
(b) Practice Medfterm

Nondimensionalize $\rightarrow t^{\prime}=w_{n} t, \omega_{n}=\sqrt{\frac{p g l}{\frac{1}{3}} h^{2} L^{2}}=\sqrt{\frac{30}{2 L}}$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\theta_{1}^{11} \\
\theta_{2}^{\prime \prime}
\end{array}\right\}+\left[\begin{array}{cc}
\alpha+0.5 & -\alpha \\
-\alpha & \alpha+0.5
\end{array}\right]\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=0
$$

EVP

$$
\left[\begin{array}{cc}
\alpha+0.5-w^{2} & -\alpha+w^{2} \\
\left.-\alpha+05-p_{0}\right\}
\end{array}\right]=0
$$

nontravial if matrit is simgular - det $=0$

$$
\begin{aligned}
& \left(\alpha+0.5-\omega^{2}\right)\left(\alpha+0.5-\omega^{2}\right)-\alpha^{2}=0 \\
& \alpha^{2}+0.5 \alpha-\alpha \omega^{2}+0.5 \alpha+0.25-0.5 \omega^{2}-\alpha \omega^{2}-0.5 \omega^{2}+ \\
& \quad \quad+\omega^{4}-\alpha^{2}=0 \\
& w^{4}-2(\alpha+0.5) \omega^{2}+0.25+\alpha=0 \\
& w^{2}=\frac{2(\alpha+0.5) \pm \sqrt{4(\alpha+0.5)^{2}-4(1)(0.25+\alpha)}}{2} \\
& w^{2}=(\alpha+0.5) \pm \sqrt{(\alpha+0.5)^{2}-(\alpha+0.25)} \\
& =(\alpha+0.5) \pm \sqrt{\alpha^{2}+\alpha+0.25-\alpha-0.35} \\
& =(\alpha+0.5) \pm \alpha= \\
& w_{1}^{2}=0.5, w_{2}^{2}=0.5+2 \alpha
\end{aligned}
$$

for small $\alpha-w_{1} \approx w_{2}$
Módes \rightarrow

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
\alpha & -\alpha \\
-\alpha & \alpha
\end{array}\right] \phi_{1}=0} & \phi_{1}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \\
{\left[\begin{array}{cc}
-\alpha & -\alpha \\
-\alpha & -\alpha
\end{array}\right] \phi_{2}=0} & \phi_{2}=\left\{\begin{array}{l}
1 \\
-1
\end{array}\right\}
\end{array}
$$

Givenan intial condition,

$$
\begin{aligned}
& n_{1}(t)=\operatorname{Re}\left(N_{1} e^{\left.i w_{1} t\right)}\right. \\
& n_{2}(t)=\operatorname{Re}\left(N_{2} e^{i w_{2} t}\right) \\
& \left.\{\delta\}=[\Phi]\left\{n_{1}(x)\right\} \quad N_{0}(t)\right\} \rightarrow
\end{aligned}
$$

$(2-$ con t.

$$
\begin{aligned}
& g_{1}=\frac{1}{\sqrt{\mu_{1}}} n_{1}(t)+\frac{1}{\sqrt{\mu_{2}}} n_{2}(t) \\
& g_{2}=\frac{1}{\sqrt{\mu_{1}}} n_{1}(t)+\frac{-1}{\sqrt{\mu_{2}}} n_{2}(t)
\end{aligned}
$$

$g_{1}(A)$ is the sum of 2 harmonics with nearly equal amplitudes and nearly the same frequency, so beating occurs
$q_{1} \approx \operatorname{Re}\left(A e^{i \Delta \omega t}\right) \operatorname{Re}\left(A e^{i \omega_{\text {an et }} t}\right)($ see below)

$$
\text { Wove }=(\sqrt{0.5}+\sqrt{0.5+2 \alpha}) \frac{1}{2} \quad \begin{gathered}
(\alpha \text { has little fleet } \\
\text { herein) }
\end{gathered}
$$

$$
\Delta \omega=(\sqrt{0.5+2 \alpha}-\sqrt{0.5}) \frac{1}{2}
$$

$L_{\text {depends on } \alpha}$
could solve this on Calculator iteratively to find α forknown $\Delta \psi$

$$
\begin{aligned}
& \text { small } \alpha=\text { Taylor Sones } \\
& \frac{\partial \Delta w}{\partial \alpha}=\left.(0.5+2 \alpha)^{-1 / 2}\left(\frac{1}{2}\right)(2)\right|_{\alpha=0}=\frac{1}{\sqrt{0.5}} \\
& \Delta w=0+\frac{2 \Delta w}{2 \alpha} \alpha=\sqrt{2} \alpha \\
& \left.\Delta w=\frac{2 \pi}{T}=\frac{2 \pi}{63}, 2\right) \sim 2 \text { bents per pentad } \\
& \Delta w=\frac{\pi}{63}=\sqrt{2} \alpha \\
& \left.\alpha \approx \frac{\pi}{63 \sqrt{2}} \approx 0.035 \quad \text { (True } \alpha=0.036605\right)
\end{aligned}
$$

Or, if you need to derive the beating equation a bove:

$$
\begin{aligned}
& q_{1}=\operatorname{Re}\left(c_{1} e^{i \omega_{1} t}\right)+\operatorname{Re}\left(c_{2} e^{i \omega_{2} t}\right) \quad \text { for } c_{1}=c_{2} \\
& \varepsilon_{1}=c_{1}\left[\operatorname{Re}\left(e^{i \operatorname{\omega } \operatorname{lowt} t} e^{-i \operatorname{sint}}+e^{i \omega_{\text {un }} t} e^{i \Delta \omega t}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.e^{-i \operatorname{Hon} t} e^{-1 \sin t}\right] \\
& g_{1}=\frac{1}{2} c_{1}\left[e^{i \operatorname{Win} x}\left(e^{i \Delta \omega t}+e^{-1 \sin x}\right)+e^{-i \operatorname{lin} \omega t}\left(e^{i \Delta \omega t}+e^{-1 \Delta \omega x}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\{Z\} & =\left[K+i \omega c-\omega^{2} M\right]^{-1}\left\{\begin{array}{l}
K \\
0
\end{array}\right\} \bar{Y} \\
& =\left[\begin{array}{cc}
K+i w c-\omega^{2} m & \text {-iwe } \\
-i \omega c & 2 K \text { tiwe }-\omega^{2} m
\end{array}\right]^{-1}\{y\} Y
\end{aligned}
$$

use $w=w_{1} \rightarrow$ find w_{1}

$$
\left|\left[K-w^{2} M\right]\right|=\left|\left[\begin{array}{c}
K-m w^{2} \\
2 K-m w^{2}
\end{array}\right]\right|
$$

by mispection (diagorol systam) $\rightarrow w_{1}=\sqrt{\pi / m}, w_{2}=\sqrt{\frac{2 K}{m}}$

$$
b=\left[\begin{array}{cc}
k \operatorname{tin} c-1 \sin m & -\sin c \\
-\operatorname{lin} c
\end{array}\right]^{-1}\left\{\begin{array}{l}
k \\
d
\end{array}\right] Y
$$

$$
=\left[\begin{array}{cc}
k+1 w c & \text { iwe } \\
\operatorname{iow} c & \text { iwc }
\end{array}\right] \frac{1}{(k+i w c) \operatorname{inc}-(\sin c)^{2}}\{\{3 Y
$$

$$
=\left[\begin{array}{c}
(k+i w c) k \\
k(\sin c)
\end{array}\right] \frac{1}{k(\operatorname{lin} c)} \Psi
$$

$$
=\left[\frac{k^{2}+1 w c k}{1 w c k} \begin{array}{c}
1
\end{array}\right] \bar{Y}
$$

b) General case:
x_{2} cannot $=0$ unlegs $c=0$

$$
\begin{array}{r}
x_{1} \rightarrow 2 k+i w c-w^{2} m=0 \\
w=\frac{-i c \pm \sqrt{-c^{2}-4(-m)(2 k)}}{-2 m}
\end{array}
$$

sulutionfor wis imaginamy unless $c=0$
\rightarrow sothere is nod real of for which $x_{1}=0$

$$
\begin{aligned}
& \langle X\rangle=\left[\begin{array}{cc}
2 k+i \omega c-w^{2} m & \text { ince } \\
i w c & k+i \omega c-w^{2} m
\end{array}\right] \frac{1}{\operatorname{det}(c)}\left\{\begin{array}{l}
k \\
0
\end{array}\right\} \\
& =\left\{\begin{array}{c}
2 K+\operatorname{swc} c-\omega^{2} m \\
1 w e
\end{array}\right\} \frac{k}{d \operatorname{det}()} Y
\end{aligned}
$$

3-cont.
C) from previous

$$
\begin{aligned}
& \left\{\frac{x_{1}}{x_{2}}\right\}=\left[\begin{array}{cc}
\operatorname{lin} c & \text { in se } \\
\operatorname{inc} c & \text { in }
\end{array}\right]=\frac{1}{0}\{j\} I \\
& x_{1}, \bar{x}_{2} \rightarrow \infty
\end{aligned}
$$

Explanation \rightarrow equal nat frey's

$$
\left[[k]-\omega^{2}[M]\right]\{\phi\}=0
$$

$\left[\begin{array}{ll}0 & 0 \\ 0 & \sigma\end{array}\right]\{\phi\}=0 \rightarrow \phi$ is arbitramp!
if $\phi_{1}=\left\{\begin{array}{l}1 \\ 1\end{array}\right\}$ then $\left\{\phi_{1}\right\}^{T}[C]\left\{\phi_{1}\right\}=$

$$
\left[\begin{array}{ll}
1 & A_{1}
\end{array}\right]\left[\begin{array}{cc}
c & -c \\
-c & c
\end{array}\right]\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0
$$

so, $2 \xi_{1} w_{1}=0, \xi_{1}=0$
So this mode is undamped and it's response approaches ∞ when it is freed at it's nat. frog.
d) given $x_{1}=\operatorname{Re}\left(A e^{\text {iN }}\right) \rightarrow$ use and $\varepsilon \circ M$ x_{2} must also be harmonic $\rightarrow x_{2}=\operatorname{Re}\left(x_{2} e^{\text {init }}\right)$

$$
\begin{aligned}
& m \ddot{x}_{2}+c \dot{x}_{2}-c \ddot{x}_{1}+k_{2} x_{2}=0 \\
& \underline{X}_{2}=\frac{i w c Z_{1}}{K+1 w c-w^{2} m} \\
& \bar{x}_{2}=\frac{i \omega c A}{k+1 w c-w^{2} m \quad \quad x_{2}(A)=\operatorname{Re}\left(x_{2} e^{i \omega t}\right)}
\end{aligned}
$$

E.C preload ~
louses contact if $\Delta>A_{0}$

$$
\left.\begin{array}{ll}
\downarrow m g & k_{2} \Delta_{0}-m g=0 \\
1 & k_{2} \\
\uparrow k_{2} \Delta_{0} & \Delta_{0}=\frac{m g}{k_{2}}
\end{array}\right\} \begin{aligned}
& \Delta=x_{1}-y \\
& \quad x_{1}-y>\frac{m g}{k}
\end{aligned}
$$

