Homework \#9 EMA 545, Spring 2013

For the following problems, you may have the equations of motion for some of these systems in your past homework assignments or in the solutions to those that were posted online, so you may use those if you wish.

For all of these problems you may use Matlab or some other package to find the natural frequencies and mode vectors and to mass normalize the mode vectors (if needed).
1.) Problem 4.3 in Ginsberg. Sketch the deformation of the system when it moves in each of the modes. (Notice that you can pull out factors such as k and m so that only numbers remain in the mass and stiffness matrices. Then it is possible to check your answers using Matlab.)
2.) Problem 4.7 as given in the text. You may use the following equations of motion:

$$
m L^{2}\left[\begin{array}{cc}
4 / 3 & 1 / 2 \\
1 / 2 & 1 / 3
\end{array}\right]\left\{\left\{\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right\}+m g L\left[\begin{array}{cc}
2 \beta-3 / 2 & -\beta \\
-\beta & \beta-1 / 2
\end{array}\right]\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}\right.
$$

3.) Problem 4.11 as given in the text. Hint: normal modes $=$ mass normalized modes
4.) Problem 4.29 as given in the text. Also, plot the motion of the automobile as a function of time. Is the response a pure-sinusoid? Why or why not? Note: The answer provided by the book is incorrect. The correct answer is:

$$
\begin{aligned}
& y_{1}(t)=0.16 \cos \left(1.5 t^{\prime}\right)+0.84 \cos \left(2.0 t^{\prime}\right) \\
& y_{2}(t)=0.45 \cos \left(1.5 t^{\prime}\right)-0.45 \cos \left(2.0 t^{\prime}\right)
\end{aligned}
$$

4.3

- Solve by hand for wis and rri's
- sketen deformation shope in paín mode.

From Hhy \# 2 (Prob 1.30)

$$
\begin{aligned}
& \text { let } m_{1}=m, m_{2}=2 m, k_{1}=k, k_{2}=k / 2 \\
& {\left[\begin{array}{cc}
\frac{1}{3} m L^{2} & 0 \\
0 & \frac{7}{24} m L^{2}
\end{array}\right]\left(a_{0}\right)+\left[\begin{array}{cc}
\left(\frac{9}{16}+\frac{1}{2}\right) & \left(\frac{9}{16}+\frac{1}{4}\right) \\
\operatorname{sun} & \left(\frac{9}{16}+\frac{1}{8}\right)
\end{array}\right]\binom{\theta_{1}}{\theta_{2}} \cdot k^{2}=\binom{0}{\frac{52}{2}}} \\
& K_{11}=(51 / 48) K L^{2} \quad K_{12}=(39 / 48) 4 L^{2} \quad K_{22}=(33 / 48)^{2} 4 l^{2}
\end{aligned}
$$

let $M+K$ be matnces contaning only the numbers,
Evp:

$$
\left([k] K L^{2}-\omega^{2} \cdot m L^{2}[M]\right)(\phi\}=0
$$

let $\lambda=\omega^{2} \cdot \frac{m^{2}}{m^{2}}=\omega^{2} \frac{m}{k}$
multiply by 48 to clear fractions

$$
\begin{aligned}
& \left(\left[\begin{array}{cc}
51 & 39 \\
39 & 33
\end{array}\right]-\lambda\left[\begin{array}{cc}
16 & 0 \\
0 & 14
\end{array}\right]\right) \phi 3=0 \\
& \left.\left(\left[\begin{array}{cc}
51-16 \lambda & 39 \\
39 & 3-14 \lambda
\end{array}\right]\right) \phi\right\}=0
\end{aligned}
$$

Choreg: $(51-16 \lambda)(33-14 \lambda)-39^{2}=0$

$$
51.33-(51.14+16.33)+16.14 \lambda^{2}-39^{2}=0
$$

pulynomid sdumer malculater or in pat lobs

$$
\begin{aligned}
& \operatorname{rocts}\left(\left[16.14,-(51.14+16.33), 51.33-39^{2}\right]\right) \\
& \lambda_{1}=0.1337 \quad \lambda_{2}=5.411
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1sten } \\
& 51-16 \lambda \phi_{1}+39 \phi_{2}=0 \rightarrow \phi_{2}=\frac{16 \lambda-51}{39} \phi_{1}^{\text {valuein } 2 \text { val raverint }} \text { rant } \\
& {\left\{\phi_{1}\right.}=\left\{\begin{array}{l}
1 \\
-1.2529
\end{array}\right\} \quad \phi_{2}=\left\{\begin{array}{l}
1 \\
0.9122
\end{array}\right\} \\
& \omega_{1}=0.3656 \sqrt{\frac{k}{m}} \quad \omega_{2}=2.3262 \sqrt{\frac{5}{m}} \\
& \text { ansur }
\end{aligned}
$$

4.3 - controural
sketon
Mode 1: $\{8\}=\operatorname{Re}\left(B(\phi\} e^{i}(\omega, t)\right.$, so

Mode 2: $\left\{0_{1},\left\{\begin{array}{c}1 \\ 0,91\end{array}\right\}\right.$

\rightarrow second made involves move strain in springs, and hence a higher Provence.
\rightarrow The effective mass of the two bars is similar since m_{2} am (even haugh its plvetis closed to the center of nays. $M_{11}=(1 / 3 \mathrm{~mL}) ; m_{22}=0.29 \mathrm{~mL}^{2}$ Because This is the case, both bars rotate by similar ammaints in each mode.

Exercise 4,7

$$
\begin{aligned}
\bar{v}_{G}= & L \dot{\theta}_{1} \bar{c}+\frac{L}{2} \dot{\theta}_{2} \bar{c} \\
T= & \frac{1}{2}\left(\frac{1}{3} m L^{2}\right) \dot{\theta}_{1}^{2} \\
& +\frac{1}{2} m\left(c \bar{\theta}_{1}+\frac{L}{2} \dot{\theta}_{2}\right)^{2} \\
& +\frac{1}{2}\left(\frac{1}{12} m l^{2}\right) \dot{\theta}_{2}^{2} \\
= & \frac{1}{2} m l^{2}\left(\frac{4}{3} \dot{\theta}_{1}^{2}+\frac{1}{3} \dot{\theta}_{2}^{2}\right. \\
& \left.+\dot{\theta}_{1} \dot{\theta}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{11}=\frac{4}{3} m l^{2}, M_{22}=\frac{1}{3} m l^{2}, M_{12}=M_{21}=\frac{1}{2} m l^{2} \\
& V_{s p}=\frac{1}{2}(\beta m g L) \theta_{1}^{2}+\frac{1}{2}(\beta m g L)\left(\theta_{2}-\theta_{1}\right)^{2}=\frac{1}{2} \beta m g L\left[2 \theta_{1}^{2}+\theta_{2}^{2}-2 \theta_{1} \theta_{2}\right] \\
& \left(K_{11}\right)_{s p}=2 \beta m g L,\left(K_{22}\right)_{s p}=\beta m g L,\left(K_{12}\right)_{s p}=\left(K_{21}\right)_{s p}=-\beta m g L \\
& V_{g r}=m g \frac{L}{2} \cos \left(\theta_{1}\right)+m g\left[L \cos \left(\theta_{1}\right)+\frac{c}{2} \cos \left(\theta_{2}\right)\right] \\
& \left(K_{11}\right)_{\partial r}=\left.\frac{\partial^{2} V_{3}-}{\partial \theta_{1}^{2}}\right|_{\theta_{1}=\theta_{2}=0}=-\frac{3}{2} m g L \\
& \left(K_{22}\right)_{\partial r}=\left.\frac{\partial^{2} V_{j r}}{\partial \theta_{2}^{2}}\right|_{\theta_{1}=\theta_{2}=0}=-\frac{1}{2} m g L \\
& \left(K_{12}\right)_{\partial r}=\left.\frac{\partial^{2} V}{\partial \theta_{1} \partial \theta_{2}}\right|_{\theta_{1}=\theta_{2}=0}=0 \\
& {\left[[K]-\omega^{2}[M]\right]\{\phi\}=\left[m g L\left[\begin{array}{ll}
\left(2 \beta-\frac{3}{2}\right) & -\beta \\
-\beta & \left(\beta-\frac{1}{2}\right)
\end{array}\right]-m L^{2} \omega^{2}\left[\begin{array}{cc}
\frac{4}{3} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right]\right]\{\phi\}=\{0\}}
\end{aligned}
$$

Let $\lambda=\frac{m l^{2} \omega^{2}}{m g L} \Rightarrow \omega^{2}=\frac{g}{L} x$, Then

$$
\left[\begin{array}{cc}
\left.\left(2 \beta-\frac{3}{2}\right)-\frac{4}{3} \lambda\right)-\left(\beta+\frac{1}{2} \lambda\right) \\
-\left(\theta+\frac{1}{2} \lambda\right) & \left(\left(\beta-\frac{1}{2}\right)-\frac{1}{3} \lambda\right.
\end{array}\right]\{\phi\}=\{0\}
$$

When $B=4:\left[\begin{array}{cc}\left(\frac{13}{2}-\frac{4}{3} \lambda\right) & -\left(4+\frac{1}{2} \lambda\right) \\ -\left(4+\frac{1}{2} \lambda\right) & \left(\frac{7}{2}-\frac{1}{3} \lambda\right)\end{array}\right]\left\{\begin{array}{l}\phi_{1} \\ \phi_{2}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$
Char eq $\frac{7}{36} \lambda^{2}-\frac{65}{6} \lambda+\frac{27}{4}=0 \Rightarrow \lambda=0.6302,55.08$

$$
\begin{aligned}
& {\left[\begin{array}{c}
\frac{13}{2}-\frac{4}{3} \lambda_{j}-\left(4+\frac{1}{2} \lambda_{\gamma}\right) \\
x
\end{array}\right]\left\{\begin{array}{l}
1 \\
\phi_{21}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
x
\end{array}\right\}} \\
& \phi_{2 \gamma}=\frac{13 / 2-(4 / 3) \lambda_{j}}{4+\lambda_{\gamma} / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=0.6302 \rightarrow \omega_{1}=0.794\left(\frac{g}{L}\right)^{1 / 2},\left\{\phi_{1}\right\}=\left\{\begin{array}{l}
1 \\
1.312
\end{array}\right\} \\
& \lambda_{2}=55.08 \Rightarrow \omega_{2}=7.422\left(\frac{g}{L}\right)^{1 / 2},\left\{\phi_{2}\right\}=\left\{-^{1} 2.122\right\}
\end{aligned}
$$

when $\beta=2 \quad\left[\begin{array}{cc}\frac{5}{2}-\frac{4}{3} \lambda & -\left(2+\frac{\lambda}{2}\right) \\ -\left(2+\frac{\lambda}{2}\right) & \frac{3}{2}-\frac{1}{3} \lambda\end{array}\right]\left\{\begin{array}{l}\phi_{1} \\ \phi_{2}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$
Char eq: $\frac{7}{36} \lambda^{2}-\frac{29}{6} \lambda-\frac{1}{4}=0 \Rightarrow \lambda_{1}=-0.053,24,91$
Negative $\lambda_{1} \Rightarrow$ imaginary $\omega_{1} \Rightarrow$ divergence instability

Exerorse 4.11

$$
\left.\begin{gathered}
\left|[k]-w^{2}[\mu]\right|=\left\lvert\, \begin{array}{c}
\left(3\left(10^{5}\right)-4 \omega^{2}\right)-w^{2} \\
-w^{2}
\end{array}\left(2\left(0^{5}\right)-3 \omega^{2}\right)\right.
\end{gathered} \right\rvert\,
$$

4.29 Solution

$$
\begin{aligned}
& y_{1} \frac{1 / 2-1 / 2-1 / 2}{2} \quad K_{2}=0.4 \mathrm{~L} \rightarrow I_{g}=m \mathrm{Kg}^{2} \\
& \frac{1.5 K}{1 / \mathrm{m}} \mathrm{~m}_{\mathrm{m}} k \\
& y_{1}(0)=\frac{m g}{k} \quad y_{2}(0)=0 \\
& \text { find }\{y(t)\} \text { for } x^{\prime}=\sqrt{\mathrm{km}} t \\
& T=\frac{1}{2} m v_{g} \cdot v_{g}+\frac{1}{2} I_{g} \dot{\theta}^{2}
\end{aligned}
$$

Use veloaty equations to retate \dot{y}_{1}, \dot{y}_{2} to y_{g}, σ

$$
\begin{aligned}
& \dot{y}_{2} \hat{j}=\dot{y}_{1} \hat{j}+L \dot{\theta} \hat{j} \rightarrow L \dot{\theta}=\dot{y}_{2}-\dot{y}_{1} \\
& \dot{y}_{g} \hat{j}=\dot{y}_{i j}+\frac{2}{2} \dot{\theta} \quad \dot{y}_{y}=\dot{y}_{1}+\frac{L}{2}\left(\frac{\dot{y}_{2}-\dot{y}_{1}}{2}\right)=\frac{\dot{y}_{1}+\dot{y}_{2}}{2} \\
& T=\frac{1}{2} m\left(\frac{\dot{y}_{1}+\dot{y}_{2}}{2}\right)^{2}+\frac{1}{2} m(0.4 \psi)^{2} \cdot\left(\frac{\dot{y}_{2}-\dot{y}_{1}}{\mu}\right)^{2} \\
& T=\frac{1}{2} m\left[\frac{1}{4}\left(\dot{y}_{1}^{2}+2 \dot{y}_{1} \dot{y}_{2}+\dot{y}_{2}^{2}\right)+0.4^{2}\left(\dot{y}_{1}^{2}-2 \dot{y}_{1} \dot{y}_{2}+\dot{y}_{2}^{2}\right)\right] \\
& =\frac{1}{2} m\left[\left(0.25+0.4^{2}\right) \dot{y}_{1}^{2}+2\left(0.25-0.4^{2}\right) \dot{y}_{1} \dot{y}_{2}+\left(0.25+0.4^{2}\right) \dot{y}_{2}^{2}\right] \\
& M=\left[\begin{array}{ll}
0.41 & 0.09 \\
0.09 & 0.41
\end{array}\right] m K=\left[\begin{array}{cc}
1.5 & 0 \\
0 & 1
\end{array}\right] K \quad\binom{V_{\text {spr }}=\frac{1}{2}}{\frac{1}{2}+1 q_{2}^{2}+1.54^{2}} \\
& {[M] \ddot{y}+[K] y=0 \quad \frac{d y}{d t}=\frac{\partial y}{\partial t^{\prime}} \frac{\partial t}{\partial t}=y^{\prime} \cdot \sqrt{\frac{k}{m}}} \\
& V_{\text {grav }} \Rightarrow \text { no } \\
& \text { contubution } \\
& \text { to } \mathrm{K} \text { mitine }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve Eup in Matiab } \\
& \{y\}=[\Phi]\{n\} \rightarrow\{n(0)\}=[\Phi]^{+}(M]\{0\} \cdot \frac{1}{k} \\
& \eta_{1}(t)=c_{1} \cos (\omega, t)+0, \cdots n_{2}(t)=c_{2} \cos \left(\omega_{2} t\right)+0 \\
& \{y(a)\}=[\Phi]\left\{\begin{array}{l}
c_{1} \cos \left(\omega_{1} t\right) \\
c_{2} \cos \left(v_{2} t\right)
\end{array}\right\} \quad \text { (See Mat lab resants) } \\
& \{y(x)\}=\left\{\begin{array}{l}
0.1595 \\
0.4485
\end{array}\right\} \cos \left(1.504 t^{\prime}\right)+\left\{\begin{array}{c}
0.8405 \\
-0.4485
\end{array}\right\} \cos \left(2.036 t^{\prime}\right)
\end{aligned}
$$

Solution: Ch. 4, Problem 4.29

```
See handwritten notes for derivation.
Matlab Code:
% Define Mass and Stiffness matrices:
M = [0.5+0.4^2, 0.5-0.4^2;
    0.5-0.4^2, 0.5+0.4^2];
K = [1.5, 0; 0, 1];
% q_0 = [1; 1];
% q_0 = [1; 0];
q_0 = [1; 0];
q_dot_0 = [0; 0];
% Solve the eigenvalue problem:
[Phi,Lam] = eig(K,M);
% Matlab solves an eigenvalue problem [A]{x} = lam*[B]{x}, where lam is
a
% scalar if we input eig(A,B). the matrix Lam output by Matlab is a
% diagonal matrix of eigenvalues lam, so by comparing with our
eigenvalue
% problem, we see that each nat. freq wn = sqrt(lam), or the vector of
% natural frequencies is wns = diag(Lam).^(1/2)
Phi
wns = diag(Lam).^(1/2)
% Check that the eigenvectors are mass normalized. If this is not an
% identity, then we need to normalize
Phi.'*M*Phi
% Note that Matlab sometimes gives the first eigenvector as the
negative of
% what we found. Either is a valid mode for the system.
% Now the initial conditions give:
eta_0 = Phi.'*M*q_0
eta_dot_0 = Phi.'*M*q_dot_0
% and the constants in the solutions eta(t) = a1*cos(wns(1)*t)+etc...
a1 = eta_0(1); a2 = eta_dot_0(1)/wns(1);
b1 = eta_0(2); b2 = eta_dot_0(2)/wns(2);
% Define a time vector with 5 cycles of the lowest frequency:
ts = [0:1:200]/200*5*(2*pi/wns(1));
eta_t = [a1*cos(wns(1)*ts)+a2*sin(wns(1)*ts);
    b1*cos(wns(2)*ts)+b2*sin(wns(2)*ts)];
% each column of the matrix above gives {eta(t)} at some instant t.
Since
% the eta values are in columns, we obtain {q} by multiplying by [Phi]
q_t = Phi*eta_t;
figure(1);
subplot(2,1,1)
plot(ts,eta_t(1,:),'-o',ts,eta_t(2,:),':.'); legend('\eta_1','\eta_2');
xlabel('time (s)');
subplot(2,1,2)
plot(ts,q_t(1,:),'-o',ts,q_t(2,:),':.'); legend('y_1','y_2');
xlabel('time (s)'); ylabel('y*k/(m*g)');
```


Results:

>> M
$M=$

0.41	0.09
0.09	0.41

> K
$\mathrm{K}=$

1.5	0
0	1

Phi =
$-0.4905 \quad-1.5238$
-1.3789
0.81302
wns =
1.5041
2.0357
ans =
1 5.5511e-017
$-5.5511 e-017$
-0. 32521
-0. 0.55158
eta_dot_0 =
0
0

Response plotted over 5 cycles. Notice that the initial conditions are satisfied. Both modes are excited and oscillate at different frequencies. The superposition of both modes causes the response in y1, y2 coordinates to look quite complicated.

