q}.
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HW 12, PROBLEM 2: LUMPED MASS APPROXIMATION FOR A BAR IN EXTENSION

Part (a):
The mass and stiffness matrices are given, so it is easy to find the natural frequencies and
mode shapes in Matlab. Here is the result: (Matlab code given at the end.)

wns =
0.31287
0.90798
1.4142
1.782
1.9754
PHI =
-0.098938 0.28713 -0.44721 -0.56352 -0.62467
-0.28713 0.62467 -0.44721 0.098938 0.56352
-0.44721 0.44721 0.44721 0.44721 -0.44721
-0.56352 -0.098938 0.44721 -0.62467 0.28713
-0.62467 -0.56352 -0.44721 0.28713 -0.098938
Part (b):

The input is harmonic, so the steady-state response of each mass will also be harmonic.
Their complex amplitudes can be found with the equation: inv([K+ioC-»”2*M]). See
the Matlab code for details. The complex amplitude of the 5" DOF is plotted below.
Note that this stiffness proportional damping approach gives the following modal
damping ratios, which are clearly different than those for part (c) below:
zts =

0.015643

0.045399

0.070711

0.089101

0.098769

Part (c):

The solution here is the same as for (b), only now we use C =
M*PHI*2*0_.02*diag(wns)*PHI . **M

Both solutions are plotted below.

Part(d): (not included in Spring 2011)
For the structural damping case, K = K*(1+iy).

The plot shows that the stiffness proportional damping approach gives heavier damping
for the higher frequency modes.
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Transfer Function of X with 3 Kinds of Damping

Proportional |7

------Modal
— - — Structural

2.5

15

Frequency (rad/s)

0.5

fom -

1501 ------

(o) (@/)eseyd

-200

2.5

15

Frequency (rad/s)

0.5

0

The mode shapes were requested as part of the next problem. They are plotted below:

Mode #2
Mode #3
Mode #4

1
—&— Mode #1

apnydwy [epoi

X Location

391



2.13. HW11 CHAPTER 2. HW’S

Matlab Code:
% ME 6442 Homework #10, MDOF Systems-LUMPED MASS APPROX TO BAR IN EXTENSION
clear all; close all

M = eye(5); % ldentity matrix since each mj=1;

K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1);
% Above is a fancy way to make the banded stiffness matrix, although
% the two terms below must be fixed manually.

K(1,1) = 1+2; K(5,5) = 1;

C = 0.1*K;

[phi,lam] = eig(K,M);
wns = sqgrt(diag(lam))

% Normalize Eigenvectors

[natfreqgs, Isort]=sort(sqrt(diag(lam))); % sort by nat freq
phi=phi(:,Isort); % sort eigenvectors

scale= phi."*M*phi;

PHI=real (phi*inv(sgrt(scale))) % normalize e.vectors

zts = (diag(PHI."*C*PHI1)/2)./wns

% Check Orthogonality
check_m = norm(PHI."*M*PHI-eye(size(PHI)))
check_k = norm(PHI."*K*PHI-l1am)

% Plot Mode Shapes
% Create x-vector. Remember that the masses are at the center of each
% element, so the first node is at 0.5*(L/N)
xs = [0, 0.5:1:4.5]/5;
% Will have to stack zeros above PHI below for the displacement at x=0.
figure(l)
plot(xs.",[0 0 0 O O; PHI],"0-"); grid on;
xlabel ("X Location®); ylabel("Modal Amplitude®);
legend("Mode #1", “Mode #2","Mode #3","Mode #4","Mode #5%);

ws = [0:max(wns)*1.2/2000:max(wns)*1.2];
% TF Using Proportional C-Matrix
for ii = 1:1:length(ws);
Gn(:z, i) = [K+i*ws(ii)*C-ws(ii)"2*MJ\([0 O 0 O 1].7);
end
Gb = 6n(5,:);

% TF Using modal damping ratios
Cc = M*PHI*2*0.02*diag(wns)*PHI . "*M
for ii = 1:1:length(ws);
Gn(:,i1) = [K+i*ws(ii)*Cc-ws(ii)"2*M]\([0 O 0 O 1].7);
end
Gc = 6n(5,:);

% TF Using Structural Damping
Kd = K*(1+i*0.04);
for i1 = 1:1:length(ws);
Gn(:,ii) = [Kd-ws(ii)"2*M]\([O 0 0 O 1]-7);
end
Gd = 6n(5,:);

figure(2)

subplot(211);
semilogy(ws,abs(Gb) ,ws,abs(Gc), " :",ws,abs(Gd),"-."); grid on;
xlabel ("Frequency (rad/s)"); ylabel (" |X_5/F|");
legend("Proportional®, "Modal ", "Structural ™) ;

title("Transfer Function of X_5 with 3 Kinds of Damping®);
axis([0 2.5 0.09 200]);
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subplot(212);

plot(ws,angle(Gb)*180/pi ,ws,angle(Gc)*180/pi, ": " ,ws,angle(Gd)*180/pi,"-.");
grid on;

xlabel ("Frequency (rad/s)"); ylabel("Phase(X_5/F) (™0)");
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Parts (a & b):

First, note that since k, in Problem 3 1s 1 N/m, this suggests EA/L = 1/5 N/m. Also, since

m; = 1 kg, pAL =5 kg. The kinetic energy of the rod is given by:

2
1 (L cut
T=— A dx
2o [u]

We use the following Ritz series to approximate the displacement firld for the rod:

3
u(x,t)= Zq,—(’f}l{/,-('x)
i=1
Substitution of (4.2) into (4.1) yields:

j P{Z%”ﬂlfﬂ\)

[quff)lllj(\)

j=1

ZZM,I pAy yjdv=— ZZM,WU

Iljl 11]1

where the elements of the mass matrix are i1dentified to be:

L X i X J 1
i =y pA[EJ (fJ = L’+J IO s S

The potential energy of the rod is given by

2
1 (L o1
T
240 ox

The derivative of the displacement field (4.2) with respect to x is given by:

cu
Lixt)= Zq,(r)

oxX i=1

oWi(x)
ox

Substitution of (4.7) into (4.6) yields:

=21, E{Z% [Z%
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3 3 -~ A 1 3 3
L 1 &< L_ cy;c¥; 1<
V=2 > 4ia,f, E4 e =20 2414 Ky (4.9)

i=1j=1 ¢ i=1j=1

where the elements of the stiffness matrix are identified to be:

s NN TP Wi
k= [ E4 [ ii2 d__E?“Jj witi g EA_ 1T (4.10)
0 o\t I+ 0 Li+j-1

The three-term Ritz approximation for the rod is given by the following 3DOF system:

1/3 1/4 1/5 [ql 11 qll {0
, EA
PAL|1/4 1/5 1/6 1+~ |1 473 6/4 )iz =10 (4.11)
1/5 1/6 1/7 ng 1 6/4 9/5 q;,J 10

Note that the dimensional factors can be pulled out so that the eigenvalue problem can be
solved in Matlab (for part (d)). To do so, we define:

2P =w? ﬁ
E
Part (c):
The integrals are not convenient to evaluate analytically using these basis functions, so
the solution is carried out only in Matlab. The resulting matrices are:

>> M
M =
0.5 0 0
0 0.5 0
0 0 0.5
>> K
K =
1.2337 0 0
0 11.103 0
0 0 30.843

Notice that the matrices are diagonal. This occurs because the chosen basis functions
happen to be the eigenfunctions for this continuous system. So, the coordinate governing
each basis function is independent of all of the others and the natural frequencies can be
found by inspection, for example: w;=sqrt(1.2337/0.5)=1.5708, etc...

Part (d):

COMPARISON OF NATURAL FREQUENCIES:

First we observe that since pAL/(EA/L) = 25, we must multiply the natural frequencies
found in Problem 2 by (25)(1/2) to compare with the results from the nondimensional
Ritz analysis. The results are summarized in the table below, where the natural
frequencies for other Ritz Series lengths are also shown FY1. Notice that as the series
length increases, new modes appear at higher frequencies, and the lower natural
frequencies decrease slightly, converging towards the true values. The lumped parameter
method in Problem 2 gives similar results although the frequencies are sometimes lower
than the true values, while the Ritz method always over predicts the natural frequencies.
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Ritz Natural Frequencies (nondimensional)

Series

Length ol 2 o3 o4 5
2 15767 5.6728 - - -
3 1.5709 4.8365 10.4471 - -
4 15708 4.7246  8.3309 16.3036 -
5 1.5708 4.7132 7.9390 12.1739 23.3614

Results for Lumped Parameter Approximation with N=5 below
N=5 1.5643 4.539 7.0711 8.9101 9.8769

With the second set of basis functions from part (c), one obtains the true analytical
natural frequency for any length Ritz Series.

Ritz Natural Frequencies (nondimensional)
Series
Length ol ®2 ®3 w4 ®5
2 15708 4.7124 - -

3 15708 4.7124  7.8540 - -
4 15708 4.7124  7.8540 10.9956 -
5 15708 4.7124  7.8540 10.9956 14.1372

MODE SHAPES

Using the polynomials in part (b):
PHI =

-2.2642 -11.2099 -13.0082

0.2314 25.3536 47.2984
0.6181 -12.7003 -37.5941

Each column gives the proportion of each Ritz vector in the approximation for the
eigenfunction. For example, the approximation for the first modeshape is given by:

2 3
—2.2642(1 +0.2314(i +0.6181(1
I I I

The second eigenfunction 1s approximated by:

2 3
—11.2099(x)+25.3536(xJ —12.7003[*‘}
L L L
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The third eigenfunction is approximated by:

2 \3
~13.0082] X | +47.2084 | —37.5041 *
I j3 I

The three modeshapes obtained from the Ritz method are shown in Figure 4.1 Tt is seen that

the first mode closely resembles a "1/4 sine," which is the exact modeshape for a fixed-free
rod. The second mode resembles a "3/4 sine." The theoretical prediction of the third mode

1s a"5/4 sme." It 1s seen that there i1s considerable inaccuracy m the Ritz-method prediction

for this mode. The Matlab code given at the back of the solution set gives a concise way of
finding these approximate modeshapes given the modal matrix PHI.

The three mode shapes obtained from the Ritz method for part (b) are shown below. The
first mode closely resembles a “1/4 sine,” which is the exact mode shape for a fixed-free
rod. The second resembles a “3/4 sine.” The theoretical prediction of the third mode is a
“b/4 sine,” but one can see that there is considerable error in the Ritz approximation for

that mode since the basis is inadequate to describe it.

Mode Functions for First Three Modes, N = 3

3.5 T T T T T T T
Mode 1 Ritz 3 3 3 3 3

3 Mode 2 Ritz ~ |----- i b A Lo oA

Mode 3 Ritz | | | | |

2511 o Mode 1 Analytical |~ T e i’”]””

ol | —&—Mode 1 Lumped | i 77777 3 77777 j 77777 L 77777 L”‘W
©— Mode 2 Lumped ! ! ! ! !

15l —©  Mode3Llumped | | I S S L]

Mode Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position (X/L)

When using the basis functions from part (c), the modes are exact and are given in the
figure below.
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Mode Functions for First Three Modes, N = 3

Mode Function

Position (X/L)

The Matlab code used for these calculations follows. Symbolic variables were used to
check the answer for part ), and to compute the M and K matrices for part d).

Partb.)

% EMA 545, HW12

% Ritz Series solution for Clamped-free rod in extension
%

% M.S. Allen, May 2011

clear all; close all
syms x jj kk real;
tic

N = 5;

% Create basis functions as symbolic functions in Matlab - Symbolic
% variables x and jj and kk defined above
for jj = 1:N;
psi(i) = x™j;
end
% Loop to create (Jj,kk) terms of mass and stiffness matrices
for jj = 1:N;
for kk = 1:jj;
% Usig Matlab symbolics
MMgJ,.kk) = int(psi@j)*psi(kk),x,0,1);% *rho*A*L
KK@(J,kk) = int((diff(psi((]j).x,)*diff(psi(kk),x,1)),x,0,1); % *EA/L
% Using analytically derived formulas for M and K
M1 ,.kk) = 17/(J+kk+1);
K1 ,.kk) = (J*kk)/(j+kk-1);
% note - matrices are symmetric, so we can fill the rest of the
% matrix in with the same terms.
MM(KK, §3) = MMGi3.KK) 3 KK(KK, ) = KKGid.KK);
ML(kK,§3) = MLGJ.KK); KL(KK,§§) = K1(id.KK);

end
end
M = double(MM); % convert symbolic expressions to numbers.
C = 0; K = double(KK);
toc
% display the difference, which is on the order of numerical round off
% error.
M-M1
K-K1
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% Use Embedding Property to find Eigensolutions for 2 <= N <= 5. For
% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant
% of M and K.
for p = 2:1:N;
[phi,lambda] = eig(K(1:p,1:p).M(1:p,1:p));
wnd(p-1,1:p) = sqrt(diag(lambda))*
end

% Finding Mode Functions
Ns = [3]; % number of basis functions to use for mode shape plots.
delta = 1/(100-1); % spacing for y-axis on mode shapes.
yd = [O:delta:1]";
for g = 1:length(Ns);

psi_vals = 0; phi = 0; lambda = O;

[phi lambda] = eig(K(1:Ns(q),1:Ns(q)),M(1:Ns(q),1:Ns(q)));

wns = sqrt(diag(lambda));

for p = 1:1:100;

for n = 1:Ns(q);

% evaluate each basis function "n" at each point "p". (or use
yd(p)”"n)
psi_vals(p,n) = subs(psi(n),"x",yd(p)); % Matlab symbolics - sub
yd(p) for "y"
end
end

% mode shapes for plotting are psi_vals*phi
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi;
end

% Analytical Mode Shape

psi_an = sin((2*1-1)/2*pi*yd);

psi_an = psi_an/max(psi_an)*max(psi_c(:,1,1)); % scale to same amplitude as
psi_c

% Plotting
figure(d)
plot(yd, psi_c(:,1,1),yd, psi_c(:,2,1), yd, psi_c(:,3,1),...
yd, psi_an,"b."); grid on;%, yd, psi_c(:,1,2), ".:", vyd,
psi_c(:,3,2),".:"); grid;
legend("Mode 1 Ritz","Mode 2 Ritz","Mode 3 Ritz","Mode 1 Analytical™);
xlabel ("Position (X/L)"); ylabel("Mode Function®);
title(["Mode Functions for First Three Modes, N = ",num2str(Ns)]);

return

%% Plot the solution to Problem 2 on top:

M eye(5); % ldentity matrix since each mj=1;

K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1);
% Above is a fancy way to make the banded stiffness matrix, although
% the two terms below must be fixed manually.

K(1,1) = 1+2; K(5,5) = 1;

M = M/5; K = K*5; % change to non-dimensional

[phi,lam] = eig(K,M);
PHI=real (phi*inv(sqgrt(phi.**M*phi)));
xs = [0, 0.5:1:4.5]/5;

% To get a good plot, have to manually adjust the sign of some of the mode

% vectors (the sign of a mode vector is arbitrary). Make all end values

% positive:

PHI = PHI*diag(sign(PHI(end,:)));

hold on; plot(xs.",[0 0 O; PHI(:,1:3)],"0-"); hold off;

legend("Mode 1 Ritz","Mode 2 Ritz","Mode 3 Ritz","Mode 1 Analytical”,"Mode 1
Lumped®, "Mode 2 Lumped®,*Mode 3 Lumped®);
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Part (c):

% EMA 545, HW12

% Ritz Series solution for Clamped-free rod in extension
%

% M.S. Allen, April 2008

clear all; close all
syms x jj kk real;
tic

N = 3;

% Create basis functions as symbolic functions in Matlab - Symbolic
% variables x and jj and kk defined above
for jj = 1:N;
psi(j) = sin((2*jj-1)/2*pi*x);
end

% Loop to create (Jj,kk) terms of mass and stiffness matrices
for jj = 1:N;
for kk = 1:jj;
% Usig Matlab symbolics
MM .kk) = int(psi@i)*psi(kk),x,0,1);% *rho*A*L
KK ,kk) = int(diff(psij),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L
% note - matrices are symmetric, so we can fill the rest of the
% matrix in with the same terms.
MM(kK,§3) = MMGi3.KK); KK(KK,§§) = KKGid.kK):
end
end
M = double(MM); % convert symbolic expressions to numbers.
C = 0; K = double(KK);
toc

% Use Embedding Property to find Eigensolutions for 2 <= N <= 5. For

% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant

% of M and K.

for p = 2:1:N;
[phi, lambda]
wnd(p-1,1:p)

eig(K(1:p,1:p),M(1:p,1:p));
sqrt(diag(lambda))*

end

% Finding Mode Functions
Ns = [3]; % number of basis functions to use for mode shape plots.
delta = 1/(100-1); % spacing for y-axis on mode shapes.
yd = [O:delta:1]";
for q = 1:length(Ns);

psi_vals = 0; phi = 0; lambda = O;

[phi lambda] = eig(K(1:Ns(q),1:Ns(q)).M(1:Ns(q).,1:Ns(q)));

wns = sqrt(diag(lambda));

for p = 1:1:100;

for n = 1:Ns(q);
% evaluate each basis function "n" at each point "p". (or use

yd(p)”™n)

yd(p) for "y
end

psi_vals(p,n) = subs(psi(n),"x",yd(p)); % Matlab symbolics - sub

end
% mode shapes for plotting are psi_vals*phi
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi;
end

400



Chapter 3

Design project

Local contents

3.1 Designproject,team4 . ... ... ... ... L o
32 Introduction . . ... ... ... ...

401



3.1. Design project, team 4 CHAPTER 3. DESIGN PROJECT

3.1 Design project, team 4

Local contents

3.2 Introduction

By Nasser M. Abbasi, Donny Kuettel III and Paul Frisch.

This report outlines a simple passive vibration isolation system design for use in the
first class cabin of a Boeing 757-200 airplane with the goal of reducing the vibrations
telt by the passengers in the first class cabin. This was done by simulation in order to
select suitable design parameters that produced an acceptable absolute acceleration time
history compared the rest of the airplane during a turbulent flight.
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3.2.1 Discussion and results

3.2.1.1 Notations used in the report

M mass of first class cabin
k spring constant
C critical damping constant
r ratio of external load frequency to the natural frequency of first class
cabin
Wnatural
"y ratio of external load 1" harmonic frequency to the natural frequency
of first class cabin —
Wnatural
T, Transmissibility. The ratio of cabin absolute displacement to base ab-

solute displacement

@y, | Natural frequency of first class cabin

w1 Fundamental frequency of the external load frequency.

EOM | Equation Of Motion

c damping constant for damper under first class cabin

7 | the complex amplitude of the term associated with the n* harmonic

of the frequency z"(t)
ZiSp the complex amplitude of the term associated with the n'" harmonic
of the displacement z(t)
Y, the complex amplitude of the term associated with the n" harmonic

of the displacement of y(f)

Table 1. Description of mathematical notations used in report

3.2.1.2 Mathematical model

Reducing the vibration effect felt by the passengers in the first class cabin was based
on reducing the transmissibility ratio (T,) of the absolute acceleration of the airplane to
that of the first class cabin. A passive vibration isolation system was used for its ease of
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implementaion and its low cost. The model is based on figure 1 below

<

Airplane

/ body

First economy
class class

Figure 1. Mechanical model view of vibration isolation system in place.

The absolute acceleration of the first class cabin, y”’(t), was calculated with the vibration
isolation system in place and then compared to the absolute acceleration, z”’(t), of the
rest of the airplane. The goal was to produce a smooth absolute acceleration time history
when compared to the rest of the airplane. This was done by adjusting M, C and K and
running a simulation of the motion of the plane with our vibration isolation system in
place. A plot of T, vs. r was also used to insure that the maximum T, remained small as
the frequency ratio r was increased.

Assuming the mass of cabin is M, which includes the live load (passengers), then apply-
ing Newton’s laws the the first class cabin results in the equation of motion

my"” + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky=cz’ +kz

The transfer function between y(t) and z(t) in the frequency domain can now be derived
(Appendix contains complete derivation) resulting in
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V1 + (2Cr,)*
\/(1 — r%)z + (2Crn)2

To compare the absolute acceleration of the first class cabin with the rest of the airplane,
the absolute acceleration, y”’(t), is now found from Y,. Since y(f) = Re[Ynei‘Dnt} theny”(t) =

Re{—caf, Ynei@nt].

Yy

T(i’) = disp
n

3.2.1.3 Design results

z”(t) (given) and y”'(t) (computed) are now plotted on the same plot in order to compare
the effect of our vibration isolation system to the comfort of the first class passengers. The
final design parameters used are (Appendix 5.1)

M Mass of first class cabin (dead+live) | 3050 kg

C 0.7
k 9700 N/M

Table 3. Final values of design parameters

Figure 2 below shows the result using the above parameters

absolute sceeleration of first class vs. rest of sirplane during turbulent fhight
15~
|
d

10~

| rest of sirplans
5 ————— first class

| — = — + fime
(1] WMWM

|
= | | 1 | | | | | I

i) 10 20 30 40 50 60 TD 80 20
time {s=ch

Figure 2. First class cabin absolute acceleration compared to rest of airplane.

We see from figure 2 that the absolute acceleration of the first class cabin has much less
variation and is much smoother than the absolute acceleration of the rest of the airplane.
From this we can see that the first class passengers experience a much more comfortable
flight than the rest of the airplane. In addition, the transmissibility plot was found to be
acceptable since T, decreases with increasing r
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Figure 3. Transmissibility plot of first class cabin.

L

£n

In addition to producing a smooth absolute acceleration time history, the goal was also to
insure that T, decreased as r increased. This implies that at higher external acceleration
relative to the natural frequency, our vibration isolation system remained effective. The
simulation program generated a mechanical view showing the absolute position of the
tirst class cabin, with an offset, and the absolute position of the airplane during the flight
as shown in figure 4 below.
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_ absolute positions first class and rest of airplane
I T : T T : T

70 | -

15}

10 |

Figure 4. Animation of vibration isolation during flight.

The force shown in Figure 4. below the airplane is the numerical value of ~-Mz"” where z”
is the absolute acceleration of the airplane and M is the total mass of the first class cabin.

3.2.2 Implementation of the vibration isolation system

The vibration dampening system proposed for the first class cabin is a simple spring
dashpot system that utilizes the additive properties of springs and dashpots to dampen
the vibration of the first class cabin in the Boeing 757-200.
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Front View Side View

Figure 5. Schematic diagram of vibration isolation system in place

The design of our passive vibration isolation system is simple and effective with a minimal
costs. It starts by defining the area that represents the first class cabin, which is at the
front of the plane right behind the cockpit.

The cabin spans the entire inside width of the airplane body, which is 3.53 m (11.58 ft),
and then extends down the body of the plane roughly 3.35 m (11 ft) giving the first class
cabin a total area of 3.53 X 3.35 m? (11.58 x 11 ft?).

The next step in our design is to define the area that will actually be part of the vibration
isolation system. We cannot use the whole floor of the first class cabin because the rounded
body of the airplane would not allow the floor to travel up and down rendering our
whole system ineffective. To solve this problem we started at the center of the plane’s
cross section and went out 1.524 m (5 ft) in either direction giving a total area of the
platform used in our vibration isolation system 3.048 x 3.35 m? (10 x 11 ft?) as seen above
in figure 5.

To begin the actual design, additional support must be given to the aluminum floor of
the cabin. The use of 6061 T6 Aluminum I-beams (specifications are given in appendix 5)
spanning the width of the platform provides the needed support. In addition the I-beams
provide a sturdy surface for the spring and dashpot system to contact the cabin floor.

The key component of the vibration dampening system is the use of carbon fiber leaf
springs. We chose carbon fiber leaf springs in place of steel for several reasons. They
provide a softer ride at a lower noise level and excellent stability due to better damping
characteristics than steel. Placed in series, the use of 5 carbon fiber leaf springs provides
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the spring constant required (9700 N/m) and a low increase in weight.

The dashpots needed for our design, 2K325 Dashpots, can be purchased from many
manufactures. When added in parallel they provided the necessary damping coefficient
of 7425 N*s/m needed when the first class cabin is full and 5800 N/s*m when the cabin
is empty.

Our design for this passive vibration isolation system works whether the first class cabin
is full, empty, or half way in-between. The system works best when the cabin is fully
loaded with passengers, and has almost identical results with no passengers on board.
Even though the results are slightly diminished with fewer passengers, the system still
creates a noticeably smoother flight.

3.2.3 Cost estimate of the vibration isolation system

The total cost of our vibration isolation system is around $16500 (appendix 5). The cost
of the aluminum support beams, dashpots and carbon fiber leaf springs make up the
majority of the material cost totaling only about $3000. The majority of the total cost
comes from the additional weight of the system and the resulting price of fuel used
during the planes lifetime. The additional weight results in an expected cost of about
$13500 over the lifetime of the plane.

The damping effects of the system could be improved if weight were added to the cabin.
However the additional cost of the added weight over the lifetime of the plane would
outweigh the benefits for the passengers. If however some heavy components of the plane
were to be attached to the first class cabin, the system could be redesigned for an even
better ride. This would require further investigation into the balance of the plane, flight
dynamics and a deeper knowledge of the various components of the plane so it falls out
of the scope of this project.
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3.24 Appendix

3.2.4.1 Design values
weight

This table shows the design values based on weight

Description of item Mass (kg)
15 Chairs @ 100 kg/chair 1500

10 ft by 11 ft aluminum flooring 200

5 Aluminum I-beams @ 20 kg/beam 100

5 Carbon Fiber leaf springs @ 5 kg/spring 25
Miscellaneous weight 25

15 Passengers @ 80 kg 1200
Weight of First Class Cabin before vibration isolation system | 1700
Weight of First Class Cabin after vibration isolation system | 1850
Weight of First Class Cabin with maximum passengers 3050

Table 3. Mass of items used in design calculations

The total mass M has the value of 3050 kg. For our C value we choose the value 0.7 as it
worked well in simulations to provide a smooth ride for the passengers while still keeping
T, small.

Leaf springs and spring K value

The most important aspect of picking a k value is the total allowed clearance the first class
cabin floor has to move. The first class cabin’s floor has a displacement relative to the
body of the aircraft and if that gets too large the floor will make contact with the body
of the airplane. The lower the k value we choose, the larger the displacement of the first
class cabin relative to the body of the airplane will become. The maximum travel distance
of the first class cabin is around 20 cm (7.87 in) and we can use this value to pick an
appropriate k value. A k value around 10000 N/m keeps the first class cabin floor within
this tolerance. The following plot shows the absolute acceleration of the cabin vs. the rest
of the airplane during the turbulent flight E

labsolute position of the first class cabin was computed from the absolute acceleration of the cabin in
the frequency domain. Hence the average value was not used due to the division by zero problem with
this method. We do not have another method to find absolute position from absolute acceleration (unless
we use more advanced numerical integration method in time domain, which is beyond the scope of this
course)
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shsolste daplacement vs. time
G fevvnnns TR TR R ST I T T TEREEEIT, TRCCRCC T, T .

Figure 6. absolute acceleration of first class cabin compared to rest of airplane

To keep the weight of our vibration isolation system as small as possible we opted to use
carbon fiber leaf springs. The k value of any leaf spring system can be calculated by the
equation

B 8Enbt3

k
3L3
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8 xExnxhbxt3

3% L°

E = Youngs Modulus

n = Number of Leaves
b = Width of Leaves

t = Thickness of Leaves
L = Span

k = Stiffness

Figure 7. Leaf spring design used in vibration isolation system

Since our springs are in parallel, the k values add to give a total equivalent k. We took the
k value selected (10000 N/m) and divided it by 5 giving us an individual k value of 2000
N/m. Using the following dimensions for the leaf spring resulted in a k value of 1940
N/m for a total k value of 9700 N/m.

e £E=17Gpa
en=23

e [ = 3.048 meter (10 ft)

b = 0.1016 meter (4 in)
t = 0.015875 meter (5/8 in)

3.2.4.2 Cost values

After finding the materials we needed, the following describes how we calculated the
total cost of our vibration isolation system.

e 5@10 ft 6061 T6 Aluminum I-beams @ $180/beam results in $900.
Width 6 in, Flange 4 in, Web 0.19 in, Thickness 0.28 in.

e 5 Carbon Fiber leaf Springs @ $300/spring results in $1500.

e 150 kg of extra weight, total weight of the airplane is 59350 kg.
Fuel costs for this aircraft was estimated to be $3,500/hour and a typical aircraft
operates 3000 hours per year. An increase of 1% in the weight of the aircraft is
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expected to increase fuel costs by 0.5%

150 kg 3
2459350 ng $3500 x 3000 = $13270

e 5 2k325 Dashpots @ $100/dashpot = $500
Needed c is around 2000 N*s/m. These dashpots have an adjustable ¢ from 0 to 7000
N*s/m

e Total cost estimate $16500

3.2.4.3 Simulation program description

The simulation program was a GUI program written in Matlab version 2013a, which
made it easier to determine the parameters to use for the design. The following is a screen
shot of the program. The program can be downloaded from [the project web site]
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-} «Student Version> : Ver. 3/30/13. Team #4. Vibration : adison, EME 54! — ==l
{n-p S x:a‘ﬂ i
et e o transmissibility
3
flight data mat file name_ i ] i ;
run stop step o ' : i ;
load file || FlightAccelmat o TR ARIRER SR VT B
: slow 4 v | fast . — o S S L |
— ESign par. i E E E E
e e T npE, Eps
empty cabinet mass 4| il rlao kg ! ' : i
number of passengers 4] - LI 15 | ? S T ‘E """ R
mass per passenger A i +leo kg 05f----- A z s s R
critical stiffness il J ﬂ 0.972 E E E E
) 0
spring stiffness k il-J ﬂ3934 Nim 0 1 2 3 4 5
T ratio
(e e i absolute positions first class and rest of iplane 5y stem information
aipiane | S { | totslmass (k) 41200
1=t glass |
- AR N — gibealll] wi {ha) 0.01218
; ) 1 | natorsl freq (Hz 0.07432
E E 10 - ] ¢ {damping) N s/m 374007
L L TR CEE R mrmnm ist class sample time (s2c)  0.02034
E E 2t 1 Mo. samples 4032
- R R e SR WA R i g R ciplane fiight time (sec) 61.9969
; ; ; /E.?BUE+UE. N
; ; : ; ) sample [1] time [0.000] sec
o e AT NETEANT TR 1 | i : : 1 |
o o0 o BO B8 100 -3 -2 -1 a 1 2 3
shsolute acceleration of first class vs. rest of airplane during turbulent flight
15 -

10

|

i rest of girplans
LR e first class

| o
o RWWWM

|
55 1 1 1 1 1 1 1 1 I

0 10 20 20 40 8 60 T0 B0 50

Figure 6. Simulation Matlab program used for obtaining the design parameters.

The first step is to load the Matlab .mat file which contains the acceleration time history.
Then one can use the sliders to adjust the system parameters and see the effect on the abso-
lute acceleration of the first class cabin. Computation was done in the FFT domain using
the functions f ft_easy() and if ft_easy() in the class web site. The absolute displacement
was found from the absolute acceleration in the frequency domain. Due to the problem
of division by zero for the first component in the frequency vector, this was set to zero
before using if ft_easy().
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3.2.4.4 Derivation of the transfer function
Assuming the mass of cabinet is M which includes passengers weight, by applying New-
ton’s laws the EOM for the first class cabin is
my"” + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky =cz' +kz (3.1)

The time history of the turbulent acceleration z” () was given to us in the matlab mat file.
Therefore in the frequency domain, and assuming the time history represents one period
we can write

o = Re[zﬁccei(wm)t]

Substituting back into EqB.T|and simplifying, the magnitude of the absolute displacement
of the first class cabin relative to absolute displacement of airplane is found to be

_ V1 + (207,

1_7% +(2Crn)
V(i -73) + @cn?

Y,
disp
n

Where Z%“ is the complex amplitude of the n'" harmonic component in the acceleration
data. Letting wyn = @, then in the frequency domain Eq[3.1/becomes

) acc ZQCC .
Re{(-m@? + io,c + k)Y, @l = Red [c=2— + k= |e'@nt
n n n

i® -2
n n

c k

Y = i@y o Zacc
n

-m@2 +iod,c+k|[ "
_ZEe 1420,
@ (1-12) +2iCr,

Where
@n
Ty =
Whatural
Zje . . di .
But —%-is the absolute displacement of the airplane, say Zy ", hence the transfer function

@hn
between the absolute displacement of first class cabin and the absolute displacement of

the airplane is
1+ i2Cr, isp

Yn = (1 — r%) + 2ilr, !

415



3.2. Introduction CHAPTER 3. DESIGN PROJECT

The magnitude of the absolute displacement of first class cabinet relative to absolute
displacement of the airplane is

v, | AL+e)’
£ BN I o

3.2.4.5 References

1. Aluminum datajhttp://www.onlinemetals.com|

2. Airpot Dashpot Performance Specifications. N.p., n.d. Web. 15 Apr. 2013.

[http://www.airpot.com/html/dashpot.html]

3. Boeing Commercial Airplanes. 757 Program. n.d. Web. 5 Apr. 2013.

[http://www.boeing.com/boeing/commercial/757family/index.page|

4. Engineering ToolBox. Young’s Modulus. Fabrication Extrusion Company, n.d. Web.
9 Apr. 2013.

5. Ginsberg, Jerry H. Mechanical and structural vibrations: theory and applications.
New York: Wiley, 2001.

6. Online Metal Store Metal Product Guides at OnlineMetals.com. Metal Product
Guides at OnlineMetals.com. N.p., n.d. Web. 15 Apr.2013.http: //www.onlinemetalls.
lcom/merchant.cfm?id=980|

7. 7575-200 Airliner flugzeuginfo.net-the aircraft encyclopedia. N.p., n.d. Web. 10 Apr.
2013 http://www.flugzeuginfo.net/acdata_php/acdata_7572_en.php|

3.2.5 software

The following contains the current version of Matlab software to use to design
the vibration isolation system.
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4.1 Practice exam Spring 2013

Name:

EMA 545 — Practice Exam #1
Spring 2013 - Prof. M. S. Allen

Honor Pledge: On my honor, | pledge that | have neither given nor received inappropriate aid
in the preparation of this exam.

Signature

Calculators are allowed but not really needed. You may use one sheet of notes (one side).
Formulas:

e’ =cos(0)+isin(6)
Transient Response
The general solution to an underdamped SDOF system

X+ 2¢w, %+ @,°x =0
X(t) = Re( Ae<"fe)

where @, = w,/1-¢* and A is a complex constant.
Forced Transient Response:

X(t) = X,c (t) + % (1)
where Xg(t) can be found in Appendix B

Forced Steady-State Response:
f(t)=Re(Fe"') -  x(t)=Re(Xe")

Page 1 of 5
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Appendix B from Ginsberg, Wiley, 2001:
§ +2wgd + 0l

« Free vibration; F(#) = 0
g = exp(—{w,,1) [9(0)cos(wy?)
4 4(0) + {w,,q(0)
@y
+ Impulse excitation: F(£) = 8(t)

sin( wdt)}

g = ——exp(— Lo, tsin(yHh(E)

Moy
« Step excitation: F(t) = A(f)
1
1 Moty (1=exp(—{w, ) cos(wy?)

+ gw“a‘sin (wdt)} }h(t)
@y

» Ramp excitation: F(f) = th(?)

9= L (W) = 2¢

Whpgt
+ exp (— {wy,2)[2{cos(wyt)
-1 - zgz)ww—":‘sin(wdt)] }h(r)
« Quadratic excitation: F(t) = #2h(f)
q= ""—"lr{(mmtt)z — 4{(wpyt)
Wnat
=2(1—42)+exp(—L{w,1)
X [2(1 = 4&)cos(mdt)+(6§

—-843 2:; s‘in(wdr)} }h(:)

Name:

fﬁl (<1, wg=wgll-{

» Exponential excitation:

F(5) = exp(—B 1) h())

g 1 ' {GXP(—BIJ

" M(ah - 200 B + B)

—exp(—{w,, ) cos(wyt)
{o— B

Wy

+ sin (wyt)] } A(?)

« Transient sinusoidal excitation:

F(t) = sin(wh(t), o #w, if {#0

1
q= 2
M(02, — 0?) +4l w2, 0]

X {(wﬁat - w?) sin(wt) 2w, cos(wr)

+ wexp(—{wy,t) |:2§'mmtcos(wdt)

(1 —2{2)w§at— w?
Wy

sin(mdt)] }h(r}

« Transient co-sinusoidal excitation:

F(t) = cos(wdh(t), @ # wy if ¢ #0
1

M[(w2,— w?)? + 4.2 0k, 0

q k—1
X {(wgﬂ -~ w?)cos (wt) + 2w, wsin(wt)

—exp(—{¢ wmtt)l:( w2, — w?)coswyt)

- gwnal(wfat + w?)
@y

sin (wdr)} }h(:) |

Page 2 of 5
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Name:

Short Answer Questions: (10 pts each)

1.) A very lightly damped single-degree-of-freedom system is observed to oscillate at 200 Hz
after being excited by an impulsive force at t = 0. The oscillations are observed to fall below 1%
of the initial amplitude after t = 1.5 seconds. What is the damping ratio, £? (Show your work!
An unjustified answer will not receive credit.)

2.) A certain single-degree of freedom system is excited by a force f(t) = -cos(wt)-1.5sin(wt),
resulting in a response x(t) = 1.2cos(wt)+0.226sin(wt). By what angle does the response lag the
force? (Show your work! An unjustified answer will not receive credit.) Is this possible? If it
is, would this require that the excitation frequency be smaller or larger than the natural
frequency?

Page 3 of 5
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Name:

Problem #3 (40 pts)
A single-degree-of-freedom system is initially at rest in its static
Tf(t) equilibrium position when, at t=0, a force, f(t) = Re(Foe'™) is applied,
where the drive frequency, o, is one fourth of the natural frequency of

X the system and Fy is a real constant. The stiffness of the system is 10
N/m, its mass is 0.1 kg, and the system can be modeled as undamped
m over the time interval of interest, so ¢ = 0.
I a.) Find an expression for the response of the system for t > 0.
c ’J_‘ k b.) Sketch the response noting any important features.

Page 4 of 5
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Name:
Problem #4 (40 pts)
The schematic shows a simplified model for an automotive suspension, AN
where the mass represents a wheel and the springs and dashpots lc
represent the suspension and tire. The equations of motion for the k g
system shown are:

g

T 1x
S S e [

All of the system parameters, m, ¢, ¢4, C2, and kg are known. A harmonic C J_
force f(t) excites the system and steady state conditions have been y
reached so the motion of the massless point, y(t), is harmonic, y(t) = f(t) ¢ |
Re(Ye'™"). This motion has been measured so the complex amplitude, Y,
and frequency, , are known. C2

() (20 pts) Derive the transfer function relating the complex WTLYETT\

amplitude of x(t) to that of y(t).
(b) (10 pts) What would the amplitude of x(t) be for very small and very large drive
frequencies? You may express your answer in terms of m, ¢, cg, C2, and kg, Y and o.

Page 5 of 5
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4.2 first practice exam for finals. 2011

EMA 545 — Review Problems for Final Exam - Prof. M. S. Allen
Spring 2011

Problem #1:
4.34 The mass matrix, excitation, and modal proper-
ties of a two-degree-of-freedom system are known to be

_13 1 _]0
Iirr:]—[l Jkg- {2} {20:}N

w; = 542 rad/s, w,=13.00 rad’s,

_ 1 _ 1
-l L} wo-{)

where « is an unspecified value. The system was
initially at rest in the static equilibrium position.
Determine the response.

Problem #2:

The system below consists of two pendulums on frictionless pins, connected at their tips by a
soft spring k = aumg(L/2) where a. is a small constant. The equations of motion are the following,
where 0, corresponds to the left bar.

1 L[t o][é Lla+05 -« 6, 0

—mL . or+mg— =

3 0 1](6, 2| —a a+0.5]|6, 0
The bar on the left is given an initial displacement of 2 degrees with the bar on the right vertical
and the response is recorded and is shown below. The blue line corresponds to 0; while the
dashed green line corresponds to 0,. The amplitude of the motion of the left beam decays and
then grows with time as the vibration energy transfers from one pendulum to the other and then

back again. The beat period is 63 seconds. What is the value of a? Justify your answer, but you
need only do those parts of the analysis that are critical to understand what is happening.

L 0 10 20 30 40 50 60 70 80 90 100

FYI: You can see a video of a system such as this at:
http://www.youtube.com/watch?v=RoSYKPTdIxs
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Problem #3:

The two degree-of-freedom system shown below is forced by means of ground excitation.
The lower spring rests on the moving base, but is not attached to it. When y(t)=0, the system
is in static equilibrium when x; = x = 0. The equations of motion for the system are given

M

For all of the following you may assume that the base of spring k; never looses contact with the
platform.
a.) Find the steady-state response x(t) and x»(t) when o is equal to the first natural frequency
of the system. Use k; =k and k; = 2k.
b.) Are there any frequencies of excitation for which the steady-state response amplitude for
x1 is identically zero? Use k; =k and k, = 2k.
c.) Ifk; =k, =k, what is the steady-state response amplitude of each mass when the system
is excited at a resonant frequency? Can you explain the result?
d.) For arbitrary k; and k»_ if y(t) is such that x,(t) = Acos(wt), what is the response x,(t)?

contacting,

but not attached y(t) = Ycos(ot)

Extra credit — under what conditions does the base of the spring k; loose contact with the
platform?
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Problem #4

Find the linearized equations of motion for the system pictured below. Model the cable as a
massless spring with stiffness k. The system is in static equilibrium in the position shown when
the dynamic force F is not present.

L2 3 L2

B g ™

Ij —

Problem #5
Sorry, I didn’t have time to write a 5" problem. This final probably isn't quite long enough.
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F(t _ I Pa—
§+2§wm¢+m§uq = _{2 {“: 1, Wy = Wy 1 52

M
« Free vibration: F(f) = 0 « Exponential excitation:
g = exp(—{@,,1) [g(0)cos(@y?) F(ry = exp(—B £) h(?)
1 -
+0) + 1] ; = exp( ﬁr}
4(0) iﬁﬂmq( ]sm(wdr):l q M (ke — 2‘:%“.3 + ,32){
d
« Impulse excitation: F(t) = (1) —exp(—{wy,t)[cos(w,t)
g= E}_nxp(—gmmt}sm(mdl)h(t} +£mn—~:.._-E3in(wdf)] }h(t]
W, q

« Step excitation: F(£) = h(r) « Transient sinusoidal excitation:

1 F(t) = sin(@h(), @ % @y if £ #0
=——(1—exp(— rylcos(wyt)
q Muﬁm“ exp(—{@p,t) 4 . )
— ) 2 2
+ g—wﬂ‘-‘sin (wdt}] }A(:) M[(w2, — o) + 4l w0’
@y
« Ramp excitation: F(?) = th(r) X {(m&m — w?)sin(w?) —24w,,w cos(wr)
g = —L (@) — 2 + wexp(“é’wmf)[ié'wnafODS(wﬁ)
Wiy
+ exp (— fyy?)[24 008 (04f) (20 of sin(wdﬂ]}h(t]
@y
-(1- 2{1}%}“51“ (md!)] }h(‘} « Transient co-sinusoidal excitation:
‘ F() = cos(wDh(f), w # @, if {#0
« Quadratic excitation: F(f) = 2h(t) .
q =
q= 14 {(mmr}z — 4l (wpyt) M(w2,— o?)? + 402 02, 0?]
Mwgy
—2(1—4{2)+exp(—{wyy!) X {{mﬁm — w?)cos (@) + 2w, wsin(wt)

% [2(1 = 4L cos(wyt)+ (64
—exp(—gwmt)[(mm— w*)cos wyt)

-s;sa%sin(md:)”h(r) fo (0 + @) _
d + Wyl Wy sin(‘ﬂdf:’]}h[ﬂ

Wy
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key solution
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4.3. extra one problem practice CHAPTER 4. EXAMS

4.3 extra one problem practice

Name:

EMA 545 —Exam #2
Spring 2013 - Prof. M. S. Allen
Honor Pledge: On my honor, | pledge that | have neither given nor received inappropriate aid
in the preparation of this exam.

Signature
Formulas:

Stiff spring approx: Newton’s Laws (2D): moment of inertia of a thin
A=u, —U, =(V, -V, )& F=ma rod about its center of mass:
B A ( B A) B/A z ) Iy = (1/12)mLZ

2 Mg =1,00r about its end:
S M, =1,0if 4,=0 leng = (1/3)mL*

Appendix B from Ginsberg, Wiley, 2001: (Corrected)
, . F(z _ —
§+2o,g+ wl%atq = "'X(l")' (<1, @g=aw,Nl— £

+ Free vibration: F(£) = 0 - = Exponential excitation:
4= exp(~ {0, [9(0) 08 3y Fo) = exp(=R 0O
4(0) + f,a(0) 4= L {exp(—ﬁn
e M(ahe - 220, B + B?)
» Impulse excitation: F(#) = 8(2) —exp(— {wy,t)[cos(wyt)
1 . fo,—B
= ——exp(—{w,, )sin(wt)h(t) 2omat i
q Mo, p(— @ t)sin{wyf) o+ y sin(@yt)] }h(x)
+ Step excitation: F(9) = h(f) « Transient sinusoidal excitation:
g =—L—(1—exp(~ fw,)cos(@g) Fle) = sin(w)h(t) @ # w1 £#0
M‘U%mt 1
q= *
4 S o) }hm Mi(02, — o))’ + 402,07
Wy
» Ramp excitation: F(f) = th(z) X { (0l — w?)sin(wt) ~2{w, © cos(wr)
q= M(j:at {(wpet) =24 + mexp(—{wnatt)[sznatcos(wdf)
+ exp (—{o,, 1) [2{cos(wyt) _a 20wk~ ©* sin(wdt)] }h(z)
. ———-——-wd
@, at .
-(1- 2{2)—%%1:1(%?)} }h(t)
Page 1 of 4
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Name:

Problem #1 (20 pts)
The system pictured below consists of two identical bars of mass m and length L. The bars are

connected as shown with stiff springs, so that the left bar is inclined at an angle B while the right
bar is horizontal. This position is the static equilibrium position. Both springs have stiffnesses k.
The generalized coordinates are the position of the mass, denoted y, and the angular deflections
of the bars from static equilibrium, denoted 6, and 6,. The angles 6; and 6, are positive in the
directions shown.

F(t)

i

A co-worker asserts that one of the equations of motion for this system is the following.

%mLéﬁkLcosﬂ(L@2 + Lchosﬁ)—kLycos/}:%

Consider the physics of the problem and check the sign and units of each term. Does each term
produce the expected effect? Explain your reasoning.

Page 2 of 4
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4.4 practice exam 2

practice exam 2 . checking validity of K matrix, derive EOM for 2 DOF system, bar, spring,
damper full modal analysis, find solution due to impulse.
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4.4.1 questions

Name:

EMA 545 — Practice Exam #2
Spring 2013
Prof. M. S. Allen

Honor Pledge: On my honor, | pledge that | have neither given nor received inappropriate aid
in the preparation of this exam.

Signature

One (1) 8.5x11” double-sided sheet of notes allowed and must be turned in with your exam.

Problem #1 (10 pts)

a.) A colleague asserts that the linearized
equations of motion for this system are as given
below, where x’s denote terms that are not given
to you, which may be zero or constant. []|springs
denotes the portion of the stiffness matrix due to
the springs and []|gravity denotes that portion due to
gravity. Check the units and the sign on the
K12lsprings term. I incorrect, please provide the
corrected term and explain your reasoning. (The
left mass is constrained so that it slides along the
bar as the bar rotates.)

I 0 x|[é kL2 k x 0 X X X 0 0

0 m x|[{Xp+| kK x x Xp+[x x X Xp=40

x x||y X X X orings y XXX LY 0
Page 1 of 3
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Name:

Problem #2 (45 pts)

Gravity acts downward (along dashpot c),
and the initial lengths of the springs are Lz —>t=— L2 —>
such that the position shown corresponds to T

the static equilibrium when the applied c F
dynamic force F(t) is not present. The Mass m, / 561
moment of inertia of a rod about its mass E“ﬁ‘ «B

L d
center is I = (1/12)mL? and about its end is A 3

leng = (1/3)mL>.

a.) ldentify generalized coordinates and &
derive the corresponding equations of
motion. Employ the stiff-spring
approximation to simplify your analysis.
Friction is negligible in the pin joint A
and the friction force between the guide
and m; is equal to f=c,v, where v is the speed of the mass. (30 pts)

b.) Check that your answers make sense. Explain each check that you perform and why it shows
that your EOM are/are not correct. (15 pts)

Page 2 of 3
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Name:

Problem #3 (45 pts)

The system pictured is initially at rest when an impulsive force f(t) = Fod(t-T) is applied to the
mass on the right. The masses are constrained so that they only translate in the horizontal
direction, and there is no friction between the masses and ground.

%

m ‘/\k/\/‘ 2m  |—=f(t)

ATTIITIHI T TTTRRTRITTRTIRIRIRIRRRRRRRRRN

The equations of motion of this system are:

o anltel U i)

Find the response of the first mass, x;(t), as a function of time.

Page 3 of 3
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v . F(t —
q+2£wnatq+w1%atq = _1%4_)' {< 17 wd=wnat 1—§2

« Free vibration: F(f) = 0 « Exponential excitation:
g = exp(— o, t) [g(0)cos(wyl) F(f) = exp(—B 1) k()
§(0) + {w,u4(0) ] g= ! exp(—B1)
oy ) M(@fu — 24wy B+ B)
« Impulse excitation: F(t) = (1) —exp(— {wy,t)[cos(wyt)
1 . o, —
4= 1o eHP Lo sin D) +§_n_:;;-§sin (@a1)] }h(t)
* Step excitation: F(f) = A() « Transient sinusoidal excitation:
g= 1 (1—exp(— L, fcos(wy?) F( = sin(wdh(®), o # wy, if {#0
M w%lat _ 1
gwnat - 2 2 2 2 2
+ sin (wdt)] }h(t) Ml(w2, — 0?) +4Llo0Z 0%
Wy
« Ramp excitation: F(f) = th(r) X {(“’?{m — w?)sin(wr) —2{w, o cos(wt)
_ 1
q= wlsm {(wnatt) - 25 + w exp(—g’a)natt)[ZZa)natCOS(a)dI)
Nl — w2
+ exp (— Lo 1) [2{cos(wg?) (12 )oj')nat ® sin(wdt):| }h(t)
2 wnat . ( t d
—(1 — 2075, st )| ph() « Transient co-sinusoidal excitation:
F() = Hh(1), i #0
« Quadratic excitation: F(f) = #h(t) () = cos(@nh(t), & # g If £
_ 1
=L _lo n?—4lw,) - 22 2 2
q w:at Wl nat M[(w?,— @?)* +4¢ w2, w?]
—2(1-42)+exp(—{wyyt) X {(wgat — w?)cos (wt) + 2{w,, wsin(w?)

439

X [2(1 — 48%)cos(w4t) +(64
® —exp(—{wnatt)[(wfm— w?)cos wyt)
—8;3-2)1;-s'in(wdt):l}h(t) ) _

e ;w oin (m,ﬂ-l lh(r\
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4.4.2 Problem1

Problem #1 (10 pts)

a.) A colleague asserts that the linearized
equations of motion for this system are as given
below. where x s denote terms that are not given
to you. which may be zero or constant. []|springs
denotes the portion of the stiffness matrix due to
the springs and []|grviry denotes that portion due to
gravity. Check the unifs and the sign on the
K12/springs term. If incorrect. please provide the
corrected term and explain your reasoning. (The
left mass is constrained so that it slides along the
bar as the bar rotates.)

I 0 x]|[é Kk x J ﬁ-l %X ¥ K ( O'I
0 m x|{X:+| k x x Jxlylx x x JeloJol
X % x|y * ® o x| Vv [ ®X ) 0 [

springs - - gravity L v

Taking x as positive as shown, and y as positive as shown, then the middle spring is in
compression with change of length A = (x + LO) and the right most spring is in tension
with change of length A = x, hence

1 1 1
Vpring = Eky2 + Ek(x +LO) + Ekx2
1 1 1
— 12 2, 7202 2
= Eky + Ek(x + L°0° + 2xL6) + Ekx
1 1
= HZ(EkLZ) + x%(k) + yz(ik) + xO(kL)

Compare to quadratic form

1 1 1
Vpring = EKll 6% + 5 0¥ + §K33}/2 + K12x0 + K130y + Kazxy
Then
K11 = kLZ
Ky =k
Kz =k
K12 = kL
K13 = O
K23 = O
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Hence the K matrix due to stiffness is

kI2 kL 0)(©
kL. k Ofx
0 0 k)\y

Therefore, K, had the wrong units. This reason is as follows: result of multiplying the
0

first row of the Ky, matrix with the column | x | should have units of torque. Therefore

Y
the units should be force x meter and hence K;,x should come out as Nm units. But as
given in the problem, it has units N only, ie. units of force. But now, the units will come
out to be Nm.

0

Similarly, the second row of the K matrix when multiplied by | x | should have units of

y

force only (not torque). We can see this this is the case with this correction. So the sign
was correct, but the units did not match before.
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4.4.3 Problem 2

Problem #2 (45 pts)
Gravity acts downward (along dashpot c).
and the initial lengths of the springs are
such that the position shown corresponds to
the static equilibrium when the applied
dynamic force F(7) is not present. The
moment of inertia of a rod about its mass
center is I, = (1/1 E)mf and about its end is
Iona= (1/3)mL*.
a.) Identify generalized coordinates and
derive the corresponding equations of
motion. Employ the stiff-spring

approximation to simplify your analysis.

Friction is negligible in the pin joint A
and the friction force between the guide

L2

Mass m,

sz_—'

=

and m, is equal to f=c,v. where v is the speed of the mass. (30 pts)
b.) Check that your answers make sense. Explain each check that you perform and why it shows
that your EOM are/are not correct. (15 pts)

4.4.3.1 Parta

This is a 2 degrees of freedom system. The first generalized coordinate is taken as a which
the angle of rotation of the top bar around joint A. The second degree of freedom is taken
as x which is the sliding distance that mass m, moves as it slides over the lower bar

Mass my

T‘—Lﬂ' — e [ D =]
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Static equilibrium is at @ = 0 and x = 0.

We start by finding the kinetic energy. Since bar m; is fixed at one point to inertial space,
then only its rotational kinetic energy is added to the system kinetic energy

1(1 1
T = E(EmlLZ)(a')2 + omy')’

Now we find the potential energy, assuming springs remain straight. Spring k; will extend
by amount

and spring k, will extend by amount
Ay = La —xsin 0,
Hence potential energy of the system is
1 1 L
V= Ekl(Al)z + EkZ(AZ)Z + mlgE sina + mpgx sin 0,

Therefore the Lagrangian @ is

O=T-V
1(1 1 1 1 L
= E(Emle)(a’)2 + Emz(x’)2 - (§k1(A1)2 + Ekz(Az)z + mlgE sin a + mygx sin 62)
2
1(1 1 1. (L 1 L
= E(Emle)((X’)z + Emz(x’)z - (Ekl(za) + Ekz(LO( —xsin 92)2 + mlgz sina + mygx sin 82]
= lmle(a’)2 + 1mz(x’)2 -k —2a2 —~ lkz(Lzocz +x2sin® 6, — 2Lax sin 62) —~ mlgE sin a — mygx sin 0,
24 2 8 2 2
EOM for x is
d(dD) JD
dt\ox'|] ax ~*

where Q, is the generalized for for the x coordinate. To find Q, we make virtual dis-
placement 6x while fixing all other coordinates and obtain virtual work done by non-
conservative forces. Only non-conservative force acting on 1, is the friction force f = c,v
where v is the speed of the mass m,. The speed of the mass m, is the vertical direction is
v = x’ sin 0, hence the non-conservative force acting on m; is ¢, (¥ sin 0,) and is acting in
negative direction. Hence taking projection of this force along x gives

OW = —c,(x’ sin 6,) sin 6,0x
443
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Therefore
Qx = —sz/ sin2 62
Hence
d{dD\ JID .
a(ax/) - % = —sz/ Sll’l2 92
d
E(mzx’) - (—kzx sin? 6, + 2k,La sin 6, — myg sin 82) = —c,x’ sin? 0,
MoX" + cox’ sin? 0, + kyx sin? O, — 2kyLar sin 0, = —myg sin 0,
EOM for a is
d(dP) JD 0
dt\da’] da =

where Q, is the generalized for for the a coordinate. To find Q, we make virtual dis-
placement 6a while fixing all other coordinates and obtain virtual work done by non-
conservative forces. We see that the work is

L
oW = —c(La’)E(Sa + (Fsin 61)Loa

, cL?
= |FL sin 61 - Ta’ ox

Hence
‘ cL?
Qa = FL Sin 91 - 70[’
Therefore
d[JD ZL0) FL'GCLZ’
N - — = n -
it\da’ )~ Ja ST

d(1 ) L2 ) _ L _ cL?
— _mlL a' |l - —klza - kzL a + 2Lx sin 62 - mlgE cosa | = FL sin 61 _ 7a/

2 2

L L
—mL2a” + ky—a + kyL?a — 2k, Lx sin 0, + myg= cosa = FLsin 6; — —a’
12 4 2 2

2

1 2 17 ¢ i ’ 2 : :
EmlL a”’ + Ta + klz + kyL# |a — 2kyLx sin 6, = FLsin 64 —mlgE cosa

Hence the 2 EOM are
MoX" + cox’ sin? O + kyx sin? O, — 2k,Lar sin 0, = —1myg sin 0,
1 cL? L? L
—mL%a” + —a’ + [ky— + kyL? |a — 2k,Lx sin O, = FLsin 01 — myg= cos
12 2 4 2
444
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Linearize around static equilibrium, a = 0, x = 0 then we obtain
mzx" + sz/ Sil’lz 62 + kzx sinz 92 - 2k2LC¥ sin 92 = —ng sin 62

1, c? 12 > . . L
EmlL o + 70{’ + klz + kzL o — ZkzLXSIH 92 = FL sin 61 - mlgi

In Matrix form

i 2 , L
11—2m1L2 0 [au] % 0 [a/] le_ + kZLZ ~2k,L sin O, [ ] FLsin 6 — mgs
+ s =
X 0 Co sin2 82 x

77 ’
0 my X

—ZkzL sin 82 k2 —myg sin 62

I think the weight contributions should be zero. So I need to look more into this, but I
think the OEM should be as follows

2 2
%mle 0 [0(”] % 0 [CK,] kl L— + k2L2 —2k2L sin 62 [(X} [FL sin 91]
+ + 4 =

0 m2 x// 0 C2 Sinz 62 x’ —ZkzL sin 62 kz X 0

44.4 Partb

’

/

a
Checking the Damping matrix units. First row of C [ ] should give units of torque.

. L2 . . . : T .
looking at %a’ . viscous damping coefficient ¢ has units of N—, hence the units of the

expression ga’ are N %(L)z% = NL, in other words, a torque. (in here, L stands for length
units, T stands for time units and N stands for force units). Now to verify the second row
of C. We see it is ¢, sin® 0,x” which has units of force (given in the problem). Since the
second must have units of force, this is verified.

o

Now checking the stiffness matrix units. First row of K( J should have units of torque.

X

2
But (kl% + ksz)a has units of torque since k has units of force per unit length. and

2k,L sin O,x has units of torque also (note « has no units as it is an angle).

For the second row of K, it should have units of force, which it does, since k,x has units
of force and —2k,L sin 6, has units of force. Hence verified.

Check signs on the x EOM:
mox”" + cyx’ sin? 05 + kox sin? 6, — 2k,Lasin 6, = 0
myx"" + cox’ sin® 6, + kyx sin® 0, = 2k,Larsin 0,
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x> 0,x" > 0,x > 0 then a > 0,checks OK, since when x > 0 then the top bar will be
rotating in the positive direction and a > 0, i.e. the top bar will be above the horizontal.

Check signs on the « EOM:
2

1 ) cL? L ) _ .
EmlL o + 70{’ + klz + kzL a— 2k2Lx sin 92 = FL sin 91

1 ) cL? L2 ) , ,
EmlL a’ + 70/ + klZ + kyL# |a = FLsin 67 + 2k,Lx sin 6,

a” > 0,a" >0,a > 0 then x > 0,checks OK, since when a > 0 then the top bar will be
rotating in the positive direction and x > 0, means the lower mass m; is moving upwards.
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4.4.5 Problem 3

Problem #3 (45 pts)

The system pictured is initially at rest when an impulsive force f{r) = Fpd(r-T) is applied to the
mass on the right. The masses are constrained so that they only translate in the horizontal
direction, and there is no friction between the masses and ground.

X
5 2

X
| 5 /

k 2m

AN

ARRERRRRRNRRANAN

— /)

m

SANSN

ANNR RN R LR
The equations of motion of this system are:

m 0 |[|% L_ ko -k J"Tl]\:_] 0 1
0 2m||%] |-k k | x, ] lf(f)J

Find the response of the first mass, x1(f). as a function of time.

We solve this in modal coordinates so to de-couple the EOM’s. First find the
frequencies

1 -1 10
k - w?m =0
-1 1 0 2
1 -1 m[l O
- w?— =0
-1 1 klo 2
Let wz% = 1 then
1 -1 10
_172 =0
-1 1 0 2
1-n2 -1
n ~ 0
-1 1-27

447
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Hence taking positive roots | 1 =1.2247,1=0 | Whenn =0

1
Hence 1 — @1, = 0 or ¢, =1, therefore ¢, = {1}

When n =1.2247

Hence —0.5 — ¢y = 0 or ¢y, = -0.5, therefore ¢, = 05

e
R
B

}. Now do mass normalization

1 {(P]l Mo},
T

I8

=3

and
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Hence
1
o) - [90_}1 _ ﬁ _ {0.57735}
1 3 057735
1
o), - o), _ {—0.5} _ { 0.81650}
Vi 15 ~0.40825
Hence
o [0.57735 0.81650)
0.57735 —0.40825

Then the modal EOM are

[M] [@] + [@]' [K][®] = [®]"{F}
1 0 m 0)(m] (057735 057735 ) ©
[o 2 {nz}: 0.81650 0.40825]{F06(t)}
0 0|[m 0.57735F,6(t)
{ } [o 15{172}:{—0.408251—"06(15)}
For the first mass, EOM is
iy = 0.57735Fd(t)

t
Ay = f 0.57735Fo5(H)dt + C;
0
1
_ O.57735F0(h(t) _ E) e

m(t) = fof(o,57735P0(h(t) - %) + Cl)dt +C,

1
= 057735F0t(h(t) - E) + tC1 + CZ

e . , x1(0) 0 x1(0) 0 m(0)
Now initial conditions are zero since = and also = then =
x(0) 0 x5(0) 0 12(0)
0 11(0) 0
and also =
0 112(0) 0
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Initial conditions 1;(0) = 0 implies
CZ = 0

while and 7;(0) = 0 implies

1
C, = —0.57735F0(h(t) - 5)

Hence the solution is

1
Th(t) = 057735F0t(h(t) - E) + tC1 + C2
1 1
_ 0.57735F0t(h(t) _ E) _ 0.57735F0(h(t) _ E)

= 0.57735F0(h(t) - %)(t ~1)

Now the second EOM is solved.
fip +1.5m, = —0.40825F6(t)

Which has solution (using appendix B) and using M =1 and wp = w, = V1.5 =1.2247

since C = 0, hence
—0.40825F,

15947 sin(1.2247t)

m(t) =

Now to obtain the solution in normal coordinates

t
x1(t) _ (] m(#)
xo(t) 12(¢)

Then
1
{x1(t)} ) [0.57735 0.81650 || 0-57735F O(h(t) - 5)“ -1
Xo(t) 0.57735 -0.40825 ~0.40825F; .
o017 sin(1.2247t)
So
1 0.40825F,
= 0.577 .57735F -—|(t-1)|-0.81 — sin(1.22
x,(H) =05 35[05 35 0(h(t) 2)(t )] 0.8 650[ oy Sin 5t)]
1 0.40825F,
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For example, if Fy =1 then

x1(t) = 0.5773500.57735( h(t) - = |t = 1) | - 0.81650] 22202 (i1 20478)
=0. ) ——|t-1D|-0. ———sin(1.
L 2 12047 >
1 0.40825

Here is a plot of the solution x(t) and x,(f). The 2 masses move to the right after the
impulse, while in sinusoidal motion at the same frequency, but different amplitudes.

al = 0.57735;
b0 = 0.8165;
cl = 0.40825;
wn=1.2247;
1 ci
x1[t ] :=al |al (UnitStep[t] - —] (r—l)] - L0 (— Sin[wn :]}
5 2 wI
1 cl
x2[t ] :=al [aU [Unitstep[t] - —] (:—1)] +¢cl [— 3in[wn :]]
- 2 wn
Grid[

{{Plot[x1[t], {t, O, 30}, Frame -+ True, FramelLabel —+ {{"x; (£)", Hone}, {"t", "solution to x;(Lt)"}},
Gridlines -+ Automatic, GridLinesStyle - LightGray, Rotatelabel - False, ImageSize - 300]},
{Plot[x2[t], {t, O, 30}, Frame + True, FramelLabel + {{"x: (£)", Honel}, {"t", "solution to x; (t)"}},
Gridlines -+ Automatic, GridlLinesStyle » LightGray, Rotatelabel -+ False, ImageSize —» 300]11]

solution to x1({t)

x11) o

T
o~
4 !
a—'/
g
3 —t
Vi
xp g
T e S
i
i
_
1 P
A
of
0 5 10 15 i) 25 30
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4.5 finals 2nd practice exam

4.5.1 questions

Name:

EMA 545 — Final Exam - Prof. M. S. Allen
Spring 2011

Honor Pledge: On my honor, | pledge that this exam represents my own work, and that | have
neither given nor received inappropriate aid in the preparation of this exam.

Signature

Problem 1 (20)

Problem 2 (20)

Problem 3 (30)

Problem 4 (10)

Problem 5 (10)

Problem 6 (10)

Total (100)

You are allowed one sheet of notes for this exam, front and back. Staple your note sheet
to the back of your exam when you turn it in. Calculators are allowed, but you must show all of
your work to receive credit.

Page 1 of 9
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Name:

Appendix B from Ginsberg, Mechanical & Structural Vibration, Wiley, 2001: (corrected)
" . F(1) = -,
q + 2g'(‘onatq + wt%atq = M g < 1’ wd - wnal 1- §2

+ Pree vibration: F(f) = 0 » Exponential excitation:

g = exp(—{w,,?) [g(0)cos(wyt)

+ 4(0) + {w,,q(0)
Wy

sin(wdt)J
» Impulse excitation: F(f) = §(2)
1 .
qg= A—-l-—w—exp(~ {w,,t)sin(wyt)h(?)
d

+ Step excitation: F(f) = h(?)

—L —exp(— {w,, 1) [cos(w4?)

q =Mw?mt
+ { Oy sin ( wdt)] }h(t)
@

d
» Ramp excitation: F(f) = th(?)

1
q = M 3 {(wnatt) - 2{

What
+ oxp (= L) 24003 ()
~(1 - 2{2)%‘-’-‘8111(%3)] }h(t)
* Quadratic excitation: F(f) = #2h(f)
g= “'14—”{( @, 1)~ 4L(0h1)
Wnat
—2(1~42)+exp(—{w,,?)
X [2(1 = 4¢2)cos(wy)+(6¢

—8¢3 ;‘j: sin(md:)]}h(t)

F(®) = exp(—B 1) h(?)

g 1 {exp(—ﬁz)

" M(aka — 200 B+ B2)

—exp(—{w,, )L cos(wyt)

+ 5?—)3:—0‘-:——6 sin(wyt)] } 10)

d

« Transient sinusoidal excitation:

F(§) = sin(oth(d), @ # g if ¢ #0

1
q= 'S
Ml(02, ~ 0®) +4l w0k 0]

nat

X {(wz%at — w?)sin(wt) —2{w,, w cos(wt)

+ wexp(— {wy,t) [2 {w,, cos(wyt)

(1200~ o sin(wdt)] }h(z‘)

Wy

» Transient co-sinusoidal excitation:

F() = cos(wdh(t), @ # w, if { #0

1
q p=-J
M2, ~ @?)? + 402wl w?]

nat

X {(wgat ~ w?)cos (wt) + 2[w,, wsin(wt)

—exp(—{wut) [( w2, ~ w*)coswyt)

n gwnal(wﬁat + w?)

Wy

sin(wdt)} }h(z) |
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Name:

Problem #1 (20 pts)

Two rigid beams are pinned at their ends and arranged as shown below with a stiff spring
connecting their tips. Gravity acts in the direction indicated. The position shown corresponds to
the static equilibrium position. The masses of the two beams are m; and m, and they both have
the same length, L. They are separated by a distance h. A dynamic force is applied to the tip of
the right beam as shown. The moment of inertia of a bar is 1;=(1/12)mL? about its center and
leng= (1/3)mL? about its end.

Find the linearized equation(s) of motion for this system and check that your equation(s)
are physically reasonable.

m, L
. k
¢ gravity F
>
h |
Page 3 of 9
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Name:

Page 4 of 9
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Name:

Problem #2 (20 pts)

The impact of a tennis ball with a racquet can be modeled using the two degree-of-freedom
system shown below to represent the ball (the masses are only permitted to move in the
horizontal direction). A ball is initially traveling to the right at speed vo, (i.e. with X, =X, =V,)

when it strikes a racquet. Suppose that the impact force is known and is modeled as a square
pulse whose duration is T. Damping is negligible.

S
k
2m N\ m <—f(t)

£(t)

t
B
The equations of motion of this system are:

2m 0 |[X kK —k||x 0
+ =
0 m||X -k Kk ||x —f(t)
a.) (10 pts) Find the natural frequencies and mass-normalized mode shapes of the system.
b.) (10 pts) Find two uncoupled, second-order differential equations that could be solved to
find the response of the tennis ball. Be sure to substitute all known quantities into each of
the equations.

¢.) (3 pts extra credit) Use the result from (b) to sketch the response of the first mass, x;(t),
qualitatively for t > T, explaining any important features.

Page 5 of 9
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Name:

Problem #3 (30 pts)
The system below is a simplified model of an aircraft with an engine mounted on its tail.

) T f(t)
il
S
m2

K k

2 2

4

N NN\ ~N

The equations of motion for certain values of the ki, my, etc..., are known except for the mass

matrix,
My Mg [%] [004 0[] [100 -1001x] _[f()
M, M, ||% 0 005]||%| [-100 200 ||x,/ | O

s0 M1, M1z and My, are unknown constants. The mass normalized modes are also known and

0= o[

The second natural frequency is w,= 16.9 rad/s. Suppose the system is initially at rest when the
engine starts exerting a force f(t) = Acos(wt)h(t) where h(t) is the unit step function.

a.) (10 pts) What is the first natural frequency w;?

b.) (10 pts) How long will it take for the system’s response to settle to within approximately
1% of its steady state value? (Think carefully about what is being asked here and only
answer the question that was asked.)

¢.) (10 pts) Find an expression for the steady state response of the first mass x;(t) in terms of
the forcing frequency o.

Page 6 of 9
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Name:
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Name:

Problem #4 (10 pts)
The system shown consists of a beam with a large mass mounted one fourth of the

distance from its end. This can be represented with the undamped spring-mass system shown to
the right, with k=85E1/L>. The system is initially in its static equilibrium position when a step
force, f(t)=Foh(t), is applied to the mass.

L | f(t) ¢f(t) f(t)

-2 -

0

m

e iz L

The following information is available from a static analysis of the beam. When a static
load, F, is applied to a beam, the maximum bending stress occurs in the outer fiber of the beam is
given by omax=-MmaxC/l, Where Mmax is the maximum bending moment in the beam, c is the
(known) distance to the outer fiber and | is the area moment of inertia (also known). See the
figure below for additional details regarding a static loading scenario.

(a) Simply supported beam with concentrated loading

{ M — My
a Flx-a ‘ R = F[l _E] A
| ] :
: B | x 0 X
F%_, |
. y = F [ﬂ) bsiieis a
T 2 T l ] Mpar = Fa(] _T
&i 2 =MAX(R;, Ry)

hear Vnm,r .
L o Aoment

Loading

What is the amplitude of the load, Fo, that causes the beam to exceed its yield stress, cy?

Page 8 of 9
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Name:

Problem #5 (10 pts)
A single degree-of-freedom system’s response is given by x(t) = Re(Xei“’t) , with X=e'?™*,

Sketch the complex amplitude, X, in the complex plane and sketch the corresponding time
function x(t) over at least one cycle.

Problem #6 (10 pts)
A three degree-of-freedom system is excited by a sinusoidal force, f(t)=cos(wt).

[MI{x}+[Cl{x}+ [K]{xp ={F} f )
The frequency response was computed using { X} = (—a)2 [M]+iw[C] +[K])7l {F} and [X4
from that calculation is plotted below.

3.3

3
2.7
2.4
2.1
1.8
15
1.2
0.9
0.6
0.3

IX,]

Frequency (rad/s)

Suppose that the input, f(t), is replaced with a periodic function that can be expressed as follows,

£(t) =% > (_100n_ ”Je‘"wﬂ

with o1 = 3.0 rad/s. What frequencies would be present in the steady-state response x(t)?
Which of those would be dominant (i.e. have the largest amplitude)?

Page 9 of 9
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4.5.2 Problem1

Problem #1 (20 pts)

'wo rigid beams are pinned at their ends and arranged as shown below with a stiff spring
connecting their tips. Gravity acts in the direction indicated. The position shown corresponds to
the static equilibrium position. The masses of the two beams are m; and m: and they both have
the same length, L. They are separated by a distance A. A dynamic force is applied to the tip of
the right beam as shown. The moment of inertia of a bar is J;=(1/] 2yml” about its center and
o= (1/3)ml" about its end.

Find the linearized equation(s) of motion for this system and check that vour equation(s)
are phvsically reasonable.

01

l gravity

This is a 2 D.O.F. system. The degrees of freedom are 0, and 0, shown above in the
positive sense. The method of power balance is used to obtain the EOM.

2, \2 2, \2
The system kinetic energy is T = %ml%(ei) + %ml%(%) , hence by comparing term to
the quadratic form, the mass matrix part of the EOM is obtained

[2{m; 0 ||67
310 my||0y

To find spring stiffness, the spring deformation is found using stiff spring approximation.
N =(Vp-Va)-epa
= (LOi-L64j) - (cos pi — sin j)

L
Where ep4 is unit vector oriented to B from A and tanf§ = - The above becomes

A = L0, cos f+LO] sin

Hence, integrating, squaring and collecting terms gives
A = L0, cos +L0O; sin
N2 = 1203 cos? B + L?20? sin B + 212040, sin ff cos
= 02 (Lz sin? 5) + 9%(L2 cos? ﬁ) + 6, 62(2L2 sin 8 cos ,B)
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Using the quadratic form of the power balance method, the spring stiffness matrix part of
the EOM is found from Vi, = %k(AZ) and by comparing quadratic terms, which leads

to

Vspring = kL?

sin® B 2sinfcos f {61}

2sinfcosp  cos?B |62

But sinfcosf = %(sin 25) hence

.. 2 .
V. g2 sin“f sin2p {81}

pring
sin2 cos?B|| 62

Stiffness due to gravity V, is now found. Let datum for zero potential energy be at the
horizontal level of the top bar, hence V, = m; g% sin 07 — ngé cos 6,. Since the derivatives

are evaluated at static equilibrium 6; = 0 and 6, = 0, the only term that remains is ngg
which is now added to the k;, term of the stiffness matrix. FL is the generalized force for
0, since work done by F in making virtual 60, is FL6O,. Therefore, the EOM becomes

[2lm; 0 “ sin? sin 28 0, 0

— +kL? . =

30 my||0y sin28 cos? B + Mg 0> FL
To check units of the above EOM, looking at the first EOM from above

%zmlegf + kL2(sin? B)6; + kL(sin28)6, = 0

2
Let 6; = 0. Hence %mﬂi’ = —kLz(sin 2ﬁ)62. Assume 0, > 0 and the system is now
released to move. We should expect the top bar to accelerate down (negative), since the
spring is stretched. Looking at the above, we see that 07" < 0. hence this is correct.

2
Now let 6, = 0. Hence %ml 0y = —kL? (sin2 ﬁ) 0:. Assume 0; > 0 and the system is now
released to move. We should expect the top bar to accelerate down (negative) since the
spring was stretched. Looking at the above, we see that 87 < 0. This is correct.

Checking the second EOM

L2 L
S ma0f + kL?(sin 2B)0; + kL?(cos? B)0, = FL - myg 62

Let 6; = 0and F = 0 then
L2 L
—m26§' = —ngEQQ_ - LZ<COS2 ﬁ)@z

3
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Assume 0, > 0 and the system is now released to move. We would expect the right bar to
accelerate back (negative) when released to move. From the equation we see that 95 < 0.
This is correct.

Now let 68, = 0 and F = 0 then

LZ
< ma0f = —kL2(sin 28)6,

Assume 0; < 0 and the system is now released to move. We would expect the bar to
accelerate to the right (positive) since the spring was compressed. From the equation we
see that 65" > 0. This is correct.

4.5.3 Problem 2

Problem #2 (20 pts)

The impact of a tennis ball with a racquet can be modeled using the two degree-of-freedom
system shown below to represent the ball (the masses are only permitted to move in the
horizontal direction). A ball is initially traveling to the right at$peed vy, (i.e.with X, =X, = v,

when it strikes a racquet. Suppose that the impact force is known and is modeled as a square
pulse whose duration is 7. Damping is negligible.

A0

I ik l ks F,

k
2m NN\A m |0

t
The equations of motion of this system are:
2m 0 || X k  —k||x 0
+ -
0 m|lX, -k k ||x -1

a.) (10 pts) Find the natural frequencies and mass-normalized mode shapes of the system.

b.) (10 pts) Find two uncoupled, second-order differential equations that could be solved to
find the response of the tennis ball. Be sure to substitute all known quantities into each of
the equations.

c.) (3 pts extra credit) Use the result from (b) to sketch the response of the first mass, x;(t),
qualitatively for t > T, explaining any important features.
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4.5.3.1 part(a)

det([k] - w?[m]) = 0
ko -k _wzlzm 0
~k k|

de’{

1 -1 2 0
det —a)zm =0
-1 1 klo 1

0 m

’

For normalization, let ' = wt then Z—tt = w and using t’ instead of ¢ as the independent
variable the above becomes
det[

1 -1 2 0
=0
-1 1 ‘ [O 1

1-202 -1 |
det =0
-1 1-w?

(1-202)(1-w?)-1=0

The roots are w = 0 and w = \/g . When w = 0 it is a rigid body motion, So any ¢ will do.

1 3
Let o1 = {1} When w = \/; then
Pz )0
P22 0

—2 ~1ife 0
. =
-1 72 P22 0
1
let @1, =1 then =2 — @y, = 0 or ¢ = -2 hence ¢, = { }

2
; 1
p1 = @1 [Mlpy = ) =3

:(pT[M] _ 1 2 0 1 _
H2 2 P2 ol o 11122
464
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Hence
¢ 1 1 0.57735
q)l = = — =
VB V3 |1 0.57735
©2 1|1 0.40825
CDZ = = — =
Viz A6 |-2 —0.81650
4.5.3.2 part(b)
1L
V3 Ve
D =
1 2
V3 Ve

The EOM is

1 offmy] [0 O
+ 3
0 1|nz| o 3

o o m@O)] o
initial conditions are = and

% 7 { 0 } —V3f ()
1 - 1
v V6 f(t)

112(0)

m(0) _ T[] ol _
15(0) 40}

Therefore, the first ODE is

M NE

al- -
v 5

= ~5 VB Eo(h(t) ~ (¢ ~ )

with IC 1;(0) = 0 and n7(0) = \3 vo. The second ODE is

1
% + 3 = 5 V6 Eo(h() ~ bt~ T)

with IC 1;(0) = 0 and 17(0) =0
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4.5.3.3 part(c)

x1(t) = Pynu(t) + Cioma(t)
1

1
NG m(t) + %le(f)

Therefore, x4(t) solution has contribution from n;(t) and 1,(t). But n;(t) is linear with
positive slope of vy and 7,(t) is a sinusoidal, with no damping. So adding both together,
here is a sketch of possible solution

X1(t)
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4.5.4 Problem 3

Lyate,

Problem #3 (30 pts)
The system below is a simplified model of an aircraft with an engine mounted on its tail.

>

The equations of motion for certain values of the ki, my, etc..., are known except for the mass
matrix,
M, M, X, 0.04 o0 X . 100 -100 X, T
+ =
M, M, % 0 0.05 b -100 200 X 0
S0 My, M, and Mo are unknown constants. The mass normalized modes are also known and

o -{oeef o=y

The second natural frequency is m,=16.9 rads. Suppose the system is initially at rest when the
engine starts exerting a force f() = Acos(at)h(r) where h(t) is the unit step function.

a.) (10 pts) What is the first natural frequency w,?

b.) (10 pts) How long will it take for the system’s response to settle to within approximately
1% of its steady state value? (Think carefully ahout what is being asked here and only
answer the question that was asked.)

¢.) (10 pts) Find an expression for the steady state response of the first mass x;(¢) in terms of
the forcing frequency w.
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4.5.4.1 part(a)

dT[K]®T =

T . ;
085 11 |[100 -100[[0.85 11| [0} O
0.65 —0.5[ [-100 200 [|0.65 —05| |0 w2

4625 -05| |o? O
05 2810 |0 w2

Hence w? = 46.25 or w; = 6.8 rad/sec

4.5.4.2 part(b)

Using the first natural frequency, since this has the longest time constant 7 = iand
solving for the number of periods using logarithmic decrement method
Lo (hn
—In|—|=2 1
N n(]/N) T W
C; is not known but can be found by evaluating ®T[C]®T
T
085 11| 1]004 0 |[0.85 11 0.05 0.021
OT[K]®T = -
0.65 -0.5(| 0 0.05|{0.65 -0.5| [0.021 0.061
and assuming small damping approximation, then 2(;w; = 0.05. Hence (; = % =

% = 0.0038. Now that the critical damping ratio for the first mode is found, we can use

the method of logarithmic decrement to find how many periods it takes to attenuate by
99%

1
Let ;/—; = 557 = 100 then Eq (1) becomes
1
N In(100) = 272(0.0038)

_ (4.605)
~ 21(0.0038)
=193

=192.87
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Where N is the number or periods needed. But T = i—ﬂ,hence the time needed is
1

27 27
t=NT =192T =192— =192— =177.41 sec
w1 68

So it takes 178 seconds for the first modal (decoupled) solution to attenuate in amplitude
by 99%. Since this is the dominant time constant, we expect the physical solution to
attenuate in approximately the same amount of time as well.

4.5.4.3 part(c)

The EOM is, in modal coordinates
1 of|n 004 0 1
L +@T P L +
0 1{|ny 0 0.05| (n

T
oT 004 O B = 085 11| (004 O (j0.85 11| |0.05 0.021
0 0.05

0.65 -0.5 0 0.05][0.65 -0.5 0.021 0.061
Hence EOM in modal coordinates become
Lojfm| (005 0021)[m| |68 0 |[m|_]085 11
0 1||ny| [0.021 0.061||n, 0 1692||n| [0.65 -0.5
and using small damping approximation
Loojfn] foos o |[m| Jes o |[m|_ 0.85Re(Ae'?)
0 1f{n 0 0.061f{n 0 16.9%|(n 1.1 Re(Ae)

Hence the 2 EOM’s are

But

! Re (Aei@t)

0

ny +0.05n] + 46.24n; = Re(0.85A¢)
ny +0.061n) + 285.617, = Re(1.1Ae™)

0.85A
—@2+i0.050+46.24

1.1A

— it —
Letn, = Re(Xle )then Xy = @2 +i0.06090+285. 61

then

and 1, = Re(Xzeit‘D)then X, =

x = @111 + D1y

nl (o085 | 11 |
{28} ) {0.65} Re(Xe) + {—0.5} Re(Xae)
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Hence

x1(t) = 0.85 Re(X;e®") + 1.1 Re(X,e®")
xz(t) =0.65 Re(Xleith) - 05 Re(Xzei(Dt)

hence

0.85A . 11A |
x,(H) = 0.85 Re( e""t) +1.1 Re( e“Dt)

—-@2 4+ 10.05® + 46.24 —-@% +10.061® + 285.61

0.85A , 1.1A .
x,(t) = 0.65 Re( e”Dt) -0.5 Re( el‘Dt)

-2 +10.050 + 46.24 -2 +i0.061® + 285.61

These can be combined to

+
—-@?% +10.050 + 46.24 -2 +i0.06090 + 285.61
(0.65)(0.85)A (0.5)(1.1)A ot
—-@?% +10.05@ + 46.24 -2 +1i0.061 + 285.61

0.852A 1.12A .
x1(t) = Re([ le@t)

Xo(t) = Re([
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4.5.5 Problem 4

Problem #4 (10 pts)

The system shown consists of a beam with a large mass mounted one fourth of the
distance from its end. This can be represented with the undamped spring-mass system shown to
the right, with k=85EI/L’. The system is initially in its static equilibrium position when a step
force, fif)=Foh(t), is applied to the mass.

LA if(t) fo)
.
TS
xl

T 5 gk ———

The following information is available from a static analysis of the beam. When a static
load, F, is applied to a beam, the maximum bending stress occurs in the outer fiber of the beam is
given by 6max=-Mnaxc/l, where My is the maximum bending moment in the beam, c¢ is the
(known) distance to the outer fiber and / is the area moment of inertia (also known). See the
figure below for additional details regarding a static loading scenario.

{2) Simply supported beam with concentrated loading

- i | 1% M ; A My
e ! g 2} b
a . | RE e !“\1—-7}} f ;
- e f s A (1tt s .:M X
FiN == <F ’; i a \,
By =F 2 — L a)
T ? - .y My = Fay 1—— |
R, Ry 3 ¢/

=MAX(R, Ry)

!
v X

What is the amplitude of the load, Fy, that causes the beam to exceed its yield stress, Gy?

The transient response is given in appendix B as

x(t) = %(1 — cos w,)h(t)

, 2F . . :
Hence maximum amplitude of the response is 14, = TO Compare this to static deflection

which is U, = % then we can say that dynamic load is twice as large as the static load.
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Therefor using 2F, in place of F in the expression for stress gives the result needed

-Mc
I

—(ZFO)%(Z)
—

Therefore

4.5.6 Problem 5

Problem #5 (10 pts)
A single degree-of-freedom system’s response is given by x(¢)= Re(Xe""”) Jwith Y=,

Sketgh the complex amplitude, X, in the complex plane and sketch the corresponding time
function x(¢) over at least one cycle.

.21

At t =0 then x(t) = Re(el7) which is — COS(6OO) = —%. Using w = 27t rad/sec then x(t) can
be traced. Here is a plot

I=sqrt(-1);

w=2%pi;

x=0(t) real(exp(I*2*pi/3)*exp(I*w*t))
t=0:.01:1;

plot(t,x(t))

grid

xlabel('time (sec)'); ylabel('x(t)');
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4.5.7 Problem 6

Problem #6 (10 pts)
A three degree-of-freedom system is excited by a sinusoidal force, {f)=cos(w?).

[MI{E +[CT{x}+ [K]{x} = {F} f0)
The frequency response was computed using {X}= (—mz [M]+ 1'(1)[6‘]—#[[(]);I {F} and [X;|
from that calculation is plotted below.
ﬁ—ﬁﬁ—ﬁﬁ‘

3.3 B ]

3
&7
2.4
2.1
1.8
4
1
0.9
0.6
0.3

X

1 el
0 3 6 9 12 15 18 21 24 27 30
Frequency (rad/s)

Suppose that the input, A7), is replaced with a periodic function that can be expressed as follows,

@0

f@) :% > (100~n]emw

n

n=-wm

- with ©; = 3.0 rad/s. What frequencies would be i Ste
‘ ; present in the steady-state response x;()?
Which of those would be dominant (i.e. have the largest amplitude)? P “

Damped resonances are seen at w = 8.5,14 and 23 rad/sec. This is where r = 2 is close

Wi
to unity, where @ is the forcing frequency and w; is the natural frequency. Since this is a
3 dof system, it will have 3 natural frequencies.

The response of each dof will take contributions from each mode of vibration. Each mode
vibrates at different natural frequency. From the plot above it is seen that the response of
x1(t) has the largest response when the forcing frequency is close to the w, = 14 rad/sec.

The new force now has the following set of discrete harmonics in it: (n = 0 is not counted,

100 55 99 ¢ 98 o 97 96 95 94 98
DC). 03t Dot Boor 7 1ot 3,15t 318t M oue B 2ar

1 7D 13 an ' s r 78 y o Or

f(t) =100e*,49.5¢%,32.7¢%,24.3¢1%,19.2¢1,15.8¢1%,13.4¢21, 12,3624

So the input force has only discrete frequencies. Since linear sum, each f;(t) will cause the
response |X| at that specific forcing frequency as shown in the plot. Looking the plot it
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can be seen that when forcing frequency is 9 rad/sec, this will cause the largest |X| among
all these set of discrete frequencies. Hence the dominant harmonic is 9 rad/sec and will
have amplitude around 2.4 from looking at the plot.
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51 Quiz1

Name: ,{;CH/ “ %? f&“?

EMA 545 - Pop Quiz #1 - Prof. M. S. Allen 5(; r. 2017
Closed book, no calculators

Problem #1 (5 pts each)
The figure below shows a harmonic function g(#) whose frequency is ®=1.0 rad/s.

T T

Y |
o 2 4 & 8 10 12 14 16 18 20
K | time (s)
a.) If this were expressed as a complex exponential g(f)=real(Aexp(inf), in which quadrant
would A be located? Why? Sketch the complex vector A on the axes below.

y!f”f“’! (/’wm(! : ’
.4‘(]\;"/\,\(}

, — G / %
o onel (nrreasing,
, S 1T e [ yoach /! %
: vl Vieeh & %g’f)*é‘f’f/‘?v'b{’ sdcr)
Jyed Chuaady s Ak Ceraddyayyd ( /” Mm{ji (471 )L )

b.) Suppose that the expression for g(¥) is also valid before time zero. Sketch the complex vector
Aexp(iot;) for #; =~1.5 sec (i.e. # = negative 1.5 seconds).
/ﬂ 2L g il e
4 W*; ) é’\} R jﬂ
6 7 (’)

o ,..m,..ﬂ“\,»f""'“ ‘_/',f; »—j / (;
selraad /\ @al / j )(/ f? e

. /
yolete fw‘f% wetrols

) ]

by | < ya o e GO

Soad chdrand 7 Ay Chaddrasd

Page 1 of 1
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5.2 Quiz2

5.2.1 Problem description
Consider this 3 DOF system

2 U0f- oxa f-u’}ofe ‘ — | —

ﬁ'ﬁb Ef'; D=
— 1 KZ 1 {"—; Ko |’ g}(r Y!ﬁ(’,}ir'y;;r‘!.#;; ;’5 o }L/ni{'”; ﬁgg_gr‘?—.g__,../

2 i f——{-»‘i Upavl whieh fark rwess
'Syl T;"fq/
JM/; Ay { X,
- ) _ — Finet piaf. +f wg’; ancl wpostes
77

Suppose a harmonic force f(t) = A cos(®t) is applied to the mass in the center. Use modal
analysis to do the following;:

1. Find the uncoupled modal equations of motion. Consider the steady state solution
for each of these equations. Sketch the modal amplitude (X; in the book on page
275) for each mode versus frequency. A hand sketch is sufficient.

2. Use that result to sketch the frequency response of each of the masses, in other
words the complex amplitude Y;, versus w

5.2.2 Answer part (1)

A summary of the steps needed for full modal analysis is first given. In these steps, a
column vector is shown as bold letter Y and a matrix is shown as [M]. In this summary,
the system is assumed to have n degree of freedom.

The steps are

1. Determine the system of equations of motion and set up [M]Y” + [C]Y’ + [K]Y =F
in matrix form.

2. Solve the eigenvalue problem det([K] - a)Z[M]) = 0 in order to determine the n
natural frequencies.
3. For each natural frequency w; determine the corresponding i eigenvector j by

solving ([K] - cuj2 [M])]- = 0. In this step, the first component of ; is set to 1 and the
other components are solved relative to it.

4. Obtain the normalized eigenvectors @; for each ; using @; = ﬁ where u; = ]-T[M]j.
j

Each uj will be a scalar.

5. Set up the modal transformation matrix [®] = [DD, --- D, ]. This will be an n X n
matrix.
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6. The transformation from normal solution y(t) to modal 7n(t) will be Y = [®] and
= [@]7Y = [®]' [M]Y

7. Apply the above transformation on the original equations of motions in matrix
form to obtain the equations of motion in modal coordinates [CD]T[M] [D]Y” +
[@]"[CI[@]Y'+ [@]'[C][@]Y = [@]'F. This becomes I"(¢) + [C] (1) + [K](H) = [@]'F
where I is the identity matrix, [C ] is a diagonal damping matrix obtained using

a method such as weak damping approximation and [I~< ] is diagonal matrix with
diagonal that contains the natural frequencies squared a)jz in each of entries.

8. For steady state solution in modal coordinates, the loading vector [CD]TF is assumed
tobe Q = [<D]TF = Re((jei‘at) where Q is the complex amplitude of the loading

vector in modal coordinates. Therefore, the steady state solution is () = Re()zei@t)
. . [F
where X is the complex amplitude of each modal response is X;=——_———. For
] @2 +i2Cjwid+o]
T

>—. In here, [ represents the
j

a system with no damping this simplifies to X]:@Z—+
— @

transpose of the j column of the modal transformation matrix [®], or the transpose
of the j mass normalized eigenvector, and w;j is the j" natural frequency.

9. Now the steady state solution in modal coordinate is used to obtain the solution
in normal coordinates since Y = [®]. Therefore Y, = Re()zei@t) = Re([CD])zei‘Dt) =

11 A
2K

j=1

Re(Yei@t). In component form Y, = Re et

The EOM are derived in the hand out given. The force f(t) acting on the second mass is
now added, resulting in the following equations of motion for the system

m 0 o||l4]| |k+k -k 0 ||« 0
0 m ORgyr+| ko Kki+2k, —ky |Kg2¢ =14 Acos(ot)
0 0 m qé’ 0 —k2 kl + kz qs3 0

The first step is to obtain the natural frequencies of the system. This is done by solving the

eigenvalue problem det([K] - a)z[M]) = (. The solutions are also given in handout. They

k k1 +k: k1+3k . . .
are o = -, wj = =, w§ = == The non mass normalized eigenvectors associated

m
with these eigenvalues are found as

1 1 1
1 — 1 72 — O 73 — _2
1 -1 1
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The next step is to mass normalize the eigenvectors as follows

T
1l fm 0 0Of|1
w =TM]; =415 [0 m 0[{1} =3m
1 0 0 m|l|l
T,
m 0 O0f[1
=M, =30¢ |0 m 030}=2m
-1) [0 0 m||-1
T,
1 m 0 1
us =Ml =4-2¢ |0 m 0|3-2¢=6m
1 0 0 m||1

Hence the mass normalized eigenvectors are

1
S N B
Y Vi \/_3m1
1

2 1
)= — = — 0
\/E V2m 1
1

3 1
3:—:—_2
\/@ vém ,

Hence the modal transformation matrix [®] is

1 1 1]
1 V3ov2o Ve | [0577 0707 008

1 -2
[®]=[123]=W@ 0 F|=s=lo577 o -osie
o4 0577 —0.707 0.408

NN

481



5.2. Quiz2 CHAPTER 5. QUIZES

The modal EOM’s are now found using the modal transformation matrix [®]

[ MI[@]{n"} + [@]"[KI[@]{n} = [®]'Q

10 olfm] |ef O Of(m 0
01 ORmY+[0 w2 03} =I[P]"SAcos(@t)
00 1f{ny] [0 0 2|\ 0
_ B ’ - R T
1 0 0||™ . ky 0 0 Uil ) 0.577 0.707 0.408 0
01 0m(+—|0 ki+ky 0 2 :T%W 0  -0.816| { Acos(at)
m
00 1||ny 0 0 Kk +3k||ns 0.577 —0.707 0.408 0
1 0 ol 2 0 0 |{m 0.577 A cos(ot)
1 1
Je+—|0 ki+k 0 =—
01 O™ - 1tk 2 N 0
00 1)|ny 0 0 Kk +3k|(ns —0.816 A cos(@t)

Therefore, the 3 uncoupled modal EOM’s are
0.577 A

k
ny(t) + im(t) = cos(ot)
ki +k
() + =——=na(t) = 0
, k1 + 3k2 0.816 A
n3 (t) + - ns(t) = - N cos(@t)

To complete the solution, the above EOM are written as follows by using complex form
for the loading vector

k
() + —m(h) = Re(

k1 +k2
m

k, + 3k
Ho+ 2n3<t>:Re(

0.577 Ae@t)

i

2 (8) + n2(t) =0

08164 .,
m

\/ﬁ

Assuming the steady state solution is

= Re()zeimt)
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or in expanded form
m(t) = Re(&@i@t)
Ma(t) = Re(Xzei@t)
ms(t) = Re(Xe,ei(Dt)

Where
0.577 A
& \m
Xl - 2 X )
wi + 21C16¢)1(D -
Xz = O
-0.816 A
N m
X3 Vi

Cl)f;Z + 2iC3a)3cD - @2

Dividing the numerator and the denominator by w? where i = 1,2,3 and using r; = wﬂ

and letting C = 0 since no damping exists, results in

o  A\m| 0577
X, = P -

1- mz
XZ = O

4. AVm | 0816

>k + 3k 1 _
k1+3k2

To sketch these amplitudes, the equations are normalized. This is in effect the same as
setting m =1,k; = k; =1, A =1 resulting in

0.577
& —2
X1 1-o
- N 0

Here is a plot of each X; vs @. The x-axis is the nondimensional forcing frequency €)
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(o]

&

[ 3]

L]

(3]

Mlodal emplituds X; vs.

nofedimensionsl Sdring feguency 01
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Since there is no damping, resonance will occur at QO = 1 in first mode and at Q2 = 2 for
mode 3.

5.2.3 Answer part (2)

The transformation from modal coordinates to normal coordinates is

q=[P]
In expanded form
71 q)lT[n}
G2 =97 {TI}
q3 o {,7}
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0.577 0.707 0.408
0.577 0 —-0.816| and = Re()zei@t) hence the above becomes
0.577 -0.707 0.408

But [®] = %

A

0.577’T Re(%;e')

0.577 Re(Xzef@f)

0.577 Re(f@ei@t)

h 0.707 | Re(Xae)
qo ¢ = RG(X l(Dt)
qs -0.707 Re(X3ei‘Dt)
0.408 Re(f(le”m)
~0.816 ¢ { Re(Xye'®")
0.408 Re( & 36@f)

0.577 Re(X;€"®) + 0.577 Re(X,e®) + 0.577 Re(X;¢"?)

= 0.707 Re(X;¢"@) - 0.707 Re(Xze*®)

0.408 Re(X;¢"?) - 0.816 Re(X,e™®) + 0.408 Re(X;e™)

0.577 X; + 0.577 X, + 0.577 X
=Re 0.707 X; — 0.707 X5 eiot
0.408 X; — 0.816 X, + 0.408 X

Comparing the above to qy = Re(Yei‘Dt) shows that

0.577 X; + 0.577 X, + 0.577 X;
Y = 0.707 X; — 0.707 X,
0.408 X; — 0.816 X, + 0.408 X

To ploteach Y;, letm =1,k; =1,k; =1, A =1, and letting X, = 0 as found earlier, results
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in

0.577

0.577 | -0.816

0577 =5 +

4 @?

0577  0.707 | -0.816
0.707 -

1-@?

4 @2

0.577  0.408 | —-0.816
0.408 = +
1-o
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(3]

i
[FE]
=]

(3]

ampliteds vs. nondimenszions]l focing Feguency £

(3]

LI

3
:

(3]

Ly

—4|

—

F
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The above shows that when the nondimensional frequency Q is not close to a one of
the nondimensional natural frequencies, then the Y values have comparable magnitudes.
For nondimensional frequency Q larger than 3 all amplitude are zero, which means the
whole system does not oscillate any more in steady state.
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5.24 Key solution
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putation Pad

ngineer's Com
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6.1. cheat sheet

CHAPTER 6. APPENDIX

6.1 cheat sheet

By Nasser M. Abbasi : Yo {wn2r
§ = = = c = _—C =€ “
Cr 2 fkm 2onm | Ynit

on |
small damping —T— I _
= e -2 = e§2n : n( Vo ) = §2ﬂ
|

|
P ! time constant 7 = - () = ¢an
m ! {on  Length of pendulum
. 2 L A . |'1_m_bex of cycles B
Wp = Wn 1- (s : sin‘y = =S5 Tixed |needed for peak %)
@ | cosly = I+cgsl‘: N :to decay by half
T on : sin2x = 2sinxcosx | ; élsigig
Ty = 2)_7; I cos2y = cosly —sin’y :3 2 ez
1 : = 1-2sin’r 4. 2.75795
= I'Springs: i llel, ADD 5. 2.20636
(17r2)2+(2r{° ! Springs: in paralle . e Toseas
1 - Sin[= Cos =] Velocity acceleration 7. 1.57597
max = ———— |Ll;gix_1;ix|et® _£* | diagram diagram le. 1.37897
b 28 /12 2= : z z g 5 la. 1.22575
. ‘ f = emQ? sin(Qt) (10. 1.10318
Bmax Whenr = /1 - 2¢& . - stt = 3%?
my” +cy' + ky = Re(Fe'@t 5,Cos(3t] = -35in(3t]
u" + 20U’ + w?u =0 ¢ im) 3. STale] =1 CosteT—
1001S x = Re{Xe"'} 5.Cosit] = -Sinit]
§<l {—éw"'jwn ’1—52,—§w—iwn ’1_52} 5<=%D(r,§) g Tan[t = Sec[t]”
§=1 {—w,—w} DI’, :+ red g = ’ﬁ
- = o) (1-r?)+2icr Jerar = P
¢>1 {*a’"é*wndf —l-ond-on S *l} £ ) [Co=[3t]dt = lsin[3t
. x=re{ Epr e}
Lety = Re(Yeiwt>Y= I sinft]dt = -Cos[t
: g—m2+2§w @+o?) 0 — tan1-2"_ Cos[t]dt = Sin[t
_ F_ 1 Liwt 1-r2
c=0Y Re(k s 2) e [erar |- a

iwt

)

{>0y=Re

When y=0, theny in

k (1~ r2)+|2§r

[-8in[x], Sin[x

{Cos[Pi/2+x], Cos[PL/2-x], 3in[Pi/2-x], 53in[Pi/2+x]}

1y Cos[x], Cos[x]}

complex plan is pure

o . . system
imaginary. When force is ¥

equation used to derive

transfer function

: isolate base from f
max, then f in complex 1solate base from force

planis all real

fur(t) = fopring + fa
transmitted by machine ' e ameer

\luu)\m

= Dly1+(2n)?

isolate machine from motion Use absolute mass position

L=T-V

[¥Imax

= Pl 1+ @)

of base my" +cy' +ky = ¢z’ +kz el
l (6_L) — B_L accelerameter: Measue base Use relative mass position U- i 2. = P00 -
dt \ oxj Xi acc. using relative displacement mu” +cu’ +ku = -mz"  (Ro?siozion " T u)2> “Q@aton)?
seismometer: Measue base Use relative mass position 2
— . —— 2 75D R
fir (t) = fSD"”g + fdam per | motion using relative displacement | mu” +cu’ + ku = —mz" Gy =PI W
_ ~ H E iwt ) .
=Re (F + Clo- )D(r1 $e } u(t) = e=“"(Acoswgt + Bsinwgt) + & —————"—sin(at - )
Phase of response complex (1,r2>2+(25r)2
amplitude for underdamped
and when r<1 _ E 1 .
Phase will be from 0 to -90 A= Uo + K (1 2>2 2 )2 sind
degrees y 7)) +(er
[For (0] e ¢< 1 -,
=24 §+(§wsin9—wcos(9)
w4 (1-r2)+(2¢ér)?
= |F|ID| ‘/1+(2§r)2 @)
@ = o - u(0)coswt + —smwt E 2t cos(at)
Same for u(t) K2
Y'braF'O” 0| @* @~ u)cosot + ( o _ = )sinwt
isolation C 1-r
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1. Determine the system of equations of motion and set up [M]Y" + [CTY’ + [K]Y = F in matrix form. In II ght daml ngl the
2. Solve the eigenvalue problem det([K] - uE[M]] = 0 in order to determine the n natural frequencies. . .
off-diagonal entries

3. For each natural frequency wj determine the corresponding jm eigenvector P by solving ([K] - ""3[”“])‘?; = 0. In this step
first component of Y; is set to 1 and the other components are;o\ved relative to it. are Set to Ze ro and
4. Obtain the normalized eigenvectors &; for each 4 using &= Fj where u; = go;[M]q:j. Each u; will be a scalar.
G
5. Set up the modal transformation matrix [#] = [@;@y - - - &,,]. This will be an i x 1 matrix. then C]_l = 2§1 Q)] 1
6. The transformation from normal sclution y(t) to modal 7(t) wil be Y = [&]n and n = [&] 'Y = [8]" [M]Y
7. Apply the above transformation on the original equations of motions in matrix form to obtain the equations of motion in modal 1 - _r
coordinates [@]T[]U] [@Y" + [@]T[C][@]Y' + [@]T[C’“Q]Y = [Q]TF‘ This becomes In"(t) + [5] ' (t) + [R’}ﬂ(t) = [!I']TF where T =—l=€ 2
I is the identity matrix, [5} is a diagonal damping matrix obtained using a method such as weak damping approximation and Kl|is
diagonal matrix with diagonal that contains the natural frequencies squared w? in each of entries. Y power point,
8. For steady state solution in modal coordinates, the loading vector [@]TF is assumed to be Q = [@]TF = Re(ae’m where a is the means the max

complex amplitude of the loading vector in modal coordinates. Therefore, the steady state solution is 1, (t) = Re(Xe"‘"") where X is amplitude at that
-~ TR i
the complex amplitude of each modal response is X; = ——2——_ For a system with no damping this simplifies to frequency is 0.707
—’ +t?§,¢u,w+w§

- & - of the maximum
X; = —;—. In here, ®; represents the transpose of the 4t column of the modal transformation matrix [®], or the transpose of . .
—wt possible amplitude
the j“' mass normalized eigenvector, and wj is the jm natural frequency. hich h
9. Now the steady state solution in modal coordinate is used to obtain the solution in normal coordinates since Y = [®]n. Therefore (W Ic appens at

Y,, = Re(’j{‘eﬂm) _ Re([gﬂ’)‘{‘eim) — Re(?e*'”‘). In component form Y, = Re((E;‘:l {-J—)A(j)eim) resonance)

1 1
T= —mlx’3+ Emgvg

O] [M]D; = [11onlyifi = i, else 0 °

. k. To find this v it is easier to resolve components on the =
For modal solution, {Y} = >, ®;X; B i) + (s cosd + )i

Sum-to-Product Formulas N
or velocity Ny

q . . w+v =
Yl = q)llxl + (1)12)(2 + ..smu+smtr=2sm( 5 cos( 5 )
Y2 - (D21x1 + (1)22)(2 + . . (n+’u . (n—u)
sinu — sin v = 2 cos 5 sin
or ]7}|2 =(xgsin8)2+(x2cosﬁ‘+x1)2
— (2. 2 2
Y]_ — {q)} rowl {X} e S T P ('H. -;-‘U cos (ﬂ. ; TJ) = (;'2511126‘) + (x2 ;:)s2 92+ X + 2xp4; cosﬂ)
. T =X sin? f + cos? @ + % + 2xy%, cos f)
Yo = {07}, (X}

2 2
o fu+v\ L fu—v =Xy + 3 + 2¥y% cos @
cost — cos v = —2 §in 5 sin 3

» Xyc086 + %

If using power method e

Stiff
Vg, = Vg = (7m L ging ) =0 gi iy = & sprin
9=\ 202 Joro ™ 197 sn0: ) =0 sinusiny = 3 [cos(u — v) — cos(u + v)] pring 1
=0
oV2 . 1
Vg = (Eg)efo = (7mlg%5m02)92:0 =0 coSUCOSY = ] [cos(u — v) + cos(u + v)]
02-0
V2 1 e
Vor = | 301207 )oo = © sinucosv = — [sin(u + v) + sin{u — v)] 4 _("f “f’)eA/B o
1002 ) 0, = (1 —03) - (cos B2 — sinfy])

920

I

xcos By

T= lmyé + l|cgéz cosusiny = — [sin(u + v) — sin{u — v))

9

1

0]
1 (YLt 1 Y2 — V1 .
= 5”‘(—2 ) (er)( ) b+ VI —dac I
2a

Physically, the constant represents the time it
takes the system's step response to reach

632 % Of |t$ ﬂnal (asymptotic) Value T = Hence from the above diagram we see that Lg = vV H> + L? and Leyy = V‘HZ + (L + 1)7, therefore

{101
. . . A =\H +(L+a) - VHE 1 I*
Where eg,s IS unit vector oriented to B from A
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6.2 study notes

6.2.1 trigidentities

1 _n
sinwt = Re[ ew’t] wt )]
coswt = Re[el“’t

coswt = 5( eiwt 4 e‘l“’t)

; 1 iwt —iwt
sinwt = —_(e —e )
21
When 2 harmonics have same amplitude, we can write then as envolope of one in another

A cos(a)lt - cpl) + A cos(a)zt - ¢2) =2A cos(Awt - A¢) cos(a)avt - cpm,)

S
P ¢LV %

Here is an example of the above. We first draw the two signals on their own, then plot
the additions of them

f1 = a Cos[wl t - pi]l;

f2 = a Cos[w2 t - p2];

parms = {a -> 1, wi -> 1, pl -> Pi/3, w2 -> 10, p2 -> Pi/4};
Plot[Evaluate[{f1, f2} /. parms], {t, O, 10},

PlotStyle -> {Red, Blue}]
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_I,QEJUIJulJUMUuUUMUu

Now we add them to see the envelope effect

Plot[Evaluate[{f1, f1 + £f2} /. parms], {t, 0, 10},
PlotStyle -> {Red, Blue}]

Now we plot the same signal addition, but using the form after converting to use the
mean and delta notation as shown above just to confirm it is the same signal

avW = Mean[{wl, w2}];
avP = Mean[{pl, p2}];
delW = w2 - avW;
delp = p2 - avP;
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g = 2 a Cos[delW t - delp] Cos[avW t - avP];
Plotlg /. parms, {t, 0, 10}]
: i fi
IHI I||I “
f f
L |
1 | f
RN | I|"II | || l
| | | | | i fi
||. || || l !l ||| J ! Ill il ll'l' | |I| !l | :l |] |I.I|
V '-J:'||I||| |"||4 ] §] ||'||I'|1c-

(28]

The beat period is ﬁ (this is the time between each beat to the next beat). The whole

signal will be periodic only when Z—; is rational.

Beat shows up when we have 2 harmonics added, that has same amplitude. The beat
signal itself will be period when the ratio between the frequencies of the two harmonics
is rational. In the context of response of a system, we can think of the steady state response
as one signal and the transient response as another singnal. The response will then show
a beating signal when the amplitude of the steady state and transient singnals is the same.

Here is an example of that from one of my demos
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transient+steady state solution (combined) j

damping ¢ J—:.ou.n =1
stiffness k& —J— 020 system response u(f) vs. time

ufD) — — 400 =m0 | [ T [ '
0) — — 400 2= | T 1
massm  —— |—— 048
amplitude F = [——— - 01.0 +F il

mu“(f) + cu'(f) + k u(t) =F smn(w )

harmonic & wjw —— |—— - 0.93 .L

Fdit) . “ {
damping ratio & 0000.000 o IJ. d |. } H j
magrification factor # 0007.072 T ﬂ [
static displacement F /ic |0000. 500

forcing frequency @ |0000,600 |rad/sec =1+

natural frequency @ |0000.648 |rad/sec

natural period 2rfes  |0009.703 |sec

damped frequency a,, 0000.648 rad)/sec T ]
damped period 2wy (0009.703 |sec

time constant T 0001544 [sec s 4
ftest case |besting phenomencn j 0 1clg :,3'.;, _\,clo ..OI.J a0

full screen ¥

time J 1500.0 (Sec)
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